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Asmussen and Lehtomaa [Distinguishing log-concavity
from heavy tails. Risks 5(10), 2017] introduced an inter-
esting function g which is able to distinguish between
log-convex and log-concave tail behavior of distribu-
tions, and proposed a randomized estimator for g. In
this paper, we show that g can also be seen as a tool to
detect gamma distributions or distributions with gamma
tail. We construct a more efficient estimator ĝn based on
U-statistics, propose several estimators of the (asymp-
totic) variance of ĝn, and study their performance by
simulations. Finally, the methods are applied to several
datasets of daily precipitation.
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1 INTRODUCTION

Throughout the paper, we consider independent and identically distributed (i.i.d.) random
variables X ,X1,X2, … > 0 with common distribution function F having density f . Asmussen and
Lehtomaa (2017) introduced the function g ∶ (0,∞)→ [0, 1], defined by

gX (d) = g(d) = E

[|X1 − X2|
X1 + X2

|||X1 + X2 > d
]
.

To start with, note that the function g satisfies gaX (d) = gX (d∕a) for a > 0. Hence, a rescaling of
X does not change the qualitative behavior of g. The function has the following interpretation
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2 IWASHITA and KLAR

(Asmussen & Lehtomaa, 2017): If both X1 and X2 contribute equally to the sum X1 + X2, then g
should eventually obtain values close to 0; if only one of the variables tends to be of the same
magnitude as the whole sum, then g is close to 1 for large d. More formally, they showed that
g(d) → 1 for d →∞ for many distributions with long tails, e.g. for lognormal type distributions,
for Weibull distributions with shape parameter 𝛼 < 1, and regularly varying distributions RV(𝛼)
with 𝛼 > 1 and eventually decreasing density f . Here, a property holds eventually, if there exists
x0 so that the property holds in the set [x0,∞). Further literature related to the single-big-jump
principle is Beck, Blath, and Scheutzow (2015) and Lehtomaa (2015).

A density f is called log-concave, if f (x) = e𝜙(x), where 𝜙 is a concave function. If 𝜙 is convex,
then f is log-convex. Asmussen and Lehtomaa (2017) proved the following result. Assume that
the density f is twice differentiable and eventually log-concave. Then,

lim sup
d→∞

g(d) ≤ 1∕2.

Similarly, if f is eventually log-convex, then lim infd→∞g(d) ≥ 1∕2.Moreover, the proof of theorem
1 in Asmussen and Lehtomaa (2017) shows that g(d) ≤ 1∕2 for all d > 0, if f is log-concave and
twice differentiable. If f is log-convex, g(d) ≥ 1∕2 for all d > 0. Since the exponential distribution
is log-concave and log-convex, it follows that g(d) = 1∕2 for all d > 0 under exponentiality.

A gamma distribution with density f (x) = 𝛽𝛼x𝛼−1 exp(−𝛽x)∕Γ(𝛼), where shape parameter 𝛼
and rate 𝛽 (or scale parameter 1∕𝛽) are positive, is log-concave for 𝛼 ≥ 1. Hence g(d) ≤ 1∕2 for all
d > 0. Similarly, for 𝛼 ≤ 1, it is log-convex, and we have g(d) ≥ 1∕2 for d > 0. Our first result in
Section 2 shows that g(d) takes a constant value for gamma distributions; moreover, the family
of gamma distributions is characterized by this property. Hence, g(d) can also be seen as a tool to
detect gamma distributions or distributions with gamma tail.

In Section 3, we first analyze the asymptotic behaviour of a randomized estimator of g(d)
introduced by Asmussen and Lehtomaa (2017), and construct a more efficient estimator based on
U-statistics, denoted by ĝn(d). In Sections 4 and 5, we propose several estimators of the (asymp-
totic) variance of ĝn(d) and study their performance by simulations. Finally, in Section 6, the
methods are applied to several datasets of daily point and areal precipitation.

2 PROPERTIES OF FUNCTION g

Our first result is based on Lukacs’ Theorem (Lukacs, 1955), which states the following: Let X and
Y be positive and independent random variables. Then U = X + Y and V = X∕Y are independent
if and only if both X and Y have gamma distributions with the same scale parameter.

Proposition 1.

(a) Let X and Y be positive and independent random variables. Then,

E

[X − Y
X + Y

|||X + Y > d
]
= E

[X − Y
X + Y

]
, for all d > 0,

if and only if both X and Y have gamma distributions with the same scale
parameter.
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IWASHITA and KLAR 3

(b) Assume that X ,X1,X2 are i.i.d. random variables. Then,

gX (d) = gX (0), for all d > 0,

if and only if X is gamma distributed.

Proof. Let X and Y be positive and independent random variables. Then, using Lukacs
Theorem, h1(V) = (1 + 1∕V)−1 = X∕(X + Y ) and X + Y are independent, if and only if
both X and Y have gamma distributions with the same scale parameter, and the same
assertion holds for h2(V) = (1 + V)−1 = Y∕(X + Y ). Since the function h1(v) − h2(v) is
strictly increasing for v > 0, the independence condition is equivalent to the condition
that R = (X − Y )∕(X + Y ) = h1(V) − h2(V) and X + Y are independent, or, likewise,
to the condition

E[R|X + Y > d] = E[R], for all d > 0.

This proves part (a). Now, additionally assume that X and Y have the same distribu-
tion. Then, the distribution of R is symmetric around 0. Hence, the sigma algebras
generated by R and |R| coincide, which yields the assertion in b). ▪

Remark 1. From Proposition 1 and the remarks in Section 1, we obtain g(d) = c(𝛼) ≤
1∕2 for all d > 0, if 𝛼 ≥ 1. Similarly, for 𝛼 ≤ 1, we have g(d) = c(𝛼) ≥ 1∕2 for all d > 0.
From Prop. 3 in Appendix A, we obtain the explicit values

c(𝛼) =
(
22𝛼−1

𝛼 B(𝛼, 𝛼)
)−1

,

where B(⋅, ⋅) denotes the beta function. For 𝛼 = 1∕5 and 𝛼 = 5, we get c(1∕5) ≈ 0.798
and c(5) = 63∕256 ≈ 0.246, respectively. These results show formally what can be seen
in the left and right panels of figure 1 in Asmussen and Lehtomaa (2017), which are
generated using simulated data.

A typical measure to describe the tail of loss distributions is the asymptotic
behavior of the failure rate (Klugman, Panjer, & Willmot, 2012, p. 34)

h(∞) = lim
x→∞

h(x) = lim
x→∞

f (x)
1 − F(x)

= − lim
x→∞

d
dx

log f (x),

where the last equality holds for distributions with support [0,∞). For gamma dis-
tributions with scale parameter 1, one has h(∞) = 1, irrespective of 𝛼. Hence, this
measure is not able to distinguish between gamma distributions with different shape
parameters, in contrast to the function g. The same holds for the limit of the mean
excess function (Klugman et al., 2012, p. 35). Both failure rate and mean excess
function are nonlinear for gamma distributions.

3 A NEW PROPOSAL FOR AN ESTIMATOR OF g(d)

3.1 Asymptotic behavior of the Asmussen–Lehtomaa estimator

To estimate g(d) based on an i.i.d. sample X1, … ,Xn, where n = 2m is even, Asmussen and
Lehtomaa (2017) proposed the following estimator: use any pairing (Yk,Zk)1≤k≤m of the Xi
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4 IWASHITA and KLAR

F I G U R E 1 In black: Graphs of 20 versions of g̃m(d), generated from random partitions of a classical set of
Danish fire insurance data, available in the R package evir (Pfaff & McNeil, 2018). The dataset is scaled to have
mean 1. In red: Graph of the new estimator ĝn(d).

(e.g., Yk = X2k−1,Zk = X2k), and set

g̃m(d) =
∑m

k=1Rk 1(Yk + Zk > d)∑m
k=11(Yk + Zk > d)

, with Rk =
|Yk − Zk|
Yk + Zk

, (1)

and where 1(A) is the indicator function of the event A. The estimator proposed in (1) has the
advantage that it can be computed fast even for very large sample sizes. On the other hand, it
does not make efficient use of the sample; moreover, it requires splitting the sample randomly
in two halves, leading to a randomized statistic. This is illustrated in Figure 1; see also figure
3 in Asmussen and Lehtomaa (2017). Since we are particularly interested in the tail behav-
ior, that is, in large values of d, the sample size will typically be small, and the disadvantages
predominate.

To derive the limiting distribution of g̃m(d), define for any d ≥ 0 such that 𝜈d = P(Y1 + Z1 >

d) > 0 the quantities Sk = Rk 1(Yk + Zk > d),Tk = 1(Yk + Zk > d), 𝜇d = E(S1) > 0, 𝜇2,d = E(S2
1).

By the central limit theorem,

1√
m

m∑
k=1

((
Sk

Tk

)
−

(
𝜇d

𝜈d

))


−−→N2(0, ̃Σd), where ̃Σd =

(
𝜇2,d − 𝜇2

d 𝜇d(1 − 𝜈d)
𝜇d(1 − 𝜈d) 𝜈d(1 − 𝜈d)

)
.

Then, the delta method yields

√
m
(

g̃m(d) − g(d)
) 

−−→N

(
0,
𝜇2,d

𝜈

2
d

−
𝜇

2
d

𝜈

3
d

)
.

Noting that g(d) = 𝜇d∕𝜈d and writing g2(d) = E[R2
1|Y1 + Z1 > d] = 𝜇2,d∕𝜈d, we end up with

√
m𝜈d

(
g̃m(d) − g(d)

) 

−−→N
(
0, g2(d) − (g(d))2

)
. (2)
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IWASHITA and KLAR 5

Since Rk < 1, this result holds without any assumptions, as long as 𝜈d > 0. Note that the effective
sample size is m𝜈d.

Example 1. Assume that Y1 and Z1 are i.i.d. gamma-distributed with shape param-
eter 𝛼 and rate 𝛽. Then, 𝜈d = P(W > d), where W has a gamma distribution with
parameters 2𝛼 and 𝛽. Using Proposition 1 and Proposition 3 in Appendix A, we obtain

g2(d) = E[R2
1] =

Γ(2𝛼 + 1)
Γ(2𝛼 + 2)

,

for all d > 0. It follows that

√
m𝜈d

(
g̃m(d) − c(𝛼)

) 

−−→N
(

0, Γ(2𝛼 + 1)
Γ(2𝛼 + 2)

− c2(𝛼)
)
,

where c(𝛼) is given in Remark 1. For 𝛼 = 1, that is, the exponential distribution, this
results in

√
m𝜈d

(
g̃m(d) − 1∕2

) 

−−→N(0, 1∕12).

3.2 A new estimator based on U-statistics

A more efficient way of estimating g(d) is the use of suitable U-statistics (for the general theory,
see Korolyuk & Borovskich, 1994; Lee, 1990). To this end, define kernels of degree 2

h(1)(x1, x2; d) =
|x1 − x2|
x1 + x2

1(x1 + x2 > d), h(2)(x1, x2; d) = 1(x1 + x2 > d),

and define two U-statistics by

U (l)
n (d) =

2
n(n − 1)

∑
1≤i<j≤n

h(l)(Xi,Xj; d), l = 1, 2.

Obviously, U (l)
n (d) is an unbiased estimator of 𝜃(l)d = E[h(l)(X1,X2; d)], l = 1, 2. Note that 𝜃(1)d and

𝜃

(2)
d coincide with 𝜇d and 𝜈d. Then, estimate g(d) by the ratio of these statistics:

ĝn(d) =
U (1)

n (d)
U (2)

n (d)
, d > 0. (3)

By the strong law of large numbers for U-statistics (Lee, 1990, p. 122), U (l)
n (d), l = 1, 2, and hence

ĝn(d) are strongly consistent estimators for 𝜃(l)d and g(d), respectively.
The joint asymptotic distribution of U-statistics can be found in Lee (1990, p. 76) or Korolyuk

and Borovskich (1994, p. 132). This yields the following result.

Proposition 2. For l = 1, 2, let

𝜓

(l)(x1, x2; d) = h(l)(x1, x2; d) − 𝜃(l)d ,

𝜓

(l)
1 (x1; d) = E

[
𝜓

(l)(x1,X2; d)
]
.
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6 IWASHITA and KLAR

Further, define

𝜂

(l)
1 (d) = E

[(
𝜓

(l)
1 (X1; d)

)2
]
(l = 1, 2), 𝜂

(1,2)
1 (d) = E

[
𝜓

(1)
1 (X1; d) 𝜓 (2)1 (X1; d)

]
.

If 𝜂(l)1 (d) > 0 for l = 1, 2, then,

√
n

((
U (1)

n (d)
U (2)

n (d)

)
−

(
𝜇d

𝜈d

))


−−→N2(0, 4Σd), where Σd =

(
𝜂

(1)
1 (d) 𝜂

(1,2)
1 (d)

𝜂

(1,2)
1 (d) 𝜂

(2)
1 (d)

)
.

Using Proposition 2 and the delta method, we can derive the asymptotic behaviour of ĝn(d).

Theorem 1. Let 𝜈d > 0, and 𝜂(l)1 (d) > 0 for l = 1, 2. Then,

√
n𝜈d(ĝn(d) − g(d))



−−→N
(
0, 𝜎2

d
)
, (4)

where

𝜎

2
d =

4
𝜈d

(
𝜂

(1)
1 (d) − 2g(d) 𝜂(1,2)1 (d) + g2(d) 𝜂(2)1 (d)

)
. (5)

3.3 Asymptotic relative efficiency

Comparing (2) with (4), one may anticipate that the asymptotic relative efficiency (ARE) of g̃m(d)
relative to ĝn(d), where n = 2m, is roughly 1/2; here, the ARE is given by

ARE(g̃m(d), ĝn(d)) =
𝜎

2
d

2�̃�2
d

,

where �̃�2
d = g2(d) − (g(d))2. Figure 2 shows the (numerically computed) ARE’s for gamma dis-

tributions with various shape parameters 𝛼 and rate 𝛽 = 𝛼 (such that the expectation is 1) for
0 < d ≤ 5.2.

First, note that 𝜎2
d, unlike �̃�2

d, depends on d even for the gamma distribution. For all cases con-
sidered, the ARE of g̃m(d) relative to ĝn(d) is smaller than 0.5. By and large, the ARE is increasing
in the shape parameter: it is between 0.20 and 0.23 for 𝛼 = 0.2, between 0.38 and 0.40 for the expo-
nential distribution, and ranges from 0.41 to 0.44 for 𝛼 = 2. For fixed 𝛼 and large values of d, the
ARE decreases markedly, which can be observed in Figure 2 for 𝛼 = 5, but also occurs for other
values of 𝛼 for larger d. In summary, it becomes apparent that the estimator based on the ratio of
U-statistics is much more efficient than the proposal in Section 3.1.

4 ESTIMATORS OF VARIANCE

In this section, we discuss and compare several methods of estimating the variance 𝜎2
d in (5) or

its counterpart for finite sample size. There are at least three general approaches. The first one
is to derive consistent estimators 𝜎2

U(l) (l = 1, 2) and 𝜎2
U(1,2) of Var(U (l)

n (d)) and Cov(U (1)
n (d),U (2)

n (d)),
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IWASHITA and KLAR 7

d

α
α
α
α
α

F I G U R E 2 The graph shows the asymptotic relativ efficiency of g̃m(d) relative to ĝn(d) for gamma
distributions with different shape parameters 𝛼 and rate 𝛽 = 𝛼.

respectively. Then, a consistent estimator of 𝜎2
d is given by

�̂�

2
d =

n
U (2)

n (d)

(
𝜎

2
U(1) − 2ĝn(d) 𝜎2

U(1,2) + ĝ2
n(d) 𝜎2

U(2)

)
. (6)

Second, one can estimate the quantities 𝜂(l)1 (d)(l = 1, 2) and 𝜂(1,2)1 (d) in the asymptotic covariance
matrix, and use (5), with 𝜈d replaced by U (2)

n . The third possibility is a direct approach using
resampling procedures.

4.1 Variance estimation using the unbiased variance estimator

Let Un = 2∕(n(n − 1))
∑

i<j h(Xi,Xj) be a general U-statistic of degree 2, estimating 𝜃 = Eh(X1,X2).
Defining 𝜁0 = 𝜃2, h1(x1) = Eh(x1,X2) and

𝜁1 = E
[
h2

1(X1)
]
, 𝜁2 = E

[
h2(X1,X2)

]
,

the finite sample variance of Un is given by

Var(Un) =
2

n(n − 1)
{2(n − 2)𝜁1 + 𝜁2 − (2n − 3)𝜁0}.

One can estimate 𝜁c, c = 0, 1, 2, by

̂

𝜁0 =
1

n4

∑
d(i,j,k,l)

h(Xi,Xj)h(Xk,Xl),

̂

𝜁1 =
1

n3

∑
d(i,j,k)

h(Xi,Xj)h(Xi,Xk), ̂

𝜁2 =
(n

2

)−1∑
i<j

h2(Xi,Xj), (7)
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8 IWASHITA and KLAR

where d(i1, … , im) denotes a set of distinct indices 1 ≤ i1, … , im ≤ n, and nm = n(n − 1) · · · (n −
m + 1). Then, the minimum variance unbiased estimator of Var(Un) is given by (Shirahata &
Sakamoto, 1992)

�̂�

2
U =

2
n(n − 1)

{
2(n − 2) ̂𝜁1 + ̂

𝜁2 − (2n − 3) ̂𝜁0
}
= U2

n − ̂

𝜁0. (8)

The second equality has also been noted by Wang and Lindsay (2014). All formulas can directly be
generalized to multivariate U-statistics by writing hhT and h1hT

1 instead of h2 and h2
1. The degree

of the U-statistics in (8) is 4. To reduce the computational burden, it is possible to rewrite it as

�̂�

2
U =

4C2
1 − 2C2

2

n4 − 4n − 6
(n − 2)(n − 3)

U2
n, (9)

where

C2
1 =

n∑
i=1

(∑
j≠i

h(Xi,Xj)

)2

, C2
2 =

∑
i≠j

h2(Xi,Xj),

(Shirahata & Sakamoto, 1992, p. 2972). In (9), the number of summands is O(n2) compared to
O(n4) in (8). To obtain a multivariate version of (9), write hhT and UnUT

n instead of h2 and U2
n, and

define

C2
1 =

n∑
i=1

SiST
i , where Si =

∑
j≠i

h(Xi,Xj). (10)

After plugging the unbiased estimator of the covariance matrix in formula (6), we denote the
resulting estimator by �̂�2

U,d.

4.2 Estimating the variance using Noether’s estimator

Two further proposals given in Shirahata and Sakamoto (1992) for estimating the variance of a
U-statistic of degree 2 are the Noether and modified Noether estimator defined by

�̂�

2
N =

(n
2

)−2
C2

1 −
(n

2

)−1 {
(2n − 3)U2

n + 1
}
,

�̂�

2
Nm =

n(n − 1)
(n − 2)(n − 3)

�̂�

2
N .

Computing multivariate generalizations and plugging them in (6) leads to estimators denoted
�̂�

2
N,d and �̂�2

Nm,d.

4.3 Variance estimation using the large-sample variance

This approach uses plug-in estimators for 𝜂(l)1 (d)(l = 1, 2) and 𝜂

(1,2)
1 (d) given in Proposition 2.

Define ̂𝜁 (l)1 as ̂𝜁1 in (7), replacing h by h(l), and put

̂

𝜁

(1,2)
1 = 1

n(3)
∑

d(i,j,k)
h(1)(Xi,Xj) h(2)(Xi,Xk).
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IWASHITA and KLAR 9

Then, the estimators for the entries in the large-sample covariance matrix are given by

�̂�

(l)
1 (d) = ̂

𝜁

(l)
1 −

(
U (l)

n (d)
)2
, l = 1, 2,

�̂�

(1,2)
1 (d) = ̂

𝜁

(1,2)
1 − U (1)

n (d)U (2)
n (d).

Replacing all quantities in (5) by the corresponding estimators yields the variance estimator �̂�2
L,d.

By formula (8) in Shirahata and Sakamoto (1992), one has ̂𝜁1 = (C2
1 − C2

2)∕n3, and using (10), we
obtain a corresponding multivariate generalization with complexity O(n2).

4.4 Variance estimators based on resampling procedures

To obtain the bootstrap estimator, let (X∗
j1, … ,X∗

jn), j = 1, … ,M, be conditionally independent
samples with distribution function Fn, given X1, … ,Xn. Here, Fn denotes the empirical dis-
tribution function of X1, … ,Xn. For the statistic ĝn(d) = g(U (l)

n (d), l = 1, 2) in (3), one has to
compute

g(j)n (d) = g
(

U (l)
n (X∗

j1, … ,X∗
jn; d), l = 1, 2

)
,

for j = 1, … ,M, and g∗n(d) = M−1∑M
j=1g(j)n (d). Then, the Monte Carlo version of the bootstrap

estimator of Var(ĝn(d)) is given by

�̂�

2
B,d =

1
M − 1

M∑
j=1

(
g(j)n (d) − g∗n(d)

)2
.

The number of bootstrap replications M should not be chosen too small; we use M = 999 in all
simulations in the next section.

The jackknife procedure for a function of several U-statistics is described in Lee (1990, p. 227).
Here, we compute

g(−j)
n−1(d) = g

(
U (l)

n−1(X1, … ,Xj−1,Xj+1, … ,Xn; d), l = 1, 2
)
,

for j = 1, … ,n, and gn−1(d) = n−1∑n
i=1g(−j)

n−1(d). The jackknife estimator of Var(ĝn(d)) is
given by

�̂�

2
J,d =

n − 1
n

n∑
j=1

(
g(−j)

n−1(d) − gn−1(d)
)2
.

Callaert and Veraverbeke (1981) show that the jackknife estimator of the variance of a U-statistic
with degree 2 has some desirable properties. The comparative performance of �̂�2

J,d is examined in
the next section via simulations.
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10 IWASHITA and KLAR

5 NUMERICAL ILLUSTRATIONS

5.1 RSME and bias of the different estimators of variance

In the first part of this section, we compare the performance of all estimators of the variance of
ĝn(d) introduced in Section 4 by computer simulations. Hence, in a first step, we approximated
the true variance of

√
n𝜈d ĝn(d) by a Monte Carlo simulation with 106 replications. In a second

simulation with 104 repetitions, the averages (Ave) of the relative values (i.e., estimator divided
by the true variance) and the root mean squared error (RMSE) are computed.

As distributions, we choose gamma distributions with different shape parameter 𝛼 and rate
𝛽 = 𝛼. In all simulations, we use effective sample sizes, defined as follows: for given values of 𝛼
and d, the total sample size n was chosen such that n𝜈d = nP(X1 + X2 > d) = neff. Tables 1–3 show
the results.

In Table 1, we use neff = 20, d = 3 and varying values of 𝛼. The main findings are as follows.
The Noether’s estimator �̂�2

N,d and its modification �̂�2
Nm,d can yield negative values. If this happened

in more than 1% of cases, we do not report the result. For effective sample size 20, this occurred
for 𝛼 = 1, 2, 5. Hence, these estimators should not be used for small sample size. Even for neff =
80 (results not shown), these two estimators have larger bias and RMSE compared to all other
estimators, and cannot be recommended. The remaining estimators all work fine, whereby the
differences for a specific estimator between the different distributions often exceed the differences
between the estimators. The RMSE values are almost identical between the four estimators, and
decrease in 𝛼. The estimators �̂�2

U,d and �̂�2
L,d have a negative bias for all distributions for this small

sample size.
In Table 2, we set 𝛼 = 1, d = 3 and vary neff. As expected, bias and RMSE of all estimators tend

to zero with increasing sample size; the speed of convergence of the RMSE to zero is of order n−1∕2.
Finally, Table 3 shows the results for 𝛼 = 1,neff = 40 and varying values of d. For this sample

size, the bias of �̂�2
L,d is negative for all thresholds d, and this still holds for even larger samples. To

a lesser extent, similar comments apply to �̂�2
U,d. The estimators �̂�2

B,d and �̂�2
J,d have a smaller bias

T A B L E 1 Ave and RMSE of all estimators introduced in Section 4 for neff = 20, d = 3 and varying shape
parameter 𝛼.

𝜶 �̂�
2
U ,d �̂�

2
N,d �̂�

2
Nm,d �̂�

2
L,d �̂�

2
B,d �̂�

2
J,d

0.2 Ave 0.893 0.776 0.810 0.822 1.143 0.976

RMSE 0.017 0.016 0.016 0.017 0.023 0.019

0.5 Ave 0.899 0.670 0.701 0.838 1.028 0.993

RMSE 0.020 0.027 0.025 0.021 0.021 0.022

1.0 Ave 0.886 — — 0.837 0.972 0.996

RMSE 0.017 — — 0.018 0.016 0.018

2.0 Ave 0.882 — — 0.846 0.941 1.011

RMSE 0.014 — — 0.015 0.014 0.015

5.0 Ave 0.879 — — 0.862 0.912 1.022

RMSE 0.010 — — 0.010 0.010 0.012

Note: The entry — indicates a negative value in more than 1% of cases.
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IWASHITA and KLAR 11

T A B L E 2 Ave and RMSE of all estimators introduced in Section 4 for 𝛼 = 1, d = 3 and increasing neff.

neff �̂�
2
U ,d �̂�

2
N,d �̂�

2
Nm,d �̂�

2
L,d �̂�

2
B,d �̂�

2
J,d

10 Ave 0.747 — — 0.664 0.947 1.024

RMSE 0.030 — — 0.034 0.028 0.048

20 Ave 0.889 — — 0.840 0.972 0.998

RMSE 0.016 — — 0.018 0.016 0.018

40 Ave 0.944 0.743 0.758 0.918 0.982 0.994

RMSE 0.011 0.020 0.019 0.011 0.011 0.011

80 Ave 0.976 0.876 0.884 0.963 0.995 1.001

RMSE 0.007 0.010 0.010 0.007 0.008 0.007

160 Ave 0.987 0.937 0.942 0.980 0.997 0.999

RMSE 0.005 0.006 0.006 0.005 0.006 0.005

Note: The entry — indicates a negative value in more than 1% of cases.

T A B L E 3 Ave and RMSE of all estimators introduced in Section 4 for 𝛼 = 1,neff = 40 and varying d.

d �̂�
2
U ,d �̂�

2
N,d �̂�

2
Nm,d �̂�

2
L,d �̂�

2
B,d �̂�

2
J,d

0 Ave 0.997 0.767 0.851 0.857 0.959 1.039

RMSE 0.020 0.024 0.023 0.021 0.018 0.020

1 Ave 0.994 0.783 0.844 0.895 1.007 1.016

RMSE 0.009 0.017 0.014 0.011 0.009 0.009

2 Ave 0.968 0.765 0.797 0.914 0.991 1.002

RMSE 0.010 0.018 0.017 0.011 0.011 0.011

3 Ave 0.946 0.744 0.759 0.920 0.984 0.997

RMSE 0.011 0.020 0.019 0.011 0.011 0.011

4 Ave 0.935 0.733 0.739 0.923 0.982 1.000

RMSE 0.010 0.020 0.019 0.011 0.010 0.010

5 Ave 0.931 0.727 0.730 0.925 0.980 1.006

RMSE 0.010 0.020 0.020 0.010 0.010 0.010

Note: The entry — indicates a negative value in more than 1% of cases.

in the majority of cases, with positive or negative values depending on d. For neff = 80, the last
three estimators are nearly unbiased.

Summarizing the results, the estimators �̂�2
N,d and �̂�2

Nm,d should not be used. Since �̂�2
U,d out-

performs �̂�2
L,d in terms of bias, not much supports the use of the latter. The choice between �̂�2

U,d,
�̂�

2
B,d and �̂�2

J,d is a matter of taste. If bias is a serious concern, the last two should be preferred. If
computing time is a problem, �̂�2

U,d has an advantage over �̂�2
J,d and, in particular, �̂�2

B,d, which was
computed with 999 bootstrap replications.
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12 IWASHITA and KLAR

T A B L E 4 Empirical coverage probability of 0.95-confidence intervals for g(d) based on different estimators
for effective sample size neff = 20, d = 3 and varying 𝛼.

𝜶 �̂�
2
U ,d �̂�

2
L,d �̂�

2
B,d �̂�

2
J,d

0.2 91.7 90.4 94.3 92.7

0.5 92.7 91.7 94.0 93.6

1.0 92.4 91.7 93.5 93.7

2.0 91.7 91.1 92.4 93.2

5.0 89.6 89.4 90.1 91.0

T A B L E 5 Empirical coverage probability of 0.95-confidence intervals for g(d) based on different
estimators for 𝛼 = 1, d = 3 and increasing effective sample size.

neff �̂�
2
U ,d �̂�

2
L,d �̂�

2
B,d �̂�

2
J,d

10 88.6 86.8 91.9 91.3

20 92.6 91.8 93.5 93.7

40 94.2 93.9 94.5 94.8

80 94.6 94.4 94.8 94.8

160 94.6 94.5 94.7 94.7

5.2 Empirical coverage probability of confidence intervals for g(d)

Here, we empirically study the coverage probabilities of confidence intervals for g(d) based on
the variance estimators �̂�2

U,d, �̂�
2
L,d, �̂�

2
B,d and �̂�2

J,d, using the values of 𝛼, d and neff as in Section 5.1;
hence, in this subsection, the focus is on the SD instead of the variance. Based on Theorem 1, a
confidence interval with asymptotic coverage probability 1 − 𝛾 is given by

[
max

{
ĝn(d) −

z1−𝛾∕2 �̂�d

(nU (2)
n (d))1∕2

, 0

}
,min

{
ĝn(d) +

z1−𝛾∕2 �̂�d

(nU (2)
n (d))1∕2

, 1

}]
,

where zp = Φ−1(p), and �̂�2
d stands for one of the four variance estimators specified above.

The results for confidence level 1 − 𝛾 = 0.95,neff = 20, d = 3 and varying 𝛼 are given in Table 4.
First, we note that all intervals are anticonservative, that is, have coverage probability smaller
than 0.95. Notably, the coverage probability using the first three estimators is as low as 0.90 for
𝛼 = 5. The intervals based on �̂�B,d and �̂�J,d behave quite similarly, the first having the edge over the
second for small values of 𝛼, and vice versa for larger values. They have slightly better empirical
coverage in most cases than the interval based on �̂�U,d.

Table 5 shows the results for 1 − 𝛾 = 0.95, 𝛼 = 1, d = 3 and increasing sample sizes. For neff =
40 or larger, all intervals seem to work sufficiently well. However, a look at Table 6, where
neff = 40 and 𝛼 = 1, shows that the empirical coverage of the interval using �̂�L,d is still between
0.91 and 0.94, whereas the other intervals take values between 0.93 and 0.95. Hence, as in
Section 5.1, one should choose any estimator out of �̂�2

U,d, �̂�2
B,d and �̂�2

J,d to get reliable confidence
intervals.

 14679574, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12316 by K

arlsruher Institution F. T
echnologie, W

iley O
nline L

ibrary on [30/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



IWASHITA and KLAR 13

T A B L E 6 Empirical coverage probability of 0.95-confidence intervals for g(d) based on different
estimators for 𝛼 = 1,neff = 40 and varying d.

d �̂�
2
U ,d �̂�

2
L,d �̂�

2
B,d �̂�

2
J,d

0 93.1 91.0 92.9 93.8

1 94.3 93.1 94.5 94.6

2 94.2 93.4 94.5 94.6

3 94.0 93.6 94.6 94.7

4 93.8 93.6 94.2 94.4

5 93.7 93.6 94.2 94.4

6 APPLICATION TO DAILY PRECIPITATION DATA

In this section, we apply the new tail statistic to several datasets of daily areal and point pre-
cipitation. Establishing a probability distribution that provides a good fit to daily precipitation
depths has long been a topic of interest, in particular in the areas of stochastic precipitation mod-
els, frequency analysis of precipitation and precipitation trends related to global climate change
(Ye, Hanson, Ding, Wang, & Vogel, 2018). Hereby, the wet-day precipitation series is the primary
series considered, while a probabilistic representation of precipitation occurrences can be sepa-
rately described. A review of the literature given by Ye et al. (2018) reveals the prominent position
of the gamma distribution, which was used for daily stochastic precipitation modeling already in
the early 1950s (Thom, 1951). In all fields mentioned above, not only the center of the distribution
has to be modeled accurately, but also the distributional tail behavior is of special importance.

0 2 4 6 8 10

0.
0

0.
4

0.
8

d

0 5 10 15 20 25

0.
0

0.
4

0.
8

d

F I G U R E 3 Graph of the estimator ĝn(d) together with (pointwise) confidence limits for the daily country
average precipitation in Finland (upper panel) and Norway (lower panel).
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14 IWASHITA and KLAR
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F I G U R E 4 Graph of the estimator ĝn(d) together with (pointwise) confidence limits for daily precipitation
at Calgary (upper panel), Montreal (middle panel) and Vancouver (lower panel).

For the central part of the distribution of monthly or seasonal precipitation, the gamma distribu-
tion is a reasonable probability model (Wilks, 2000); this can be different for daily precipitation
or in the distributional tails. For example, Ye et al. (2018) conclude that the gamma distribution
is often a reasonable model for point wet-day series in the United States. Occasionally, however,
very long series are better approximated by a kappa distribution, a rather complex model with
four parameters.

First, we consider daily country average precipitation in Finland and Norway from 2015
to 2019, measured in centimeters. Data is available from https://www.kaggle.com/datasets/
adamwurdits/finland-norway-and-sweden-weather-data-20152019, where also additional infor-
mation can be found. Figure 3 shows the plots of ĝn(d) together with confidence intervals for
confidence level 0.95, using the variance estimator �̂�2

U,d. The upper panel shows the graph
for Finland (omitting 22 days without precipitation, the sample size is n = 1804), the lower
panel for Norway (n = 1826). For Finland, the plot shows a horizontal line, roughly at 0.6, corre-
sponding to a gamma distribution with shape parameter 0.58, thus having a longer tail than the
exponential distribution. For Norway, the plot shows a horizontal line at 0.5 for values of d up to
12, corresponding to an exponential distribution, but ĝn(d) decreases slightly in the tail. Therefore,
a gamma model for the daily precipitation in the case of Norway is questionable.
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Second, we analyze daily point precipitation from January 1, 2000, to December 31, 2019,
at three Canadian centres, namely Calgary, Montreal, and Vancouver. The datasets are subsets
of longer series available under https://www.kaggle.com/datasets/aturner374/eighty-years-of-
canadian-climate-data, where further information can be found. The sample size, that is, the
number of wet days, is 2,396, 3,750 and 3,389 for Calgary, Montreal, and Vancouver, respectively.
The plot of ĝn(d)with 0.95 confidence bounds for these datasets is presented in Figure 4. The graph
for Calgary is increasing up to d = 20; hence, a gamma distribution won’t yield an adequate fit
in this part of the distribution. For larger values, the graph is nearly horizontal at a value around
0.72, corresponding to a gamma distribution with shape parameter 0.31. The graph for Montreal
shows a nearly horizontal line, apart from a bend for very small values of d. The value of ĝn(d) is
0.67 for d = 10, which corresponds to 𝛼 = 0.42. Similarly, the graph for Vancouver is a nearly hor-
izontal line. The value of ĝn(10) is 0.56, corresponding to 𝛼 = 0.73. Hence, for Montreal as well as
Vancouver, a gamma model seems to be a good approximation in the centre and in the tail of the
distribution of daily precipitation.
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APPENDIX A. PROOFS AND ADDITIONAL RESULTS

Proposition 3. Let X and Y be independent random variables, and X ∼ Γ(𝛼1, 𝛽),
Y ∼ Γ(𝛼2, 𝛽). Then,

E

[|X − Y |
X + Y

]
= 1

2𝛼1+𝛼2
𝛼1𝛼2B(𝛼1, 𝛼2)

(
𝛼1 + 𝛼2 + (𝛼1 − 𝛼2)⋅

(
2F1(1,−𝛼1, 𝛼2 + 1; −1) − 2F1(1,−𝛼2, 𝛼1 + 1; −1)

))
,

E

[(X − Y
X + Y

)2]
=
(
(𝛼1 − 𝛼2)2

)
+ 𝛼1 + 𝛼2

)
Γ(𝛼1 + 𝛼2)∕Γ(𝛼1 + 𝛼2 + 2),

where B(p, q) is the beta function, defined by

B(p, q) =
∫

1

0
xp−1(1 − x)q−1dx,

and pFq(a1, … , ap; b1, … , bq; z) denotes the generalized hypergeometric function

pFq(a1, … , ap; b1, … , bq; z) =
∞∑

k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
.

Proof. The densities of X and Y are

f (x; 𝛼i, 𝛽) =
1

Γ(𝛼i)𝛽𝛼i
x𝛼i−1 exp

(
− x
𝛽

)
, for x > 0,

where 𝛼i, 𝛽 > 0 (i = 1, 2). Then, V = X∕Y has a beta prime distribution with parame-
ters 𝛼1, 𝛼2, which density function is given by

g(v; 𝛼1, 𝛼2) =
1

B(𝛼1, 𝛼2)
v𝛼1−1(v + 1)−(𝛼1+𝛼2)

, v > 0.
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We have to evaluate the expectation E[|X − Y |∕(X + Y )] = E[|V − 1|∕(V + 1)]. Since

|v − 1|
v + 1

=
||||1 −

2
v + 1

||||,
we obtain

E[|V − 1|∕(V + 1)|] = E[|1 − 2∕(1 + V)|]
=
∫

1

0

( 2
v + 1

− 1
)

g(v; 𝛼1, 𝛼2)dv +
∫

∞

1

(
1 − 2

v + 1

)
g(v; 𝛼1, 𝛼2)dv.

Evaluating the integrals with the software Mathematica yields the result. An
analogous computation yields the second moment. ▪
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