KIT | KIT-Bibliothek | Impressum | Datenschutz

Monitoring the misalignment of machine tools with autoencoders after they are trained with transfer learning data

Demetgul, Mustafa ORCID iD icon 1; Zheng, Qi 1; Tansel, Ibrahim Nur; Fleischer, Jürgen 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

CNC machines have revolutionized manufacturing by enabling high-quality and high-productivity production. Monitoring the condition of these machines during production would reduce maintenance cost and avoid manufacturing defective parts. Misalignment of the linear tables in CNCs can directly affect the quality of the manufactured parts, and the components of the linear tables wear out over time due to the heavy and fluctuating loads. To address these challenges, an intelligent monitoring system was developed to identify normal operation and misalignments. Since damaging a CNC machine for data collection is too expensive, transfer learning was used in two steps. First, a specially designed experimental feed axis test platform (FATP) was used to sample the current signal at normal and five levels of left-side misalignment conditions ranging from 0.05 to 0.25 mm. Four different algorithm combinations were trained to detect misalignments. These combinations included a 1D convolution neural network (CNN) and autoencoder (AE) combination, a temporal convolutional network (TCN) and AE combination, a long short-term memory neural network (LSTM) and AE combination, and a CNN, LSTM, and AE combination. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000161755
Veröffentlicht am 30.08.2023
Originalveröffentlichung
DOI: 10.1007/s00170-023-12060-2
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 0268-3768, 1433-3015
KITopen-ID: 1000161755
Erschienen in The International Journal of Advanced Manufacturing Technology
Verlag Springer
Band 128
Seiten 3357–3373
Vorab online veröffentlicht am 19.08.2023
Schlagwörter CNC linear feed axis, Convolution neural network (CNN), Generative adversarial network (GAN), Long short-term memory neural network (LSTM), Autoencoder (AE), Transfer learning (TL)
Nachgewiesen in Web of Science
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page