KIT | KIT-Bibliothek | Impressum | Datenschutz

A simplified approach to numerical modelling of an underground pumped hydroelectric energy storage system

Zamani, G.; Franza, Andrea; Sørensen, Kenny Kataoka; Andersen, Lars Vabbersgaard; Tourchi, Saeed; Stutz, Hans Henning ORCID iD icon 1
1 Institut für Bodenmechanik und Felsmechanik (IBF), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The Underground Pumped Hydroelectric Storage (UPHS) is an energy storage system in which inflation and deflation of an underground geomembrane-lined reservoir interconnected to an open water basin enable the storing and harvesting of energy, respectively, in terms of potential energy. Axisymmetric Finite-Element Analyses (FEA), including monotonic and multi-cycle changes of the reservoir volume, are used to investigate reservoir aspects that influence the capacity and efficiency of UPHS in sand, including geomembrane stiffness and interface friction. In particular, a novel simplified approach for the modelling of UPHS reservoir is proposed. This consists of rigid piston elements lifting within a skirt incompressible material with low shear stiffness and directly tied to the overburden. The simplified approach is validated against refined models having the reservoir as a lined fluid cavity undergoing volume changes. Results indicated that the simplified modelling is suitable for preliminary estimates of overburden deformations, reservoir pressure-volume curves, and energy efficiency.


Download
Originalveröffentlichung
DOI: 10.53243/NUMGE2023-104
Zugehörige Institution(en) am KIT Institut für Bodenmechanik und Felsmechanik (IBF)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 06.2023
Sprache Englisch
Identifikator KITopen-ID: 1000161762
Erschienen in Proceedings 10th NUMGE 2023. Ed.: L. Zdravkovic
Veranstaltung 10th European Conference on Numerical Methods in Geotechnical Engineering (2023), London, Vereinigtes Königreich, 26.06.2023 – 28.06.2023
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page