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Abstract—Automated driving systems need to behave as
human-like as possible, especially in highly interactive scenarios.
In this way, the behavior can be better interpreted and predicted
by other traffic participants, in order to prevent misunderstand-
ing, and in the worst case, accidents. With this purpose, more
and more human-driven trajectories in real traffic are recorded,
making it possible to learn human-like driving styles. In this
paper, we extend our previous behavior cloning approach, which
has been successfully applied to highway driving, to generate
high-level decisions for unsignalized intersections that are chal-
lenging during urban driving. Unlike many other approaches that
utilize neural networks, either for end-to-end behavior cloning or
for approximating Q-functions in reinforcement learning, where
their decisions are intractable to understand, the output decisions
of our approach are interpretable and easy to track. Meanwhile,
the driving decisions are provably safe under reasonable assump-
tions by generalizing the Responsibility-Sensitive Safety (RSS)
concept to complex intersections. Simulation evaluations show
that our learned policy produces a more human-like behavior,
and meanwhile, balances driving efficiency, comfort, perceived
safety, and politeness better.

Index Terms—Automated driving, decision making, Monte-
Carlo Simulation, behavior cloning, Responsibility-Sensitive-
Safety, unsignalized intersection

I. INTRODUCTION & STATE OF THE ART

FUTURE transportation systems are the cornerstones to
further improving the productivity of humans. Among

them, autonomous driving aims to liberate human hands and
has become one of the most important key technologies.
However, self-driving systems are still expected to co-exist
with human drivers on the road for decades before the street
is fully automated. Therefore, it should also be one of the
important goals of research to make autonomous vehicles
imitate human driving behavior as much as possible. In this
case, the passengers, other human drivers, and other human
traffic participants can understand and better cooperate with
autonomous vehicles. In addition, as the premise of the
universal acceptance of automatic driving systems, providing
provable safety is also crucial.

Many Reinforcement Learning (RL) approaches [1]–[3]
have been applied to automated driving tasks. They assume
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an unpredictable or highly uncertain environment and try to
learn a driving policy or a Q-function by letting the agent
interact with this environment, with the goal of maximizing
the accumulated future reward given one predefined reward
function. One of the strengths of these approaches is that
modeling other agents’ behavior is not required, and the pos-
sible future interactions are embedded in the value functions
or Q-functions given the state space. However, they always
suffer from lacking explainability of the output decision and
transferability to real-world scenarios. Moreover, designing a
suitable reward function is not straightforward and can be
affected a lot by the preferences of the developer.

In order to better imitate human driving behavior, Inverse
Reinforcement Learning (IRL) approaches [4]–[6] try to infer
the reward function from naturalistic human driving data.
However, similar to RL, large neural networks are usually
still required in order to coop with large state space. How
the input data is processed and why a certain state-action pair
outputs a higher Q-value is still hardly interpretable. Another
challenge for these approaches is driving safety. Shuojie et
al. [7] propose a RL-based method and Monte Carlo tree
search algorithm to minimize unsafe behaviors but still without
formal guarantees. Some other approaches [8], [9] utilize a
safety layer that is easily verifiable to prevent executing unsafe
commands from RL, but breaks the continuity of the actions
and reduces the performance of the behavior as the output is
constrained inside one rule-based envelop.

In urban driving, sensor occlusion builds another barrier to
balancing safe and progressive decisions, which the previously
mentioned learning-based methods hardly discussed. Kamran
et al. [2] claim to provide actions that are less overcautious
than the rule-based policy and safer than the usual RL-
based approach, but still not collision-free. Hubmann et al.
[10] propose a generic Partially Observable Markov Decision
Process (POMDP) formulation that can be applied to various
scenarios for urban driving. Its performance is demonstrated
at unsignalized intersections with multiple vehicles and oc-
clusions caused by static and dynamic objects. However, the
run-time performance of this approach can still largely limit
the choice of the state and action spaces.

In our previous publication [11], we propose one behav-
ior cloning (BC) approach that produces provably safe and
human-like behavior. The output decision is transparent to
humans and can easily be tracked. Unlike most of other
BC approaches that map the full state space or even images
to low-level control commands with neural networks [12],



ego

0.4 0.6

ego

0.4 0.6

action
 a1

MC 
simulation

feature: f1 

MC 
simulation

feature: fn

(risk, utility, 
comfort, ...) Trajectory 

planner, 
controller

Decision Making PipelineInput

action
 an

max
��

�(�, ��)

�
�

�
+

� Decision

ego

0.4
0.6

�(�, �1)

�(�, ��)

Fig. 1: Proposed decision making pipeline taking a roundabout scenario as an example.

[13], which can have the same issue as RL approaches, our
approach only serves as a high-level decision-making module.
The approach is proven to provide human-like decisions that
balance efficiency, comfort, perceived safety, and politeness in
lane changing, merging, and exiting scenarios on multi-lane
roads.

In this paper, we generalize the BC approach to urban driv-
ing scenarios, especially the highly challenging unsignalized
intersections, e.g. unprotected left turn, yielding, pedestrian
crossing, roundabouts, etc. The pipeline is illustrated in Fig. 1.
The minimum inputs of the decision making are the preception
results of the environment and the self-localization, where
noisy states (location, velocity, etc.) of other traffic participants
within the sensing field of view (FoV) and of the ego vehicle
are provided. In order to obtain traffic rules and information
about the road topology, a High-Definition (HD) Map, e.g.
lanelet2 [14], is provided as well. The output is one of the
predefined high-level actions, which is further processed and
refined by the trajectory planner and controller to be executed
on the car. One optional input that could improve the planning
quality is extra information about the intentions of other traffic
participants, e.g. turning intention at intersections, exiting
intention at roundabouts, etc.

The overall pipeline of the extended approach is summa-
rized as follows: while approaching the intersection, several
high-level action candidates are generated. Assuming the ego
vehicle following a specific action, we use Monte-Carlo (MC)
sampling (or MC Simulation) to generate possible future
episodes of the current scene, where the uncertain behaviors
and uncertain intentions of the known traffic participants and
the existence probability of the phantom vehicles in occluded
areas are considered. After performing a large number of
MC simulations, the consequence of executing the action
is estimated, where several indices (features) are used to
characterize the action. We categorize the features into risk,
utility, comfort, and politeness, and they will be explained
in detail in later chapters. One linear function is utilized to
compute the Q-value for each action with unknown parameters
(weights w and bias b), and the final decision is the one that
maximizes the Q-value.

Our method is essentially one BC approach because the
goal is to update the weights w and bias b of the linear
function, such that the Q-value of the more human-like actions
is maximized, and the Q-values of other actions are minimized,

similar to the classification problem.
This paper serves as a generalization and extension of the

previous approach, and several novelties and contributions are
made additionally:

• We extend the RSS concept [15] to unsignalized intersec-
tions for different type of conflict zones, different traffic
participants, close consecutive intersections, and occluded
intersections, etc.

• We rethink and extend the definition of risk that was
proposed in [11] to cover emergency situations, not only
the fall-back possibility.

• We propose a realistic environment modeling for
unsignalized intersections and extend the MC simulations
to consider possible phantom vehicles from occlusions.

• We further prove the generalizability of our approach by
extending and applying it to unsignalized intersections.

II. PRELIMINARY FORMULATIONS

A. RSS safety for Unsignalized Intersections

We first discuss the RSS safety concept that is crucial
to be considered while making decisions at unsignalized
intersections. The idea of this concept is to guarantee to never
cause a collision, instead of never being involved in a collision.
At unsignalized intersections, besides making sure to “not hit
someone from behind”, another two RSS “common sense”
rules “right-of-way is given, not taken” and “be careful of
areas with limited visibility” are essential as well.

1) Safety for Merging and Crossing Conflict Zones:
Naumann [16] proposes to distinguish between crossing and
merging conflict zones and define different safety rules. Fig.
2 presents one example at an unsignalized intersection, where
the ego vehicle should give way to the oncoming prioritized
vehicles. From all their routing options of the prioritized
vehicles, two of them intersect with the route of the ego vehicle
(green dashed line), resulting in a crossing and a merging
conflict zone.

The formulation in [16] can not be generalized for our
scenarios. Therefore, we reformulate his proposal with addi-
tional notions to enable a better understanding but omit the
mathematical details.

For crossing conflict zones, the safety of the non-prioritized
vehicle (ego) can be ensured when at least one of the condi-
tions C1 and C2 is held:

• C1: Ensure to be able to stop before the conflict zone.
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Fig. 2: Crossing and Merging conflict zones between the ego vehicle
and the prioritized vehicles.

• C2: Ensure to safely pass the conflict zone.
To satisfy C1, ego vehicle needs to be able to stop before

the conflict zone with less than its maximum deceleration
amax,decel,ego. There are two ways to satisfy C2, which are:

• C2(a): At the time ego vehicle enters the conflict zone
with its maximum ability, i.e. maximum acceleration
amax,accel,ego until the allowed speed limit vlimit, the pri-
oritized vehicle is at sufficient distance, i.e. its required
deceleration to stop in front of the conflict zone is
acceptable, e.g. less than its asoft,decel,obj.

• C2(b): Ego vehicle can guarantee to have left the conflict
zone (with its maximum ability) for a predefined time of
zone clearance (TZC) tTZC,min, before the prioritized vehi-
cle can enter it with its maximum acceleration amax,accel,obj
until its assumed maximum velocity vmax,obj.

For merging conflict zones, C1 still holds. However, the
conflict zone can never be actually “passed”, as its length is
potentially unlimited. Therefore, C3 is proposed instead of C2:

• C3: From the time the ego vehicle enters the conflict zone
with its maximum ability, the distance of the prioritized
vehicle to the ego vehicle always remains larger than the
RSS safe following distance. In addition, the prioritized
vehicle shall not brake more than asoft,decel,obj.

In other words, the ego vehicle becomes the leading vehicle
of the prioritized vehicle after merging. If the prioritized
vehicle only needs to brake slightly in order to maintain RSS
safe distance to the ego vehicle, the merging is considered as
not impeding and rude. RSS safety for merging conflict zone
is similar to the on-ramp merging that is comprehensively
discussed in [11], where the mathematical details of one
general approach and an extended version are presented.

We use the recommended RSS parameters from [11]. As
for the additional parameter tTZC,min, tTZC,min = 0s is sufficient
for safety. However, drivers of the prioritized vehicles might
still feel endangered. Therefore, we analyzed 4057 crossing
scenarios and the associated TZCs from the inD dataset [17].
The TZC is computed for each vehicle with the assumptions
in C2(b) when C1 is not possible anymore. As a result, 81.4%
of the vehicles cross with more than 0.5s TZC and 61.6%
with more than 1s. We select tTZC,min = 0.5s as 81.4% of the
crossing drivers regard it as not making prioritized drivers feel
endangered.

2) Safety for Cyclists and Pedestrian Crossing: Cyclists
driving on the vehicle lanes are treated as vehicles when
considering RSS safety, but with different RSS parameters
(e.g. maximum deceleration), as their dynamics differ from

vehicles. Those located on the walkway will be treated as
normal pedestrians. Therefore, there is no need to introduce
specific RSS safety rules for cyclists.

Pedestrian Crossing belongs to crossing conflict zones,
where C1 and C2 apply, prioritizing pedestrians instead of ve-
hicles. As pedestrians have different dynamics, we reformulate
C2:

• C2,p: Ego vehicle can guarantee to have left the conflict
zone (with its maximum ability) for a predefined time
of zone clearance (TZC) tTZC,min, before the prioritized
pedestrian can enter it with its maximum velocity vmax,p.

Note that pedestrians are assumed to be able to accelerate
to vmax,p in an infinitely short time. The maximum recorded
velocity of pedestrians in inD dataset is 15.07m

s , which is
obviously an outlier. Therefore, we select vmax,p = 5.02m

s at
0.99 percentile.

3) Stop Line and Relevant Conflict Zones: We use lanelet2
maps where traffic rules are well-defined and encoded in
regulatory elements. For unsignalized intersections, right-of-
way regulatory elements control the traffic rules and decide
who has priority and who needs to yield. One right-of-way
regulatory element has the following components:

• Stop line: before which the yielding vehicle is recom-
mended to stop, such that no conflict zone is impeded.

• Traffic sign (optional): related traffic sign, e.g. yielding
sign, stop sign, etc.

• Yielding lanelet: vehicles tending to pass through this
lanelet should yield to prioritized traffic participants.

• Right-of-way lanelets: traffic participants that are possible
to pass one of the right-of-way lanelets have priority over
the yielding vehicles.

In the example of Fig. 2, the left turning lanelet of the
ego vehicle should be the yielding lanelet, and the oncoming
lanelets of the west arm and the south arm are right-of-way
lanelets. If there is an oncoming vehicle from the south arm, it
will create two more conflict zones with the ego vehicle. The
conflict zones can be inferred by checking intersecting areas
between possible succeeding lanelets of the yielding lanelet
and of the right-of-way lanelets.

In the example of Fig. 2, if the ego vehicle tends to go
straight or turn right, the traffic rules will be completely
different. In the former case, only the oncoming lanelets of
the west arm will be the right-of-way lanelets for the going-
straight yielding lanelet. In the latter case, the ego vehicle does
not need to yield to any vehicles.

4) Supplemental Constraints for Maximum Ability: It was
not discussed in [16] how the maximum ability of the ego
vehicle in C2 and C3 can be affected. In the author’s opinion,
there are two important affecting sources.

The first one is when the ego vehicle has one leading
vehicle. If the leading vehicle is possible to come to a full
stop at or right after the conflict zone, the time for the ego
vehicle to reach or leave the conflict zone could be potentially
infinite. In this case, C2 and C3 can not be satisfied at all.

The second one is in the case of two close consecutive
stop lines or regulatory elements. In the example of Fig. 2,
there is one zebra crossing right after the conflict zones. If



safely passing the pedestrian crossing is not guaranteed, the 
maximum ability of the ego vehicle is additionally limited by 
“being able to stop before the zebra crossing”, when examining 
safety for the two red conflict z ones. T his g uarantees that 
when the ego vehicle tries its best to reach or pass the red 
conflict zones in order to satisfy C 2 and C3, the speed i s still 
sufficiently low, such that s topping before the next pedestrian 
crossing still remains possible. Therefore, we introduce C2

∗
,3 

supplemental to {C2, C2,p, C3} (notation for one of the C2, 
C2,p and C3 depending on the type of the conflict zone):

• C∗
2,3(a): If ego vehicle has a leading vehicle, the max-

imum ability of the ego vehicle in C2, C2,p and C3 is
limited by maintaining a minimum RSS safe distance to
the leading vehicle, while the leading vehicle decelerates
with its maximum deceleration amax,decel,lead.

• C∗
2,3(b): If the next stop line is close to the current one,

and safely passing all the conflict zones of the next stop
line is not guaranteed, the maximum ability of the ego
vehicle is additionally limited by being able to safely
stop before the first conflict zone of the next stop line
with amax,decel,ego.

5) Safety Considering Occlusions: Under occlusion, the
information about whether prioritized traffic participants exist
in occluded areas is lost. It is proposed in [18] to over-
approximate the possible states in occluded road sections,
which provides provable safety even in the worst case. How-
ever, the resulting driving behavior is overly conservative. In
[19], the occluded road sections are tracked through time, and
the possible state intervals of the hidden traffic participants
are significantly reduced, which guarantees the same safety
but allows a more efficient driving behavior.

In this paper, we utilize the approach in [19] to check the
RSS safety against {C2,C2,p,C3}. It is assumed that the worst-
case traffic participants from the possible state intervals in
occlusions are at the sensing edges. Thus, when passing a
strongly occluded intersection, {C2,C2,p,C3} are only able to
be satisfied when the FoV of the ego vehicle covers far enough
of the prioritized roads.

B. Action Space and Basic Policy

In this paper, we only make longitudinal high-level de-
cisions. Obstacle avoidance, fine speed control and comfort
maximizing, etc. are supposed to be accomplished within the
subsequent trajectory planner.

1) Basic Actions and Provably Safe Basic Policy: We
introduce three basic high-level actions and propose one rule-
based driving policy that is provably safe regarding RSS safety.

• Stop: Stop before the first conflict zone (or the stop line).
• Pass: Try to pass the conflict zones with maximum ability.
• Squeeze: Carefully advancing with minimum velocity.
In order to fulfill RSS safety, the simplest policy can be

formulated as follows: The ego vehicle can pass only when
{C2,C2,p,C3} is fulfilled for all the conflict zones related
to the current stop line, otherwise stop. This policy guaran-
tees that at least one of C1 and {C2,C2,p,C3} is satisfied.
However, in some scenarios, no intersection between C1 and
{C2,C2,p,C3} can be found, where a traversal from one to

Safely pass all conflict 
zones? (fulfill {C2, C2,p, C3})

yes

no

B1, B2, B3: Pass

B1: Stop
B2: Fast approach
B3: Early stop

Approaching one stop line
Deadlock by 

occlusion yes

no

B1, B2, B3: Squeeze

Fig. 3: Visualization of the rule-based policies B1, B2 and B3.

another only with stop and pass is no possible, e.g. in scenarios
with extremely strong occlusions, leading to a deadlock situ-
ation [20]. In this case, we introduce the third action squeeze
which allows the ego vehicle to slowly approach, even enter
the conflict zone to gain more visibility, e.g. with 1m

s . The
authors regard this action as RSS-safe as well. We name this
simple policy the first basic policy (B1).

2) Extended Actions and Advanced Policy: After checking
the behavior of human drivers in the datasets, we observe that
in some scenarios, human drivers are able to find a smoother
transition between C1 and {C2,C2,p,C3}, e.g. at intersections
with slight occlusion. Instead of stopping before the conflict
zones with constant deceleration, until {C2,C2,p,C3} is sat-
isfied to switch to pass, they try to decelerate less at the
beginning. In this way, before they must execute a harsh brake
to not break C1, {C2,C2,p,C3} is satisfied and they switch
to pass. In order to mimic this behavior, we can introduce
another action similar to stop but with less deceleration at
the beginning, and more deceleration when getting closer to
conflict zones. On the contrary, there are also scenarios where
the ego vehicle better slows down more at the beginning, and
less when getting closer, e.g. to show its cooperative stopping
intention for other traffic participants.

Theoretically, there are an infinite number of approaching
styles, and stop is one of them as well. In order to not
blow up our action space, we introduce only additionally
one fast approach and one early stop actions. The low-level
realization of these actions is presented in the next section.
With these additional actions, more basic policies are created,
i.e. B2 (substituting stop in B1 with fast approach) and B3
(substituting stop in B1 with early stop). In addition, more
advanced and human-like policies are possible, i.e. instead of
sticking always to one of the approaching actions, they can be
freely selected at each decision step.

The policies B1, B2, and B3 are illustrated in Fig. 3.
3) Proof-of-Concept Low-level Execution of Actions: The

Intelligent Driver Model (IDM) [21] is utilized to generate
longitudinal acceleration v̇IDM for all approaching actions,
where a virtual obstacle with 0 velocity is assumed to locate
just before the conflict zone. In order to generate different
approaching styles fast approach, stop and early stop, we add
another parameter α into the original formulation and consider
the virtual obstacle as an additional leading vehicle,

v̇IDM = amax

(
1−

(
v

vd

)4

− 2
max
i=1

α

(
d∗ (v,∆vfi)

dfi

)2
)

(1)

where d∗ (v,∆v) = d0+vTd +
v∆v
2
√
ab

is the desired distance
to the vehicle ahead. The parameters to set are: maximum
acceleration amax, desired velocity vd, minimum accepted
distance d0, desired time gap Td and desired deceleration b.
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Fig. 4: The ego vehicle is approaching an occluded intersection with
potential phantom vehicles. The y coordinate of (b) is the longitudinal
distance along the green dashed route of the ego vehicle in (a). One
recorded human driver tries to approach with the black trajectory.
Our modified IDM generates three different profiles for the three
approaching actions.

α aims to control the impact of the leading obstacle to the
overall acceleration and is 1 in the original IDM formulation.
In our paper, α is set to 0.5 for fast approach, 1 for stop and
2 for early stop.

Fig. 4 presents one typical occluded intersection. The exam-
ple human driver is apparently not approaching with the typical
IDM deceleration to stop before the conflict zones. However,
a smoother transition between stop and pass is found, which
satisfies the safety and is more comfortable. Among the three
predefined actions, the fast approach trajectory matches the
human driver’s trajectory the best and should be selected in
this case by an advanced human-like policy.

For pass action, the longitudinal acceleration should be the
maximum ability of the ego vehicle before passing all conflict
zones, because they need to be cleared as soon as possible.
Therefore, the output acceleration is the maximum acceleration
that fulfills C∗

2,3 until reaching vlimit. For squeeze action, the
output acceleration is just the output of a speed P-controller
that tries to maintain 1m

s .

C. Relevant Features for Approaching Actions

The features that affect decision making are categorized
into four groups: utility, ride comfort, perceived safety, and
politeness. In this paper, we only give a brief review of
the previously proposed features and will reformulate the
perceived safety with extended definitions. Note that all the
values of the features will be normalized between 0 and 1.

1) Utility: The following three features are relevant:

• U1: How fast the overall progress can be made.
• U2: How soon the desired maneuver can be achieved.
• U3: How possible the desired maneuver can be finished.

U1 will mostly be affected by the velocity and can be formu-
lated as 1 − | v

vdes
− 1| where v denotes the average velocity

achieved by an action or a trajectory and vdes represents
the desired velocity of the driver. In scenarios where clear
goals are defined (lane change, merging, passing intersection,
etc.), U2 and U3 are additionally interesting. For example, at
intersections, U2 describes how soon and U3 represents how
probable the intersection can be passed. We will introduce how
to estimate U2 and U3 by the MC simulations in Section III.

2) Ride comfort: In the context of longitudinal decision-
making, our primary focus lies on ensuring longitudinal com-
fort. In the domain of trajectory planning, it is common to
penalize jerk and acceleration within the cost function. How-
ever, as we employ acceleration outputs derived from the IDM
for vehicular control inputs in MC simulation, it is not feasible
to obtain jerk values. Moreover, devising high-level plans
optimized with respect to jerk, rather than acceleration, offers
limited advantages while incurring a substantial computational
overhead during the MC simulation. Consequently, we define
longitudinal comfort exclusively as a function of acceleration:
C = 1 − | al

amax
|, where al represents the average absolute

longitudinal acceleration of a maneuver or trajectory.
3) Perceived safety: This feature is also treated as risk.

Similar to the Q-value in a Markov-Decision-Process (MDP),
the perceived safety is not only depending on the current
state, but also on the action that is about to be executed.
Previous publications [22] usually focus on collision risk
for perceived safety, where the probability of a collision is
computed. However, as a collision is rare in real traffic, the
collision probability is difficult to be validated. Instead, we
introduce two risk definitions: emergency risk R1 and the fall-
back risk R2.

The emergency risk represents the probability of emergency
situations. RSS treats events to be emergencies when the RSS
safety is broken, either passively (e.g. by intruding traffic
participants that disrespect RSS) or actively (e.g. by violating
C1 and {C2,C2,p,C3} at the same time), where a “proper
response” (emergency reaction) needs to be performed, e.g.
braking with amax,decel,ego.

The fall-back risk represents the probability of switching
to the most uncomfortable (fall-back) plan, where the RSS
safety is on the verge of being undermined. The fall-back
plan is still risky because the driver or the passengers might
feel endangered, but does not harm RSS safety. In highway
on-ramp merging, a fall-back plan can be a failed merge
followed by a harsh stop at the end of the merging lane,
due to the incorporation of the vehicle on the target lane.
At an occluded intersection, when the vehicle approaches not
cautiously (e.g. with fast approach), hoping that no prioritized
vehicle is behind the occlusion such that switching to pass
is soon possible, but one suddenly appears. In this case, the
most uncomfortable part of the trajectory that nearly has
amax deceleration has to be executed. A fallback is defined
as a deceleration over a threshold when approaching the
intersection, e.g. 0.8amax.

We list some situations where R1 and R2 may be greater
than 0. R1 > 0 when



• Traffic participants behave beyond RSS assumptions (e.g.
decelerate more than amax,decel,obj).

• Traffic participants break traffic rules (e.g. violates speed
limit, take way, cut in, or cross disrespect RSS).

• Highly uncertain perception results (e.g. ghost objects,
extremely large estimation error).

R2 > 0 when the ego vehicle has

• Wrong estimation of turning/routing/cooperation inten-
tion of other traffic participants.

• Too optimistic estimation of uncertainty in occlusions.

R1 can hardly be eliminated and can only be minimized by
always estimating the worst. However, by doing this, the utility
will be largely damaged. We assume a reasonably correct
perception such that the third point is ignored in this paper.
R2 is possible to be 0, e.g. by always following stop or early

stop actions, and can also be reduced, e.g. by having a better
prediction module that generates a more accurate estimation of
the environments. However, as the consequence of switching
to fall-back is not as bad as an emergency situation, human
drivers always risk the fall-back to try to be more efficient.
In other words, they tolerate 1 harsh brake in 100 uncertain
crossings, rather than 100 soft brakes among which 99 are
unnecessary. The goal is to find a good balance between
utility and perceived safety with the recorded human driving
trajectories.

4) Politeness: Experienced drivers focus not only on their
own benefit but behave in a way such that others’ conve-
nience is affected as less as possible. A good action allows
a smoother overall traffic flow as well. We measure politeness
P1 = 1

n

∑n
i=1 U1,i and P2 = 1

n

∑n
i=1 Ci by looking at the

average utility U1 and average comfort C of the n surrounding
traffic participants where U1,i and Ci are for the i-th object.

III. MONTE-CARLO SIMULATION

As mentioned before, an advanced policy has more freedom
than the basic policies B1, B2 and B3. It is able to decide
between the approaching styles at each decision step based
on the features (risk, utility, comfort and politeness) that
characterize each approaching style.

A. Feature Estimation via Monte-Carlo Simulation

The features are approximated via MC simulations. The
estimated feature vector [U∗

1 , U
∗
2 , U

∗
3 , C

∗
1 , R

∗
1, R

∗
2, P

∗
1 , P

∗
2 ] are

noted with ∗. MC simulations of N episodes start from the
current scene and end after a certain simulation horizon tmax,
where the ego vehicle follows one of B1, B2 and B3, and the
environment reacts with our environment model. A different
episode of MC simulations can result in a totally different
future because randomness is introduced to the environment
model, which will be explained in the next section. After
many episodes of MC simulations for one approaching style,
the feature values can be computed based on the simulation
histories, e.g. how often the ego vehicle is expected to fall
back, or how soon the ego vehicle is expected to pass the
intersection on average.

Fig. 5: Different route options from lanelet2 map for vehicles (left)
and pedestrians (right) given the pose (red arrow).

The computation of U∗
1 , U∗

2 , U∗
3 , C∗, P ∗

1 and P ∗
2 do not

differ with our previous work [11], where the values U∗
1 , C∗,

P ∗
1 and P ∗

2 are just averaged over all the episodes.
From one MC simulation, not only numerical values (e.g.

average velocity) but also other semantic information, e.g.
whether a maneuver succeeds or a fall-back deceleration has
been executed, can be obtained. If the maneuver succeeds in i-
th episode, the simulation time tfinish,i is recorded. Otherwise,
tmax is utilized for tfinish,i. As a result, U∗

2 = 1
N

∑N
i=1(

tfinish,i
tmax

)
and U∗

3 = nfinish
N can be formulated mathematically, where

nfinish represents the number of episodes where the desired
maneuvers are completed. Similarly, R∗

1 and R∗
2 represent the

ratios of episodes where the ego vehicle has executed the fall-
back deceleration and where the RSS safety is violated either
passively or actively.

B. Environment Modeling for MC Simulation

In order to have well-estimated features by MC simulations,
the environment should behave as close to reality as possible.
We explain the uncertainties that are considered and how
the behaviors and intentions of other traffic participants are
estimated in this section.

1) State Uncertainty: We assume that uncertainty exists
in the state (position, velocity, acceleration, size, etc.) of the
ego vehicle and the states of surrounding traffic participants,
and the distributions are provided by the localization and
perception module. When initiating MC simulations, the states
of all the traffic participants are randomly sampled from the
distributions.

2) Behavior Modeling and Intention Estimation of Vehicles:
The most common traffic participants are surrounding human-
driving vehicles. In MC simulations, they follow the IDM
model during car-following and the basic yielding policy
for crossing intersections. They are assumed to have perfect
knowledge of the traffic rules as well.

In reality, the street is populated with different types of
drivers. In order to simulate different car-following styles and
yielding styles, we predefine three driving styles (aggressive,
normal, defensive) by different levels of aggressiveness, each
of which is associated with a different IDM parameter and
RSS parameter. Their basic yielding policy will be one of
B1, B2 and B3 depending on the aggressive level as well.
At initialization of the MC simulations, each vehicle will be
randomly assigned with one aggressive level and thus with the
corresponding parameters and basic yielding policy. A more
realistic approach will be deciding the aggressive level of each



vehicle by observing its historical driving behavior but is not 
included in the scope of this work.

Each vehicle has different goals as well, which is not known 
to the ego vehicle without additional information (indication, 
etc.). The goal is represented by a global route, which is 
composed of a sequence of lanelets on the map. An example is 
shown in Fig. 5. As input for the MC simulation, the probabil-
ities {P (ri), . . . , P (rI )}vn of each vehicle vn following all its 
possible routes {ri, . . . , rI }vn for I ∈ N are required. Without 
external prediction modules, the probabilities will be assigned 
to be equal. We adopt one basic routing prediction method 
[23] that generates the routing probability by matching the 
state distribution of the vehicle to the centerline of each route. 
First, the squared Mahalanobis distance d(vn, ri) between the 
vehicle vn and the route ri is computed, then the probability 
is referred by assuming a Boltzmann distribution

P (ri)vn
=

e−d(vn,ri)∑I
j=1 e

−d(vn,rj)
, for i ∈ {1, . . . , I} (2)

In general, any prediction module (e.g. [24]) that is able to
provide the same information can be adopted, which increases
the modularity of our method and makes it prediction agnostic.

3) Behavior Modeling and Intention Estimation of Pedestri-
ans: In MC simulation, pedestrians may have several potential
routes as well and the estimation is done with the same method
as for vehicles. When no zebra is in front, they are assumed
to move with constant velocity following one of the routes.
Otherwise, when they are closer to zebra than a threshold
d < dmin, but not jet on it, they will start making crossing
decisions. After locating on the zebra, they are simulated to
cross straight-forward with a predefined maximum velocity.

We assume an interactive behavior model of pedestrians
when they try to cross zebra. The basic idea is that pedestrians
tend to start crossing with a higher probability when the traffic
is clear, but will hesitate when the street is busy or vehicles are
driving fast and do not show decelerating intention explicitly.
We learn a logistic regression model for predicting the crossing
probability of pedestrians at zebra from inD dataset

Pcross =
1

1 + e−(θT
p fp+bp)

(3)

with θp to be the weight vector, bp the bias and fp =
[av, av,need, vr] the feature vector, where av denotes the cur-
rent acceleration of the closest on-coming vehicle to zebra,
av,need is its needed acceleration to stop before zebra, and
vr = 1 − v

vlimit
is its normalized speed to speed limit. The

results are θp = [0.75,−0.5,−1.5] and bp = −2. Crossing
decision is made when Pcross > 0.5. Before stepping onto the
zebra, they will renew their decision every 1s of simulation
time by computing Pcross again.

4) Behavior Modeling and Intention Estimation of Cyclists:
Cyclists are recorded in the datasets as well. We do not
introduce specific behavior models or intention estimation
methods for cyclists but assign either pedestrian-like behavior
or vehicle-like behavior in MC simulations. The perceived
cyclists that locate on the walkway will be modeled with
pedestrian behaviors. Those who drive on the vehicle lanes

will be treated similarly to vehicles, with cyclist-specific IDM
and RSS parameters though.

5) Modeling of Abnormal Behaviors: Sec. II-C3 lists sev-
eral situations where the traffic participants behave with ab-
normal behaviors, leading to emergency reactions of the ego
vehicles (R1 > 0). In order to have a realistic estimation of
R1, these behaviors should also be modeled in MC simulation.
We analyzed several traffic rules non-compliant behaviors
and counted their incidence in the datasets. The results are
presented in Table I.

Therefore, besides assigning vehicles with the three ag-
gressive levels, we assign abnormal behaviors to the vehicles
that will be initialized in MC simulation according to the
real occurrence rate in the datasets, e.g. by initiating with an
abnormal RSS parameter or a high desired speed, etc. Note
that there is no unexpected pedestrian crossing recorded that
is not on the zebra crossing and causes the other vehicle to
brake more than asoft,decel,obj. However, we still assign 0.1%
pedestrians to not follow the optional routes but may cross
the street unexpectedly in MC simulations. Optimally, this
probability can be computed by tracking the movement of the
pedestrian via external modules.

6) Simulation of FoV and Sampling Phantom Vehicles from
Occlusion: In the MC simulation, vehicles are supposed to
cross intersections according to the basic policy. Simulating
the FoV for every agent in the scene is computationally
intractable. Therefore, we assume that other vehicles have a
perfect perception of the environment and make reasonable
decisions. However, for the ego vehicle, the FoV polygon is
simulated forward as it moves. The obstacles that are used for
computing the simulated future FoV are currently perceived
static obstacles and simulated dynamic obstacles (without
pedestrians). With the limited FoV, the ego vehicle can only
pass when the safety condition in Sec. II-A5 is fulfilled.

During MC simulation, if the ego vehicle is following a
fast approach action, it may always be able to switch to
pass smoothly as only perceived vehicles are added in MC
simulation and no vehicle will come out from occlusion.
However, in reality, if the ego vehicle does fast approach as
well, thinking that a smooth transition is certain according
to its MC simulations, it may fall back when suddenly actual
vehicles appear from occlusion. In order to catch this potential
fall-back probability, phantom vehicles should be sampled
from occluded road sections as well. The idea is to sample
based on the perceived traffic density. In order to reduce the
burden of MC simulations, we only sample phantom vehicles
on the occluded sections of prioritized road sections.

Fig. 6 illustrates an example of possible occluded prioritized
routes under the FoV, where phantom vehicles need to be
sampled in MC simulations. For doing this, the traffic density
g = N

L is first computed, where N represents the number
of the perceived dynamic vehicles in the scene (including the
ego vehicle), and L is the total length of roads in all directions
covered by the FoV. The expected number of phantom vehicles
on each occluded section will be ni,exp = gli ∈ R where li
represents the length of the i-th section. The actual number
of sampled vehicles is ni,sample = ⌈N (ni,exp, 1)⌉ and ⌈⌉ is
a ceiling function. After ni,sample is decided, the longitudinal



TABLE I: Traffic rules non-compliant behaviors and their occurrence rate.

Type Datasets Number of cases analyzed Occurrence rate (%)
Exceeding 20% speed limit InD, rounD 19671 vehicles 4.8

Exceeding RSS acceleration/deceleration InD, rounD 19671 vehicles 0.01
Taking way disrespect RSS safety InD, rounD 11081 intersection crossings 17.1

Unexpected pedestrian crossing InD 3093 pedestrians 0

ego

dynamic obstacle

static obstacles

occluded prioritized 
road sections

possible conflict zones

possible phantom 
vehicles at sensing 
border

route of ego 

Fig. 6: Possible phantom vehicles on occluded prioritized road
sections.

position si,j of the j-th vehicle on the i-th section follows a
uniform distribution si,j ∼ U(Si,free), with

Si,free = {s ∈ [0, li] ∧ s /∈
ni,sample⋃
k=1

Sk,i,occupied for k ̸= j} (4)

where Sk,i,occupied = {s ∈ [sk,i − dsafe, sk,i + dsafe]} is
the occupied distance range of k-th already sampled phantom
vehicle on i-th section. sk,i is the longitudinal position of k-th
phantom vehicle on i-th section. dsafe = 0.5vk,i is a minimum
longitudinal distance between vehicles. This guarantees that
the sampled vehicles do not overlap with each other and even
have at least 0.5s time headway between each other.

The sampled phantom vehicles are initialized with a speed
following a uniform distribution U(0.8vlimit, 1.2vlimit). Their
behavior models and other parameters are initialized the same
way as the visible vehicles.

7) Performance Evaluation: Unlike POMDP which usually
builds search trees and can not be well-parallelized, each of
the single MC simulations is independent of others and thus
can be parallelized in a multi-core system. The feature values
converge as the number of MC simulations increases. In a
selected set of test scenarios, the variance of one feature value
(e.g. R2) related to the MC simulations with 100, 500, and
1000 repetitions is decreased from 0.06, 0.025, to 0.015. The
run-time for evaluating the three actions (each with 500 MC
simulations) on a laptop with a CORE-i7 8th-Gen Intel CPU
with 8 threads is 20ms, 80ms, and 140ms respectively. We take
500 repetitions as a good balance of run-time and accuracy.

IV. LEARNING DRIVING POLICY VIA BEHAVIOR CLONING

As depicted in Fig. 1, after the features for each action are
approximated by the results of MC simulations, one linear
function with parameters w and b is utilized to generate Q-
value for the action. As the goal is to learn a policy that
balances the feature values similar to human drivers, e.g. not
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Fig. 7: Comparision of the average velocity profiles from MC
simulations and the human-driven trajectory.

overly egoistic (weight utility and comfort too much) or overly
cautious (weight risk too much), we first need to determine
the decision preferences of humans in certain scenarios. For
this purpose, we utilize the inD and rounD [25] datasets that
contain a huge amount of trajectories of human drivers at
several intersections and roundabouts.

The reason for not using a neural network to represent the
Q-function is that we want to explicitly watch the weighting
for each feature to better understand the decision and prevent
overfitting to the limited data.

A. Generation of Training Data

By performing MC simulations, not only the estimated fea-
ture f∗

ai
= [U∗

1,ai
, U∗

2,ai
, U∗

3,ai
, C∗

ai
, R∗

1,ai
, R∗

2,ai
, P ∗

1,ai
, P ∗

2,ai
]

for each action ai ∈ A,A = {a1, a2, a3} =
{fast approach, stop, early stop} can be computed, but also the
average velocity profiles V ai,tmax = [vai,t0 , vai,t1 , . . . , vai,tmax ],
where vai,tj = 1

M

∑M
k=1 vai,k,tj and vai,k,tj is the velocity

of the ego vehicle at tj time step of k-th MC simulation
by following the action ai. M is the total number of MC
simulations for one action.

For each valid frame1 of each recorded vehicle in the
dataset, M episodes of MC simulations are performed for
each of the three actions, resulting in three different velocity
profiles. Afterward, an error σai,tmax between the ground-truth
velocity profile Vgt,tmax = [vgt,t0 , . . . , vgt,tmax ] of the vehicle and
the three generated velocity profiles V ai,tmax is computed with

σai,tmax =
∑
tj

(vgt,tj − vai,tj )
2

(5)

The probability Pai
of how humans would select each of

the actions ai is estimated assuming a Boltzmann distribution

Pai
=

e−σai,tmax∑
aj

e−σaj,tmax
, ai, aj ∈ A (6)

1Frames are valid when the vehicle in the ground-truth trajectory has not
passed all intersections



TABLE II: Learned weights w.

Utility Comfort Risk Politeness
U1 U2 U3 C R1 R2 P1 P2

w 6.3 -6.8 5.8 0.5 -3.2 -1.5 0.8 1.2

As an example, we execute the MC simulations with
tmax = 4s under the scene of Fig. 6, where the average
velocity profiles for the three actions and the ground-truth
human trajectory are recorded and depicted in Fig. 7. The
turning points of the three velocity profiles are the switching
points between slowing down and pass, where the simulated
FoV can cover enough of the prioritized lanes and safety
conditions are satisfied. Using eq. 6, the matched probability
of the three actions are Pfast approach = 0.635, Pstop = 0.364
and Pearly stop = 0.001.

One training data di of the training dataset D is composed
of the data [f∗

a1
, f∗

a2
, f∗

a3
] and the label [Pa1

, Pa2
, Pa3

]. There
are four intersections and three roundabouts containing in total
56 recordings of ca. 30 minutes in inD and rounD datasets. For
each intersection or roundabout, we use half of the recordings
to generate training data. In total, we evaluated 20240 valid
frames and generated training data of the same size.

B. Learning Driving Policy from Datasets

We use softmax cross-entropy loss L for back-propagation
and updating the parameters w and b, which is formulated for
the entire training dataset as

L = −
∑
di∈D

∑
ai∈A

Pai log(
e−Qai∑

aj∈A e−Qaj

)

= −
∑
di∈D

∑
ai∈A

Pai log(
e−(wf∗

ai
+b)∑

aj∈A e
−(wf∗

aj
+b)

)

(7)

As a result, the learned weights is presented in Table II and
b = 0.8. As the features are normalized between 0 and 1,
the weights are representative in reflecting the preferences of
human drivers. Obviously, human drivers pay more attention
to their overall utility and risk.

V. EVALUATION

For showing the strength of our approach, we first evaluate
it on an interactive simulation that is built upon the datasets.
We further show the generalization of our approach with
the evaluation on the new roundabout from the Interaction
dataset [26]. We categorize the evaluation scenarios into three
types: unsignalized intersections with slight occlusions caused
by static obstacles, with severe occlusions, and roundabouts.
Quantitative evaluations and interesting case studies compar-
ing four policies are performed in the end.

A. Evaluation Simulation

There are some existing simulators or benchmark toolings.
Carla [27] provides realistic environment representation and
sensor simulation. However, it is not straightforward to inte-
grate the lanelet2 maps, and designing an interface for low-
level controlling requires much effort as well. CommonRoad

[28] is another benchmark for evaluating planning algorithms.
It provides simulations that are partly recorded from real
traffic and partly hand-crafted to create dangerous situations.
However, it focuses on evaluating the cost functions of motion
planning algorithms but is less interesting for our high-level
behavior generation approach. BARK [29] targets to provide a
realistic and interactive simulation environment that is initiated
from datasets, but with reactive surrounding agents following
several pre-designed behavior models. It meets our require-
ments best but does not support lanelet2 maps as well, and
the benchmarking function is not yet fully released.

Evaluating behavior models in totally offline datasets has
the advantage that other agents are moving according to the
recorded trajectories and are realistic. However, the drawback
is that they do not react to the movement of the automated
ego vehicle which diverges from the ground truth since the
second simulation step. Following the idea of BARK, we build
a similar simulation upon the datasets, but on the data that
were not used for training, i.e. the other half of the inD and
rounD datasets, and the Interaction dataset.

After running the simulation, one of the vehicles in the scene
is regarded as the ego vehicle which will follow our driving
policy and replace its original trajectory. Other agents will
behave following their recorded trajectories. However, they
will be overridden by automated driving (AD) agents that
diverge from the original trajectories once one of the following
conditions is met:

• The distance to its front agent is less than the RSS safe
distance computed from a relaxed RSS parameter.

• Starting to cross the intersection if the crossing is not
RSS-safe according to a relaxed RSS parameter.

The overridden AD agents will be randomly assigned one
aggressive level and their behavior models and parameters are
initialized the same as in MC simulation.

As the FoV of the recording drone is limited, new agents
might spawn from the edge of the scene that may collide with
the overridden agents. We do not spawn these new agents once
one of the following conditions is met:

• The spawned position is already occupied by other agents.
• The distance of the spawning position to its front agent

or following agent is less than the RSS safe distance
computed from a relaxed RSS parameter.

A relaxed RSS parameter allows more aggressive driving as
it assumes e.g. a larger amax,decel,ego, and a smaller tTZC,min, etc.
With these modifications, the simulation is as close to reality
as possible, and on the other hand, is populated with reactive
agents that try to avoid collisions and follow traffic rules.

For validating our simulation, we compared it with the
one that only replays the offline datasets for other vehicles.
Each vehicle in the datasets will be treated as the ego vehicle
once and follows our learned policy, while others behave
reactively or only follow their recorded trajectories. After
running through the whole test dataset, the number of resulting
collisions between all agents is recorded. On average, the
number of collisions for simulating one AD agent is reduced
from 2.3 to 0.05, by introducing our modifications. The
remaining few collisions are mostly from edge cases, e.g. the



TABLE III: Statistics for simulation evaluation for intersections with neglectable static occlusion.

Policies MDE (m) Average velocity ( m
s ) Fall-back ratio (%) Velocity gain of the traffic ( m

s )
B1 8.46 6.19 5.02 0
B2 10.51 6.91 17.14 -0.02

Learning (L1) 9.94 6.74 9.72 0.003
Learning + better prediction (L2) 10.25 6.81 9.06 0.002

TABLE IV: Statistics for simulation evaluation for intersections with severe static occlusion.

Policies MDE (m) Average velocity ( m
s ) Fall-back ratio (%) Velocity gain of the traffic ( m

s )
B1 9.98 5.33 2.5 0
B2 9.38 5.86 30.3 0.09

Learning (L1) 9.51 5.66 7.3 0.06
Learning + better prediction (L2) 9.55 5.63 6.6 0.07

front vehicle is not clearly identified as they drive close to the
border, or the bounding boxes of the vehicles are not accurate
enough and have slight overlap, etc. Our simulation is still
regarded as realistic enough, as on average only 9.5% agents
of the scene have been overridden, and most of the other agents
still follow their trajectories.

B. Compared Policies and Metrics

We compare four policies and three of them are already
explained, i.e., B1, B2, and our learned policy (L1). In order
to show how the prediction module affects the quality of our
learned policy, we utilize a better proof-of-concept routing
prediction module instead of eq. 2 and apply the learned
policy on that, which makes up the fourth policy (L2). As all
the ground-truth routing of the surrounding agents are known
(no matter whether they are overridden), their future 3s of
points on the ground-truth routing with 0.5s interval is used for
matching with their possible routes, instead of only the current
pose. We omit the mathematical details here because they
are similar to eq. 2. This prediction module has significantly
better accuracy as it “cheats” to use the ground-truth data.
However, this is acceptable as our goal is not to provide a
good prediction module, but only to show how a good one
can help improve the planning quality.

We evaluate the following four metrics:
• Mean distance error (MDE) to the ground-truth trajec-

tory: to show the human-likeness of each policy.
• Average velocity: proportional to the inverse of average

crossing time, but includes the parts after the intersection
and is more representative of the overall utility.

• Fall-back ratio: how often does the ego AD agent need
to switch to fallback.

• Velocity gain of the traffic: how the average velocity of
traffic flow is improved compared to policy B1.

C. Massive Evaluation on Test Scenarios

1) Intersections with Neglectable Static Occlusion: There
are three intersections in inD dataset where the occlusions
caused by the static obstacles are not severe to hinder driving.
In total, 458 vehicles are evaluated that have encountered at
least one yielding intersection.

The quantitative results are presented in Table III. It can
be seen that B1 has the most human-like performance, but
achieves a relatively low average velocity. As it applies stop

as the approaching action, it has the least fall-back ratio. The
reason why the fall-back ratio is not 0 for B1 is that some
vehicles start to be recorded really close to an intersection
and intend to cross at high speed. However, the RSS safety is
not fulfilled and the B1 policy decides to stop, which results
in a high deceleration and triggers the fallback. B2 achieves
the overall highest velocity but results in the largest fall-back
ratio and is the least human-like policy. In addition, the traffic
flow is compromised as well.

The two learned policies have similar performances. They
are more human-like and achieve way less fall-back ratio than
B2, but with only slight velocity loss. The overall traffic flow
is improved as well, as politeness is considered in the features.
By applying a better prediction, the fall-back ratio is decreased
and the average velocity is improved as well.

2) Intersections with Severe Static Occlusion: There is one
intersection in inD dataset where the buildings and the parked
vehicles occlude all the arms of the intersection severely, as
shown in Fig. 6. There is additionally one pedestrian crossing
on the west arm of the intersection marked with a black
polygon, where the ego vehicle should yield to pedestrians.
In total, 824 vehicles are evaluated that have encountered at
least one yielding intersection or one pedestrian crossing.

The quantitative results are presented in Table IV. With
severe occlusions, B1 is the least human-like policy and
achieves the lowest velocity. B2 is the fastest policy which
is the most human-like one as well. However, it leads to
a 30.3% fall-back ratio which is extremely unpleasant. The
learned policies reduce the fall-back ratio a lot, with slightly
increased MDE and decreased velocity. All the policies that
achieve a faster average velocity allow a smoother traffic flow
as well. The better prediction module again helps a little
in reducing the fall-back ratio as the turning intentions of
prioritized vehicles are better estimated.

3) Roundabouts: There are three different roundabouts
in rounD dataset where the streets are mostly clear in all
directions. In total, 4282 vehicles are evaluated.

The quantitative results are presented in Table V. Simula-
tion results are similar to the intersections with severe static
occlusions. The learned policies achieve the highest average
velocity and balance the risk to an acceptable level. With a
better prediction module, the performance is again increased
in almost all metrics.

4) Unseen Roundabout in Interaction Dataset: The learned
policies do show better performance in different scenarios of



TABLE V: Statistics for simulation evaluation for roundabouts.

Policies MDE (m) Average velocity ( m
s ) Fall-back ratio (%) Velocity gain of the traffic ( m

s )
B1 6.40 5.41 0.8 0
B2 6.31 5.65 24.2 0.025

Learning (L1) 6.36 5.53 4.0 0.004
Learning + better prediction (L2) 6.31 5.59 4.8 0.013

TABLE VI: Statistics for simulation evaluation for an unseen roundabout in Interaction dataset.

Policies MDE (m) Average velocity ( m
s ) Fall-back ratio (%) Velocity gain of the traffic ( m

s )
B1 6.58 6.83 0.4 0
B2 6.13 6.94 13.4 0.03

Learning (L1) 6.02 6.92 0.9 0.01
Learning + better prediction (L2) 6.09 6.93 1.3 0.02
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Fig. 8: The ego vehicle (green) tries to finish an unprotected left turn. The yellow polygon in the background visualizes the ground-truth
position of the ego vehicle.
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Fig. 9: The ego vehicle (green) is approaching an intersection with ordinary occlusion. The profiles of L1 and L2 overlap.

the datasets, but still on the same intersections as the training
data. In order to present the generalization of our approach,
we select the roundabout DR DEU Roundabout OF from
Interaction Dataset and apply the same quantitative evaluation.
Other intersections are either highly unstructured or are not
unsignalized intersections with the yielding traffic rule. In
total, 552 vehicles are evaluated. The results are presented in
Table VI. The statistics show a similar pattern as for the three
roundabouts in inD dataset, where the learned policies are able
to maximize the utility of the ego vehicle while keeping the
fall-back ratio at a reasonably low level.

Evaluation results on the unseen roundabout prove that our
approach is map agnostic. As the MC simulations perform
directly on the map and take the traffic participants as input
without abstracting any information, the estimated features
have similar accuracy for any unseen intersection. Exceptions
are e.g. when performing MC simulations on new scenarios
where the traffic participants have significantly different be-
havior (e.g. in different countries), and the behavior modeling
in Sec. III-B may produce a big error.
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n. The profiles of L1 and L2 overlap.
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Fig. 11: The ego vehicle (green) is approaching consecutive stop lines. The first one is a pedestrian crossing, and the second one is a yielding.

D. Case Study

We take several representative scenarios and analyze the
driving history of each driving policy, i.e. s-profiles (longitu-
dinal distance along the route) and a-profiles (acceleration).

Fig. 8 presents one complex unprotected left turn with
several potential conflicting zones, where potential occluded
vehicles and some visible vehicles have priority. The ap-
proaching accelerations of the policies are different, but all the
policies are able to pass the intersection after the intersection
is clear with similar s-profiles.

Fig. 9 presents one scenario where the intersection is
not severely occluded but cautious driving is still needed.
Approaching relatively fastly (with B2, L1 and L2) allows a
smooth transition between slowing down and pass. With B1,
the ego vehicle is reduced to a low velocity. B2 achieves a
faster speed even than the human trajectory, which is efficient
but might let the passengers feel endangered. L1 and L2
produce the most human-like trajectories.

Fig. 10 illustrates a scenario on the same intersection, but
the ego vehicle is coming from the north arm. The prioritized
lane (west arm) is additionally occluded by the parked cars.
B2 again achieves the highest utility, but has to execute a
fallback as stopping in front of the conflict zones is no longer
guaranteed, and pass is not safe as well. B1 slows down more

but allows passing the conflict zones without a fallback. L1
and L2 produce the same behavior, they decelerate more than
B1 at the beginning but then could accelerate earlier than B1.
Thus, B1, L1 and L2 achieve almost the same utility, which is
slightly lower than the human, but all without a fallback. The
human driver does not slow down too much at the beginning
but intrudes into the conflict zones more aggressively than our
squeeze action.

Fig. 11 shows the behaviors on consecutive stop lines where
the first one is a pedestrian crossing and the second one is
yielding to prioritized cyclists. After the ego vehicle perceives
the pedestrian, L1 and L2 execute early stop action and
decelerate more than B1 and B2 to show cooperative intention
to the pedestrian. The reason for executing early stop is that
in MC simulations, decelerating early motivates the pedestrian
to make cross decision according to our pedestrian behavior
models in Sec. III-B3. Thus, the pedestrian can pass the zebra
faster and clear the conflict zone earlier, which allows the ego
vehicle to pass faster as well. In this way, both the utilities of
the ego vehicle and the pedestrian are expected to be increased.
Note that B2 leads to a fallback again as the conflict zone is
not cleared soon enough. Afterward, all four policies traverse
the second stop line and its conflict zones similar to the human
trajectory.
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Fig. 12: The ego vehicle (green) is approaching a roundabout. The vehicle with id 38 is recorded to exit the roundabout via the west exit.

Fig. 12 presents a roundabout scenario. The human driver
approaches the roundabout with only slight deceleration and
enters with almost no hesitation. The reason is that the inten-
tion of the vehicle with id 38 is well-estimated by humans, e.g.
through indicator signals. The basic policy B1 and the learned
policy L1 have similar behavior, where they are not certain
about the exiting intention of id 38. Therefore, they need to
come to a full stop to ensure safety. B2 tries to approach
fastly but safety is not fulfilled until the exiting intention of
id 38 is certain, leading to a fallback. However, with a better
prediction module and a better intention estimation, L2 adjusts
the velocity such that entering the roundabouts becomes safe
earlier, but without a fallback.

In summary, B1 shows the most conservative driving behav-
ior but is the least risky one. With B2 which is the opposite
of B1, the utility of the ego vehicle is maximized, but with
the cost of the most frequent fallback. The learned policy L1
finds a good balance between utility, risk and the overall traffic
flow. It achieves similar human-likeness, utility and traffic flow
as B2, but leads to significantly less fallback. With a better
prediction module (L2), the fall-back ratio is further reduced
without affecting other metrics.

VI. CONCLUSIONS AND OUTLOOK

In this study, we generalize our previously proposed behav-
ior cloning concept for learning high-level decisions in urban
driving scenarios, particularly at unsignalized intersections.
We extend the RSS safety concept to address various conflict
zones, pedestrian safety, and occlusions. Our action space
representation encompasses both aggressive and conservative
behaviors, enabling the generation of provably safe driving
policies. To attain more human-like behavior, actions are
selected based on their feature values. We adapt feature
definitions to urban scenarios and broaden the concept of risk
to encompass uncertainties that may necessitate emergency
responses. These features are estimated using MC simulations,
projecting the current uncertain environment into the future.

The approach boasts several advantages, including a highly
modular design. It accepts uncertain perception results in

any format as input and can optionally incorporate advanced
prediction modules to enhance performance. The output com-
prises high-level decisions, which can be converted into low-
level control commands by any trajectory planning module.
Additionally, tracing the resulting decisions is straightforward,
either by examining the MC simulations or the Q-value from
the linear function.

An intriguing avenue for future research involves extending
the current approach to unstructured environments, wherein
HD maps are unavailable. The biggest challenge lies in defin-
ing appropriate traffic regulations, which are essential for the
RSS safety concept. Additionally, exploring the influence of
learned weights on driving styles warrants further investiga-
tion. Such research could enable the provision of predefined
driving styles or even facilitate real-time tuning of driving
preferences to accommodate diverse user requirements.
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