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Stefan Löffler1, Thomas Schachinger1,2, Peter Hartel3, Peng-Han Lu4,5,
Rafal E. Dunin-Borkowski4, Martin Obermair6, Manuel Dries6, Dagmar Gerthsen6, and
Peter Schattschneider1,2

1University Service Centre for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstraße 8-10/E057-02, 1040 Wien, Austria
2Institute of Solid State Physics, TU Wien, Wiedner Hauptstraße 8-10/E138-03, 1040 Wien, Austria
3CEOS Corrected Electron Optical Systems GmbH, Englerstraße 28, 69126 Heidelberg, Germany
4Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute, Forschungszentrum Jülich,
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The topological charge m of vortex electrons
spans an infinite-dimensional Hilbert space.
Selecting a two-dimensional subspace spanned
by m = ±1, a beam electron in a transmission
electron microscope (TEM) can be considered
as a quantum bit (qubit) freely propagating in
the column. A combination of electron opti-
cal quadrupole lenses can serve as a universal
device to manipulate such qubits at the ex-
perimenter’s discretion. We set up a TEM
probe forming lens system as a quantum gate
and demonstrate its action numerically and ex-
perimentally. High-end TEMs with aberration
correctors are a promising platform for such
experiments, opening the way to study quan-
tum logic gates in the electron microscope.

1 Introduction
Manipulating the electron’s phase is a current topic in
electron microscopy. On the one hand, wave front en-
gineering promises better spatial resolution [1], novel
beam splitters [2], improved sensitivity for particular
applications such as spin polarized electronic transi-
tions [3], or manipulating nanoparticles via electron
vortex beams [4]. In many respects, the physics of
electrons with topological charge is similar to that of
photons in singular optics (for an overview see [5]).
In particular, quantum logic gates based on photons
with orbital angular momentum (OAM) have been
successfully demonstrated (e.g. in [6]). Other aspects
are unique to electrons, such as easy manipulation
in magnetic fields, the extraordinary sub-nm resolu-
tion, or novel solid-state applications such as diffrac-
tion in chiral crystals [7]. On the other hand, the
coherent control of the interaction of fast electrons
with electromagnetic radiation, either via near fields
in PINEM [8, 9], resonant cavities [10] or laser ac-
celerators [11] leads to oscillations in the probability
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distribution of the electron’s momentum and energy,
allowing the compression of fast electron pulses below
the femtosecond time scale.

After the poineering work of Bliokh [12, 13] on elec-
tron vortices it took some time for their experimental
realization [14, 15]. It was soon shown that they can
be manipulated in a magnetic field, giving rise to pe-
culiar rotations [16–19]. For a review see [20]. The
possibility to shape the phase of the electron wave
with special holographic masks or via interaction with
electromagnetic fields allows not only to prepare sin-
gle electron wave packets propagating in free space
as qubits but also to implement quantum gates for
such electrons. This opens the way to design a new
platform for quantum operations.

There are many such platforms available, each of
them based on a different physical realization of the
qubits. Perhaps the best known examples are entan-
gled photon qubits which have been shown to be scal-
able to some 104 entangled modes [21]; also trapped
ion [22] or superconducting [23] qubits were demon-
strated. Each of them offers particular benefits and
disadavantages. For the time being, it is not clear
which of the many experimentally demonstrated im-
plementations will win the race in quantum comput-
ing. In recent years, solid state qubits demonstrated
promising features in terms of fidelity, scalability or
lifetime such as nitrogen-vacancy color centers in di-
amond (a 10-qubit register that can store quantum
information for one minute has recently been demon-
strated [24]) or spin qubits based on the well estab-
lished silicon technology. For overviews, see, e.g.,
[25, 26].

Recently, an approach towards free electron qubits
in the electron microscope, based on energy gain or
loss processes using laser-driven near field interactions
was proposed [27–29] but to our knowledge, quantum
gates for their manipulation have not yet been real-
ized.

Here, we present proof-of-principle experiments
with a quantum

√
NOT gate for freely floating elec-
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trons. To this aim, we use a device designed for elec-
tron microscopes, called a mode converter (MC) [30]
that transforms a plane electron wave into one with
topological charge [31, 32]. It should be noted at this
point that free floating electron qubits in a TEM are
a very novel and emerging field of research. As such,
they are not on the level of sophistication of, e.g., pho-
tonic qubits that have been researched for decades. In
particular, this work deals with the production, ma-
nipulation and readout of single qubits. While further
concepts such as multi-qubit manipulation and en-
tanglement are briefly discussed, they are essentially
beyond the scope of this paper and will require fur-
ther investigation. Despite the fact that free floating
electrons are very new to the scene of quantum infor-
mation and computing, we strongly believe that they
can provide novel insights, particularly in the realm
of fundamental research.

2 Theory
2.1 Basis states
In a two-state system, any two orthogonal states can
be chosen as a basis for constructing qubits. Pre-
liminary experimental results show that vortex elec-
trons — eigenmodes of the angular momentum oper-
ator that are topologically protected and carry quan-
tized OAM of integer multiples of h̄ — are very sta-
ble during manipulation in the column of a micro-
scope [32]. Therefore, a Hilbert space spanned by two
vortex states with topological charge m = ±1 (and
linear combinations thereof) is a good candidate for
electron qubits.
We use the two Laguerre-Gauss (LG) modes LG1,0

and LG−1,0 as basis states [16]. In cylindrical coordi-
nates (r, ϕ, z) they have the real-space representations

⟨r⃗ |R⟩ = LG1,0 = reiϕ · f(r, z),
⟨r⃗ |L⟩ = LG−1,0 = re−iϕ · f(r, z)

(1)

with

f(r, z) = A

w(z)e− r2
w(z)2 · ei kr2

2R(z) · ei(kz−2ζ(z)),

where A is a real valued normalization factor. The
waist w(z) = w0

√
1 + (z/zR)2 is the propagation de-

pendent beam size, zR is the Rayleigh length, k is the
wave number, R(z) = z(1 + (zR/z)2) is the radius of
curvature of the wave front, and ζ(z) = arctan(zR/z)
is the Gouy phase 1. These are diffracting modes,
i.e. the radial scale depends on the position z of the
wave packet along the propagation axis. Note that z

1It has been pointed out that for non-relativistic electrons
the Gouy phase depends on the time at which the propagat-
ing wave packet is observed [33], as t = ⟨z⟩ /v where v is the
electron’s speed.
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Figure 1: |R⟩ and |L⟩ states are represented by the north
and south poles of the Bloch sphere. Also shown are the |±⟩
and the |H⟩ , |V ⟩ states.

is considered here as a parameter used for propaga-
tion simulation. If not otherwise stated, the qubits
are defined in the virtual or real focal planes z = 0.
The two-dimensional Hilbert space spanned by |R⟩
and |L⟩ is conveniently presented as a Bloch sphere
(Fig. 1). Similarly to light optics, we define states

|H⟩ = 1√
2

(|R⟩ + |L⟩) |V ⟩ = 1√
2

(|R⟩ − |L⟩) (2)

and

|+⟩ = 1√
2

(|R⟩+i |L⟩) |−⟩ = 1√
2

(|R⟩− i |L⟩) (3)

Performing qubit operations using a quantum logic
gate requires three steps: preparation, manipulation
using the gate, and readout, as sketched in Fig. 2.

2.2 Qubit preparation
For preparing the input qubit, the electron beam is
sent through a phase plate. For the proof-of-principle
experiment, we prepare input qubits as states on the
equator of the Bloch sphere

|Iφ⟩ = 1√
2

(|R⟩ + eiφ |L⟩) (4)

with phase shift φ ∈ [0, 2π). Using Eq. 1,

⟨r⃗ |Iφ⟩ = eiφ/2√
2 f(r, z) r cos(ϕ− φ/2). (5)

Recalling the definition of Hermite-Gauss (HG)
modes

HG1,0 = xf(r, z) HG0,1 = yf(r, z), (6)

and x = r cos(ϕ), Eq. 5 describes a HG1,0 mode ro-
tated by φ/2 in the (x, y) plane, except for a global
phase factor that is irrelevant for our purpose.
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Figure 2: Column of an electron microscope with standard
devices (black), phase shaping devices (green) and the qubit
manipulator (blue). Electron qubits (color coded as in Fig. 1)
travel down the z axis.

2.3 Qubit manipulation

Manipulation of qubits as prepared above on the
Bloch sphere at the experimenter’s discretion can be
performed using a set of two quadrupoles (QPs) as
used in a MC. All (unitary) manipulations of a qubit
correspond to a rotation on the Bloch sphere [30].

In spherical coordinates, a general rotation by an
angle θ around an axis given by the unit vector n⃗ =
(nX , nY , nZ)⊤ corresponds to the unitary operator

R̂n⃗(θ) = e−i θ
2 n⃗·σ⃗ = cos

(
θ

2

)
1 − i sin

(
θ

2

)
n⃗ · σ⃗. (7)

where σ⃗ is the 3D vector of the Pauli matrices.

The MC performs a rotation of π/2 over the X axis
of the Bloch sphere shown in Fig. 1

RX(−π/2) =
(

cos(π/4) −i sin(π/4)
−i sin(π/4) cos(π/4)

)
= 1√

2

(
1 −i
−i 1

)
. (8)

Apart from a global phase, this is a
√

NOT quantum
gate, usually abbreviated RX. Note that the axes
X,Y, Z of the Bloch sphere in Fig. 1 must not be
confused with the axes x, y, z of the real space repre-
sentation of the states, drawn in Fig. 2.

Applying the
√

NOT gate to the input qubit using
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Figure 3: Sketch of the most important components of the
probe-forming lens system, together with the geometric ray-
paths for the |H⟩ and |V ⟩ components.

Eqs. 4 and 8 results in the output qubit

|Oφ⟩ =̂ 1√
2

RX
(

1
eiφ

)
= 1

2

(
1 − ieiφ

−i + eiφ

)
= ei( φ

2 − π
4 )

(
cos( φ

2 − π
4 )

− sin( φ
2 − π

4 )

)
(9)

It is readily apparent that for the eigenvectors of the
transformation matrix, the trivial mapping occurs,
namely

|I0°⟩ = |H⟩ 7→ e−iπ/4 |H⟩
|I180°⟩ = |V ⟩ 7→ eiπ/4 |V ⟩ .

(10)

2.4 Qubit readout
The third step is reading the output qubit. That
means projecting it on the basis vectors of the Hilbert
space, linked to a measurement device. Technically
speaking, in the electron microscope these are pixels
on a camera. This is a more subtle problem than it ap-
pears. As the intensity distribution of |R⟩ and |L⟩ in
position space is identical (a ring), the two states can-
not be distinguished and quantified by direct record-
ing.

Therefore, one of the OAM sorters proposed in the
literature must be used, from early multi-pinhole in-
terferometers [34] to holographic masks [35] to the
more recent OAM unwrappers [36–39] which are
based on a proposal for conformal mapping similar
to light optics [40]. Their basis states — in the
present case eigenstates |R⟩ , |L⟩ of the angular mo-
mentum operator Lz — become spatially separated
in the sorter2.

3 Experimental proof of principle
We performed a proof-of-principle experiment on
the Jülich PICO microscope, which is a monochro-

2Any readout basis can be selected by rotating the Lz basis
of the measurement device on the Bloch sphere into the readout
basis. In principle, this can be achieved with a second MC,
exactly as described for qubit manipulation.
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mated double-Cs-corrected (S)TEM instrument, to-
gether with numerical simulations of the beam prop-
agation [41] to analyze the beam shape and phase
in experimentally inaccessible planes such as the MC
entrance and exit planes. For this work, only the
QPs in the probe-Cs corrector were used to realize
the MC [30, 32, 41], i.e., the hexapoles were switched
off. A simplified sketch of the general setup and the
geometric ray-paths in the probe-forming lens system
of the microscope is shown in Fig. 3 [32]. All experi-
ments were carried out at 200 keV.

3.1 Qubit preparation
Electrons closely resembling HG modes can be pro-
duced by several means, e.g., by exploiting the
Aharanov-Bohm effect of a magnetic rod [42]. Here,
we used a Hilbert phase plate (HPP) [32, 43] inserted
in the C3 aperture plane to phase-shift half the inci-
dent round beam by π. This resulted in a HG-like
beam in the focal point, which is located in the input
plane of the MC.
Fig. 4a shows a TEM image of the HPP. It consists

of a conventional TEM aperture with a round hole
with a diameter of 70 µm half-covered by an electron-
transparent phase-shifting layer system. The layer
system consists of a 11 nm metallic-glass Zirconium-
Aluminium alloy (ZAC) covered by amorphous car-
bon (6 nm and 12 nm thick, respectively) to prevent
oxidization [32]. The thicknesses were chosen to pro-
duce the required π phase shift for the 200 keV elec-
trons.
Fig. 4b shows the intensity distribution of the beam

in the MC output plane (i.e., the sample plane) for a
disabled quantum gate (no quadrupole fields) to gauge
the quality of the beam. It clearly is a nice, nano-
meter-sized beam, albeit with slight intensity differ-
ences of the two lobes, steming from inelastic scat-
tering in the HPP layer. The shape and size are in
excellent agreement with the numerical simulations of
the same setup, shown in Fig. 4c.

By rotating the MC coordinate system with respect
to the HPP axis, arbitrary |Iφ⟩ states can be prepared.
In total, we performed four experiments. In our first
experiment, we prepared a qubit

|I90°⟩ = 1√
2

(|R⟩ + i |L⟩) = |+⟩ (11)

by rotating the x axis of the MC by φ/2 = 45° with
respect to the HPP edge. According to Eq. 5 this is
a HG1,0 mode rotated by π/4. In the other experi-
ments, we prepared the qubits

|I130°⟩ = 1√
2

(
|R⟩ + ei·130° |L⟩

)
|I0°⟩ = |H⟩

|I180°⟩ = |V ⟩

(12)

The last two acted as control experiments for the triv-
ial mappings.

3.2 Qubit manipulation
Subsequently, the qubit was sent through the quan-
tum gate realized by the MC. As stated above, the
MC was realized by two QPs that were part of the
(otherwise disabled) probe Cs corrector. This set of
QPs can perform arbitrary unitary transformations
on the Bloch sphere by combining two types of oper-
ations [30]: (i) a rotation around the Bloch sphere’s
Z axis can be performed by a rotation of the QPs’
coordinate system w.r.t. the input plane, i.e., chang-
ing the field axes by changing the current through
the magnetic coils3; (ii) a rotation around the Bloch
sphere’s Y axis can be performed by a relative phase
shift between the |H⟩ and |V ⟩ components (in the
QPs’ frame of reference) as one of them goes through
a focal point (see ref. 3).

Given the geometry of the microscope, the required
focal lengths can be calculated as detailed in [30].
Moreover, the relationship between electric current
and focal length can be calibrated for each lens by
focusing in specific, fixed planes (e.g., focusing the
beam in the sample plane, sharply imaging the vari-
ous aperture planes, etc.). Once the calibration curves
are known, the required focal lengths can easily be
set. Note that both the calibration curves and the
required focal lengths will vary from instrument to
instrument due to slight variations and tolerances in
manufacturing.

In our case, we set up the MC such that it acted as
an RX gate. For the four experiments, this resulted
in the mappings

|I90°⟩ 7→ |O90°⟩ = |R⟩
|I130°⟩ 7→ |O130°⟩ = ei·20° (0.9397 |R⟩ − 0.3420 |L⟩)

|I0°⟩ 7→ |O0°⟩ = e−iπ/4 |H⟩
|I180°⟩ 7→ |O180°⟩ = eiπ/4 |V ⟩

(13)
as given in Eq. 9.

3.3 Qubit readout
Subsequently, the beam was sent through the objec-
tive lens and the projection system and was finally
observed on a CCD.

Fig. 5 shows a comparison between the experimen-
tal beam in the sample plane and the corresponding
simulation of propagation through the column. OAM
analysis of the output qubits was done numerically4.
The results are shown as histogram in Fig. 5. It is
clearly visible that (apart from some impurities due
to HPP imperfections [32, 41]) the output qubit in
the φ/2 = 45° case consists essentially of the m = 1

3This requires pairs of QPs, though
4OAM sorters have been tested successfully elsewhere [36–

39]. Since the implementation of a sorter in the Jülich PICO
microscope is currently not feasible we chose a numerical ap-
proach (see appendix A).
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Figure 4: (a) TEM image of the Hilbert phase-plate (HPP) with the red circle marking the actual illuminated area. (b) Ex-
perimental image of the (unrotated) qubit with inactive quantum gate. (c) Numerical simulation corresponding to (b).

component (corresponding to |R⟩), whereas in the
φ/2 = 65° case, the output qubit features roughly
(−0.342)2 ≈ 0.117 relative intensity of the m = −1
component (corresponding to |L⟩) over the impurity
background.

Likewise, Fig. 6 shows the experimental and sim-
ulated data for the control experiments with |I0°⟩ =
|H⟩ and |I180°⟩ = |V ⟩. It is clearly evident that in
both cases, the typical two-lobed structure as well as
the orientation is preserved upon passage through the
quantum gate, as expected. As any linear operator on
a 2D Hilbert space is uniquely defined by its action on
two linearly independent (basis) vectors, these results
further support the conclusion that the MC acts as a
general

√
NOT gate.

4 Discussion and Conclusion
High-end TEMs — instruments of utmost stability,
spatial and energy resolution, sophisticated lens sys-
tems, ultra sensitive detectors and pulsed electron
sources with repetition rates of the order of MHz —
provide an ideal scenario to extend qubit manipula-
tion from photons, superconducting circuits or ions to
freely floating electrons. This novel platform for the
study of qubits has several genuine features: qubits
can be tailored from nm to µm size; in free space,
they are topologically protected [44, 45]; there is no
need for cryogenic temperatures; they reveal high de-
coherence times and essentially no relaxation because
the energies of the basis states are identical. Recent
work on entanglement in electron microscopy [46–52]
could provide opportunities for 2-qubit gates in non-
separable systems.

It is not very likely that free electron qubits will
enter the race to quantum computing applications,
although deceleration in electrostatic fields could well
increase their presently short lifetimes. Their most
attractive aspect is perhaps a broad range of tunable
perturbations of the qubits via controlled interaction
with electromagnetic radiation or matter on their way
down the microscope column, in order to study the
robustness of quantum gate operations, their fidelity

and reliability [28].
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A Numerical Calculation of the OAM
spectrum
As the OAM operator L̂z commutes with the (spheri-
cally symmetric) free-space Hamiltonian, it is possible
to find a simultaneous eigenbasis {|m⟩} for the two op-
erators. As L̂z |m⟩ = h̄m |m⟩, the real-space angular
dependence of those states is given by

⟨r⃗|m⟩ = c(r, z)eimϕ.

With this, all free-space wavefunctions |ψ⟩ can be
written in real-space representation as

⟨r⃗|ψ⟩ =
∑
m

cm(r, z)eimϕ

and the wave-function’s OAM spectrum I(m) is given
by

I(m) =
∫∫

|cm(r, z)|2rdrdz. (14)

Theoretically, these integrals necessarily converge for
all m for any normalized ψ. In practice, the integrals
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Figure 5: (a) Simulated input qubit for φ/2 = 45°. (b) Sim-
ulated output qubit after sending the input qubit (a) through
the gate. (c) Intensity distribution of (b). (d) Experimen-
tally observed intensity corresponding to (c). (e–h) Analo-
gous data for φ/2 = 65°. (i) Intensity histogram for different
OAM eigenvalues for the two output qubits. The scale bars
in (a, e) denote 500 nm, all other scale bars denote 2 nm.
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Figure 6: (a) Simulation of the input qubit corresponding to
an |H⟩ state produced by the HPP. (b) Output qubit cor-
responding to (a). (c) Intensity distribution of the output
qubit. (d) Experimental intensity distribution. (e–h) Analo-
gous data for an input |V ⟩ state. (i) Histogram of the relative
intensities of the different vortex components for the output
qubits. The scale bars in (a, e) denote 500 nm, all other
scale bars denote 2 nm.
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are typically evaluated within a bounded region where
the wavefunction is non-negligible (and above noise
level).

To actually calculate the OAM spectrum, we first
transformed the wavefunction to a polar representa-
tion (r, ϕ, z), using bilinear interpolation where nec-
essary. Then, we Fourier-transformed with respect to
the ϕ component [53], resulting in

ψ̃(r, l, z) = 1
2π

∫ 2π

0
ψ(r, ϕ, z)e−ilϕdϕ

= 1
2π

∑
m

cm(r, z)
∫ 2π

0
e−ilϕeimϕdϕ

= 1
2π

∑
m

cm(r, z) · 2πδl,m

= cl(r, z).

Finally, the spectrum is given simply by the norm

Im =
∫∫

|ψ̃(r,m, z)|2rdrdz.
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Pollach, S. Löffler, A. Steiger-Thirsfeld, K. Y.
Bliokh, and F. Nori. Imaging the dynamics of

Accepted in Quantum 2023-06-29, click title to verify. Published under CC-BY 4.0. 7

https://doi.org/10.1103/physrevapplied.11.044072
https://doi.org/10.1103/PhysRevLett.114.254801
https://doi.org/10.1103/PhysRevLett.114.254801
https://doi.org/10.1016/j.ultramic.2017.03.019
https://doi.org/10.1002/adma.201204206
https://doi.org/10.1002/lpor.200810007
https://doi.org/10.1002/lpor.200810007
https://doi.org/10.1103/PhysRevLett.119.180510
https://doi.org/10.1103/PhysRevLett.119.180510
https://doi.org/10.1103/PhysRevB.91.094112
https://doi.org/10.1103/PhysRevB.91.094112
https://doi.org/10.1038/s41467-018-05021-x
https://doi.org/10.1038/nature14463
https://doi.org/10.1038/nature14463
https://doi.org/10.1126/science.aae0003
https://doi.org/10.1126/science.aae0003
https://doi.org/10.1103/PhysRevLett.123.264803
https://doi.org/10.1103/PhysRevLett.123.264803
https://doi.org/10.1103/PhysRevLett.99.190404
https://doi.org/10.1103/PhysRevLett.99.190404
https://doi.org/10.1103/PhysRevLett.107.174802
https://doi.org/10.1103/PhysRevLett.107.174802
https://doi.org/10.1038/nature09366
https://doi.org/10.1038/nature09366
https://doi.org/10.1038/nature08904
https://doi.org/10.1038/nature08904
https://doi.org/10.1103/PhysRevX.2.041011
https://doi.org/10.1103/PhysRevX.2.041011


free-electron Landau states. Nat. Commun., 5:
4586, August 2014. DOI: 10.1038/ncomms5586.

[18] G. Guzzinati, P. Schattschneider, K. Y. Bliokh,
F. Nori, and J. Verbeeck. Observation of the Lar-
mor and Gouy Rotations with Electron Vortex
Beams. Phys. Rev. Lett., 110:093601, February
2013. DOI: 10.1103/PhysRevLett.110.093601.

[19] T. Schachinger, S. Löffler, M. Stöger-Pollach,
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[34] L. Clark, A. Béché, G. Guzzinati, and J. Ver-
beeck. Quantitative measurement of orbital an-
gular momentum in electron microscopy. Phys-
ical Review A - Atomic, Molecular, and Optical
Physics, 89(5):053818, 2014. DOI: 10.1103/Phys-
RevA.89.053818.

[35] G. Guzzinati, L. Clark, A. Béché, and J. Ver-
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