
QUIC(k) Enough in the Long Run? Sustained
Throughput Performance of QUIC Implementations

Michael König∗, Oliver P. Waldhorst‡, Martina Zitterbart∗
∗Institute of Telematics, Karlsruhe Institute of Technology, {m.koenig, martina.zitterbart}@kit.edu

‡Institute of Applied Research, Karlsruhe University of Applied Sciences, oliver.waldhorst@h-ka.de

Abstract—QUIC aims to become a general-purpose transport
protocol, and numerous implementations of the QUIC proto-
col already exist. Earlier evaluations often examined QUIC
in conjunction with HTTP/3.0 or focused on latency metrics.
The measurement studies in this paper focus on actual QUIC
implementations with respect to their ability to achieve high
sustained throughput in network scenarios with data rates of
10 Gbit/s. We compare six popular QUIC implementations devel-
oped in different programming languages with TCP. Our findings
show significant performance improvements in several QUIC
implementations compared to prior evaluations. However, it is
not a homogeneous picture, as current QUIC implementations
often behave quite differently. We observed that in environments
with low RTTs or an increased number of packet losses, most
of the surveyed QUIC implementations struggle unexpectedly
and cannot compete with TCP regarding sustained throughput
performance.

Index Terms—QUIC, Performance Analysis, Benchmark,
Throughput, Transport Protocol, TCP, UDP

I. INTRODUCTION

QUIC is a new transport protocol implemented on top
of UDP. Since its standardization by the IETF in May
2021 [1], QUIC is becoming increasingly popular. According
to [2][3], a significant proportion of Internet traffic is already
transferred using QUIC today. Furthermore, based on the
HTTParchive dataset1, more than 18.7 % of crawled websites
already support QUIC and HTTP/3.0. In 2012, Google ini-
tiated QUIC as a more effective alternative to the conven-
tional TCP+TLS+HTTP web stacks. Nevertheless, according
to its RFC [1], QUIC aims to be a general-purpose transport
protocol. Previous works show that QUIC often outperforms
TCP+TLS regarding latency, particularly for small transfers
typical for common web traffic, profiting from its improved
handshake (i.e., integrated TLS negotiation and 0-RTT hand-
shake). However, less research exists evaluating QUIC’s per-
formance regarding sustained throughput performance within
environments supporting high bandwidth links (i.e., 10 Gbit/s)
and low round trip times (RTTs) that are prevalent in data
center networks or prospectively facilitated by the usage of
content delivery networks (CDNs). Furthermore, to our knowl-
edge, no evaluations exist about the impact of packet loss,
corruption, and reordering upon the throughput performance
of current QUIC implementations.

This work was supported by the bwNET2020+ project which is funded by
the Ministry of Science, Research and the Arts Baden-Württemberg (MWK).
The authors alone are responsible for the content of this paper.

1https://httparchive.org/reports/state-of-the-web#h3

The contribution of this work is twofold:

• First, we survey the current performances of popular
QUIC implementations regarding sustained throughput
in various scenarios. We show that the implementations
have evolved and improved significantly, considering
former evaluations. Compared to TCP, however, the
performance of the tested QUIC implementations is still
significantly lower.

• Second, we explore possible causes for performance
bottlenecks and highlight actions where today’s QUIC
implementation could be improved.

The remainder of this paper is structured as follows. Sec-
tion II discusses existing performance evaluations of QUIC
implementations. We present our methodology and the ratio-
nale behind selecting the examined QUIC implementations
in Section III. Our benchmark findings are presented and
interpreted in Section IV. Furthermore, in Section V, we
summarize our evaluation results and previous findings and
discuss possible steps to improve current QUIC implementa-
tions. Section VI concludes the paper.

II. RELATED WORK

Transport layer performance has experienced much
progress. For example, nowadays, TCP can reliably achieve
throughput rates of up to 25 Gbit/s for a single flow when
slightly tuning Kernel parameters, as demonstrated by the
authors of [4]. Furthermore, using jumbo frames (i.e., MTU
of 9000 Byte), the same authors report throughput rates of up
to 40 Gbit/s for a single connection.

QUIC should also benefit from progress in transport layer
performance, as it aims to be a general-purpose transport
protocol. A significant amount of QUIC performance studies
focus either on response time latencies [5] [6], on page load
times [7], or the performance numbers represent application
protocol-specific behavior. Thus, no clear conclusion can be
drawn from these works about the throughput performance of
the pure QUIC protocol itself.

Furthermore, [8][9] conducted throughput measurements
with small bottleneck bandwidth rates (i.e., 100 Mbit/s) or
primarily shortly-lived flows, as only small amount of data
(i.e., 10 MB), were transferred.

One of the few performance studies that examine the
throughput achieved in high bandwidth scenarios is [10].
The authors compared four QUIC implementations within a
10 Gbit/s network environment. They present a CPU usage



Fig. 1: Testbed

breakdown for the sender and receiver side, and found that
packet I/O, crypto, ACK processing, and packet reordering
represent the dominant CPU resource-consuming code units.
Furthermore, the authors reported the impact of packet losses
and packet reordering on throughput performance and demon-
strated that most QUIC implementations react highly sensi-
tively to packet reorder events. However, Yang et al. conducted
their measurements in 2020. Thus, it is an open question if the
QUIC implementations have evolved performance-wise since
then. We will answer this question for picoquic and mvfst.

In [11], the authors compare the throughput performance of
four QUIC implementations and TCP against their improved
QUIC implementation using DPDK. We evaluated two of
their four tested QUIC implementations, namely picoquic and
msquic, as well.

Thus, this paper presents a comprehensive performance
evaluation regarding the sustained throughput of recent QUIC
implementations in high bandwidth environments.

III. METHODOLOGY

In the following, we present the methodology we used for
our benchmarks, the rationale behind selecting the examined
QUIC implementations, and depict our evaluation setup.

A. QUIC Implementations under Test

From the many existing QUIC implementations available2,
we focused on the performance of popular (i.e., GitHub stars
and activity) QUIC implementations that are executable on
Linux, and whose source code is publicly available for fur-
ther investigation. In the following, we compare Microsoft’s
msquic, LiteSpeed’s lsquic, picoquic (all three written in C),
Facebook’s mvfst (written in C++), quinn, and Amazon’s s2n-
quic (both written in Rust). As they are written in different
low-level programming languages, we prioritized QUIC im-
plementations that provide traffic generators using their QUIC
library (often referred to as perf-clients by QUIC develop-
ers). This avoids the necessity to write traffic generators for
each QUIC implementation in multiple different programming
languages on our own. We presume that the authors of the
QUIC implementation know their library best, thus utilizing
their libraries within their traffic generators appropriately and,
therefore, being indicative of the general performance of their
QUIC library. All QUIC implementations were compiled in
production mode (i.e., compiler optimizations enabled).

As a comparison baseline, we use the two traffic generators
iperf3 and netperf to generate TCP traffic. To avoid biases due
to the usage of different congestion control algorithms (CCA),

2https://github.com/quicwg/base-drafts/wiki/Implementations

TABLE I: Varied Link Perturbations Across Scenarios

Scenario A Scenario B Scenario C Scenario D

Unmodified RTT Loss Reordering
– 0. . . 500 ms 0. . . 2.5 % 0. . . 2.5 %

we opted to use Cubic [12] for all QUIC implementations as
well as for both TCP traffic generators since other CCAs, such
as BBR [13], are not supported in all QUIC implementations.

Since we are comparing raw TCP without TLS with QUIC,
which uses encryption by default, additional computational
costs would have to be imputed to the TCP throughput results.
Consequently, we conducted additional QUIC experiments
with encryption disabled where possible.

B. Measurements Setup

The testbed setup we used in our tests is depicted in Fig-
ure 1. It consists of four devices: A sender, a hardware switch,
a software switch, and a receiver. 10 Gbit/s links interconnect
all systems. The software switch uses NetEm on the onward
path to the receiver to introduce artificial delays or packet
loss or to limit the bottleneck bandwidth. Table I depicts the
settings for the different scenarios A–D we emulate with
NetEm. On average, the inherent round trip time between
the sender and receiver was 0.43 ms. The sender, receiver,
and software switch use identically configured hardware and
software (i.e., Intel Xeon W-2145 with 16 logical cores and
CPU frequency scaling turned off, 128 GiB of DDR4 RAM,
Intel X550-T2 network cards, running Ubuntu 22.04.1 LTS
with Kernel 5.15.0-56-generic) and are configured according
to recommendations in [4]. We used CPUnetLOG with a
sample resolution of 100 ms to record throughput rates and
CPU utilization. If not stated otherwise, hardware offloading
(i.e., hand over up to 64 KByte data in super-sized packets
from the application to Kernel in one go) was enabled, and
a value of 1500 Byte was used for the MTU for all UDP,
TCP, and QUIC experiments. To obtain average values, we
performed each experiment 10 times, and error bars represent
the standard deviation of these runs.

IV. PERFORMANCE RESULTS

In this section, we present the performance results of six
QUIC implementations and, as a comparison, pure UDP and
TCP performance results for different network scenarios.

A. Throughput and Cause Analysis

To evaluate the average throughput and possible causes for
throughput limitations, a single connection sends data from
the sender to the receiver in scenario A. In this scenario no
perturbations are emulated (i.e., no artificial delay, loss).

1) Maximum Average Throughput: Figure 2a illustrates the
different senders’ throughput. The results show that a single
UDP connection driven by netperf can achieve a throughput
of around 9.74 Gbit/s without exhibiting packet loss, thereby
saturating the link bandwidth of 10 Gbit/s almost completely.



(a) Maximum Average Throughput (b) Impact of En-/Decryption

Fig. 2: Throughput Comparison (Scenario A)

Thus, the data path for UDP through the Linux Kernel theoret-
ically supports these high data rates and does not already limit
QUIC implementations to values significantly below 10 Gbit/s
of throughput.

Furthermore, as expected, TCP achieves average throughput
rates of about 9.49 Gbit/s in the case of iperf3 and 9.54 Gbit/s
in the case of netperf. This is expected and consistent with
results from previous studies with higher link bandwidths [4].

The results of all QUIC implementations contrast this. None
of the tested six QUIC implementations can fully saturate
the available link bandwidths. Quinn is the fastest of the
tested evaluations and manages to achieve, on average, up
to 8.22 Gbit/s of throughput. It is followed by msquic with
an average throughput rate of up to 5.81 Gbit/s. Furthermore,
the remaining implementations all achieve throughput rates of
less than 4.06 Gbit/s (e.g., msquic only achieves 2.4 Gbit/s).

However, compared to previous results reported in 2020
by [10], mvfst as well as picoquic, significantly evolved
regarding throughput performance. Back then, they attained
325 Mbit/s for mvfst and 489 Mbit/s for picoquic in through-
put. Thus, an improvement for mvfst by factor 7.38 and for
picoquic by 5.48x.

Despite the significant throughput improvements over time,
the results show that the examined QUIC implementations
struggle to date compared to TCP for scenarios with high
bandwidth links and low RTTs.

2) Cryptography: To measure the overhead associated with
QUIC’s inherently used encryption, we compare msquic’s
and quinn’s throughput performance for scenario A with
and without encryption enabled. msquic and quinn have the
only traffic generators we evaluated that support disabling
encryption. Figure 2b shows significant performance gains
when disabling cryptographic. The average throughput sig-
nificantly improves by 22 % for msquic and by 7.3 % for
quinn. However, even without encryption enabled, both QUIC
implementations cannot achieve the throughput rates of TCP.

3) CPU Limitations and Scheduling: To correlate the
throughput performance of the six QUIC and two TCP im-
plementations, we recorded their per-core CPU utilization for
transfers in scenario A. While the different average CPU
utilization is relatively low and similar (i.e., between 5.5 %
and 9 %), the peak utilization value of the hottest core (i.e., the
CPU core that is used most actively) of lsquic, msquic, mvfst,
and quinn of 100 % hint at possible CPU resource contention.

(a) RTTs (Scenario B) (b) Random Loss (Scenario C)

Fig. 3: Average Throughput for Different Link Characteristics

For example, quinn’s throughput performance seems limited
by single-core performance, as it constantly uses primarily
one core to 100 % for the whole experiment duration.

Furthermore, scheduling between the CPU cores can af-
fect throughput performance negatively. For example, if no
scheduling between the CPU cores occurs within the du-
ration of an experiment run, lsquic achieves a throughput
of 4.15 Gbit/s on average. However, in case the execution
of the sender application gets scheduled to another core, a
degradation in performance is observable (i.e., 3.7 Gbit/s).

B. Impact of Different Link Characteristics

To investigate the impact of different link characteristics
on the throughput performance of the QUIC implementations,
we used scenario B–D. We we emulate different delays and
packet loss, corruption, and reordering rates by configuring
the software switch with values listed in Table I.

1) Round Trip Time (RTT): Figure 3a depicts the imple-
mentations’ average throughput for RTT values between 0 ms
and 30 ms (Scenario B). The results show that increasing RTT
values negatively impact the throughput performance of all
implementations.

TCP achieves higher throughput rates than the QUIC im-
plementations for small RTTs (i.e., below 20 ms). However,
with increasing RTT values above 20 ms, four of the QUIC
implementations (i.e., msquic, mvfst, and picoquic) outperform
TCP. Above 25 ms of RTT with s2n-quic, another QUIC im-
plementation outperforms TCP. This trend generally persists
for even larger RTT values.

Henceforth, for very low RTT environments such as within
data center networks or prospectively facilitated by the us-
age of CDNs, TCP drastically outperforms current QUIC
implementations regarding sustained throughput performance.
In contrast, above RTTs of 20 ms multiple of the QUIC
implementations do fair significantly better.

2) Packet Loss, Corruption and Reordering: In our packet
loss experiments, we introduced artificial packet loss on the
link between the software switch and receiver (Scenario C).
We evaluate the throughput performance when random or
burst packet losses occur.

As depicted in Figure 3b, the average throughput of all
implementations degrades with increased loss rates, likely
caused by Cubic’s inefficiencies when challenged with non-
congestion-based losses as it is misinterpreting these losses



falsely as an indication of congestion, thus reducing its con-
gestion window unnecessarily. However, most QUIC imple-
mentations are more severely impacted by this than both TCP
implementations. In particular, quinn, s2n-quic, and msquic
already display a drastic decline in throughput performance
when random losses occur with a low probability of 0.05 %.
Moreover, picoquic exhibits a strange behavior as it increases
its throughput rate above a random loss rate of 0.05 % and
continues to do so for larger random packet loss rates.

In additional experiments with burst instead of random loss
rates, and for scenarios with introduced packet corruption by
applying single-bit flips, all tested implementations display
similar behavior to our random loss experiment.

Moreover, the average throughput performances in the
presence of out-of-order packets (Scenario D) mirror the pre-
viously attained results when artificially introducing random
packet losses on the same link. Except for picoquic and
msquic, all QUIC implementations significantly degrade in
average throughput performance. These results reaffirm the
findings of [10] that many QUIC implementations falsely treat
out-of-order packets as lost, even though they arrive before the
packet loss timeout expires.

V. SUMMARY & DISCUSSION

The results draw an inhomogeneous picture of QUIC im-
plementations’ throughput performances. On the one hand, the
performance of two QUIC implementations, namely picoquic
and mvfst, has significantly improved compared to previous
works. On the other hand, traffic perturbations such as random
packet losses, packet corruption, or packet reordering nega-
tively impact the performances of the QUIC implementations
much more significantly than TCP. In particular, a packet
loss rate of 0.05 % already severely degrades most of the
evaluated QUIC implementations. Moreover, regardless of the
scenario, but especially in low RTT environments, typical
for data centers or when using CDNs, none of the tested
QUIC implementations managed to be on par with TCP
throughput-wise. The fastest QUIC implementation we tested,
quinn, achieves an average throughput of 8.22 Gbit/s with
QUIC’s inherent encryption enabled and without encryption
8.82 Gbit/s. In contrast, TCP achieves an average throughput
of 9.54 Gbit/s (i.e., with netperf ). Thus, it is, in principle,
possible to attain high throughput rates with QUIC. However,
the other QUIC implementations have significant headroom
to improve.

Possible causes for QUIC throughput limitations are mani-
fold. First, the inherent encryption of QUIC traffic represents
significant performance overhead. Disabling encryption leads
to an increase in throughput of about 22 % in the case
of msquic and 7.3 % in the case of quinn. Furthermore,
multiple tested implementations execute predominantly in a
single-threaded way, only utilizing one of the available CPU
cores, thus being limited by single-core CPU performance.
Moreover, scheduling of the sender application between CPU
cores can adversely affect performance.

Since the performance of QUIC implementations is lim-
ited by multiple underlying factors, several optimization ap-
proaches would be feasible. End-users employing these QUIC
libraries should enable CPU core pinning for their applications
to avoid scheduling events between CPU cores that might lead
to degraded performance results. Authors of QUIC libraries
could try to overcome the single-core performance limita-
tions by employing a multi-thread programming paradigm,
thus facilitating the workload distribution across multiple
CPU cores. Furthermore, kernel-bypass techniques such as
picoquic-dpdk [11] employs seem promising to avoid overhead
associated with copying data between user and kernel space.
Finally, offloading QUIC’s inherent crypto routines and other
performance-critical tasks, such as handling packet reordering,
to hardware accelerators, similar to [10], could be effective.

VI. CONCLUSION

In this paper, we presented a throughput performance
evaluation of six QUIC implementations and UDP and TCP
for different network scenarios. Although we outline that
the evaluated QUIC implementations’ performances have im-
proved considerably compared to older evaluation studies,
in many scenarios, particularly in scenarios with low RTT
or on links that exhibit packet loss, packet corruption, or
reordering, TCP outperforms current QUIC implementations
regarding sustained throughput performance. The differences
between QUIC and TCP are partly caused by QUIC’s inherent
cryptography, but primarily by how CPU resources are used.
Overhead by context switches between user and kernel space
and the lack of multicore support, while simultaneously being
affected by scheduling between CPU cores, severely limits the
tested QUIC implementations’ throughput performance.

REFERENCES

[1] “QUIC: A UDP-Based Multiplexed and Secure Transport,” RFC 9000.
[2] J. Rüth et al., “A first look at quic in the wild,” in PAM, 2018.
[3] J. Zirngibl et al., “It’s over 9000: analyzing early QUIC deployments

with the standardization on the horizon,” in ACM IMC, 2021.
[4] M. Hock et al., “TCP at 100 Gbit/s – Tuning, Limitations, Congestion

Control,” in IEEE LCN, 2019.
[5] J. Rüth and othersr, “Perceiving QUIC: Do users notice or even care?”

in CoNEXT, 2019.
[6] D. Saif et al., “An early benchmark of quality of experience between

HTTP/2 and HTTP/3 using lighthouse,” in IEEE ICC, 2021.
[7] S. Cook and all, “QUIC: Better for what and for whom?” in IEEE ICC,

2017.
[8] T. Shreedhar et al., “Evaluating QUIC Performance Over Web, Cloud

Storage, and Video Workloads,” IEEE ToNaSM, 2021.
[9] A. Yu et al., “Dissecting Performance of Production QUIC,” in Web

Conference 2021, 2021.
[10] X. Yang et al., “Making QUIC Quicker With NIC Offload,” in Workshop

on the Evolution, Performance, and Interoperability of QUIC, 2020.
[11] N. Tyunyayev et al., “A high-speed QUIC implementation,” in 3rd

Intern. CoNEXT Student Workshop, 2022.
[12] S. Ha et al., “CUBIC: a new TCP-friendly high-speed TCP variant,”

ACM SIGOPS, 2008.
[13] N. Cardwell et al., “Bbr: Congestion-based congestion control: Mea-

suring bottleneck bandwidth and round-trip propagation time,” Queue,
vol. 14, no. 5, 2016.


