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Abstract

Accurate cloud cover assessment is crucial in weather forecasting, climate science, as

well as agricultural and urban planning. Weather forecasting and climate science focus

on cloud dynamics and analysis, while agricultural and urban planning are interested

in cloud-free observations, requiring cloud detection beforehand. However, obtaining

reliable cloud cover information in areas without local weather stations is a challenging

task, due to limited data availability and spatial variability. This thesis evaluates the

effectiveness of satellite sensing in complementing local weather station measurements to

provide cloud cover assessments in data-scarce regions. Leveraging rapid machine learning

advancements, a transfer learning based cloud coverage assessment model is developed

for image classification, using satellite images as a data source. The methodology of this

thesis involves gathering data from local weather stations and satellites observations from

the Sentinel-2 mission, for which a dedicated microservice-architecture based system

is built. Data is collected for selected regions in the U.S.A. that offer a high density of

local weather stations, thus providing multiple examples of similar cloud conditions for

training. Performance evaluation is conducted using a separate dataset for testing that

the model has not previously trained with. Evaluation metrics, including loss, F1-score,

and confusion matrices, assess the classification task for ranked classes of various cloud

coverage ranges. Using local measurements for training yields an F1-score of around

0.5 to 0.6, with slight deviations of one cloud cover class rank for the majority of cases.

Considering slight deviations, results in accuracies ranging from 93.5 % to 99.1 %. Using

manual labeling of station related satellite observations for training improves the F1-score

to around 0.75. Considering slight deviations, results in accuracies ranging from 98.4 %

to 100 %. The findings demonstrate that satellite sensing effectively complements local

weather station measurements, enabling accurate assessments of cloud coverage in areas

without local weather stations. This research has practical implications, allowing for

cloud cover assessment in regions without weather stations, extending monitoring of

local condition and analysis of cloud dynamics. Improved accuracy in local cloud cover

detection supports the forecasting of precipitation patterns and assists in early detection

of extreme weather events, which is crucial in the context of climate change. Future

research includes expanding to regions with fewer local weather stations and investigating

additional data sources for comprehensive cloud information. In conclusion, this thesis

shows the effectiveness of cloud cover assessment using satellite sensing alongside local

measurements in data-scarce regions, providing valuable insights for research, decision-

making, and improving the understanding of local cloud cover conditions.
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Zusammenfassung

Eine genaue Bewertung der Wolkenbedeckung ist für die Wettervorhersage, die Klima-

wissenschaft sowie die Agrar- und Stadtplanung von entscheidender Bedeutung. Die

Wettervorhersage und die Klimawissenschaft konzentrieren sich auf die Wolkendynamik

und Analyse, während die Landwirtschafts- und Stadtplanung an wolkenfreien Beobach-

tungen interessiert ist, die eine vorherige Wolkenerkennung erfordern. Die Beschaffung

zuverlässiger Informationen über die Bewölkung in Gebieten ohne lokale Wetterstationen

ist jedoch eine schwierige Aufgabe, aufgrund von begrenzter Datenverfügbarkeit und

räumlicher Variabilität. In dieser Arbeit wird die Effektivität der Satellitenerkundung als

Ergänzung zu den Messungen lokaler Wetterstationen bewertet, um die Bewölkung in

Regionen mit geringer Datenmenge zu beurteilen. Unter Nutzung der rasanten Fortschritte

im Bereich des maschinellen Lernens wird ein auf Transfer Learning basierendes Modell

zur Bewertung derWolkenbedeckung entwickelt, das Satellitenbilder als Datenquelle nutzt.

Die Methodik dieser Arbeit umfasst die Sammlung von Daten von lokalen Wetterstatio-

nen und Satellitenbeobachtungen der Sentinel-2-Mission, für die ein spezielles, auf einer

Microservice-Architektur basierendes System entwickelt ist. Die Daten werden für ausge-

wählte Regionen in den USA gesammelt, die eine hohe Dichte an lokalen Wetterstationen

aufweisen und somit mehrere Beispiele für ähnliche Wolkenbedingungen für das Training

liefern. Zur Leistungsbewertung wird ein separater Datensatz zum Testen verwendet, mit

dem das Modell zuvor nicht trainiert wurde. Bewertungsmetriken, einschließlich Verlust,

F1-Score und Konfusionsmatrizen, bewerten die Klassifizierung für geordnete Klassen

verschiedener Stärke der Wolkenbedeckung. Die Verwendung lokaler Messungen für

das Training führt zu einem F1-Score von etwa 0,5 bis 0,6, wobei in den meisten Fällen

geringfügige Abweichungen von einem Rang der Wolkenbedeckungsklassen auftreten.

Unter Berücksichtigung dieser geringen Abweichungen ergibt sich eine Genauigkeit von

93,5 % bis 99,1 %. Durch die manuelle Kennzeichnung von auf Wetterstationen bezogenen

Satellitenbeobachtungen für das Training verbessert sich der F1-Score auf etwa 0,75. Unter

Berücksichtigung geringer Abweichungen ergibt sich eine Genauigkeit von 98,4 % bis 100 %.

Die Ergebnisse zeigen, dass Satellitenbeobachtungen die Messungen lokaler Wetterstatio-

nen wirksam ergänzen und genaue Bewertungen der Wolkenbedeckung in Gebieten ohne

lokale Wetterstationen ermöglichen. Diese Forschungsarbeit hat praktische Auswirkungen,

denn sie ermöglicht die Bewertung der Bewölkung in Regionen ohne Wetterstationen

und erweitert die Überwachung der lokalen Bedingungen und die Analyse der Wolken-

dynamik. Die verbesserte Genauigkeit bei der Erkennung der lokalen Wolkenbedeckung

unterstützt die Vorhersage von Niederschlagsmustern und hilft bei der frühzeitigen Erken-

nung von extremen Wetterereignissen, was im Zusammenhang mit dem Klimawandel von

entscheidender Bedeutung ist. Zukünftige Forschungsarbeiten umfassen die Ausweitung

auf Regionen mit weniger lokalen Wetterstationen und die Untersuchung zusätzlicher

Datenquellen für umfassende Wolkeninformationen. Zusammenfassend zeigt diese Arbeit

iii



die Effektivität der Bewertung derWolkenbedeckung mithilfe von Satellitensensorik neben

lokalen Messungen in datenarmen Regionen und liefert wertvolle Erkenntnisse für die

Forschung, die Entscheidungsfindung und die Verbesserung des Verständnisses der lokalen

Bewölkungsverhältnisse.
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1. Introduction

The importance of satellite sensing has increased significantly in research, as it captures

vast areas with consistency, allowing for more comprehensive, global analysis of earth

[Dub+21]. There are many fields of research, where satellite sensing can be applied,

including oceanography [Fu+19], monitoring of climate and climate change [Ari+21;

Mit23], agricultural monitoring [Atz13], urban planning [KMB16], and weather forecasting

[Mit23]. This can be partially attributed to the open data policies from NASA’s Landsat

satellite program [NAS] started in 2008 and ESA’s Copernicus program [ESAd] started in

2014 that built on the existing Global Monitoring for Environment and Security (GMES)

program. Consequently, researchers now have access to a vast amount of high-quality data

that has facilitated significant advancements in remote sensing [Zhu+19a]. The climate’s

chaotic nature makes simulation difficult, since small changes in initial conditions lead

to vastly different outcomes [Ari+21]. These initial conditions are one of various factors

of influence that affect the accuracy of climate models. Clouds in satellite imagery pose

challenges in applications of remote sensing like urban planning, where a clear image

of earth’s surface and buildings is essential for accurate image analysis. Cloud masking

algorithms generate masks that identify cloud and sometimes cloud shadow pixels, which

are useful for distinguishing these areas from other features in satellite imagery. Aside

from being undesired in ground based remote sensing analysis, clouds are important in the

regulation of earth’s climate and weather [Car+22; Nor+16]. The anthropogenic changes

to earth’s climate induce extreme weather events through a rise in global temperature

that, in turn, increases the atmospheric moisture and thus leads to stronger precipitation

intensities and possibly water related disasters such as flooding [Car+22; ONe+22; Nor+16].

Given the critical nature of climate change, its current impact, and associated risks that are

described in the IPCC report for 2022 [Raw+22; ONe+22], it is essential to predict weather

patterns and natural disasters like extreme weather events, tropical cyclones, wildfires,

and heatwaves with speed and accuracy, while also monitoring long-term changes in cloud

formation. Accurate identification of cloud coverage acts as a building block for further

analysis and prediction in both cases.

The accurate assessment of cloud cover in data-sparse regions without local weather

stations, poses a significant challenge for aforementioned fields, due to limited local data

availability and spatial variability between locations of other weather stations. Satellite

sensing shows potential for filling in missing local cloud coverage information in these

regions, as several approaches for cloud cover detection in satellite images are already

available. There are generally two types of algorithms for cloud cover detection. Single-

image algorithms use only the information presented in a single satellite image to assess the

given cloud coverage [Hol+96; ZW12; Ric04; Mai+17]. Multi-temporal algorithms use time-

series of satellite images to assess the cloud coverage of another satellite image in the same
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1. Introduction

region [Lon+16; Hag+10]. Multi-temporal algorithms provide more accurate cloud cover

detection, while single-image algorithms are less computationally expensive and need

less data to provide results. Machine learning models learn from and complement these

techniques, understanding hidden patterns and relationships, with the goal to produce

cloud cover detection with higher accuracy in less time [Zup; Dom+21; Jep+19; Shi+16;

Wan+22]. Both single-image and multi-temporal techniques commonly generate per

pixel cloud masks for a given image. Although per pixel cloud masks are accurate, the

corresponding algorithms are of high complexity to predict cloud presence per pixel of the

image and can be computationally expensive. This makes these approaches unsuited for

resource-constrained environments, near-real-time applications (like decision-making),

continuous monitoring systems, and application to large datasets in a timely manner.

Accurate cloud cover information for these applications depends on faster models (low-

latency) and does not require classifications on a per pixel level. This highlights a gap in

current research.

This thesis assesses the effectiveness of combining local ground-based measurements

from weather stations on earths surface with satellite measurements over a larger area,

aiming to derive the local cloud coverage conditions of data-sparse regions without local

weather stations. Using local measurements show simplifications in the labeling of satellite

imagery and shows potential for the assessment of cloud classification [Rum+15]. The

approach developed in this thesis focuses on providing accurate but less complex, faster

per-image cloud cover classification capabilities, allowing for efficient on-demand analysis

and continuous monitoring in these regions with Commodity-Off-The-Shelf (COTS) hard-

ware. Furthermore, using ordinal classes for cloud cover assessment provides improves

interpretability of results by humans, a key aspect for informed decision-making. The

model developed in this thesis uses a state-of-the-art deep-learning algorithm as the basis

for transfer learning to handle the task of image classification and leverage knowledge of

other domains. Conforming to an internationally standardized and commonly used format

like METAR, offers potential for adoption by existing systems that rely on local weather

station information, without additional effort [WMO22; Int21]. The satellite imagery is

collected from the Sentinel-2 satellite mission of the Copernicus program [ESAd], whereas

the METARs are gathered from the Iowa State University [IOW]. For each satellite image,

relevant weather stations are selected based on criteria, like the difference in time of

observation between the satellite image and local measurements, that are applied to the

given METARs. If the METAR of a weather station is accepted, a region around its position

is extracted from the raw satellite image, building the basis of the dataset. Images are

systematically created from mathematical operations on spectral information.

While the model developed in this thesis has the potential to complement areas without

local weather-stations for cloud coverage assessment, the applicability for short-term

monitoring tasks, like weather forecasting, directly depends on the revisit frequency of

the available satellite programs. The revisit frequency of the Sentinel-2 satellites together

lies at around 5 days, which may not be enough for applications that need intraday

information. To obtain intraday information, satellite programs with high total revisit

4



frequencies and correspondingly more satellites are required. A satellite program that

offers these conditions is the ICEYE Constellation by ESA [ESAf], currently revisiting

locations on earth twice a day, increasing to twice a day, when all 48 satellites of the

program are in orbit.

Results show that the model is capable of predicting ordinal class-based cloud coverage

without deviating from expected results by more than one class in the majority of cases.

Accurately predicting the exact class proves more difficult, but also shows inaccuracies in

the training data provided by local weather stations. Using manually labeled satellite im-

ages instead of weather station METARs, improves both exact predictions and predictions

with one class deviations immensely. Moreover, the model is able to process many images

in a given time window.

The thesis is structured as follows: chapter 2 breaks down necessary prerequisite knowl-

edge about climate science and machine learning that is necessary for the understanding

of this study. After that, chapter 3 provides information about existing studies relating

to different aspects of this thesis, exploring cloud cover detection in satellite sensing ap-

proaches and applications of local weather station data. chapter 4 dives into the main topic

of this thesis, starting with data collection, followed by information on dataset preparation,

and finalized by the creation process of the machine learning model. In chapter 5, the

machine learning model is evaluated, comparing results, and putting the performance

into perspective. chapter 6 concludes the study by revisiting the initial research objective,

assessing the contribution of this thesis, and introducing areas for future work.
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2. Fundamentals

This chapter explains the fundamental concepts, necessary techniques and methods for the

following chapters regarding machine learning and climate science. The aim is to give an

introduction to the different topics that provide essential knowledge for the comprehension

of decisions taken to develop the machine learning model of this thesis. This chapter is

structured to start with the concepts associated with machine learning and is followed

by the theory on climate science. Each section is structured in a way that first provides a

brief overview on the topic and is then followed by explanations of important concepts in

a way that successively builds up on previous concepts.

2.1. Climate Science

Climate science covers multiple disciplines that focus on the understanding of Earth’s

climate. This includes meteorology, oceanography, geology, ecology and atmospheric

science. The climate system consists of the atmosphere (gases, clouds, and aerosols), the

hydrosphere (lakes, rivers, ocean), the cryosphere (snow, glaciers, ice sheets, ice on sea),

the biosphere (living organisms), and the lithosphere (land surface). All of these partial

systems interact with each other, forming the climate system [Bos16]. Weather reflects

short-term fluctuations of the climate system, which are characterized by conditions like

temperature, humidity, wind, precipitation, and clouds. Climate, on the other hand, refers

to long-term changes to the climate system over a period of multiple years. The climate

varies naturally over different timescales, which can take shape in short-term events like

El Niño and La Niña, where trade winds blowing to the east or west influence the flow

of warm water through the Pacific Ocean [Bos16; ONb]. These irregular events usually

last between 9 and 12 months and typically occur every 2 to 7 years. They also have

global impacts on weather and can cause flooding, hurricanes, droughts, and other severe

weather events, aside from which they also influence nutrient distribution in the ocean

that is important for marine life. There are also long-term variations in the climate system

like the occurrence of glacial periods (ice ages), referring to long periods of time in which

a significant amount of the planet is covered by ice and glaciers [Bos16; WWU23]. The

most prominent features of ice ages are the low overall temperatures and the expansion

of ice sheets across the globe, far beyond the poles. The last glacial period lasted from

around 115 thousand years ago to the beginning of the Holocene around 11,700 years ago.

However, humanity itself also impacts the climate system in its own way. The current

climate crisis is unequivocally driven by human activities, such as the large scale emission of

greenhouse gases like carbon dioxide (𝐶𝑂2), methane (𝐶𝐻4), and nitrous oxide (𝑁2𝑂) from

the burning of fossil fuels like coal, oil, and natural gas [Ari+21]. The emitted greenhouse
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gases trap heat in the atmosphere, leading to a greenhouse effect and global warming. Over

different timescales, both carbon dioxide and methane are absorbed from the atmosphere.

While methane’s lifetime in Earths atmosphere is around 12 years, carbon dioxide resides

there around 300 to 1,000 years [AN]. In comparison to the emission of carbon dioxide, the

same amount of methane is more than 25 times as potent at trapping heat in the atmosphere.

Additionally, other human influences on climate change are deforestation, since trees

absorb carbon dioxide through photosynthesis, industrial activities like cement, steel, and

chemical production that release additional greenhouse gases into the atmosphere [Ari+21].

Furthermore, the transformation of land for agriculture or urbanization changes the

landscape, thus releasing stored greenhouse gases and removing capabilities for absorbing

them from the atmosphere. Human activities have far outpaced the natural absorption

capacities of greenhouse gases in the climate system. Continued emissions are going to

increase global warming effects, leading to more extreme weather events more frequently,

melting ice from the poles and glaciers, a rise in sea-level, changes to precipitation patterns

[ONe+22]. Resulting risks include the loss of biodiversity, economic impacts, increased

poverty, decline in food security, and water scarcity. Reducing the consequences of global

warming requires broad and rapid reductions of greenhouse gas emissions. The highest

potentials for reducing the impact of the current climate crisis lie in the transition to clean

energy, mainly from solar and wind, as well as the reduced transformation of land and

corresponding ecosystem restoration.

Clouds play an important role in the climate system by being part of the water cycle,

and shifting the energy balance of the planet [Bos16; Ari+21]. They reflect sunlight

back into space, effectively cooling the planet, while also trapping heat that is reflected

from Earth’s surface and in turn warming the planet. This reflectance contributes to

Earth’s overall reflectance, called albedo. This balance is a delicate mechanism of the

climate system that controls temperature and precipitation distributions. In turn, the

rising global temperatures affect the jet streams through more severe warming in the

polar regions [Man+18; ONe+22]. The lack of temperature difference leads to a slowdown

and general disruption of the jet streams, which leads to longer lasting local weather

conditions and potentially extreme weather events. Climate change has already led to

various consequences, including rising temperatures, extreme weather events, and a rise

in global sea-level, which is why it is crucial to observe and react to current changes

[Ari+21; ONe+22]. While the mitigation of additional greenhouse gas emissions is central

to reduce the impact of climate change, it is also important to tackle current and future

climate related challenges. Observing the amount of cloud cover and its variability is

essential to assess the planet’s reflectance or albedo and observe feedback mechanisms, as

well as extreme weather events like hurricanes and thunderstorms. Through observation

and analysis, climate models with higher accuracy can be developed to predict extreme

weather events earlier than current techniques.

Capturing and analyzing large amounts of data about clouds enables further exploration

of the inner workings of earths climate, as seen from both abstract, global and detailed, local

viewpoints [Mit23]. Remote sensing technologies offer great capabilities for monitoring
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and analyzing global cloud coverage using satellite imagery. Remote sensing makes it

possible to acquire information from various locations around the world over a distance,

without having to travel there. This is especially useful to collect information about earths

atmosphere like cloud coverage, since it provides a vast amount of data on a global scale,

thus accounting for temporal and regional differences. Another advantage over in situ

observations is the ability to cover areas with little to no human interaction, as is the case

for polar regions and oceans. Due to modern satellite missions offering updates every few

days to as frequent as every 15 minutes, tracking of changes in the atmosphere improves,

which builds a fundamental data source for weather forecasts and climate models. Usually,

satellite-based remote sensing yields data for multiple spectral bands that cover a section

of the electromagnetic spectrum, such as visible light and infrared. This allows further

analysis of interrelationships of different wavelength reflectance or radiance values for

different atmospheric phenomena. Apart from remote sensing, observations from weather

stations offer local, point-based measurements from a combination of instruments that

register information like temperature, cloud cover, wind speed, and atmospheric pressure

that can be used to enhance information from satellite images by adding contextual

information. An example for weather information from local stations is the METAR format

that is standardized by the World Meteorological Organization (WMO) in correspondence

with the International Civil Aviation Organization (ICAO) [WMO22; Int21].

2.1.1. Sentinel-2 Mission

The Sentinel-2 mission is a satellite-based Earth observation program developed by the

European Space Agency (ESA) for the Copernicus program. Its objective is to systematically

collect high-resolution images on a global scale using two satellites that orbit Earth on

opposing sides. The quality of the imagery is coined by a high revisit-frequency of 2

to 5 days and multi-spectral instruments. The spectral bands that are captured by the

Sentinel-2 instruments are show in Table 2.1. Overall, the multi-spectral instruments

measure 13 spectral bands, covering the range from visible to short-wave infrared light

at different resolutions. The highest resolution of 10 meters per pixel is reserved for the

visible and near-infrared light bands. Additionally, there are six bands at a resolution of

20 meters per pixel, with four in the visible and near-infrared (VNIR) range and two in

the short-wave infrared (SWIR) range for applications in the detection of clouds, snow,

and ice as well as the observation of vegetation. The remaining three bands are provided

at 60 meters per pixel and focus on the applications of cloud screening, atmospheric

correction and cirrus detection. The bands are structured in a way that a higher band

number corresponds to a higher Spectral bands 2, 3, and 4 represent the usual color

channels blue (around 493 nanometers), green (around 560 nanometers), and red (around

665 nanometers) respectively. Aside from the rest, band 10 provides images that focus

only on cirrus clouds without underlying terrain. There are many processing levels for the

Sentinel-2 data that process data from the previous level: Level-0, Level-0 Consolidated,

Level-1A, Level-1B, Level-1C, and Level-2A. However, the most attention of this thesis lies

on the Level-1C processing level. It already encompasses all previous processing steps,

such as radiometric corrections, refinement of geometric viewing model, resampling with

geometric interpolation, conversion of values to reflectances, and generation of masks.
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S2A S2B

Band

Number

Central

wavelength

(nm)

Bandwidth

(nm)

Central

wavelength

(nm)

Bandwidth

(nm)

Spatial

resolution

(m)

1 442.7 20 442.3 20 60

2 492.7 65 492.3 65 10

3 559.8 35 558.9 35 10

4 664.6 30 664.9 31 10

5 704.1 14 703.8 15 20

6 740.5 14 739.1 13 20

7 782.8 19 779.7 19 20

8 832.8 105 832.9 104 10

8a 864.7 21 864.0 21 20

9 945.1 19 943.2 20 60

10 1373.5 29 1376.9 29 60

11 1613.7 90 1610.4 94 20

12 2202.4 174 2185.7 184 20

Table 2.1.: Spectral bands of the two Sentinel-2 satellites A and B taken from [ESAg].

Level-1C does not include scene classification and atmospheric correction to convert Top

of Atmosphere (TOA) to surface reflectance, as this is provided by Level-2A. All images

are restricted to the boundaries of grid tiles that are geospatially fixed, but do not always

cover the tiles completely. Each grid tile is covers around 10,000 square kilometers, while

the swath width is as large as 290 kilometers. [ESAg]

2.1.2. METARs

METAR is an internationally standardized format for the reporting of weather observations

at airports and aerodromes. They concisely report current weather conditions, focussing

on essential information that are relevant to pilots and meteorologists. The format enables

efficient communication of crucial weather information that is for example linked to flight

safety. However, METARs hold potential for use cases outside of flight operation [Rum+15;

NBM17; Gor+22]. The name METAR is an abbreviation or code name that stands for an

aerodrome routine weather report or a meteorological aerodrome report. It is usually

issued hourly or half-hourly and provides information on various local environmental

conditions. To better illustrate the content of a METAR, the following example is broken

down into their individual parts:

METAR KSFO 281356Z 26011KT 10SM FEW002 BKN006 OVC008 12/10 A2993

• METAR indicates that the weather report uses the METAR format and not other

formats like Special Meteorological Report (SPECI) or Terminal Aerodrome Forecast

(TAF).
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• KSFO is the ICAO specified four-letter code for the location of the observation,

usually containing an abbreviation of the airport. In this case, KSFO refers to the

San Francisco International Airport.

• 281356Z encodes the date and time of the observation, where the first two digits

stand for the day of the month. The following digits relate to the hours and minutes.

The Z at the end is used to indicate Zulu time or Greenwich Mean Time (UTC). So

281356Z translates to the 28th day of the month at 13:56 (military time), using Zulu

time.

• 26011KT encodes wind direction in degrees in the first three digits, starting north

and moving clockwise, while the rest represents the wind speed. In this example, the

wind is coming from 260 degrees (almost completely from the west) at a strength of

11 knots or around 20 kilometers per hour.

• 10SM stands for 10 statute miles or around 16 kilometers and refers to the horizontal

visibility from the station, indicating that the visibility is clear in this case.

• FEW002, BKN006, and OVC008 all relate to cloud coverage on different heights. The

first three letters indicate how much of the sky is covered by clouds, while the last

three digits indicate the base cloud height in 100 feet (ca. 30 meters) above ground

level. In the example, there are few clouds at 200 feet (ca. 61 meters), broken clouds

at 600 feet (ca. 183 m), and an overcast sky at 800 feet (ca. 244 m).

• 12/10 indicate temperature and dew point, showing it is 12 °C warm, while the dew

point lies at 10 °C.

• A2993 is the atmospheric pressure given in inches of mercury (inHg) in this case. The

example shows an atmospheric pressure of 29.93 inHg or around 1013.5 hectopascal

(hPa).

There are other variations and unmentioned aspects that are not relevant in relation to

this thesis or would cause unnecessary elongation of the explanation, which is why the

explanation is limited to the given example.

Cloud coverage information is provided by METARs using oktas (1/8). It is described
using standardized codes, indicating the portion of the sky that is covered by clouds

[WMO22]. Following international standards, the data is collected in the area within a

radius of around 16 kilometers of the weather station. There are small regional differences

Code CLR FEW SCT BKN OVC

Meaning Clear sky Few clouds Scattered clouds Broken clouds Overcast sky

Sky cover 0/8 1/8 to 2/8 3/8 to 4/8 5/8 to 7/8 8/8

Table 2.2.: METAR codes for different conditions regarding cloud coverage and their de-

coded meanings.
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on the implementation of these standards. This thesis focuses on the conventions that

are used by the United States according to the information provided by National Oceanic

and Atmospheric Administration (NOAA) [ONa], as show in Table 2.2 METARs indicate

cloud cover in ascending order until the first layer of overcast clouds is reached. There are

special cases that need to be considered when working with oktas for drawing the border

between categories:

• CLR is the code for clear sky, used in reports that are made by automatic stations.

There is also the code SKC, which also stands for clear sky, but is used for observations

by manual stations instead. Since there is no difference in the values they encode,

all abbreviations for clear sky are mapped to CLR. The sky is considered to be clear

only if no cloud is observed.

• FEW, standing for few clouds, in turn also includes the presence of clouds below 1/8
sky cover

• BKN, represents broken clouds and includes sky coverage larger than 7/8 but smaller

than 8/8

2.2. Machine Learning

Machine learning is a part of Artificial Intelligence (AI), computer science, and statistics

that focuses on extracting knowledge from input data and making predictions on unseen

data without explicit instructions how to do this [MG17]. The models should be able to

learn generalizable rules that are also applicable to data that varies from the training input

to some degree. To achieve this, machine learning models detect and analyze patterns

and relationships that are present in the given data. Machine learning models improve

over time and provide scalable ways for automation of complex tasks that might not be as

efficiently or effectively automatable by conventional means. There are multiple algorithms

that can be used for machine learning like decision trees, Support Vector Machines (SVMs),

and neural networks. In the context of the decisions taken in this thesis, neural networks

will be explained in more detail than other algorithms and other concepts will focus more

on approaches using neural networks. A subfield of neural networks is deep learning that

handles tasks with very high complexity especially well. Machine learning models and

neural networks are a great fit for the problem of cloud classification, as they are able to

learn complex patterns and relationships from data such as images from satellites.

2.2.1. Workflow

Developing a machine learning model for a specific task usually follows a typical workflow

[MG17]. Initially, it is important to collect relevant data from various sources that is

suitable for the task. The collected data is then preprocessed, which includes a subset

of multiple techniques like selecting the most relevant features from the available data,

handling of missing data, and transforming the data to meet assumptions of the machine

learning mode. The data is then split into training, validation, and test sets. The training
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dataset is used to illustrate to the model what the desired outputs are, as well as learn

any underlying patterns and relationships of the data. The validation dataset is used

to compare the models’ predictions with the expected outcome and adapt the training

process based on how wrong the predictions are. First training is done, which is followed

by validation. This procedure repeats itself for however long the model should learn. The

test dataset on the other hand is not used until the model has finished learning. This

makes it possible to handle the test dataset as new, unseen data that the performance of

the model can be evaluated on in the end. Because of this, it is especially important to

pay attention to separating the datasets precisely, preventing information leaking from

one dataset into another. When the data is ready, the model is created or selected and

adapted based on the task, data, and requirements. It is also possible to combine different

specialized models in an ensemble. Following the creation of the model is the training

process that repeats the actions of learning structures in the data and evaluating predictions

over multiple iterations, called epochs. Training is done using batches of data that are

processed in one step, adapting the throughput of data to the capacity of the processing

units. Before doing training, adjustment or tuning hyperparameters like learning rate and

batch size takes place. Finally, the performance of the model is assessed based on the test

dataset. This provides insights into what possible changes to the structure of the model

or tuning of hyperparameters might further improve performance. After evaluating the

model, adjustments are made before starting the training from the beginning again. Under

optimal circumstances, this continues until satisfactory performance is achieved.

2.2.2. Paradigms

There are different paradigms to guide machine learning models in their search for knowl-

edge. They all cover fundamental questions that shape what the model is able to learn and

can be seen as a design decision for a machine learning task. Machine learning paradigms

are not mutually exclusive and may be combined to improve a model.

Supervised Learning One of the most common approaches is called supervised learning,

where the model learns from labeled data in which the labels represent the desired output

[MG17]. It answers questions of how to predict future values, or how to classify data

into existing classes. During training, the model uses the input-output pairs to derive

underlying patterns and relationships. Its performance is validated and then optimized

during training by comparing predicted and actual label of the data. Once the model

is trained, it can make predictions on unseen data by using the learned patterns and

relationships. It works well to categorize input data or to predict continuous values.

Areas of application include image and speech recognition, as well as medical diagnosis.

A downside of supervised learning is that it requires a well-labeled dataset, where the

labeling accuracy has repercussions on the performance of the model.

Unsupervised Learning Another approach is unsupervised learning, where the model

does not have information on what it is expected to find mappings for [MG17]. It answers

questions regarding what natural clusters and groups reside in the data, or whether the
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data can be expressed in a more concise form. It needs to detect patterns, structures, and

relationships on its own. This type of machine learning algorithm is applicable when the

goal is to discover hidden patterns or groups in the data that are unknown at the time of

model creation. Such a way of information gathering is especially useful for clustering of

data, where similar data is grouped together, and for dimensionality reduction that tries to

reduce the number of input features without removing relevant information.

Semi-Supervised Learning Semi-supervised learning combines the approaches of super-

vised learning and unsupervised learning by only requiring a smaller portion of labeled

data and a larger portion of unlabeled data [Hea16]. The idea is to let the model learn

on the labeled data, in order to provide general guidelines of what is of interest, and

train on unlabeled data to find hidden patterns and relationships. The approach thus

tries to leverage the benefits of both supervised and unsupervised learning for achieving

better generalization. The effectiveness of using semi-supervised learning over its com-

ponent paradigms varies based on multiple factors. Semi-supervised learning introduces

pseudo-labels to the training process that are predictions made from learned patterns and

relationships of previous training on the labeled data. By combining these pseudo-labels

with actual labels, the dataset can be processed like in supervised learning. However, the

quality of predictions has a direct feedback on its training and might hinder performance.

Reinforcement Learning Reinforcement learning is similar to supervised learning in the

sense that it is provided values for orientation. It answers questions of how a system

can learn to interact with an environment in a desired way [SB05]. However, instead of

labeling input data in a static context, reinforcement learning is performed in a dynamic

environment in which the model learns through trial and error. The orientation values are

given in the form of rewards and penalties based on the actions taken by the model. The

goal is to derive a policy or recommendation that maximizes the cumulative reward over

time. This makes it applicable in the context of controlling characters in video games, or

autonomous systems. For example, a penalty may be given to an autonomous system for

exerting too much stress on some of its components or moving parts too close to a human

operator.

2.2.3. Transfer Learning

Aside frommachine learning paradigms, transfer learning can be considered amethodology

that complements paradigms that it is applied to. The idea of transfer learning is to utilize

knowledge gained from a different but related task or domain [Zhu+19b]. When little data

is available, this technique aims to achieve better performance than what training from

scratch on an insufficient dataset would yield. To implement this, a pre-trained model is

used, which is the saved state of an already trained neural network. The model can then be

either used as-is from that save state, or modified to better adapt to the task at hand. Such

a modification could be the exchange of the output layer to match the new task or domain.

If the previous model used a fully connected layer with 100 outputs as a classification layer

at the end, one could replace it with a fully connected layer with 10 outputs for use in a
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classification task with 10 labels. This type of modification is called feature extraction and

has the great benefit of not having to train the underlying base model. Another approach

is fine-tuning, that works by unfreezing some base models’ layers. This helps learn feature

representations that are more common in the dataset of the new task. Transfer learning

helps improve model generalization for the new task that it is applied to. It also speeds up

the training process and helps in situations where labeled data is limited.

2.2.4. Classification

Classification is a task for a machine learning model with the goal of predicting to which

class or category a certain input belongs [MG17]. This is commonly implemented as a

supervised learning technique that learns from a set of labeled data. Each data unit is

assigned a label, corresponding to one possible class. The model is implemented by using

a fully connected layer as the output layer, with as many neurons as there are classes.

After training, the model has generalized the learned relationships and patterns and can

make predictions to which class new data belongs to. This implies that the model is able to

learn what identifies and differentiate certain classes. Classification tasks exist in the form

of binary classification, multi-class classification, and multi-label classification. Binary

classification tries to classify data into two mutually exclusive classes. A possible example

of this would be labeling whether an email should be considered to be spam. Multi-class

classification similarly has multiple – possibly more than two – mutually exclusive classes

from which one should be predicted per data unit. Examples include image classification

e.g., images of birds, cats, and dogs into these three classes, or automatic recognition of

handwritten letters and digits. Multi-label classification is somewhat different to the other

classification types, since there can be multiple classes that apply to an input, removing

mutual exclusion. This is useful for tagging all possible categories or classes that an input

belongs to. In image recognition, this would induce that learned objects or even people are

recognized. A common loss function to use for classification tasks is the Cross-Entropy

Loss that computes the logarithmic loss between predicted probabilities and true labels.

2.2.5. Regression

Regression is a machine learning task that aims to predict one or more continuous numer-

ical values [MG17]. Like classification, it also falls under in the category of supervised

learning techniques, using labeled data for training and one neuron per value to predict.

The training process also helps generalize learned relationships and patterns to make

predictions of what values should be assigned to unseen data. There are multiple forms of

regression available to find a function that maps input data accurately to output values.

The simplest form of regression is linear regression, which tries to fit a linear equation to

the numerical values. A polynomial regression goes a step further by using a polynomial

equation that has a higher degree than in the linear case and is able to capture more

complex relationships. In even more complex cases, it might be appropriate to use non-

linear regression to fit a nonlinear function to the data. This makes use of more complex

underlying structures like neural networks to better capture patterns and relationships

from the data. A common loss function for regression tasks is the Mean Squared Error
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Is the bear white?

Polar bear

yes

Does the bear have a hump on its back?

Is the bear small?

Grizzly bear

yes

Brown bear

no

yes

Black bear

no

no

Figure 2.1.: Visualization showing the structure of a simple decision tree on the classifica-

tion of bears based on a guide from the National Park Service, U.S. Department

of the Interior [Inta].

(MSE) loss that computes the average squared differences of prediction and actual value,

and thus penalizes larger deviations more severely.

2.2.6. Algorithms

There are multiple algorithms to choose from when implementing machine learning for a

specific task. The selection of algorithms comes with a tradeoff between different aspects

like flexibility, complexity, speed, dimensionality, and robustness.

Decision Trees Decision trees are non-parametric supervised learning algorithms that

are applicable to both classification and regression tasks [MG17]. They are structured

hierarchically like trees, as seen in Figure 2.1 for how to differentiate types of bears. The

decision tree consists of nodes and branches that start at a root node and progress over

multiple internal nodes towards leaf nodes. Root and intermediate nodes corresponds to

decisions to be made, from which branches with different answers diverge. Leaf nodes are

instead interpretable as outcomes of the decisions taken to get there, starting from the

root node. As can be seen in the visualization, the final classification of the type of bear is

located in the leaf nodes, while questions are represented by intermediate nodes. The root

node is the initial question, from which the others diverge. Due to their boolean logic and

corresponding visualization, decision trees can be easily interpreted compared to more

complex algorithms like neural networks. Another advantage is the flexible handling of

discrete and continuous data and missing values, making it a good option for data mining.

However, decision trees easily overfit, are sensitive to data variance, and are more costly

to train than other algorithms.

Random Forests A random forest is an ensemble learning method, using multiple de-

cision trees that make decisions together through aggregation of the individual results

[MG17]. The main difference to simple decision trees is feature randomness, which ensures

that individual decision trees only consider a random subset of features instead of all
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features, lowering correlation among them. Aggregation of results could for example be

implemented as averaging for regression tasks or majority vote for classification tasks.

The central advantages are a reduced risk of overfitting, along with being applicable to

both regression and classification tasks. Since values have to be calculated for multiple

decision trees, this algorithm is more computationally expensive than its singular tree

counterpart.

Support Vector Machines SVMs aim to find the optimal hyperplane with maximized

margins in an N-dimensional space, so that it splits data points into separate classes

specified through supervised learning [MG17]. Maximizing the margins increases the

distance of the hyperplane to the data points, future proofing it for the categorization

of edge-cases in unseen data. Support vectors are the data points that are closest to the

hyperplane and thus are most involved in constraining it. Accordingly, deleting support

vectors entails a regeneration of the hyperplane. In cases of non-linear classification tasks,

kernels are used that transform the data to a higher-dimensional space, in which the

classes can be linearly separated by a hyperplane again. The main advantages of SVMs

are their effectiveness in high dimensional spaces, their memory efficiency resulting from

using a subset of data – the support vectors, and their ability to handle non-linearity. On

the other hand, choosing the right kernel function might be crucial in avoiding overfitting

when there are way fewer data points than features or when the data contains much noise.

Furthermore, necessary computations are more expensive for larger datasets.

Neural Networks Neural networks try to mimic neurons and their interactions by orga-

nizing artificial neurons in layers and propagating information in one direction, while

changes to neurons are propagated in the opposite direction [MG17]. They consist of

layers of nodes with at least one input, hidden, and output layer as visualized in Figure 2.3.

The first layer handles incoming information like text, speech, or imagery and is called

the input-layer. The last layer returns results like classification or regression and is called

the output-layer. Layers that lie in between these layers are not directly accessible and

thus called hidden layers. Artificial neurons – or simply called neurons in the context

of machine learning – are connected to other neurons of the directly neighboring layers

and possess information about associated weights, a bias, and an activation function. A

simple description of such a neuron, called a perceptron, is given by Rosenblatt [ROS58].

A neuron is presented in Figure 2.2 that show how input signals 𝑥1 . . . 𝑥3 are processed,

resulting in the output value 𝑦. The received signals 𝑥1 . . . 𝑥3 are accumulated according to

weights𝑤1 . . .𝑤3 and a bias 𝑏. The signal is then transformed using an activation function

as seen in Figure 2.4. In many cases, a Sigmoid or ReLU function is used, introducing

non-linearly into the network. This non-linearity, which heavily depends on the choice of

activation function, is the main advantage over the perceptron model. After this so-called

forward pass, accuracy of a neural network model is assessed through a loss function such

as MSE or Cross-Entropy that should be minimized throughout the training process. To let

the model learn from its mistakes, backpropagation is used, where the error is propagated

backwards through the network. This allows to compute the gradients of weights and

biases that are used by an optimization algorithm like steepest gradient descend (SGD),
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𝑥1

𝑥2

𝑥3

𝑦 = 𝑓 (∑𝑛
𝑖=1 𝑥𝑖 ·𝑤𝑖 + 𝑏) 𝑦

Figure 2.2.: Visualization of a single neuron

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

input layer

hidden layer

output layer

Figure 2.3.: A visualization of a simple neural network with three layers. There are three

neurons in the input layer, five in the hidden layer, and three in the output

layer. 𝑥1, 𝑥2, 𝑥3 are input values and 𝑦1, 𝑦2, 𝑦3 are output values.

which try to minimize the error by adjusting said weights and biases. One advantage of

neural networks is their ability to learn non-linear and complex patterns and relationships

from raw data without additional feature engineering requirements, making them a good

choice for analyzing images, text, and speech data. They also have a high fault toler-

ance and are able to scale well, handling large amounts of data while further improving

their accuracy. Using specialized hardware allows to efficiently parallelize processing

for faster training. In comparison to clearly visualizable algorithms like decision trees,

neural networks are difficult to understand because of their black-box nature. They are

also less useful if not enough data is available that can be learned from. Deep learning

is an application of neural networks that utilizes multiple hidden layers to learn more

complex patterns associated with a given task. Fields with tasks of such high complexity

include computer vision, speech recognition and natural language processing.

2.2.7. Activation Functions

As previously shown in paragraph 2.2.6, activation functions are at the core of introducing

non-linearity into neural networks. If the selected activation function is linear, the machine

learning model is not going to be able to solve non-linear problems [MG17]. Yet in reality,

non-linear problems are all around us. Some exponential relationships are population

growth, compound interest, and epidemic spread, making it an essential influence on the

capabilities of a neural network. A subset of common activation functions is shown here
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Figure 2.4.: A selection of various activation functions that can be applied in neural net-

works are ReLU, Sigmoid, and Hyperbolic Tangent.

with regard to deep learning applications and inter-function comparisons as explored by

Nwankpa et al. [Nwa+18].

Sigmoid The sigmoid activation function restrains input values to the interval [0, 1]:

𝑓 (𝑥) = 1

1 + 𝑒−𝑥
It is commonly used for binary classification, since the output resembles a probability

score. Additionally, the output is differentiable at any point and the function is also used

for logistic regression. Drawbacks include slow convergence, vanishing gradients, gradient

saturation, and issues with gradient updates due to not being centered around zero.

Hyperbolic Tangent The hyperbolic tangent activation function restrains input values to

the interval [-1, 1]:

𝑓 (𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥

It is better than the sigmoid activation function in terms of training performance due to

being zero centered. The function is still affected by vanishing gradients and can generate

dead neurons during computation.

Softmax The softmax activation function produces values in the interval [0, 1] from a

vector of real numbers:

𝑓 (𝑥𝑖) =
𝑒𝑥𝑖∑
𝑗 𝑒

𝑥 𝑗
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It is often applied in multi-class classification problems to compute the probabilities of each

possible class, ensuring that the sum of the probabilities is equal to one. The possibilities

can then be compared to the target class for training.

ReLU The rectified linear unit function (ReLU) is an activation function that offers great

performance and generalization capabilities for deep learning:

𝑓 (𝑥) = max (0, 𝑥)

It is almost linear, upholding the potential for optimization of linear models using gradient-

descent techniques and resulting in fast computation times. Setting inputs less than zero

to zero solves the problem of vanishing gradients that other activation functions suffer

from. A drawback of ReLU is that it can more easily overfit.

2.2.8. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning models for processing

and analysis of grid-like data like images, which is why they are often utilized in computer

vision tasks. They excel at tasks that use complex input data such as images or audio, like

speech. CNNs offer a scalable way of classifying images and recognizing objects in images.

These capabilities come at the price of increased computational demand, and may require

the use of Graphical Processing Units (GPUs) for the model training process. CNNs consist

of three types of layers:

Convolutional Layer The fundamental building block of a CNN is the convolutional layer,

which applies movable filter kernels on an image, resulting in a feature map. The filter

kernel or filter is a matrix (or other-dimensional tensor), typically of size 3×3, that is

applied to an area of the image of the same size with the goal of checking for the presence

of a feature. The filter is applied to the image by computing the dot product between filter

and image values at overlapping positions, also known as the receptive field. This concept

can also be extended to an image with 3 color channels, as shown in Figure 2.5. The grid

acts as an interpretation overlap between pixels of images and positions inside tensors.

The filter kernel is chosen to be three-dimensional (3×3×3) in this case, in order to return

a two-dimensional output. In a first step, the filter is applied to an equally sized section of

the input image. The values are then combined with a dot-product to receive one value of

the output tensor. Finally, the whole filter kernel is moved by some amount of grid-cell,

also known as stride, on the input image to compute the next iteration, which continues

until the output tensor is fully constructed, and the kernel has passed over the entire image.

As the illustration suggests, through layers behind the currently computed output tensor,

there may be multiple filters present to compute multiple outputs. The example only shows

the computation using a single filter for a single output tensor, which is offset from the

other output tensors. The size of the output depends on various factors such as the input

size, filter size, stride. Other factors include padding and dilation. Padding adds values to all

sides of the input to enable movement of the filter over the original image bounds. Dilation

controls positional spacing between filter kernel applications. Equation 2.1 presents how
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the output dimension out𝑖 is calculated in the PyTorch framework. 𝑖 refers to the dimension

of interest like width, height, and depth. Each convolution operation is followed by the

application of an activation function, introducing non-linearity.

out𝑖 =

⌊
in𝑖 + 2 · padding𝑖 − dilation𝑖 · (kernel_size𝑖 − 1) − 1

stride𝑖

+ 1
⌋

(2.1)

Pooling Layer After the creation of the feature map using convolutional layers, a pooling

layer reduces the dimensionality. They act similar to convolutional layers in the sense that

they use filter kernels that move over the entire input to generate the output. However,

instead of applying the filter weights, the input values are aggregated instead. There are

two major types of pooling operations:

• Max pooling: The maximum value inside the receptive field is sent to the output.

• Average pooling: The average value of the receptive field is sent to the output.

The downsampling applied by the pooling layer reduces complexity and improves efficiency

of the model.

Fully-Connected Layer To complete the model that is created from convolutional layers

and pooling layers, a fully connected layer at the end of the model is used for classification.

The number of neurons used in this layer is equal to the number of classes that have

to be determined from the input. Accordingly, this layer may be replaced by another

fully-connected layer when using transfer learning to retrain the classification part of the

model in a new domain without removing knowledge of patterns and textures that are

learned in previous layers.

2.2.9. Data Mining

Data mining or knowledge discovery in data (KDD) is the methodology of discovering

patterns, relationships, and other insights from data in order to gain a better understanding,

make predictions or identify trends. Gaining descriptive or predictive insights through such

a data analysis and visualizing them are important steps to guide and improve decision-

making. Before delving into data mining, it is essential to clearly define the objectives that

should be achieved through data analysis. When this decision is made, previously collected

data is prepared for analysis. This includes cleaning the data by removing duplicates,

missing values, as well as noise and outliers if possible and desired. In cases where the

dimensionality of the data is very high, it might be appropriate to use dimensionality

reduction techniques to promote a faster analysis. In a next step of the data mining process,

algorithms are used to analyze the data. Depending on the specific requirements of the

task at hand, a spatial or temporal examination of patterns and relationships may take

place. Different aspects are interesting under different, previously set objectives. While

the analysis of common, repetitive patterns and associations with related data might be

of interest to better understand customers, outliers could be an indicator useful for fraud
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Figure 2.5.: Visualization of one step of the convolution computation in a convolutional

layer for an image with 3 color channels (RGB) and a three-dimensional filter

kernel (black). The output tensor is one of multiple tensors (orange) with

individual filters.

detection. Algorithms for classification, clustering, or regression might be applied based

on the underlying structure of the data like whether it is labelled. Finally, the results of

the analysis are evaluated and interpreted with regard to the initially defined objective to

plan the further course of action.

2.2.10. F1-Score

A fundamental addition to the usage of accuracy for model optimization is the F1-Score.

It is a concept associated with the predicted labels of a machine learning model and the

actual labels of the underlying data [MG17]. Before explaining what F1-Score is, it is

important to understand the concepts of precision and recall. Precision refers to the

number of true positives in relation to all predicted positives. In the case of a multi label

classification problem, precision can be observed on a per-label basis. For a given label A
of n labels, the true positives refer to cases where the predicted label A and actual label

match, while the remaining predicted positives – the false positives – refer to the cases

where the prediction falsely classifies the data as being labeled A. Precision is calculated

as:

precision =
true positives

true positives + false positives

Recall, on the other hand, refers to the number of true positives in relation to all actual

positives. For a multi label classification problem, recall can be observed on a per-label

basis as well. For a given label A of n labels, the true positives refer to cases where the

predicted label A and actual label match, while the remaining actual positives – the false

negatives – refer to the cases where the prediction falsely classifies the data as not being
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labeled A. Recall is calculated as:

recall =
true positives

true positives + false negatives

Both precision and recall are conceptually restricted to the interval from 0 to 1. A perfect

precision score of 1 corresponds to all data labeledA actually beingA, but does not provide
information on whether all A data is included in the results. A perfect recall score of 1 on

the other hand corresponds to including all data that is actually A, but does not provide
information on how much data that is not A is included as well. The F1-Score describes

the harmonic mean of the precision and recall values, and thus facilitates the combination

of both approaches. It is calculated as:

F1-Score = 2 · precision · recall
precision + recall

By definition, the F1-score is restricted to the interval from 0 to 1 as well. To get the

F1-score for multiple labels, data is accumulated. For accumulation, techniques like micro

averaging, macro averaging, and weighted averaging can be applied:

• Micro averaging: Compute global average F1-score from the sums of all True Posi-

tives, False Positives, and False Negatives

• Macro averaging: Compute the arithmetic mean of all per-label F1-scores

• Weighted averaging: Compute the mean of all per-label F1-scores, but weight them

according to how much data is of that label

Micro averaging is equal to the concept of accuracy. A great benefit of using F1-scores

with weighted averaging is that is still relevant when using an unbalanced dataset.

2.2.11. Confusion Matrix

The confusion matrix is another tool to evaluate the performance of a machine learning

model, providing a visual component in the form of a table [MG17]. Thematrix is organized

in such a way so that each entry 𝐶𝑖, 𝑗 contains the value that corresponds to the amount of

data that belongs to the label 𝑖 is predicted to belong to the label 𝑗 . So if the predictions

(columns) are to align with the targets (rows), the matrix should have most entries on the

diagonal. This approach makes results more easily comparable and drives development

visually to get more entries on the diagonal and fewer entries in the upper and lower

triangular matrices. The resulting table is then most commonly visualized with a heat

map to highlight differences. Since the dataset might be imbalanced, it is advised to use

some form of normalization:

• true: the sum of each row is equal to 1 – What is data of label A predicted as?

• predicted: the sum of each column is equal to 1 –What actual label does the prediction

result A correspond to?
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(a) Confusion matrix without normalization.

(b) Confusion matrix normalized for actual /

true labels.

(c) Confusion matrix normalized for pre-

dicted labels.

Figure 2.6.: Different normalization of confusion matrices for the same data.

• all: the sum of all entries is equal to 1 – The relative values from dividing by the

dataset size

Examples of the first two normalization techniques are seen in Figure 2.6, that uses the

same data for all matrices. Without any normalization (a) entries of classes with more

data (class 0, class 2, class 4) are more prominent, despite predictions of class 1 and class 3

also performing well for the majority of cases. Normalizing for targets (true) (b) provides

a solid basis to evaluate how well targets are predicted. Normalizing for predictions (c)

instead allows identifying the spread of predictions to different targets. Since imbalanced

datasets have less or more cases per target label (row), only the true-label normalization

offers performance comparability between classes. Without explicit notice, confusion

matrices in this thesis will use the true normalization as a basis for analysis and model

improvement, as it highlights the misclassifications per label and input class imbalances

are addressed directly.
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As the climate is a chaotic system that makes predictions and simulations difficult, au-

tomatic and efficient detection of cloud coverage in satellite images and the creation of

detailed cloud masks is still a hot topic. Whether the reason lies in the observation of

cloud formation and development or in examining the ground, cities, and infrastructure,

the detection of clouds is the first required step to proceed, facilitating the foundation

of further processing. Since the approach of this thesis uses satellite imagery and local

weather observations, related work is explored in both fields in the next sections. Previous

work is put into perspective by including information on how it relates to the approach

proposed by this thesis.

3.1. Cloud Detection

This section focuses on cloud detection in satellite imagery, acknowledging that there

are different approaches through Lidars for example, as seen by Yorks et al. [Yor+21].

The most common form of cloud detection models works on a per-pixel basis, creating

a cloud mask as a result. There are two general categories of cloud masking algorithms.

On one hand, there are single-image algorithms that observe a single image and build the

corresponding cloud mask from that image. On the other hand, multi-temporal algorithms

that facilitate cloud mask generation through observation of the same area of a certain

period of time to better separate moving clouds from the earth’s surface. Single-image

algorithms are straightforward. Their simplicity reduces implementation overhead and

makes them more easily applicable to new, unseen images without the need for additional

data, making them faster than multi-temporal algorithms. However, having only the

information that is present in this single image, they lack the ability to capture contextual

and temporal information, such as similarities in the neighborhood of a pixel on a cloud

over multiple images with potential cloud movement. They struggle with distinguishing

clouds from bright surfaces, snow, and ice, as they rely on spectral band information and

spatial patterns. Additional difficulties can arise from overlapping clouds and complex

cloud formations. This inherent difference reduces the quality of the resulting prediction.

Multi-image algorithms are more accurate and robust, providing better results. Due to

the higher computational complexity and need for additional data from time-series, these

algorithms are not as fast as single-image algorithms. Another drawback is the essential

necessity to have such a time-series available, making it not applicable to unseen regions.

The model developed throughout this thesis belongs to the category of single-image

algorithms, additionally integrating local point-based measurements to refine the result

instead of time-series information. In the scope of this master’s thesis, the model is

restricted to classifying an image as a whole instead of producing a cloud mask. However,
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the underlying image preprocessing and dataset creation techniques may be applied to

image segmentation as well.

Single-image algorithms An early cloud detection algorithm is ACCA by Hollingsworth

et al. [Hol+96] that uses thresholds derived from physical rules to detect clouds in satellite

imagery. It builds upon the algorithm developed by the Earth Resources Observation and

Science Data Center [Intb] and uses images from the Landsat satellites. The algorithm

uses a statistical approach with n-dimensional histograms to identify cloudy pixels. The

Fmask algorithm by Zhu et al. [ZW12] produces a mask for clouds, cloud shadows, and

potentially snow in Landsat L1T imagery from physical properties based on the spectral

bands for TOA and Brightness Temperature (BT). Potential cloud and cloud shadow pixels

are computed using thresholds and with NDSI and Normalised Difference Vegetation

Index (NDVI) values in mind for separation of thin clouds from snow, ice, and vegetation.

Additionally, the resulting potential cloud and cloud shadow layers are matched using

geometric relationships. Building on this base, Zhu et al. [ZWW15] also adapts the

application to Sentinel-2 imagery and highlights the advantage of the included spectral

band (band 10) for the detection of cirrus clouds in comparison to the usage of the thermal

band that is provided by Landsat imagery of earlier missions. Fmask version 4 by Qiu

et al. [QZH19] reaches an overall accuracy of 94.59 % for Landsat 8 imagery and 94.30

% for Sentinel-2 imagery. ATCOR by Richter et al. [Ric04] first pre-classifies pixels into

categories based on spectral information from VNIR and SWIR bands from the Sentinel-2

mission like ACCA by Hollingsworth et al. [Hol+96] and Fmask by Zhu et al. [ZW12]

[ZWW15] which uses Landsat data instead. The categories are land, water, snow and

ice, cirrus clouds, non-cirrus clouds, haze, and shadow. ATCOR then applies atmospheric

correction, which uses the radiative transfer equation, to remove atmospheric scattering

and absorption effects, followed by topographic correction that accounts for differences in

elevation and slopes of the observed terrain. The influence of topography on remotely

sensed data is explored by Proy et al. [PTD89] and by Smith et al. [SLR80] as early as

1980. The Sen2Cor algorithm by ESA [Mai+17][ESAe] also focuses on the removal of

atmospheric correction effects and is employed to correct Sentinel-2 Level-1C images

(TOA) to Level-2A images (Bottom of Atmosphere (BOA)). Like the other algorithms,

Sen2Cor encompasses the classification of pixel values to cloud and cloud shadow, among

other categories. A comparison by Zekoll et al. [Zek+21] shows performance differences

between masking models, where the overall accuracies are 89 % for Fmask, 91 % for ATCOR

and 92 % for Sen2Cor. The data is taken from Sentinel-2 Level-1C at 20 globally distributed

testing sites, resampling all spectral bands to 20 meters per pixel. To account for differences

in classification behavior, the outputs are mapped to eight classes – including background

– that focus on clear sky, (semitransparent) cloud, cloud- and topographic shadow, water,

as well as snow and ice. Similar to other algorithms, the model of this thesis uses data from

the Sentinel-2 Level-1C, which does not account for atmospheric correction to capture

the extent of clouds in satellite images. The model uses the VNIR spectral bands for red,

green, and blue light.
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Multi-temporal algorithms MACCS-ATCOR joint algorithm (MAJA) by Lonjou et al.

[Lon+16] builds upon the techniques from both MACCS developed by CNES and CESBIO

and ATCOR. MACCS uses a multi-temporal approach itself, while ATCOR is a single-image

algorithm. Similar to other approaches, MACCS handles clouds, cloud shadows, water,

and snow before applying atmospheric correction to the images. MAJA is more than the

sum of its parts, as new methods are introduced as well. For example, MAJA includes

correction methods for haze and cirrus clouds. It also introduces a way to mix image sets

of different missions, with the goal of combining data from the Sentinel-2 and Landsat8

satellites. The Multi-Temporal Cloud Detection (MTCD) model developed by Hagolle et al.

[Hag+10] uses satellite images at constant viewing angles to better differentiate between

cloudy and clear sky conditions per pixel. It uses imagery from the FORMOSAT-2 and

LANDSAT missions and focuses on abrupt changes in reflectance values between pixels,

with additional information on linear correlation from neighboring pixels. To handle sce-

narios of landscape changes like melting fields of snow, the algorithms require an adequate

timescale that captures these gradual changes. The necessary timescale varies based on

individual conditions like observing a seasonal or a short term change in landscape. If

these changes are not accurately captured, the temporal consistency degrades, leading to

incorrect interpretations of the algorithms due to the difference in observed spectral and

spatial patterns.

Machine learning algorithms Machine learning is a field of research that complements

both single-image and multi-temporal approaches. It provides the potential to improve

cloud classification accuracy by learning complex, hidden patterns and relationships.

Machine learning algorithms enable advancements in cloud detections through integration

with other techniques for the identification of cloud cover. This allows the algorithms

to augment the technique they learn from in order to reach better performance and

differentiate between clouds and anomalies that are detected by the original algorithm.

Entering the realm of machine learning and CNN, KappaMask by Domnich et al. [Dom+21]

collected satellite images from the Sentinel-2 mission over the land of Northern Europe.

It utilizes a U-Net architecture with image segmentation to generate masks for clear sky,

cloud, semi-transparent cloud, and cloud shadow. Another mask is reserved for invalid

values. In the context of the models’ architecture, dice coefficient loss produced better

masks, even though categorical cross entropy loss had lower validation loss. The dice

coefficient, as a statistical measure for evaluating the similarity between datasets and

– contrary to accuracy – focusing on the identification of specific regions, is located at

59 % for Sen2Cor and at 61 % for Fmask. KappaMask highlights the potential of deep

learning approaches by achieving a dice coefficient of 76 % for Sentinel-2 L1C and 80 % for

Sentinel-2 L2A imagery. The S2coudless algorithm performs slightly better than Fmask at

63 %, but worse than KappaMask, even though it uses machine learning as well. Another

approach by Bai et al. [Bai+16] uses SVMs for machine learning and suggests the usage

of multi-feature fusion, which aggregates information provided by features. The feature

selection regards spectral bands, texture features like arithmetic mean, variance, and

contrast. NDVI resides as a separate, but included feature category. The data is collected

from the Gao Fen-1/2 satellite missions. While the model does not account for differences
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in seasons, it does not rely on a thermal band or time series. A different idea is presented

by Yu et al. [YL21] that uses unsupervised classification results to train an ensemble model,

which decision tree learners then identify the clouds. It is applied on a per-pixel basis

on Landsat8 images using 10 spectral bands and achieves an accuracy improvement of

around 10% compared to Fmask 4.0 by Qiu et al. [QZH19]. The RS-Net model by Jeppesen

et al. [Jep+19] uses a CNN with a U-net architecture and data from the Landsat8 Biome

and SPARCS datasets with corresponding cloud masks. The model focuses on the spectral

bands for red, green, blue, and infrared light and achieves good results from the addition

of spatial pattern recognition that such deep-learning models excel at. The model that is

developed by Shi et al. [Shi+16] uses a CNN and focuses on reducing the error in cloud

detection for complex scenarios and thin clouds. It uses the simple linear iterative cluster

(SLIC) method to cluster the image into superpixels to reduce noise and reduce processing

time, from which a cloud probability map is then generated and refined for the final result.

UATNet by Wang et al. [Wan+22] uses a transformer-based approach instead to overcome

the smaller receptive field of CNN models, while still opting for a U-net architecture. This

thesis’ model uses both a CNN and transformer-based model for state-of-the-art image

classification, called EfficientNetV2 and Swin Transformer V2, respectively. They act as an

interchangeable basis of the model, where transfer learning is applied to leverage previous

knowledge from the ImageNet dataset for classification of clouds. EfficientNetV2 by Tan

et al. [TL21] is the second version of the model developed by Tan et al. [TL19] and Swin

Transformer V2 by Liu et al. [Liu+21a] is the second version of the model developed by

Liu et al. [Liu+21b].

3.2. Local Weather Observations

There are multiple forms of observations that are available from weather stations around

the world. The WMO and the ICAO work on global standards regarding weather reports

and their application in the aviation sector, making them a good data source for weather

observations around the world. Information about the different formats is made available

by the WMO [WMO22] and by the ICAO [Int21]. Aviation weather reports that are valid

for the immediate time of observation include METARs and SPECIs. METARs encompasses

routine weather events and is issued at intervals of one hour or 30 minutes. SPECIs focuses

on special weather events, but uses the same encoding as METARs. They are issued, when

certain significant weather criteria are met. If METARs are issued every 30 minutes, an

additional SPECI report is not necessary. Both types of reports include a section for trends

and remarks, but their main purpose remains centered around local observations at some

point in time. TAFs on the other hand, provide forecasts of meteorological conditions over

a given period of time. While METARs and SPECIs are often issued automatically, TAFs are

manually created by professionals, following international practices and guidelines. Their

forecast periods lie between 6 and 30 hours. Reports that are created routinely and are valid

for less than 12 hours are to be issued every 3 hours, while reports for a period of over 12

hours are expected to be issued every 6 hours instead. This thesis uses METARs due to their

high availability of common weather phenomena. A specified time-limit restricts METARs

to ensure the drift between local and satellite-based observation is small. This thesis fills
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the gap in research by using automated local weather observations as ground truth values

to train a machine learning model on the task of cloud detection in satellite images, without

precomputed or manually created cloud masks. Aviolat et al. [ACC98] shows how the

creation of METARs can be improved by using artificial intelligence for cloud observation,

by using information available from a pyrgeometer for cloud amount estimation and a laser

ceilometer to get the clouds base heights. In contrast, the model developed in this thesis

aims at detecting clouds in images from satellite observations, comparing it to METARs

that are used as ground truth for learning. Novotny et al. [Nov+21] assess the formal

quality of the different meteorological reports issued from inside the Czech Republic and

accumulated over several years. The approach is guided by the ICAO regulation Annex

3 [Int18]. This includes checking the syntax and date of the reports for validity. The

individual problems are categorized based on severity into either errors (high severity)

or warnings (low severity). Errors make it impossible to interpret the report completely

and without ambiguities, excluding the corresponding report from further processing.

Warnings mostly encompass false categorizations of change groups that would allow the

creation of such a report, which is not enough to exclude the report from following steps.

METARs achieve an accuracy of around 98.68% (N = 113’989) and the accuracy of SPECIs

is around 97.66% (N = 10’184). TAFs that are created by human professionals show higher

error rates. Of the around 12’800 assessed TAFs, only around 10% of reports are without

issues, while around 10% to 21% contain at least one error. Most of the reports – around

80% – contain at least one warning but no error. In a next step, METARs are used to assess

the accuracy of TAFs, resulting in a success rate between 73.1% and 79.6%. Since there is

no way to encode changes to the cloud amount, differences between expected and actual

values negatively impact the success rate. In this thesis, the METAR report type is used

for assessment of actual cloud coverage, since it is issued regularly and in shorter time

intervals than other report types. Furthermore, the assessment by Novotny et al. [Nov+21]

shows problems in the success rate of cloud amount prediction of TAFs, where METARs

provide these values through direct measurements around the desired point in time. The

work by Nastos et al. [NBM17] explores the influence of Föhn winds in the region of

Crete Island (Greece) on human heat stress perception. It further shows the significance

and information quality of METAR-based weather information, as METARs are used as

the data source for half-hourly information on air temperature, relative humidity, wind

speed, and cloud coverage. Gornyy et al. [Gor+22] uses both satellite data and METARs

to explore an automatic assessment of the minimum mortality temperature as a result

of urban overheating. The infrared satellite imagery is collected from the Landsat7 and

Landsat8 missions. It focuses on METARs from two stations in Helsinki (Finland), where

one station is exclusively used for analysis of the results. This concept is applied on a larger

scale in this thesis, where METARs are gathered from significantly more weather stations

and processed automatically as a source for the developed machine learning model.
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4.1. Data Collection

Before machine learning can be applied, the necessary data has to be collected, prepro-

cessed, and combined from various sources. This chapter focuses on how the data is

collected, as well as preprocessing steps that are common regardless of application, like

filtering and formatting. To improve reuse, the code employed for data collection follows a

microservice architecture that enables developers and researchers to add or replace differ-

ent services of the whole without having to restructure a rigid, monolithic application and

thus reducing the scope of necessary changes. The microservices are independently and

fully automatically deployable using containers provided by Docker [Doc] and focus on

different capabilities. Communication is facilitated through HTTP-REST requests. Follow-

ing the leading machine learning frameworks PyTorch [Fou] and TensorFlow [Goo], the

microservice API is written in Python. As for this thesis, two services are provided that are

also written in Python. One service is responsible for collecting and preprocessing satellite

images from the Sentinel-2 mission, while the other service facilitates access to METARs

from globally distributed weather stations. In addition to accessing the functionality of

the services, the API also offers functionality to automatically parse python data classes

for METARs after loading the corresponding data into a table using the Pandas library

[Num]. Using data classes helps with the processing of METAR entries like sky conditions,

which contain information that can not be described by a single value.

4.1.1. Sentinel-2 Satellite Imagery

The service encapsulates access to data from the Copernicus Open Access Hub [ESAb]

with login management that allows multiple people to download data through individual

accounts. The quota for the download request is taken from the Copernicus user account

that initiated the request. However, since login information is not stored locally as a

security measure, the system is not able to continue pending requests after restarting.

Because of this, the service will instead continue the request when a user requests the

same satellite image again, using their quota for the request instead. A typical workflow

first requests metadata for a given region and time frame, followed by the initiation of

data requests for products (satellite imagery) and finally the preprocessing of that product,

returning an archive file of cut-out regions of the whole image around named geospatial

positions with a given radius in meters. The extracted images are squares, where the side

length is equal to the diameter computed from the radius and divided by the resolution

in meters per pixel. The archive contains JPEG2000 images of all queried spectral bands

for the named geospatial positions. In case of the product being not currently available
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but retrievable from the Long Term Archive (LTA), a corresponding request is initiated,

and a scheduler queries the data in an interval of 30 minutes. Since not all data might be

available at all times, requests for data always return the corresponding state so that the

users of the API can choose how to react to it. The following states are defined:

• New – The request is new and has not been processed yet

• Invalid – The identifier of the satellite image is not valid

• Pending – The satellite image data is not locally available but online and a request

to retrieve it from the LTA has been made

• Incomplete – The satellite image data is partially downloaded (if the download has

previously been interrupted, it will now be continued)

• Available – The data is available locally and can be further processed to extract

regions from it

• Unavailable – The data is not available locally and no longer available from the

Copernicus Open Access Hub

• Processed – The data has been processed and can be removed from storage

Finally, the service offers the functionality to query all grid tiles that cover parts of a

multi-polygon input geometry in geospatial coordinates, which enables partitioning in

subsequent tasks.

4.1.2. METARs and Weather Station Metadata

The second service is responsible for gathering METARs from weather stations using

the information provided by the University of Iowa [IOW]. It enables the user to query

both metadata and METARs for stations, by either specifying the names of the stations or

requesting all stations contained in a user-defined polygon. Following a typical workflow,

the metadata for weather stations for a given region and time frame is retrieved first. Since

the location of weather stations provided by the University of Iowa is inaccurate in a

few cases, the service automatically updates the position in correspondence to geometric

information on country borders around the world, which will help with future processing

of weather station metadata. The METARs are requested next, by selecting from available

properties and units of measurement (e.g., temperature in degrees Celsius, wind speed

in meters per second), which are automatically unfolded from the compressed METAR

format. METARs are stored in their original, abbreviated form in a PostgreSQL database to

facilitate partial unfolding on request, while retaining all information that they originally

contained. The underlying database technology is utilized in through a library with object-

relational mappings to eliminate dependencies to a single database technology. The service

efficiently handles download requests for METARs of various stations for a given date and

time range. Since the service provided by the University of Iowa restricts requests to whole

days, the dates are derived from the date and time range first. Through a local database
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access, information is collected about what METARs are already present for which station

in the specified date range. This implicitly provides information about for what dates

METARs are missing, which is utilized to exclude stations from the download, whose date

range is completely covered by locally available data. With the goal to minimize the load

on the service provided by the University of Iowa, both the number of requests and the

number of stations per request are considered. To minimize the number of requests, the

METARs are collected for all station where some data is missing, as only a single date

range can be given per request. The missing dates of these stations are then combined to

allow an algorithm to divide it into contiguous date chunks, removing dates for which

all stations already have information locally available. Finally, the METARs are queries

per date chunk for all weather stations in batches of at most 100 stations. The retrieved

data is then stored into the database, making sure that no duplicate entries are created

through masking with the previously queried availability of METARs per station in the

selected date range. After completion, all METARs are queried for the specific range of

date and time. The METARs are unfolded next, revealing their contents in an automatically

processable format defined by the API. The unfolded METARs are then returned to the

user.

4.1.3. Collecting Data from the Services

Before collecting data, the date time range and regions of interest are specified. If not

specified otherwise, the data is collected for the past six months from the date of the request.

They are passed onto later metadata-queries of satellite imagery and weather stations.

Initially, metadata of the satellite imagery is collected that contains the identifiers of each

product among other information like cloud coverage in percent and the identifier of the

grid tile. Since the objective of this thesis is to inspect the enrichment potential of satellite

imagery with ground based weather data for machine learning purposes, metadata about

the weather stations is retrieved next. The geospatial information of both metadata datasets

is then combined, resulting in weather stations clustered by grid tiles. A visualization of

all weather station positions that are available from the service provided by the University

of Iowa can be seen in Figure 4.1. Each weather station is shown as a single dot on the

map, where the color represents the elevation of the area around the weather station

using the magma color map. Violet represents values near the sea level, while yellow

stands for high elevation of mountainous areas. In total, there are around 82’000 unequally

distributed weather stations available. With usability and quality related pre-filtering of

stations in mind, a higher density of weather stations that provide more data points is

desirable. While the density on the level of magnification of Figure 4.1 looks similar for the

USA, Mexico, and Europe, a higher magnification reveals larger differences as can be seen

in Figure 4.2. The globally highest densities of weather station that provide METARs are

available in the USA, which is why the data of this thesis is limited to a selection of states of

the USA. Another reason for choosing an area of high station density is that downloading

large amounts of data to cut out small portions around a single weather station is not

efficient. Since Sentinel-2 grid tiles cover around 10,000 square kilometers, and the area

for which predictions of weather stations are issued lies around a 16 kilometers radius,

this would mean that only 2.56% of the data is used, while the rest would simply get
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discarded after processing is complete. Even though the whole grid tile is downloaded,

wastefulness can be reduced to a minimum by selecting areas of higher density. For each

of the satellite products, the METARs of the related grid tile cluster of weather stations are

retrieved for a given time window of +/- 30 minutes, as seen in algorithm 1. Afterward,

the METARs are analyzed and filtered to ensure the information is available that is later

used for machine learning, meaning that in the case of this thesis the cloud coverage

must be specified using one of the codes explained in Table 2.2. These codes will also be

called cloud cover classes from this point, since they act as categories for the ranking of

cloudiness. Since cloud coverage is seen in satellite images from a top-down perspective,

the overall cloudiness is assessed in contrast to the per layer cloudiness that might be

given by METARs. This maximum cloud coverage is computed by ranking the METAR

cloud coverage from lowest to highest cloudiness according to the classes in Table 2.2.

This does not account for the fact, that cloud covers might overlap in such a way that

the cloud cover class is actually increased. An example of overlapping clouds at different

heights is seen in Figure 4.3, which is taken from California’s coastline. The clouds in

this image can be differentiated fairly well by taking note of the shadows cast by higher

clouds. The remaining METARs are grouped by satellite products to avoid the unnecessary

download of satellite products for which no METARs are available and contain cloud

coverage information. Then, the satellite products that do have METARs that satisfy the

requirement of containing sky condition information are downloaded. While the handling

of LTA requests is implemented, it will not be fully utilized for the collection of data due

to the implied significant time overhead and usage quota. According to the Copernicus

user guide [ESAc], satellite products are restored within a few hours and kept available for

download for at least three days. However, there is a quota that is adapted to the access

patterns of the user, which can not be queried itself. Then, the archive files are constructed,

where each named geospatial position corresponds to the name and position of a weather

station inside the grid tile of the given satellite product. With improved reusability of the

collected data in mind, metadata of Sentinel-2 satellite products and weather stations is

provided alongside the satellite imagery and METARs.

4.1.4. Selected Regions

As described in subsection 4.1.3, satellite imagery and local observations are collected from

the United States of America. Data is collected over time for individually selected states

according to their different climatic conditions and terrains that could affect the detection,

availability, and types of clouds. The states are chosen according to the goals of having a

high diversity, while maintaining a reasonable dataset size. Aside from flat topographies,

regions with mountain ranges are included for the representation of orographic clouds. A

basis for the selection is given by the Köppen-Geiger climate classification map, created by

[Bec+18] and visualized in Figure 4.4. The map is developed for the time period between

1980 and 2016 and uses the same classification criteria as by Peel et al. [PFM07], which are

a slight variation from the original criteria by Köppen et al. [Köp36]. Additional climatic

information is taken from up-to-date climate maps provided by NOAA [ONc], which are

accumulated from around 1981 until around 2010. Severe weather events include intense

thunderstorms and tornados. While this does not factor in the impacts of climate change
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Algorithm 1:METARs querying algorithm

Data: products, stationMetadata, radius, datetimeRange, metarProperties,

timeWindow

Result: metars

metars← DataFrame ofMetar

stations← List of Station

for station ∈ station_metadata do
tileFootprint← products[station.product].footprint

if station.geometry.sphere(radius).boundingBox().within(tileFootprint) then
stations.append(station)

metars← queryMetars(stations, datetimeRange, metarProperties, timeWindow)

metars← metars.filter(lambda metar: metar.skyConditions not empty)

metars← metars.filter(areSkyConditionsValid)

return metars

Function areSkyConditionsValid(metar)

maxCloudCover← metar.skyConditions.getMaxCloudCover()

return maxCloudCover ∈ {CLR, FEW, SCT, BKN, OVC}

Figure 4.1.: Visualization of all METAR providing weather stations that are available from

the IEM service by the University of Iowa.
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(a)

(b)

Figure 4.2.: Visualization of METAR providing weather stations that are available from the

IEM service by the University of Iowa. The stations are shown on the same

level of magnification for (a) the USA and (b) Europe.
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Figure 4.3.: A satellite image over a beach in California that shows the effect of overlapping

clouds on total cloudiness.

in recent years, it provides a solid basis for comparisons between climatic conditions of

different US states regardless. Not all criteria will be listed here, instead an interpretation

is given for the criteria of selected individual states. The full table of codes and meanings

is presented in the appendix in Table A.1.

Florida The climatic region of Florida is interesting because of the tropical climatic

conditions at the most southern part of the peninsula that are not found anywhere else

in the United States of America. The largest part of Florida has a temperate climate,

experiences hot summers and no dry seasons. The winters in Florida are generally warm.

Accordingly, it sees large amounts of precipitation throughout the year, with especially

high concentrations from June to September. Historically, there is a moderate probability

(up to 4%) for severe weather events in summer, mostly in the north. The terrain of

Florida is relatively flat at a low elevation and contains many bodies of water. Furthermore,

Florida is characterized by its sandy beaches and coastal marshes. It is affected by the

Gulf of Mexico in its west and the Atlantic Ocean with the Gulf Stream on its eastern side,

establishing warm water temperatures.

California There are various climatic regions present in California, making it a great

addition to create a compact dataset. The south-east is mostly dry desert, with both hotter

and colder temperatures. The west coast of California is temperate with dry, and warm

to hot summers. In contrast, there is usually more precipitation present in the time from

November to March. The area around the center also includes some steppe, while the
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Figure 4.4.: Köppen-Geiger classification for selected regions of the U.S.A. with high data

density.
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north-east regions are cold and experience dry summers. While the historical occurrence

probability of severe weather events is very low, the region often faces wildfires in the

summer. California’s topography is interesting, since changes in landscape are relatively

close. On one hand, there is the Sierra Nevada mountain range, with its highest point at

4,421 meters elevation. On the other hand, there is the shoreline that exhibits both rocky

areas and cliffs, as well as sandy beaches. The region is affected by the Pacific Ocean and

the cold California Current, flowing southward.

Montana Large regions of Montana are covered by cold, arid steppe. However, in the

west there are cold regions without dry seasons. In general, Montana sees relatively

little precipitation over the year. Severe weather events happened with a relatively low

probability (mostly 1% to 2%) The topography of Montana is coined by its mountain ranges,

the Rocky Mountains, and a higher overall elevation in the Eastern Plains with gently

rolling terrain. In comparison to the other selected states, Montana does not have any

coastal areas.

Washington The region east of Washington’s center is cold desert, which is surrounded

by cold steppe. Around this area, there are cold areas that undergo dry summers. The

west coast of Washington is mainly covered by temperate climate with dry, and warm to

hot summers, but also contains areas of temperate climate with warm summers and no

dry seasons. Its coast experiences most of its precipitation in the time from October until

April. While the coast is mostly flat and lies at a low elevation, the amount of mountainous

formations and high elevation areas increase eastward. While the maritime influence of

the Pacific Ocean contributes to the formation of clouds, the Rain Shadow Effect, occurring

in the mountains, leads to increased precipitation in the western parts of Washington.

Texas The climatic conditions of Texas can mostly be split into three zones. The east

is temperate with no dry season and experiences hot summers. The west consists of

mostly arid steppe, with colder temperatures in the north and warmer temperatures in

the south. Additionally, there are a few desert regions in the west to south-west of Texas

with mostly hot temperatures. Texas went through historical severe weather events with

a relatively high probability (up to 7%) mostly focused on the north. This is also reflected

in Texas being part of Tornado Alley, which is also an area of high frequency of severe

weather and supercell thunderstorms, aside from the eponymous tornados. The elevation

distribution of Texas starts lower in the south-east and increases towards the north-west.

In comparison to California or Washington that also contain both low and high elevations,

Texas exhibits more level ground with a small inclination that gradually accumulates to

the north-west. Similarly to Montana, the state covers a portion of the Great Planes that

has grasslands and a gently rolling terrain. The south of Texas possesses sandy beaches

connected to the Gulf of Mexico.
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4.1.5. Future Compatibility

During the writing of this thesis, the Copernicus Data Hub announced that the system is

going to be replaced by the new Copernicus Data Space Ecosystem [ESAa] as of November

2023. Until the end of June, provision of data is continued normally, while it is reduced

from July until September. API access is first made available in the month of April and

the full extent of functionality and data is available in July, which is why the services

developed for this thesis still uses the API that is associated with the Copernicus Data

Hub. Due to the microservice architecture, this poses only a minor inconvenience, as the

communication to the new API of the Copernicus Data Space Ecosystem can be developed

without affecting other parts of the system. The service itself is also structured in a way

that separates scheduling, communication, and processing to ensure a smooth migration

to the new API.

4.2. Dataset Preparation

Following the data collection workflow of section 4.1, individual preprocessed data is

retrieved for multiple areas of interest with different geological and weather conditions.

Before generating a dataset, the local availability of satellite imagery needs to be examined.

Even though it is feasible to restrict the data and metadata to local availability before

beginning preprocessing, this would exclude the option to add data later on using LTA

based retrieval. Since LTA retrieval is included by design, both data and metadata are

filtered to only include local Sentinel-2 products after loading, introducing a small overhead.

To improve the accuracy of the METAR observations, the included time delta in minutes in

relation to the time of observation for the satellite image is used to find the smallest absolute

deviation between observation times. In preparation for machine learning, overlapping

image bounds of different weather stations need special care, because they have partially

identical geography that might cause the machine learning program to learn those patterns

and focus on the ground rather than the sky. The significance of this problem is imminent

if the learned ground based patterns from the training dataset would help the model

achieve better results during the validation phase, but would not generalize well to other

geographical regions. An approach to alleviate this problem is to group overlapping regions

together into clusters and enforcing the restriction that data associated with each of these

clusters can only be distributed to the same dataset. The clustered data is then distributed

to the datasets with the goal to achieve a certain 3-way split (e.g., 80-10-10). As a next step,

the satellite imagery is preprocessed using band-wise mathematical expressions to fill the

outgoing 3-band (RGB) image files, combining and compressing available information.

Finally, the labels and additional metadata that are relevant to machine learning are stored

together with the preprocessed images in a new directory.

4.2.1. Cluster Analysis for Weather Stations

A common approach to clustering data points that comes to mind is the Density-based

spatial clustering of applications with noise (DBSCAN) algorithm by Ester et al. [Est+96].

It uses the two parameters 𝝐 and minPts to add points to a cluster, if they are close to
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many other points of that cluster. 𝝐 refers to the maximum distance between two points

that would classify them as neighbors, while minPts defines the minimum amount of

points required for a cluster to form. DBSCAN then further distinguishes between core
points, (directly) reachable points and outliers. Considering a point A and a sphere of

radius 𝝐 around it, the point is a

• core point, if there are at leastminPts points in the sphere (including point A)

• directly reachable point from a Core point B, if that point lies in the sphere of

point A

• reachable point from a Core point B, if there is a path 𝑃0, . . . , 𝑃𝑁 with 𝑃0 = B and

𝑃𝑁 = A, where each point 𝑃𝑖+1 is directly reachable from point 𝑃𝑖 , implying that

all points of the path except A have to be core points

• outlier, if no core point lies in the sphere of point A

While this density based technique provides a good foundation for clustering that is

applicable for data mining in many scenarios with a runtime complexity of just𝑂 (𝑛 log𝑛)
and a space requirement of 𝑂 (𝑛), its introduction would come at the cost of accuracy.

Since the most important factor is the overlap of square image bounds, setting the search

radius 𝝐 too small would not detect all intersections. On the other hand, if the radius is

too large, weather stations whose image bounds do not intersect would still be clustered

together. An example of such a scenario is shown in Figure 4.5. Various radii 𝝐 interact

differently with neighboring weather stations A, B and C. The rectangles around the

weather stations represent their image bounds. All radii originate from weather station A,
as it is chosen as the center in this example. The image bounds overlap only for stations A
and B. The illustration shows in (a) that when the radius is too small, the overlap between

stations A and B is not recognized and clustering does not occur. In contrast, when the

radius is too large, as is the case in (b), station C is falsely clustered together with A
even though no overlap is present. (c) depicts a thought experiment: Even considering

an extension of the DBSCAN algorithm that facilitates intersecting the radius with the

image bounds to recognize overlapping regions, it would not be possible to only detect

the overlap of stations A and B without also falsely detecting overlap between A and C,
due to the rectangular shape of the image bounds and the specific station positions in this

example. The loss in accuracy results from falsely clustering together stations that have

no overlap and can be seen as bleeding to nearby not overlapping stations.

To counter this accuracy problem, a different shape based approach is used. Since

metadata of theweather stations is stored after data collection, the identifiers and geospatial

positions can be retrieved and utilized for further processing. A key approach is to

generate the shapes corresponding to the image bounds of each weather station. With

these geospatial shapes in tabular data and the weather station identifier as keys, the

intersections are calculated using a table join. When only looking at the remaining

primary and foreign keys, this is interpretable as an adjacency list. Viewing this adjacency

list in the form of a graph yields the desired clustering, where nodes represent weather
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Figure 4.5.: Visualization of the implications of using different radii 𝝐 with image bounds

around the positions of weather station A, B and C.
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stations and edges represent intersections of image bounds. A visualization of such a graph

can be seen in Figure 4.6 for the state of California. Square borders represent the image

boundaries around weather stations, and squares of the same color signify a single cluster

(gray squares excluded). The center points of overlapping image bounds are connected

by edges to form a network. The network is represented by the black lines that connect

squares of the same cluster. All nodes that are reachable from a starting node – including

itself – are contained in a single cluster. This provides an accurate result without bleeding,

compared to DBSCAN.

After deriving all clusters, weights are assigned based on the accumulated amount of

METARs provided by each weather station that is assigned to that cluster. The amount of

METARs is restricted to only account for one METAR per weather station and satellite

image, reflecting the desire to only use the METAR that has the smallest difference in time

of observation between METAR and satellite image. These weights build the foundation

for distributing the data to the datasets.

4.2.2. Dataset Creation

To build a dataset with a desired split (e.g., 80-10-10) for training, validation, and testing,

the weighted clusters are distributed to corresponding datasets. This equates to solving a

partition problem, for which a variant of greedy number partitioning is used. Instead of

putting each cluster into the dataset whose current quantity is the smallest, the dataset

with the largest missing quantity is chosen in algorithm 2. The new datasets are created

with a target quantity equal to their split percentage of the total available data quantity.

Each cluster is sequentially added to the dataset with the largest missing quantity. Sorting

the clusters according to their weight first, increases the runtime from 𝑂 (𝑛) to 𝑂 (𝑛 log𝑛).
The approximation improves as well, since clusters with larger weights are distributed

earlier, leaving the small weights for the final adjustment.

Since there is more data available from regions with more weather stations and a higher

observational frequency than others, distributing data independently of area all at once

might cause sparse data to fall into a single dataset. And if sparse data with special regional

properties like ice is only present in the test dataset, the machine learning model will

not be able to accurately learn these patterns. To ensure that the created datasets all

contain information about the different underlying geospatial regions with their individual

properties in similar amounts, the data distribution is applied to all areas of interest on their

own. Finally, the resulting per region datasets are joined, resulting in the final training,

validation and test datasets as shown in Figure 4.7. By utilizing the greedy algorithm

algorithm 2 for a given dataset of 7783 labeled images, the target split of 80-10-10 is

approximated as seen in Table 4.1.

To reduce the size of the final dataset, the spectral band measurements from the Sentinel-

2 satellites residing in individual are combined and stored in a single outgoing file. All

images are rescaled to a customizable but per dataset fixed resolution to enable using them
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Figure 4.6.: A visualization of the network that is build from the tabular join adjacency list

for the example of California.
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Algorithm 2: Greedy Number Partitioning – Largest Missing Quantity

Data: split, data
Result: datasets
datasets← List of Dataset

for percentage ∈ split do
datasets.append(Dataset(percentage · data.quantity))

for cluster ∈ data do
dataset← getDatasetWithMostFreeSpace(datasets)
dataset.add(cluster)

return datasets

Function getDatasetWithMostFreeSpace(datasets)

maxQuantity← 0

maxDataset← None

for dataset ∈ datasets do
if dataset.quantity > maxQuantity then

maxQuantity← dataset.quantity

maxDataset← dataset

return maxDataset

Function getMissingQuantity(dataset)

return dataset.targetQuantity − dataset.currentQuantity

Figure 4.7.: The result of distributing data using the greedy algorithm algorithm 2 and

handling different regions independently.

Target distribution Actual distribution

Percentage Quantity Percentage Quantity

Training 80.00 6225 79.97 6224

Validation 10.00 779 10.06 783

Test 10.00 779 9.97 776

Table 4.1.: Target and actual distribution for the distribution of data into three datasets

using the greedy algorithm algorithm 2. There are 7783 data units distributed

in total.
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in the PyTorch machine learning framework. For future compatibility and visualization

purposes, geospatial data is copied as well. The bands are combined in such a way that each

band acts as a matrix on which mathematical expressions can be evaluated. An intuitive

approach is to start with just bands B4, B3, and B2 that represent the red, green, and blue

values of a True Color Image (TCI). All bands are scaled according to the specification of

Sentinel-2 Level-1C images, by dividing them by their quantification value that is set to

10,000 by default and accordingly converted to floating point values. Finally, the resulting

combined images, and labels extracted from the METARs are stored in the dataset directory.

4.2.3. Final Dataset

For the dataset used in the machine learning process, a split of 80-10-10 for the training,

validation, and test datasets is chosen to retain most of the data for training and still have

an useable amount of data for validation and testing from the total of around 12800 images.

The label distributions of the dataset split are compared to ensure similarity. A problem of

the dataset is its imbalance, as shown in Figure 4.9c for the METAR cloud coverage classes

shown in Table 2.2. There are significantly more labels equal to CLR than any other class

on its own. While there are around 5,300 labels in the CLR class, the FEW class consists of

just around 920 labels. It is necessary to address this imbalance in the dataset to ensure

that the model does not simply try to predict the majority classes. Figure 4.8a shows the

distribution of time-differences between satellite images and METARs in minutes. The

anchor point in time is chosen to be the satellite image, since there are more METARs

available for a single satellite image and because the satellite image acts as the ground

truth of cloud coverage, which even the METAR labels might deviate from. The majority

of METARs are given in a time-window of around +/- 15 minutes from the observation of

the satellite image. Due to the limitations imposed on data collection from the Copernicus

Open Access Hub, the data is collected from January 2023 until June 2023.

To provide an estimate of the data quality as well as away to improve testing of developed

models, the full dataset of around 12800 images is also labeled manually. While this is

done with best practices and conventions regarding the observation of cloud coverage and

the METAR format in mind, making mistakes can not be avoided completely. Nevertheless,

these mistakes should almost always be constraint to the directly neighboring classes,

establishing clarity for cases in which theMETARs provide information that does not match

the satellite images. Aside from incorrect data sent by the weather stations, the occurrence

of mismatches between METARs and satellite images is possible due to the time window of

+/- 30 minutes, in which METARs are considered to be in range of the satellite image. The

selection of the time-window is a tuneable parameter that also impacts the amount of data

that is available for a selected region, whose negative impacts in the form of mismatches

are reduced by only selecting the most recent METAR to add to the dataset. The confusion

matrix in Figure 4.8b indicates how well the METAR classes fit to the satellite images.

Here, the true labels are equivalent to the METAR cloud coverage information, whereas

the predicted labels represent the manually labeled satellite images. Even considering that

a certain mismatch occurred between neighboring classes, the matrix shows that there are

some edge cases like OVC being labeled CLR or vice versa. Nonetheless, the labels are in
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(a) The distribution of time-differences be-

tween the satellite images and the

METARs of the final dataset.

(b) Confusion matrix of METAR classes as

true labels (Y-axis) put against manually

predicted labels (X-axis).

(c) Frequency of mismatches between

METARs and satellite images on a per

weather station basis.

(d) Overlapping histograms of both correct

labels and mismatches between METARs

and satellite images.

Figure 4.8.: General statistic information regarding the final dataset.
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(a) The distribution of cloud coverage (in per-

cent) of the complete satellite images of

which only parts are used.

(b) The distribution of cloud coverage (as

METAR classes) of the complete satellite

images of which only parts are used.

(c) The maximum cloud coverage distribu-

tion of the final dataset.

(d) The manually labeled cloud coverage dis-

tribution of the final dataset.

Figure 4.9.: Cloud coverage distributions of the final dataset and its data sources.
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similar classes overall, making model training feasible, as patterns and relationships can

still possibly be derived. When only looking for mismatches that are further away than the

directly neighboring classes, the average mismatch frequency per station is around 15.9%,

as exhibited by Figure 4.8c. Coming back to the previously shown time delta distribution,

Figure 4.8d presents a histogram of mismatches and correct labels in relation to each other

in the form of a histogram over the selected time window of +/- 30 minutes, showing that

most of the labels either match directly or fall into a neighboring class. Furthermore, the

distribution highlights that the amount of mismatches are independent of the selected

time window. Figure 4.9a illustrates the distribution of cloud coverage in percent for

the full-resolution source images, from which only parts are extracted for the dataset.

Figure 4.9b builds up on this information by selecting what percentages fall into which

METAR class. This grants a new perspective on the distinction between the distribution of

automatic METAR labels (Figure 4.9c) and manual labels (Figure 4.9d). The distribution of

manual labels fits the expected distribution derived from the satellite images significantly

better than the automatic labels of the METARs, which on one hand signifies the accuracy

of manual labeling and on the other hand shows imperfections in automatic labeling. To

better reflect the capabilities of the model developed in this thesis, confusion matrices are

provided for both METAR labels and manual labels as true labels.

4.3. Machine Learning

The machine learning model developed in this thesis aims to predict the cloud coverage

categories according to the specifications of the METAR format that is defined by the

WMO [WMO22] and the ICAO [Int21], and implemented by the United States NOAA

[ONa]. It strives to correctly classify cloud coverage into the categories show in Table 2.2.

The challenge of choosing an initial machine learning model is coined by the requirements

to work on both smaller and larger datasets effectively and efficiently, while also providing

state-of-the-art results for image classification tasks. Furthermore, the training process

should be efficient, having only a limited number of parameters to train in a shorter

amount of time. After considerations of other models like the Swin TransformerV2 by

[Liu+21b] [Liu+21a], EfficientNetV2 by Tan et al. [TL19] [TL21] is chosen for meeting

these requirements as its training is faster compared to other state-of-the-art models with

the addition of being up to 6.8 times smaller than these models. The model is characterized

by its fast training speed and low parameter count. During the initial phase, computation

is done on the bwUniCluster 2.0 using a JupyterLab based working environment. The

model and data is then moved to the HDF-ML cluster after initial experimentation, where

Simple Linux Utility for Resource Management (SLURM) jobs run in the background to

train the model.

4.3.1. Transfer Learning

There are multiple reasons why transfer learning is an applicable technique for cloud

coverage classification, such as only leveraging existing knowledge. While there are

approximately 12800 labeled satellite images that cover the aerodrome of the weather
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stations available in the dataset, pre-trained models can still provide additional insights.

They are usually trained on more diverse visual patterns compared to the satellite images

of the dataset used in this thesis, which are also taken from the same visual distance,

further reducing the variety of patterns. Since classification of cloud coverage is a task

that involves complex visual patterns and textures, making it challenging to capture

the desired characteristics. Examples of these aspects are varying cloud shapes that are

most prominent between different types of clouds, like fluffy cumulus clouds and thin,

stretched cirrus clouds. These variations make it difficult to precisely define boundaries

and learn consistent cloud patterns. Likewise, clouds also tend to overlap, creating even

more complex visual structures in the process. This is where transfer learning is able to

support the model by using the pre-trained extraction capabilities for high-level features,

in addition to the lower layers that are already capable of extracting general information on

a smaller scale. On the other hand, feature extraction can still be fine-tuned by unfreezing

and training layers of the pre-trained model before the last classification layer. Aside from

image complexity itself, transfer learning also addresses generalization and robustness.

When trained on an appropriate dataset, the pre-trained model may help stabilize the

training process with regard to changes in time – relating to shadows and lighting –

and locations with different topography. Finally, training a model that is based on a

pre-trained model using transfer learning allows to rapidly develop new machine learning

models, as computation times are significantly reduced due to the basic knowledge that

is already available from a different domain, also improving convergence. The chosen

base model EfficientNetV2 by Tan et al. [TL21] is trained to detect 1000 classes using the

Imagenet-1k dataset, incorporating a total of around 1.43 million images. This provides

a solid foundation for transfer learning that helps accelerate model development and

achieve better results. The model also shows great results for transfer learning in other

scenarios, achieving a better accuracy with an average parameter reduction factor of 4.7 in

comparison to other models such as ResNet by He et al. [He+15] and DenseNet by Huang

et al. [HLW16].

4.3.2. Model

EfficientNetV2 uses a convolutional neural network (see subsection 2.2.8) structure. One

of the central aspects that are already introduced in EfficientNet by Tan et al. [TL19] is

compound scaling, which facilitates uniform scaling of network width, depth, and height.

This scaling builds on the intuition of needing more layers to capture finer patterns in a

larger image. Since the pretrained parameters of the EfficentNetV2 model only account

for RGB images, the images of the dataset are restricted to using exactly three outgoing

bands as well. The initial spectral band to image channel mapping is set to R = B4, G =

B3, and B = B2, representing TCIs that are also used in the ImageNet training processes

of the pretrained parameters. If not specified otherwise, it can be assumed that model

performance is evaluated on images of size 300×300 pixels, to still capture relevant details

while reducing the size of the dataset. To let themodel learn patterns and relationships from

the satellite images that it does not already know of, model parameters are unfrozen. To

measure model performance on this imbalanced dataset, the F1-score is used, as explained

in subsection 2.2.10. Since the dataset is imbalanced, confusion matrices that are shown in
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the following all use the true-label normalization that is explained in subsection 2.2.11.

Confusion matrices are always created from previously unseen data of the training dataset.

4.3.3. Direct Neighbor Accumulation

The technique refers to the summation of neighboring performance values of a confusion

matrix. The reason for the introduction of this method is the potential for mismatches

of manual labels to one of the neighboring classes, due to human error. By allowing a

mismatch to the neighboring classes, the results can be aggregated. This presents a clearer

view on information regarding mismatches that are very likely not due to human error,

because their difference is greater than one class. For each row of the true-normalized

confusion matrix (see subsection 2.2.11) the neighboring values are summed as shown

in Equation 4.1, where 𝐷𝑁𝐴𝑖 represents the direct neighbor accumulation value for the

𝑖-th row, and 𝐶𝑀𝑖,𝑘 symbolizes the entry in the 𝑖-th row and 𝑘-th column of the confusion

matrix𝐶𝑀 . The column index 𝑘 is adjusted over the iteration process to include the entries

left and right of the primary diagonal. Edge cases are treated by constraining the column

index 𝑘 to the dimensionality of the confusion matrix with 𝑛 classes.

𝐷𝑁𝐴𝑖 =

min(𝑖+1,𝑛−1)∑︁
𝑘=max(𝑖−1,0)

𝐶𝑀𝑖,𝑘 (4.1)

4.3.4. Classification and Regression

An important decision for the following model architecture is the choice between classifi-

cation and regression techniques. The techniques are compared here to find out which

one delivers the best performance. While classification techniques regard different classes

as exclusive and unrelated, regression techniques focus on the presence of a relationship

in the data (e.g., CLR is less cloudy than OVC). Even though multi-class classification is

often used when comparing images of different classes, regression can potentially better

understand the ordinal relationship between the classes that is expressed as being least

cloudy to most cloudy: CLR, FEW, SCT, BKN, OVC.

Classification The multi-class classification implementation uses a fully connected layer

with five neurons, representing the five METAR classes, as its output or classification layer.

It is trained using a Cross-Entropy loss function, and the model prediction is determined

by the maximum value of the output layer’s tensor. The resulting confusion matrix is

shown in Figure 4.10. The model performs good for the most distinct edge-classes CLR and

OVC, but fails to achieve an acceptable performance on the inner classes FEW, SCT, and

possibly BKN. A potential pitfall of this approach is treating classes independently of each

other and not learning their ordinal relationship, resulting in less accurate predictions for

intermediate classes and deviation from the expected class by more than one class-rank.

One-Neuron Regression One way to implement regression is to reduce the number of

neurons in the fully connected output layer to just one and constraining its predictions
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(a) Confusion matrix using METARs as true

labels.

(b) Confusion matrix using manual labels as

true labels.

(c) Direct neigbor accumulation for confu-

sion matrix using manual labels as true

labels.

Figure 4.10.: Evaluation of the classification model experiment.
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(a) Confusion matrix using METARs as true

labels.

(b) Confusion matrix using manual labels as

true labels.

(c) Direct neigbor accumulation for confu-

sion matrix using manual labels as true

labels.

Figure 4.11.: Evaluation of the one-neuron regression model experiment.

to the range from 0 to 1, using a sigmoid function at the end. Training is done using a

Mean-Squared-Error loss function, while the predicted class is derived from distributing

thresholds in between the interval [0, 1] of the model output, so that 0 corresponds to

CLR and 1 stands for OVC. The corresponding confusion matrix is shown in Figure 4.11.

While the performance of the model is good for intermediate classes like FEW, SCT, and

BKN, the identification performance of the CLR and OVC classes is not acceptable, as

the images are almost always misclassified as their corresponding neighbor class. This

disadvantage possibly arises from the use of the sigmoid function, requiring progressively

absolute-larger input values to get closer to the edges of the interval [0, 1], reducing the

probability of results falling into the edge classes CLR and OVC.

Ordinal Regression Since sigmoid functions perform well for binary classification tasks,

a new approach is used with this aspect in mind. It builds on five neurons (equal to the
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number of classes) in the fully connected output layer, similar to multi-class classification,

but uses a sigmoid function for the outputs, similar to one-neuron regression. The sigmoid

function restrains the outputs to the range of 0 to 1. The Mean-Square-Error loss function

is applied in this context as well, while the threshold approach is replaced with another

technique developed by Cheng et al. [CWP08]. Given the output tensor in Equation 4.2

for the classes CLR, FEW, SCT, BKN, and OVC in this order from left to right, a new

vector is derived based on the inner values. Initially, it is checked, whether the values

are greater than 0.5. If that is the case, they are set to one, and if not, they are set to

zero. In the given example, this results in the tensor in Equation 4.3. By calculating the

cumulative product, all ones after the first zero are also set to zero. Finally, summing

this tensor yields an index of the corresponding predicted class. This guarantees that the

Mean-Squared-Error difference between classes like CLR and OVC, that are far apart, is

higher (4 class-ranks) than the difference of classes like FEW and SCT (1 class-rank), which

are closer. The resulting confusion matrix is visualized in Figure 4.12. The matrix shows

mediocre performance for the FEW and BKN classes, while delivering good results for the

CLR, SCT, and OVC classes. Furthermore, the model shows almost no deviation from the

diagonal, further highlighting its capabilities for this task, which is why it is used as the

reference model in the following experiments.

[0.7, 0.6, 0.4, 0.8, 0.3] (4.2)

[1, 1, 0, 1, 0] (4.3)

4.3.5. Manual labels for training

The results of the experiments show the significance of having accurate labels for perfor-

mance comparisons. The mismatches between METARs and satellite images is especially

apparent when comparing the confusion matrices of the ordinal regression model experi-

ment in Figure 4.12. This raises the question of how good the model would perform, if

given the manual labels instead of the METAR labels. The results of this training for the or-

dinal regression model is shown in Figure 4.13. Although Figure 4.13 (a) featuring METAR

labels as true labels is similar to Figure 4.11 (a), showing a higher density of predictions

around the primary diagonal of the matrix, Figure 4.13 (b) illustrates how accurate the

model is able to predict most classes when given the cloud coverage information that is

derived directly from the satellite images. The mediocre performance regarding the CLR

class can be partially attributed to lack of distinction capabilities between clouds, snow,

and ice in mountainous regions. Additionally, small bright details like buildings in the

image might get classified as clouds, ranking it as FEW instead but almost never above

that class. Moreover, the direct neighbor accumulation performance shown in Figure 4.13

(c) improves significantly as well, with most values deviating only by one class from the

primary diagonal.
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(a) Confusion matrix using METARs as true

labels.

(b) Confusion matrix using manual labels as

true labels.

(c) Direct neigbor accumulation for confu-

sion matrix using manual labels as true

labels.

Figure 4.12.: Evaluation of the ordinal regression model experiment.
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(a) Confusion matrix using METARs as true

labels.

(b) Confusion matrix using manual labels as

true labels.

(c) Direct neigbor accumulation for confu-

sion matrix using manual labels as true

labels.

Figure 4.13.: Evaluation of ordinal regression model performance when trained on manual

labels.
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4.3.6. Image Size

A notable parameter of model training is the size of the images, with a focus on width and

height, since the number of color channels is locked by the pre-trained model. Since the

original images are taken at a resolution of 10 meters per pixel for a radius of 16 kilometers,

they are around 3200×3200 pixels large. Since the previous results are created using images

that are downscaled to 300×300 pixels, the relation to image size is tested not with the

full resolution but with a higher scale of 800×800 pixels. Figure 4.14 presents a relatively

similar result compared to evaluation of the model on images of size 300×300 pixels in

Figure 4.12. Improvements can be seen for classes CLR and FEW, while the performance

regarding SCT, BKN, and OVC has declined. There are other factors of influence that

need to be addressed regarding larger image sizes. With this increase in image size, the

dataset grows from around 12.8 Gigabytes to around 91.2 Gigabytes, which is around 7.1

times the size of the original dataset. Moreover, the training time increases from around

1.25 hours to around 9 hours – taking around 7.2 times as long. Since the larger images

take up more memory of the GPU, the batch-size is reduced from 48 to 6. To ensure

that this does not affect the performance of the model, gradient accumulation is used.

Gradient accumulation enables training on larger batch sizes than a system would be able

to fit into memory. This is done by accumulating gradients over several batches – here 8

batches, since 6 · 8 = 48 - and then performing the gradient step after the desired number

of batches have been processed. In the context of the evaluation results in Figure 4.14 and

the discussed downsides that go hand in hand with increasing the image resolution, it is

deemed appropriate to remain with using the lower image resolution of 300×300 pixels.

4.3.7. Separating Clouds from Snow

Differentiating clouds from snow is crucial for their detection in satellite images and

is examined by many existing cloud cover detection algorithms [Hol+96; CB04; ZW12;

Mai+17; Jep+19]. The differentiation is especially important, because clouds as well as

snow and ice share similar reflectances in the visible spectrum of light. To counter this

problem and separate clouds from snow and ice, the NDSI is used. The value is computed

per pixel according to Equation 4.4, where 𝐵3 represents green light in the visible spectrum

at a wavelength of around 560 nm and 𝐵11 is SWIR light at a wavelength of around 1610

nm as shown in Table 2.1. Then, the complement of the NDSI is computed and multiplied

with the red, green, and blue color channels (RGB) like in Equation 4.5. This ensures that

the image still resembles colors similar to the original RGB image, which is helpful for

knowledge transfer, since the EfficientNetV2 base model is trained on RGB images as well.

NDSI =
𝐵3 − 𝐵11
𝐵3 + 𝐵11 (4.4)

img = [𝑅,𝐺, 𝐵] · (1 − NDSI) (4.5)

Figure 4.15 presents an RGB image, the NDSI values using an additional infrared band

(B11), and the combination of RGB image with the NDSI values according to Equation 4.5.

In comparison to the original RGB image, the image using both RGB and NDSI values
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(a) Confusion matrix using METARs as true

labels.

(b) Confusion matrix using manual labels as

true labels.

(c) Direct neigbor accumulation for confu-

sion matrix using manual labels as true

labels.

Figure 4.14.: Evaluation of ordinal regression model performance when trained on images

of size 800×800 pixels.
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(a) (b) (c)

Figure 4.15.: Visualization of (a) a simple RGB image, (b) the NDSI value of the image, and

(c) the RGB image multiplied by the complement of the NDSI

improves the contrast between clouds and snow. The original dataset of images of size

300×300 pixels is recreated with the application of Equation 4.4 and Equation 4.5. Further

assessments regarding the separation of clouds from snow and ice and effects on terrain are

presented in the appendix in section A.2. Training the machine learning model on this new

dataset shows overall improvements in detection accuracy, as illustrated in Figure 4.16 for

training on METAR labels. In comparison to the performance on the original RGB image

dataset Figure 4.12, the model improves its accuracy on the primary diagonal for most

classes by 4% to 11%, while not negatively affecting the performance of any other class.

The original dataset restrained the model performance with direct neighbor accumulation

to the range of 88.0% to 95.8%, while the new dataset with NDSI values improves to the

range of 93.5% to 99.1%.
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(a) Confusion matrix using METARs as true

labels.

(b) Confusion matrix using manual labels as

true labels.

(c) Direct neigbor accumulation for confu-

sion matrix using manual labels as true

labels.

Figure 4.16.: Evaluation of ordinal regression model performance when trained on METAR

labels on the NDSI supported dataset.

60



5. Evaluation

Following the results of the experimentation process, the best results are achieved by the

ordinal-regression model on the dataset that utilizes NDSI values for the separation of

clouds from snow and ice. The base model used for transfer learning is the small variant

of the EfficientNetV2 family, having just 22 million parameters. The MSE loss function

is used for training of the model. Both steepest gradient descend (SGD) and the Adam

algorithm by Kingma et al. [KB14] are tested for optimization. Adam shows better results

and is used with a learning rate of 10
−3

and a momentum of 0.9. The image size remains at

300×300 pixels, as increases in image size showed little improvement in performance, while

increasing both the dataset size and the runtime to a factor of around 7. Hyperparameter

optimization is beyond the scope of this thesis, and the focus is primarily on evaluating the

performance of the selected model architecture and asserting the effectiveness of satellite

sensing in combination with local data. A batch size of 48 images with the support of a

weighted sampler are found to provide good results. The application of a weighted loss

function is also investigated. However, using a weighted sampler yields better results.

Weights are computed as the inverse of the fraction of METARs of the target class in

relation to the number of METARs of all classes. Dropout or weight decay do not show

improvements in model performance. Furthermore, manual labels have been assessed to

overall overlap more closely with expected cloud cover distributions. This is supported

by the model’s ability to predict labels more closely when testing on manually labeled

images, as shown by both Figure 5.1 and Figure 5.2 when comparing confusion matrices

using METAR labels (a) against manual labels (b).

METAR Labels The best performance for training on METAR-based labels is presented

in Figure 5.1, highlighting that the model is still able to generalize well from partially

inaccurate data provided by METARs. While the prediction accuracies range from 41% to

82%, the most wrong predictions are just one cloud coverage class away from the expected

result. When considering the directly neighboring classes as accurate enough too, the

accuracy rises to the range of 93.5% to 99.1%. The F1-Score (d) is higher for validation than

for training, indicating a problem with the model or the data. Data leakage is avoided

through an accurate partitioning of the available stations at dataset creation. The quality

of METARs is another possible source of this problem that fits previous observations.

Manual Labels Training on manual labels further improves the performance of the model,

as illustrated in Figure 5.2. The inaccuracy of METARs reflects in the predictions of the

model, as seen in the confusion matrices using METAR labels (a) and manual labels (b), as

well as between models in relation to Figure 5.1. Using manual labels as training basis,

the same ordinal-regression model achieves prediction accuracies in the range of 62% to
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(a) Confusion matrix using METARs as true

labels.

(b) Confusion matrix using manual labels as

true labels.

(c) MSE loss function evaluation over time. (d) F1-Score evaluation over time.

(e) Direct neigbor accumulation for confu-

sion matrix using manual labels as true

labels.

Figure 5.1.: Evaluation of ordinal regression model performance when trained on METAR

labels on the NDSI supported dataset.
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83%, with the largest performance gain being 34% for the BKN cloud coverage class. Also

considering the neighboring classes for accuracy assessment, increases performance to the

range of 98.4% to 100%, since most wrong predictions are still made inside the direct class

neighborhood. Comparing the overall performance values between the usage of METAR

labels and manual labels for training, shows that training on METAR labels generally leads

to more deviation from the expected class and in most cases remaining in its direct vicinity.

The F1-Score (d) is similar for both validation and training, which helps with addressing

issues with the F1-Score in Figure 5.1 (d). Since the only change occurred with regard to

the labels, data quality is the likely reason for the phenomena observed in the F1-Score for

training on METAR labels.

Model Evaluation Time Evaluating either model for images of size 300×300 pixels with 3

channels results in around 5.36 GMAC (Giga multiply-accumulates (MACs)) operations

or around 10.72 GFLOPS (Giga floating point operations per second (FLOPS)) with ap-

proximately 20.18 million parameters, using the ptflops tool developed by Sovrasov [Sov].

Processing on an Nvidia RTX 3070 GPU with 8 GB of video memory, supported by an AMD

Ryzen 7 7700X 8-Core Processor, shows that the model is able to predict the cloud coverage

of 1286 images in around 16.6 seconds on average, relating to a processing speed of around

77.47 images per second. In comparison, the smallest variant of the Transformer-based

UATNet uses 97 million parameters and encompasses 222.1 GFLOPS for processing images

of size 512×512 pixels with 14 channels [Wan+22]. Other CNN-based models like Kappa-

Mask and RS-Net only provide run-time information on a specific machine, which impairs

with comparability [Dom+21; Jep+19]. KappaMask uses TCI images of size 512×512 pixels

with 3 channels for prediction on an Nvidia GTX 1070 GPU with 8 GB of video memory,

supported by an Intel Core i7-8700K CPU. Its runtime on the GPU is around 237 seconds

per image.

5.1. Hardware

The model is tested on different systems. The bwUniCluster 2.0 system is used throughout

early development, while the HDF-ML system is used for mid to late stages of development.

5.1.1. bwUniCluster 2.0

The bwUniCluster 2.0 [bwH] is a high-performance system that has been developed

by universities of the German state Baden-Württemberg and universities of Applied

Sciences. It is located at the Steinbuch Centre for Computing (SCC) at Karlsruhe Institute

of Technology (KIT). The authors acknowledge support by the state of Baden-Württemberg

through bwHPC. Multiple GPUs are used for training processes of the machine learning

model. The bwUniCluster 2.0 provides Tesla V100, A100 and H100 cards from Nvidia for

such tasks.
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(a) Confusion matrix using METARs as true

labels.

(b) Confusion matrix using manual labels as

true labels.

(c) MSE loss function evaluation over time. (d) F1-Score evaluation over time.

(e) Direct neigbor accumulation for confu-

sion matrix using manual labels as true

labels.

Figure 5.2.: Evaluation of ordinal regression model performance when trained on manual

labels on the NDSI supported dataset.
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5.1.2. HDF-ML

The HDF-ML supercomputer [Adv] provided by the Forschungszentrum Jülich (Juelich

Research Center) and managed by the Institute for Advanced Simulation (IAS) is used for

the training of the machine learning model. It runs on 48 Intel Xeon Gold 6126 CPUs at

2.60GHz and provides Nvidia V100 GPUs.

5.2. Software

The machine learning program itself is written in Python using the PyTorch framework

[Fou]. The microservice-based backend for acquiring and preprocessing both satellite

imagery and METARs is also written in Python. Communication between the machine

learning program and the backend is facilitated through HTTP-REST communication that

is wrapped by clients in the provided Python API for easier access. Python notebooks

handle tasks regarding data queries, dataset creation, data analysis, model training and

model evaluation. The code is made available together with this thesis for reproducibility.
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The research objective of this thesis is evaluating the potential of using satellite ob-

servations to supplement ground based cloud cover data for deriving local cloud cover

conditions at data-sparse regions without local weather stations. The thesis focuses to

provide accurate but less complex, faster per-image cloud cover classification, adhering to

the internationally standardized METAR format for the classes. Machine learning provides

a great way to automatically learn hidden patterns and relationships from labeled data,

which is why a deep-learning image classification algorithm is chosen. Model training

simulates available ground based cloud cover information, while validation evaluates the

prediction performance, using the provided cloud cover information only as comparison.

Transfer learning is used to leverage general knowledge about patterns and relationships

in images, improve the model, and reduce training time.

It is found that clearly representing the rank that is associated with the different cloud

cover classes in the learning process provides the best results. This is done by using an

ordinal-regression model. Further findings conclude that an image size of 300×300 pixels

is adequate for the model, and that larger image sizes don’t improve the performance.

Additionally, the utilization of NDSI values provides good results for visually separating

clouds from snow and ice. To provide some form of comparison for assessment of the

quality of METAR labels, the 12800 images are also labeled manually. The results show that

METARs provide partially inaccurate cloud cover labels, leading to worse performance in

the model compared to manual labels. However, the model is still able to generalize from

the partially inaccurate METARs, mostly deviating from the expected label by just one

class-rank. It also performs well in terms of computational requirements and the usage

of COTS hardware, enabling fast on-demand processing for decision-making, as well as

tasks regarding continuous monitoring and near-real-time applications.

As the quality of local cloud covermeasurements throughMETARs is partially inaccurate

even for smaller deviations between the observations of satellite and weather station,

impacting the performance of the machine learning model, further quality improvement

techniques offer potential for future work. The data provided by METARs allows for

the expansion of the model to assess learning capabilities regarding other measurements

like wind speed and direction. Adding data sources for local measurements that include

information about cloud composition holds potential to improve understanding of both

internal and external cloud dynamics, enabling the assessment of cloud types. On the topic

of machine learning, the exploration of different base models for transfer learning still

holds potential. While the model benefits from the high density of data that is available in

67



6. Conclusion

the United States of America, regional expansion has the potential to further improve its

generalization capabilities.
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A. Appendix

A.1. Köppen-Geiger Classification Criteria

The Köppen-Geiger classification criteria is decoded in Table A.1. The definition is split

into three letters. The first letter is associated with the climate group that the region

belongs to. The second letter represents seasonal precipitation and is not present for polar

climate. The third letter relates to the seasonal temperature experienced by that region

and is not present for tropical climate.

A.2. Image comparisons with and without NDSI support

This section contains comparisons between images using only the visible light (RGB)

and those using the NDSI-based technique described in subsection 4.3.7. In addition to

the images themselves, the METAR cloud cover assessment is provided as "max cloud

cover", while "true cloud cover" represents the manually determined cloud coverage. The

"timedelta [minutes]" provides information of the difference between the time of satellite

observation and the time at which the weather station measurement is taken, in minutes.

The difference is signed, meaning that a local station measurement that is provided earlier

than the satellite image is annotated with a sign of negativity or minus "-". Potential

NaN values of the NDSI computation are addressed by setting the problematic value to

zero. Figure A.1 shows how using the NDSI approach effectively eliminates snow cover

from the image by reducing its brightness. Figure A.2 highlights how the application of

the NDSI complement affects bodies of water, reducing its brightness. This also leads to

better separation of cloud streaks and the effects of water dynamics. Figure A.3 illustrates

that there are reflectance variations with regard to cloud composition that reduce their

brightness. However, clouds generally remain brighter than snow and ice after processing.

Figure A.4 and Figure A.5 show more examples of separating clouds from snow and ice

using the NDSI based approach to illustrate its general applicability.
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A. Appendix

Code Specification

Af Tropical, rainforest

Am Tropical, monsoon

Aw Tropical, savanna

BWh Arid, desert, hot

BWk Arid, desert, cold

BSh Arid, steppe, hot

BSk Arid, steppe, cold

Csa Temperate, dry summer, hot summer

Csb Temperate, dry summer, warm summer

Csc Temperate, dry summer, cold summer

Cwa Temperate, dry winter, hot summer

Cwb Temperate, dry winter, warm summer

Cwc Temperate, dry winter, cold summer

Cfa Temperate, no dry season, hot summer

Cfb Temperate, no dry season, warm

Cfc Temperate, no dry season, cold

Dsa Cold, dry summer, hot summer

Dsb Cold, dry summer, warm summer

Dsc Cold, dry summer, cold summer

Dsd Cold, dry summer, very cold winter

Dwa Cold, dry winter, hot summer

Dwb Cold, dry winter, warm summer

Dwc Cold, dry winter, cold summer

Dwd Cold, dry winter, very cold winter

Dfa Cold, no dry season, hot summer

Dfb Cold, no dry season, warm summer

Dfc Cold, no dry season, cold summer

Dfd Cold, no dry season, very cold

ET Polar, tundra

EF Polar, frost

Table A.1.: Köppen-Geiger classification criteria decoded according to [Bec+18]
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A.2. Image comparisons with and without NDSI support

Figure A.1.: Snowy mountains with lake

Figure A.2.: Coastline with few clouds

Figure A.3.: Occurrence of discolored clouds

79



A. Appendix

(a)

(b)

(c)

Figure A.4.: Examples of cloud coverage #1
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A.2. Image comparisons with and without NDSI support

(a)

(b)

Figure A.5.: Examples of cloud coverage #2
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