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Abstract
We provide novel representations of strategy-proof voting rules applicable when vot-
ers have uni-dimensional single-peaked preferences. In particular, we introduce a
‘grading curve’ representation which is particularly useful when introducing variable
electorates. Our analysis recovers, links and unifies existing results in the literature,
and provides new characterizations when strategy-proofness is combined with other
desirable properties such as ordinality, participation, consistency, and proportionality.
Finally, the new representations are used to compute the strategy-proof methods that
maximize the ex-ante social welfare for the L2-norm and a uniform prior. The resulting
strategy-proof welfare maximizer is the linear median (or ‘uniform median’), that we
also characterize as the unique proportional strategy-proof voting rule.

Keywords Strategy-proofness · Single-peaked preferences · Voting · Consistency ·
Participation · Proportionality · Linear/uniform median
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1 Introduction

In mechanism design, strategy-proofness (SP) is a desirable property. It implies that
whatever agents’ beliefs are about others’ behavior or information, their best strategy
is to sincerely submit their privately-known types, even when their beliefs are wrong
or mutually inconsistent. Consequently, strategy-proofness guarantees to the designer
that she has implemented the intended choice function, i.e. that the final decision is
indeed linked in the intended way to the agents’ true types. Of course, depending on
the context, there are other desirable properties that one would like to satisfy, such
as unanimity, voter sovereignty, efficiency, anonymity, neutrality, proportionality, and
with variable electorate, consistency and participation.

When side payments are possible and utilities are quasi-linear, anonymous and effi-
cient strategy-proof mechanisms can be designed (the well-known Vickrey–Clarke–
Groves mechanisms). By contrast, in contexts of ‘pure’ social choice (‘voting’),
the Gibbard–Satterthwaite [2, 3] Theorem shows that only dictatorial rules can be
sovereign (‘onto’) and strategy-proof on an unrestricted domain of preferences. In
particular, no onto voting rule can be anonymous and strategy-proof without restric-
tions on individual preferences.

To overcome the impossibility, several domain restrictions have been investigated.
One of the most popular is one-dimensional single-peakedness. Under this restriction,
the path-breaking paper by Moulin [4] showed that there is a large class of onto,
anonymous and strategy-proof rules. All of them can be derived by simply adding
some fixed ballots (called ‘phantom’ votes) to the agents’ ballots and electing the
median alternative of the total. Moulin’s paper inspired a large literature that obtained
related characterizations for other particular domains or proved impossibility results
(see Jordan [5] and Barberà, Gul and Stacchetti [6], Nehring and Puppe [7] or Freeman
et al. [8]).

Our contribution

In contrast toMoulin’s elegant and simple phantomvoter characterization in the anony-
mous case, the more general characterizations in terms of winning coalitions (called
‘generalized median voter schemes’ in [6], and ‘voting by issues’ in [7]), as well as
Moulin’s own ‘inf-sup’ characterization in the appendix of his classic paper are com-
plex.1 A basic objective of our paper is to provide simpler alternative representations
that apply also to the non-anonymous case.

First, one of our representations is a natural extension ofMoulin’s idea: the selected
outcome is the median of voters’ peaks after the addition of new peaks computed from
suitable phantom functions. Another representation has a compact functional form
which we refer to as a grading curve in the anonymous case. This is important as it
allows a family of voting rules with variable-sized electorate to be described using

1 Curiously, Moulin provided completely different proofs for his two characterizations.
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one single function. This function may be interpreted as the density of the phantoms
in Moulin’s median formula.

Secondly, the new representations have additional merits. They can be used to
connect the phantom characterization with the ‘voting by issues’ one, and to provide
new characterizations of and insights into special cases. For instance, we show that the
case of uniformly distributed phantom voters [9] corresponds to a linear grading curve
which in turn is fully characterized by one particular additional axiom: proportionality.
We also show that this uniform (= linear) median is the social utility maximizing
strategy-proof voting rule when the utilitarian welfare is measured using the L2-
distance to the voters’ peaks.

Thirdly and finally, in the variable electorate environment, the curve representation
allows us to tightly characterize all anonymous strategy-proof voting rules that are
consistent in the sense of Smith [10] and Young [11]: these are exactly those whose
grading curve is independent of the size of the electorate.

Further related literature

A link between Moulin’s [4] inf-sup characterization and his phantom median voter
characterization in the anonymous case has been provided by Weymark [12] who
showed how to derive the phantom median voter representation from the inf-sup one.
Our paper shows that both results can be derived fromour newcharacterization in terms
of phantom functions, which also implies the one in terms of ‘winning coalitions’ in
[6] and [7].

The rest of the paper is organized as follows. Section2 describes the model. Sec-
tion3 introduces our central phantom functions characterization that is used to reprove
all the known representations of strategy-proof voting rules as well as several new rep-
resentations. Section4 considers additional properties, such as voter sovereignty and
efficiency, strict responsiveness and ordinality, and anonymity. Variable electorate
axioms such as consistency and participation (e.g. absence of the no-show paradox)
are considered in Sect. 5 where a complete characterization of consistent and/or par-
ticipant methods is established in the anonymous and the non-anonymous cases.2

Section6 computes the welfare-maximizing voting rule under the strategy-proofness
constraint. Section7 concludes. The Appendix contains missing proofs and additional
results.

2 Strategy-proofness and its consequences

The voting problem we are considering can be described by the following elements.
First, there is an ordered set of alternatives � (for example, political candidates on a
left-right spectrum, a set of grades such as “Great, Good, Average, Poor, Terrible” or
a set of locations on the line). Second, there is a finite set of voters N = {1, . . . , n},

2 To our knowledge, consistency has not yet been studied in the context of uni-dimensional strategy-
proofness.

123



A. B. Jennings et al.

with a typical element �r of �N being called a voting profile. A voting rule ϕ maps
each profile in �N to an element in �.

The interpretation is: each voter i ∈ N has a single peaked preference over the
linearly ordered set� (see Definition 1 below). He submits his peak (or a strategically
chosen ballot) ri ∈ � to the designer who then computes ϕ(r1, .., rn) = ϕ(�r) and
implements (or elects) the computed alternative.

Without loss, we will assume � ⊆ R and use the notations μ− := inf �, μ+ :=
sup � and � = � ∪ {μ−, μ+}. In Moulin’s [4] paper, � = R, μ− = −∞ and
μ+ = +∞. In Barberà, Gul and Stacchetti’s [6] paper, � is finite.

Definition 1 The (complete) preference order of voter i over the alternatives in � is
single peaked if there is a unique alternative x ∈ � such that for any y, z ∈ �, if y is
between x and z, then voter i prefers x to y and y to z. The alternative x is called the
peak of the preference order. It is voter i’s favorite alternative.

This means that the utility function of each voter is strictly increasing from μ− to
his peak and then strictly decreasing from the peak to μ+. We wish the voting rule to
satisfy some desirable axioms. The main focus is strategy-proofness (SP). Sections4
and 5 will explore combinations with other axioms.

Axiom 1 (Strategy-Proofness: SP) A voting rule ϕ is strategy-proof if for every voting
profile �r and voter i ∈ N, if �s differs from �r only in dimension i , then:

ϕ(�s) ≥ ϕ(�r) ≥ ri or ϕ(�s) ≤ ϕ(�r) ≤ ri .

Remark 1 The formulation of SP inAxiom 1 is usually called uncompromisingness [5,
13]. It needs to be explained why it is analogous to the usual definition. The argument
is as follows. If ri < ϕ(�r) and ϕ(�s) < ϕ(�r) (where �s differs from �r only in dimension
i) then it is possible to create a single-peaked preference Pri at ri such that ϕ(�s) is
strictly preferred to ϕ(�r) by Pri . Hence, a voter with this preference, by reporting the
peak si instead of ri , improves his utility, contradicting strategy-proofness. A similar
conclusion is obtained for the other cases.

Some useful consequences of strategy-proofness follow.

Definition 2 A voting rule ϕ : �N → � is weakly responsive if for all voters i , and
for all �r and �s that only differ in dimension i , if ri < si then ϕ(�r) ≤ ϕ(�s).

Weak responsiveness is sometimes called weak monotonicity.

Lemma 1 If a voting rule ϕ : �N → � is strategy-proof, then it is weakly responsive.

Proof Suppose �r and �s only differ in i with ri < si . If ri < ϕ(�r) or si > ϕ(�s), then by
strategy-proofness ϕ(�r) ≤ ϕ(�s). Otherwise, ϕ(�r) ≤ ri < si ≤ ϕ(�s). 
�
Lemma 2 If a voting rule ϕ : �N → � is strategy-proof, then it is uniformly contin-
uous.

Proof Suppose that there is �r and �s that differ only in dimension i such that ri < si .
First we show that ϕ(�s) − ϕ(�r) ≤ si − ri . If si < ϕ(�s) or ri > ϕ(�r), then strategy-
proofness gives ϕ(�s) = ϕ(�r). Otherwise, ri ≤ ϕ(�r) ≤ ϕ(�s) ≤ si . In either case,
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ϕ(�s) − ϕ(�r) ≤ si − ri . Now let us use this property to show that ϕ is uniformly
continuous. Let ε > 0 be given. For any �r and �s with |ri − si | ≤ ε

n for all i , we have:

|ϕ(�r) − ϕ(�s)| ≤
∑

i

|ϕ(r1, . . . , ri , si+1, . . . , sn) − ϕ(r1, . . . , ri−1, si , . . . , sn)|

≤
∑

i

|ri − si | ≤ ε.


�
Lemma 3 (Continuous Extension) If a voting rule ϕ : �N → � is strategy-proof,

then it has a unique continuous extension in �
N → �. (Proof: See appendix A.)

It is therefore natural to ask what are the SP voting rules in �
N → � that are not

continuous extensions of voting rules in �N → �.

Lemma 4 A SP voting rule in �
N → � is not a continuous extension of a voting rule

in �N → � iff it is constant valued with a value not in �.

Proof ⇒: Suppose that ϕ : �
N → � is not an extension of a function from�N → �.

Therefore, there is a voting profile �r ∈ �N such that ϕ(�r) /∈ �. Let ϕ(�r) = μ− (resp.

μ+). By strategy-proofness, for all �s ∈ �
N
, ϕ(�s) = μ− (resp. μ+). Therefore, ϕ is a

constant (equal to μ− or to μ+) and its value is not in �. ⇐: Immediate. 
�
From Lemma 3, if we discard the SP voting rules that are constant values not in �,

we obtain all the SP methods from � to itself. Consequently, from now on, we will
consider w.l.o.g. that � = � (and so the voters are allowed to submit to the designer
the extreme alternatives μ− and μ+).

3 Characterizations of SP voting rules

In this section we start by establishing two new mathematically convenient character-
izations of SP voting rules. In the subsequent sections, the second is used to derive all
the known characterizations as well as several new ones.

We denote by � := {μ−, μ+}N the set of voting profiles where all voters
have extreme positions (they submit an extreme alternative). We define �μ− :=
(μ−, . . . , μ−), and �μ+ := (μ+, . . . , μ+). For X = (X1, . . . , Xn) and Y =
(Y1, . . . ,Yn) in � we say that X ≤ Y if for every voter i ∈ N , Xi ≤ Yi .

3.1 Phantom function characterizations

In this subsection we will introduce the concept of phantom functions and two new
characterizations of SP voting rules, the second being a direct consequence of the first.
We show in the next sections that the second characterization implies not only all the
known characterizations (the two by Moulin and the one by Barberà, Gul Stacchetti)
but also several new representations.
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Definition 3 (Phantom function) A function α : � → � is called a phantom function
if α is weakly increasing (X ≤ Y �⇒ α(X) ≤ α(Y )). We will use the shorthand
αX := α(X).

It is immediate that each SP voting rule ϕ is associated with a unique phantom
function αϕ defined as:

∀X ∈ �, αϕ(X) := ϕ(X). (1)

That is, αϕ provides the outcome of ϕ when all voters vote at the extremes. Observe
that αϕ is necessarily weakly increasing because ϕ is SP and so is weakly responsive
(by Lemma 1). Conversely, the next theorem proves that each phantom function α is
associated with a unique SP voting rule ϕα . This is because strategy-proofness implies
that we can always let voters vote at the extremes without changing the outcome. To
state precisely our result, we denote by θ a function which transforms voters’ votes to
the extreme alternatives.

Definition 4 (The θ function) 3

θ :�N × R → �

θ :�r , x → X = θ(�r , x)

Such that ∀i; Xi = μ− ⇔ ri < x and ∀i; Xi = μ+ ⇔ ri ≥ x .

Hence, θ at x transforms each voter i whose submitted input ri is strictly below
(resp. weakly above) x to the extreme value μ− (resp. μ+). The next theorem shows
that there is a one to one correspondence between SP rules and phantom functions,
and provides a formula that relates them, thanks to the θ function. We note that θ is
weakly decreasing with respect to x .

Theorem 1 (Phantom function characterization 1) The voting function ϕ is strategy-
proof iff there exists a phantom function α : � → � such that:

∀�r ∈ �n;ϕ(�r) :=
⎧
⎨

⎩

α �μ− if ∀ j, r j ≤ α �μ−
αθ(�r ,ri ) if (i ∈ N ) and ri = min{r j : r j ≥ αθ(�r ,ri )}
ri if (i ∈ N ) and ∀ε > 0, αθ(�r ,ri+ε) ≤ ri ≤ αθ(�r ,ri )

(2)

And that phantom function is necessarily unique.

Proof The proof is quite long and so is delegated to Appendix B. 
�
The interpretation of Theorem 1 is simple. The first and second cases correspond

to the fact that for any voting profile, �r , where ϕ(�r) is not equal to any of the input
votes, ϕ(�r) must equal the output after raising (to μ+) all votes greater than ϕ(�r) (and
lowering the rest toμ−). The final case comes from the fact that for a voting profile, �r ,
3 The definition of θ is asymmetric because it sends values strictly below the cut-off to μ− and greater
than or equal to μ+. That’s why our characterization in Theorem 1 “looks” asymmetric. It is not the case
in the characterization of Theorem 2.
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whereϕ(�r) does equal one of the input votes,ϕ(�r)must be (weakly) between the output
for the two extremeprofiles generated by raising the votes that are (respectively) strictly
greater andweakly greater thanϕ(�r) (and lowering the rest).Aswill be seen,Theorem1
implies—easily—the next characterization which implies all the subsequent ones. The
next theorem provides a more elegant and compact characterization without the use
of the θ function. For X = (X1, . . . , Xn) ∈ �, we denote μ−(X) (resp. μ+(X)) the
set of voters i ∈ N such that Xi = μ− (resp. Xi = μ+).
Theorem 2 (Phantom function characterization 2) The voting function ϕ is strategy-
proof iff there exists a phantom function α : � → � (the same as the one in Theorem 1)
such that:

∀�r;ϕ(�r)

:=

⎧
⎪⎪⎨

⎪⎪⎩

αX if ∃X ∈ � s.t. μ+(X) ⊆ { j : αX ≤ r j } ∧ μ−(X) ⊆ { j : αX ≥ r j }

ri if ∃X ,Y ∈ � s.t. αX ≤ ri ≤ αY and
μ+(X) = { j : ri < r j } ∧ μ−(Y ) = { j : ri > r j }

(3)

Proof Suppose there is a phantom function α such that ϕ satisfies Eq. 3. Let μ be
defined as in Theorem 1. Let us now compare the two.

• If ϕ(�r) is equal to one of the inputs, ri : Then for X defined by μ+(X) = { j : ri <

r j } and Y defined by μ−(Y ) = { j : ri > r j }, Eq. 3 gives αX ≤ ri ≤ αY . We also
have Y = θ(�r , ri ) and X = limε→0+ θ(�r , ri + ε). Therefore μ(�r) = ri .

• If ϕ(�r) is not equal to any inputs: The first case of Eq. 3 holds and we must have
ϕ(�r) = αX with μ+(X) ⊆ { j : αX ≤ r j } and μ−(X) ⊆ { j : αX ≥ r j }. Since αX

is not equal to any inputs, μ+(X) = { j : αX < r j }.
If μ+(X) = ∅ then X = �μ− and μ(�r) = α �μ− .
Otherwise, there exists ri such that ri = min{r j : r j ≥ αX }. Since αX is not equal
to any inputs, { j : r j ≥ ri } = { j : r j > αX } = μ+(X), so θ(�r , ri ) = X . It follows
that ri = min{r j : r j ≥ αθ(�r ,ri )} and μ(�r) = αX .

It follows that μ = ϕ. 
�
The intuition behind the characterization of Theorem 2 is simple. By strategy-

proofness, when a voter’s ballot is strictly smaller than the societal outcome then,
it can be replaced by the minimal ballot μ− without changing the final outcome.
Symmetrically, if it is strictly larger than the final outcome, it can be replaced by
μ+ without changing the outcome. As such, if the outcome is not one of the ballots,
then it must be αX where μ+(X) is the set of voters whose ballots are greater than
the outcome. On the other hand, if the outcome is one of the ballots then by weak
responsiveness it is in between αX and αY where μ+(X) is the set of voters whose
ballots are strictly higher than the outcome andμ−(Y ) is the set of voters whose ballots
are strictly smaller than the outcome.

Remark 2 It is not possible to have both set inclusions in case 1 holding as equalities
if the outcome is one of the peaks, for that would require that anyone whose peak is
the outcome would have both μ− and μ+ associated with it, which is impossible.
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3.2 MaxMin characterizations

In his appendix,Moulin [4] proved the followingMaxMin characterization of strategy-
proof voting rules.

Theorem 3 (Moulin’s MaxMin Characterization) A voting rule ϕ is strategy-proof iff
for each subset S ⊆ N (including the empty set), there is a value βS ∈ � such that:

∀�r ∈ �n, ϕ(�r) = max
S⊆N

min

(
βS,min

i∈S {ri }
)

.

Remark 3 Moulin observed in his proof (the appendix in [4]) thatwithout loss, S → βS

can be taken to beweakly increasing.With this selection, theβ in his theoremcoincides
with the α in Theorem 2 as proved now.

Theorem 4 (MaxMin Characterization 2) A function ϕ is strategy-proof iff there exists
a phantom function α (the same as the one in Theorems 1 and 2) that verifies:

∀�r ∈ �n, ϕ(�r) = max
X∈�

min

(
αX , min

i∈μ+(X)
{ri }

)
. (4)

.

Proof Let ϕ be a strategy-proof voting rule defined by a phantom function α as in
Theorem 2. Let μ : �N → � be defined as in the theorem statement:

∀�r , μ(�r) = max
X∈�

min

(
αX , min

i∈μ+(X)
{ri }

)
.

Since ϕ is the unique SP voting rule defined by α we only need to prove that ϕ = μ.
Fix �r ∈ �n . Let x = μ(�r) and Z ∈ � be such that x = min (αZ ,mini∈μ+(Z){ri }).
(Equivalently, μ+(Z) ⊆ { j : r j ≥ x} and { j : r j < x} ⊆ μ−(Z).)

• If x = ri for some i : Set Y such that μ−(Y ) = { j : r j < ri }. Then μ−(Y ) ⊆
μ−(Z), so αY ≥ αZ ≥ ri . Set X such that μ+(X) = { j : r j > ri }. The maximum
in the definition ofμ(�r) applies to X , somin(αX , inf j∈μ+(X){r j }) ≤ ri . But r j > ri
for all j ∈ μ+(X), which forces αX ≤ ri . This verifies that αX ≤ ri ≤ αY , so by
the definition of ϕ, ϕ(�r) = ri = x .

• If x �= ri for any i : Set X such that μ+(X) = { j : r j ≥ x} = { j : r j > x}.
We have μ+(Z) ⊆ μ+(X) so αX ≥ αZ ≥ x . The maximum in the definition of
μ(�r) applies to X , so min(αX , inf j∈μ+(X){r j }) ≤ x . But r j > x for j ∈ μ+(X)

which forces αX ≤ x . It follows that αX = x . By construction, X ∈ � verifies
μ+(X) ⊆ { j : αX ≤ r j } ∧ μ−(X) ⊆ { j : αX ≥ r j }. By the definition of ϕ, we
therefore have ϕ(�r) = αX = x .

Therefore, ϕ = μ. 
�
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3.3 Median characterizations

The most popular of Moulin’s representation (Theorem 5) assumes anonymity.

Axiom 2 (Anonymity) A voting rule φ is anonymous if for any permutation σ of voters
and for all voting profiles �r:

φ(rσ(1), . . . , rσ(n)) = φ(r1, . . . , rn).

Anonymity states that all voters must be treated equally.

Theorem 5 (Moulin’s Median-Characterization. Anonymous Case) A voting rule ϕ is
strategy-proof and anonymous iff there is a set of n+1 values α0, . . . , αn in � (called
phantom voters by Moulin) such that:

∀�r;ϕ(�r) = med(r1, . . . , rn, α0, . . . , αn).

where med denotes the median operator.4

The two characterizations ofMoulin look quite different: median in the anonymous
case (Theorem 5) and maxmin in the general case (Theorem 3). Their proofs are
separated in his article. In order to link the two we need to be able to choose n + 1
phantom voters among the 2N outputs of our phantom functions. The next theorem
explains how they can be chosen. For all k = 0, . . . , n and �r = (r1, . . . , rn), let
Xk(�r) ∈ � be defined in such a way that μ+(Xk(�r)) is equal to the set of voters that
provides the k largest peaks.5 For k = 0, we let X0(�r) = �μ− = (μ−, . . . , μ−).

Theorem 6 (Median Characterization. General Case) A voting rule ϕ is strategy-proof
iff there exists a phantom function α (the same as in Theorem 2) such that:

∀�r ∈ �n;ϕ(�r) := med(r1, . . . , rn, αX0(�r), αX1(�r), . . . , αXn(�r)). (5)

Proof This is a direct consequence of Theorem 2. See Appendix C.1. 
�
Remark 4 This characterization implies easily Moulin’s median characterization in
Theorem 5 (thanks to Proposition 1 below). Hence, we have unified the proofs of the
Moulin’s characterizations. Weymark [12] unified the two, using a different approach.

Proposition 1 A strategy-proof voting rule ϕ : �N → � is anonymous iff its phantom
function α is anonymous.

Proof ⇒: It is immediate from equation (1) that if ϕ is anonymous then so is α.
⇐: For any permutation σ , let �s = (s1, . . . , sn) = (rσ(1), . . . , rσ(n)) be the permu-

tation σ of the peaks. For all k we have that Xk(�r) and Xk(�s) both have k values μ+

4 It is well-defined as we have an odd number of input values.
5 If there are more than k voters with the k largest peaks, break ties arbitrarily. The tie breaking rule does
not affect the outcome.
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and n−k valuesμ−. Therefore since α is anonymous, we have α(Xk(�r)) = α(Xk(�s)).
Thus, using the median representation (Theorem 6):

ϕ(�s) = med(rσ(1), . . . , rσ(n), αX0(�s), αX1(�s), . . . , αXn(�s))
= med(r1, . . . , rn, αX0(�r), αX1(�r), . . . , αXn(�r))
= ϕ(�r).


�

3.4 Curve characterizations

This section establishes two novel characterizations of SP methods.

Theorem 7 (Curve Characterization. General Case) A voting rule ϕ is strategy-proof
iff there exists a phantom function α (the same as the one in Theorem 2) such that:

∀�r ∈ �n;ϕ(�r) := sup
{
y ∈ � : αθ(�r ,y) ≥ y

}
.

Proof This is another direct consequence of Theorem 2. Let ϕ be a strategy-proof
voting rule defined by a phantom function α. And let μ be defined as

∀�r;μ(�r) := sup
{
y ∈ � : αθ(�r ,y) ≥ y

}
.

Since ϕ is the unique strategy-proof voting rule defined by α we only need to prove
that ϕ = μ. First notice that y → αθ(�r ,y) is weakly decreasing.

• Case ϕ(�r) = αX : By the characterization of ϕ, we have μ+(X) ⊆ { j : αX ≤ r j }
and μ−(X) ⊆ { j : αX ≥ r j }. The former implies that αX ≤ αθ(�r ,αX ). The latter
implies that { j : αX < r j } ⊆ μ+(X). For ε > 0, we have:

{ j : αX + ε ≤ r j } ⊆ { j : αX < r j } ⊆ μ+(X)

and αθ(�r ,αX+ε) ≤ αX < αX + ε. Therefore {y ∈ � : αθ(�r ,y) ≥ y} must contain
αX and not αX + ε. It follows that μ(�r) = αX .

• Case ϕ(�r) = ri : Let X and Y be such that αX ≤ ri ≤ αY and μ+(X) = { j :
ri < r j } ∧ μ−(Y ) = { j : ri > r j }. For any ε > 0 we have: αθ(�r ,ri+ε) ≤ αX ≤
ri ≤ αY = αθ(�r ,ri ). Therefore αθ(�r ,ri+ε) ≤ ri < ri + ε and ri ≤ αθ(�r ,ri ). Thus{y ∈ � : αθ(�r ,y) ≥ y} must contain ri and not ri + ε. As such μ(�r) = ri .

Therefore μ = ϕ. 
�
Remark 5 The curve characterizationwill be useful in the proof and/or characterization
of participation (Sect. 5.1), consistency (Sects. 5.2 and 5.3), proportionality (Sect. 5.4),
and social welfare maximization (Sect. 6).

In the anonymous case, the curve characterization is simplified as follows.
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Theorem 8 (Grading Curve Representation. Anonymous Case) A strategy-proof vot-
ing rule ϕ : �N → � is anonymous iff there exists a weakly increasing function
gn : [0, 1] → � such that:

∀X ∈ �;α(X) = gn
(
#μ+(X)

n

)
.

Where n is the cardinality of N .

Proof ⇒: By Proposition 1, α is anonymous, so for each i there is αi with αX = αi

for all X ∈ � with #μ+(X) = i . Therefore we can choose gn weakly increasing

with gn( in ) = αi . ⇐: Suppose ∀X , αX = gn
(
#μ+(X)

n

)
. It follows that if X ′ is a

permutation of X , then #μ+(X) = #μ+(X ′) and αX = αX ′ . 
�
Theorem 9 (Grading Curve Characterization. Anonymous Case) 6 A voting rule ϕ :
�n → � is strategy-proof and anonymous iff there is a weakly increasing function
gn : [0, 1] → � such that:

∀�r , ϕ(�r) := sup

{
y : gn

(
#{ri ≥ y}

n

)
≥ y

}
.

The gn function is called the grading curve associated to ϕ.

Proof A direct consequence of Theorems 7 and 8. 
�
The gn function has the very intuitive interpretation as the density of the phantom

voters. In fact, the median representation in Theorem 5 needs the specification of
n + 1 values, and those values change completely with the size n of the electorate.
By contrast, under the grading curve representation, the same function g can describe
a family of mechanisms for all n simultaneously. For example, the linear function
g(x) = x

R corresponds to the phantoms uniformly distributed across the interval
[0, R], for all jury size n (see Sect. 5).

3.5 Voting by issues characterizations

The ‘voting by issues’ representation established by Barberà, Gul and Stacchetti [6]
appears less practical than the other formulations, but it has the great power of being
extendable to multi-dimensional and generalized single-peaked domains (see Nehring
and Puppe [7, 15]). In this section, we state the original result and then refine it using
our new tools.

Axiom 3 (Voter Sovereignty) A voting rule φ is voter sovereign if for all x ∈ � there
is a preference profile �r such that: φ(�r) = x.

This means that all alternatives can potentially be selected as the outcome. Sec-
tion4.1 characterizes voter sovereignty in terms of phantom functions. A voting by

6 The result first appeared in the unpublished Ph.D. thesis [14] of our co-author A. Jennings.
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issues consists of a property space (�,H) where � is a set of alternatives and H
is a set of subsets of � called properties. Each property H comes together with its
complementary property Hc := �\H ; the pair (H , Hc) is called an issue. Each voter
i provides a ballot ri ∈ �. Each issue (H , Hc) is then resolved separably as a binary
election. If ri ∈ H then we say that voter i votes for issue H or that his ballot verifies
issue H . And if ri /∈ H then we say that he voted against H , i.e. he voted for Hc. If
an issue is elected then the result of the vote will be one of the elements of the issue.
As such, the result of the election is an intersection of elements of H. A coalition is
a subset of voters. A coalition W ⊆ N is said to be winning for H ∈ H, if when all
voters inW voted for H , H is elected. LetWH be the set of winning coalitions for H .
The following result is due to [6]; our present formulation follows [7].

Theorem 10 (Voting by Issues Characterization) Let � be finite. A voting rule ϕ :
�N → � is strategy-proof and voter-sovereign iff it is voting by issues satisfying, for
all G, H ∈ N ,G ⊆ H ⇒ WG ⊆ WH .

This result was provedwith�finite, assuming voter-sovereignty. In the next charac-
terizationwe explicitly define thewinning coalitions in terms of the phantom functions
without assuming voter sovereignty nor that � is finite.

Theorem 11 (Explicit Voting by Issues Characterization) A voting rule ϕ is strategy-
proof iff it is voting by issues on the property space (�,H) where H consists of all
properties of the form {x ∈ � : x ≤ a}, {x ∈ � : x ≥ a}, and their complements, and
such that, for all a ∈ �:

• μ+(X) is a winning coalition for H = {y ∈ � : y ≥ a} if and only if αX ≥ a;
• μ−(X) is a winning coalition for H = {y ∈ � : y ≤ a} if and only if αX ≤ a.

The phantom function α is the one associated to ϕ, as in Theorem 2.

Proof Let ϕ be a strategy-proof voting rule defined by a phantom function α as in
Theorem 2. Let μ be the vote by issue given in Theorem 11. Since ϕ is the unique
strategy-proof voting rule defined by α we only need to prove that ϕ = μ.

• Case ϕ(�r) = αX : For a = αX we have μ+(X) ⊆ { j : r j ≥ a} is a winning
coalition for {y ≥ a} and μ−(X) ⊆ { j : r j ≤ a} is a winning coalition for
{y ≤ a}. Therefore μ(�r) = a.

• Case ϕ(�r) = ri : Let X ,Y ∈ � be the same voting profiles as found in Theorem 2.
For a = ri we have αY ≥ a thereforeμ+(Y ) ⊆ { j : r j ≥ a} is a winning coalition
for {y ≥ a} and αX ≤ a therefore μ−(X) ⊆ { j : r j ≤ a} is a winning coalition
for {y ≤ a}. Therefore μ(�r) = a.

We have shown that ϕ = μ. 
�

4 Additional properties: fixed electorate

The phantom function and the different representations (in particular the curve repre-
sentation) will be very helpful in understanding the effects of imposing more axioms
on the voting rule. This is the subject of this and the next section.
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4.1 Voter sovereignty and efficiency

In some applications, it makes little sense to vote for an alternative that is never a
possible output. Therefore, one may wish the voting rule to be voter-sovereign: for all
x ∈ � there is a profile �r s.t. ϕ(�r) = x (see Axiom 3).

Proposition 2 A strategy-proof voting rule ϕ : �N → � is voter-sovereign iff its
phantom function α satisfies α �μ− = μ− and α �μ+ = μ+. In that case, ϕ is unanimous
(ϕ(a, . . . , a) = a for all a ∈ �).

Proof ⇒ If α �μ− > μ− (resp. α �μ+ < μ+), by Theorem 1, ϕ( �μ−) = α �μ− . Let x
be any value such that x < α �μ− . By weak responsiveness (Lemma 1), we have
∀�r , ϕ(�r) ≥ α �μ− > x . As such, ϕ is not voter-sovereign since x cannot be reached.

⇐ Suppose that α �μ− = μ− and α �μ+ = μ+. Then according to Theorem 6,
ϕ(a, . . . , a) = a for all a ∈ �. As such it is voter-sovereign. 
�
Axiom 4 (Pareto Optimality) A voting rule is Pareto optimal if no other alternative
leads to an improved satisfaction for some voter without loss for all voters.

Proposition 3 If a voting rule ϕ : �N → � is voter-sovereign and strategy-proof then
it is efficient (the selected alternative is Pareto optimal).

This result was proved in Weymark [12]. Here is an alternative proof.

Proof Suppose that ϕ is strategy-proof and voter-sovereign. Let us use the curve char-
acterization (Theorem 7): ϕ(�r) := sup {y : αθ(�r ,y) ≥ y}. Then for y = min{r j }, we
have θ(�r , y) = �μ+ and αθ(�r ,y) = μ+ ≥ y. Therefore ϕ(�r) ≥ min{r j }. Similarly,
for y = max{r j } + ε, where ε > 0, we have θ(�r , y) = �μ− and αθ(�r ,y) = μ− < y.
Therefore ϕ(�r) ≤ max{r j }.

We have shown that min{r j } = rk ≤ ϕ(�r) ≤ rl = max{r j }. As such for x ∈ � if
x < ϕ(�r) (resp. x > ϕ(�r)) then voter l (resp. k) has a worse outcome in x than in �r
according to peak rl (resp. rk). It follows that no voting profile can obtain a result that
is better for at least one voter without being worse for another. 
�

4.2 Strict responsiveness and ordinality

Axiom 5 (Strict Responsiveness) A voting rule ϕ : �N → � is strictly responsive if
for any �r and �s such that for all j , r j < s j we have ϕ(�r) < ϕ(�s).

Strict responsiveness is sometimes called strict monotonicity.

Axiom 6 (Ordinality)A voting ruleϕ : �N → � is ordinal if for all strictly responsive
and surjective functions π : � → � we have:

ϕ(π(r1), . . . , π(rn)) = π ◦ ϕ(�r).

Remark 6 Ordinality says nothing when� is finite. In this case, the identity is the only
strictly responsive and surjective function from � to itself.
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Proposition 4 For a strategy-proof voting rule ϕ : �N → � the following are equiv-
alent:

(1) The phantom function α verifies α(�) = {μ−, μ+}
(2) ϕ is strictly responsive.

And when moreover � is rich,7 (1) and (2) are equivalent to:
(3) ϕ is ordinal and not constant. (Proof: See appendix D.1.)

In the anonymous case, using Moulin’s median representation in the proof above,
we deduce that the ordinal / strictly monotonic strategy-proof voting rules are the
order functions, where for k = 1, . . . , n, the kth-order function is the SP-rule which
associates to any input �r = (r1, . . . , rn) ∈ �n the kth-highest value r(k), where
r(1) ≥ ... ≥ r(k) ≥ ... ≥ r(n) (See [16], Chapters 10 and 11).

5 Additional properties: variable electorate

We wish to consider situations where casting a vote or not is a choice. As such we
need to make a distinction between the electorate E (that is potentially infinite) and the
set of voters N ⊆ E (which will be assumed finite). Henceforth, we define a voter as
someone who chooses to cast a ballot and an elector as someone who can cast a ballot.
Similarly a ballot is cast by a voter while a vote is the response of an elector. A vote
that is not a ballot is represented by the symbol ∅ (interpreted as abstention). As such
we represent the set of votes as an element of�∗ = {�r ∈ (�∪∅)E : #ri �= ∅ < +∞}.
Since we seek for strategy-proof methods, it may also be of interest to ensure that
no elector can benefit from not casting a ballot (the absence of the no-show paradox
or participation [17]). Another desirable property is consistency. It states that when
we obtain the same outcome for the voting profiles of two disjoint group of voters
(with fixed ballots) then that outcome is also the outcome of the union of their voting
profiles. First, we need to extend our definitions and concepts to the variable electorate
context.

Definition 5 (Voting function) A voting function ϕ∗ : �∗ → � is a function such that
for any finite set of electors N there is a voting rule ϕN : �N → � such that ϕN is
the restriction of ϕ∗ to the set of voters N .

Intuitively once our set of voters is fixed then we are considering a voting rule and
we can use our previous results. Furthermore in the general case the voting rules are
independent even if they use very similar (but not identical) set of voters. As such we
start by determining what our set of voters is and then we use the corresponding voting
rule. This is coherent with the non-anonymous setting where the result of the election
strongly depends on who casts a ballot.

Definition 6 (Redefining concepts for variable electorate) A voting function ϕ∗ veri-
fies one of the previously mentioned properties (strategy-proofness, continuity, voter
sovereignty, strict responsiveness, anonymity) if for all sets of voters N the restriction
of ϕ∗ to N verifies the property.

7 � is rich if for any α < β in � there exists a γ ∈ � such that α < γ < β.
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As with voting rules, we would like to define a phantom function that completely
characterizes the strategy-proof voting functions. We will then be able to character-
ize participation (e.g. no no-show paradox) and consistency by using the phantom
functions.

Let �∗ := {μ−, μ+,∅}∗ be the set of voting profiles where voters have extreme
positions or can abstain. (Recall that the set of voters is always finite). As before we
wish for a phantom α : �∗ → � such that:

∀X ∈ �∗, αX =: ϕ∗(X)

The bijection over each set of voters gives us the bijection between a strategy-proof
voting function and its associated phantom function. The definition of a phantom
function therefore corresponds to all functions that are phantom functions for each
voting rule corresponding to a restriction of the voting function to a fixed set of voters.

Definition 7 (Phantom functions extended to variable electorate) A function α :
�∗ → � is a phantom function if α verifies for any X and Y that differ only in
dimension i with Xi = μ− and Yi = μ+ we have αX ≤ αY .

Definition 8 (The θ function extended to variable electorate)

θ :(R ∪ {∅})E × R → {μ−, μ+,∅}E
θ :�r , x → X = θ(�r , x)

Such that ∀i; Xi = μ− ⇔ ri < x and ∀i; Xi = μ+ ⇔ ri ≥ x . It follows that
Xi = ∅ means that the elector i did not vote (ri = ∅).

5.1 Participation (or no no-show paradox)

Axiom 7 (Participation) A voting function ϕ∗ : �∗ → � is said to verify participation
if for all �r where ri �= ∅ and �s that only differs from �r in dimension i with si = ∅ we
have:

ϕ∗(�s) ≥ ϕ∗(�r) ≥ ri or ϕ∗(�s) ≤ ϕ∗(�r) ≤ ri .

Participation is a natural extension of strategy-proofness. “Strategy-proofness +
participation” is equivalent to no matter what the elector does, no strategy gives a
strictly better outcome than a honest ballot.

Theorem 12 (Participation and Phantom Functions) A strategy-proof voting rule ϕ∗ :
�∗ → � verifies participation iff with the order μ− < ∅ < μ+, its associated
phantom function α is weakly increasing. (Proof: See appendix D.2.)

Strategy-proofness requires phantom functions to be weakly increasing. Hence,
there is no surprise that “strategy-proofness + participation” implies that the phantom
functions are weakly increasing for the order μ− < ∅ < μ+. Also, it is of no surprise
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that in the voting by issues approach, participation means monotonicity with respect
to the addition of a new member.8

Proposition 5 (Participation and Winning Coalitions) In a vote by issue, a strategy-
proof voting function verifies participation iff when an elector i decides to become
a voter with ballot x then for any property H containing x, if WH was a winning
coalition of H for the initial set of voters then WH ∪ {i} is a winning coalition for the
new set of voters. (Proof: See appendix D.3.)

5.2 Consistency

To define consistency, we introduce the function � : �∗ × �∗ → �∗ that takes the
ballots of two disjoint sets of voters and returns the union of the ballots.

Axiom 8 (Consistency) A voting function ϕ∗ is said to be consistent if for any two
disjoint sets of voters R and S, when �r represents the ballots of R and �s represents the
ballots of S, we have:

ϕ∗(�r) = ϕ∗(�s) ⇒ ϕ∗(�r) = ϕ∗(�r � �s).

Theorem 13 A strategy-proof voting function ϕ∗ : �∗ → � verifies consistency iff
for all X ,Y ∈ �∗ with disjoint sets of voters and αX ≤ αY we have:

αX ≤ αX�Y ≤ αY .

Proof ⇒: By reductio ad absurdum. Let us suppose αX�Y < αX ≤ αY . Let us define
�s as: if Y j = μ− then s j = μ− and if Y j = μ+ then s j = αX . Therefore ϕ∗(X) = αX ,
ϕ∗(�s) = αX and ϕ∗( �X � s) = αX�Y . This contradicts consistency. A similar proof
shows that we cannot have αX ≤ αY < αX�Y .

⇐: Suppose that for all X ,Y ∈ �∗ that correspond to two disjoint sets of voters
N1 and N2 such that αX ≤ αY we have αX ≤ αX�Y ≤ αY .

If ϕ∗(�r) = ϕ∗(�s) = a then:

• Ifa = ri = sk : then for all ε > 0wehaveαθ(�r��s,ri+ε) ≤ max(αθ(�r ,ri+ε), αθ(�s,ri+ε))

≤ ri and ri ≤ min(αθ(�r ,ri ), αθ(�s,ri )) ≤ αθ(�r��s,ri ). For ε small enough μ+(θ(�r �
�s, ri + ε)) = { j ∈ N1 : r j > ri } ∪ { j ∈ N2 : s j > ri }. Therefore ϕ(�r � �s) = a.
Consistency is verified.

• If a = ri = αX where X = �s, then for all ε > 0: we have αθ(�r ,ri+ε) ≤
αθ(�r�X ,ri+ε) ≤ αX = ri and ri = αX ≤ αθ(�r�X ,ri ) ≤ αθ(�r ,ri ). For ε small enough
μ+(θ(�r � X , ri + ε)) = { j ∈ N1 : r j > ri } ∪ { j ∈ N2 : s j > ri }. Therefore
ϕ(�r � �s) = a. Consistency is verified.

• If a = αX = αY where the voters of X = �r and the voters of Y = �s, we have
αX�Y = αX = αY . Therefore ϕ(�r � �s) = a. Consistency is verified. 
�

8 While strategy-proofness is thus easily compatible with the absence of the no-show paradox in our context
of costless voting,Müller andPuppe [18] have shown that, under quite general conditions, strategy-proofness
implies minimal participation in equilibrium once voting is costly (even with infinitesimal cost).
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Notice that the set of winning coalitions in a voting by issue context is defined for
each fixed set of voters, but there is no consistency imposed a priori when the set of
voters changes. When consistency is imposed, in addition to SP, some monotonicity
over the set of winning coalitions is obtained.

Proposition 6 (Consistent Voting Coalitions) In a vote by issues, a strategy-proof
voting function verifies consistency iff for any a ∈ � if X and Y ∈ �∗ have disjoint
sets of voters:

• When μ+(X) and μ+(Y ) are winning coalitions for H = {y ≥ a} then μ+(X) ∪
μ+(Y ) is a winning coalition for H.

• When μ−(X) and μ−(Y ) are winning coalitions for H = {y ≤ a} then μ−(X) ∪
μ−(Y ) is a winning coalition for H.

Proof ⇒: Suppose that our strategy-proof voting verifies αX ≤ αX�Y ≤ αY for all X
and Y that correspond to disjoint sets of voters. A simple inequality consideration for
any a gives the result.⇐:SupposeαX ≤ αY .μ+(X) andμ+(Y ) arewinning coalitions
for {y ≥ αX } therefore αX�Y ≥ αX . Conversely μ−(X) and μ−(Y ) are winning
coalitions for {y ≤ αX } therefore αX�Y ≤ αY . Therefore we verify participation. 
�
Proposition 7 A strategy-proof voting function ϕ∗ : �∗ → � that verifies voter
sovereignty and consistency also verifies participation.

Proof Let X ∈ �∗ and Y ∈ �∗ be the voting profile where only i is a voter and where
he votes respectively μ− and μ+. By voter sovereignty, αX = μ− and αY = μ+. By
consistency, for any Z ∈ �∗ where i is not a voter:

αX ≤ αX�Z ≤ αZ ≤ αY�Z ≤ αY .


�

5.3 Combining consistency and anonymity

In this section we show that consistency in the anonymous case is equivalent to remov-
ing the dependency of the grading curves on the number of voters n.

Axiom 9 (Homogeneity) A voting profile is homogeneous if for any two profiles �r and
�s such that there exists k ≥ 1 that verifies:

∀x ∈ �, #{ j : x = r j ∈ �r} = k#{ j : x = r j ∈ �s}

we have

ϕ(�s) = ϕ(�r).

Hence, a voting function is homogeneous if for any k ≥ 1 when each ballot is replaced
by k copies of that ballot the result of the function does not change.

Proposition 8 A SP function is consistent and anonymous iff it is homogeneous.
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Proof ⇒: Immediate due to the fact that αX only depends on the fraction
#μ+(X)

#μ−(X)+#μ+(X)
. ⇐: Suppose that we have a homogenous strategy-proof voting func-

tion. By definition this implies anonymity. For any X and Y , we can duplicate in order
to have X ′, Y ′ and (X � Y )′ with the same number of voters in each and αZ = αZ ′ for
Z ∈ {X ,Y , X � Y }. By barycentric considerations:

μ+(X ′) ≤ μ+((X � Y )′) ≤ μ+(Y ′)

Therefore by definition of a phantom function αX ≤ αX�Y ≤ αY . 
�
Theorem 14 A SP voting function ϕ∗ = (ϕn) : �∗ → � is anonymous and consistent
iff there is a weakly increasing function g : [0, 1] → � (electorate size independent)
and a constant x ∈ � such that the associated phantom function α on �∗ is defined
as:

αX :=
⎧
⎨

⎩
g

(
#μ+(X)

#N

)
if #N �= 0

x if #N = 0

Furthermore ϕ∗ verifies participation iff x ∈ g([0, 1]). (Proof: See appendix D.4.)
This is an elegant new result. It says that consistency and anonymity are equivalent

to the grading curve being independent of the electorate size.

Axiom 10 (Continuity with Respect to New Members) [10, 11]. A voting function ϕ∗
is said to be continuous with respect to new members if:

∀�r , �s, limn→+∞ϕ∗(
n︷ ︸︸ ︷

�r � · · · � �r ��s) = ϕ(�r)

Not surprisingly, but elegantly, continuitywith respect to newmembers is equivalent
to continuity of the grading curve:

Theorem 15 (Continuous Grading Curves) A strategy-proof, homogeneous (= con-
sistent and anonymous) voting function ϕ∗ : �∗ → � is continuous with respect to
new members iff its grading curve g is continuous. (Proof: See appendix D.5.)

5.4 Proportionality

In this subsection we assume that � = [0, 1].
Definition 9 (Linear=Uniform Median) The strategy-proof voting function ϕ∗ :
[0, 1]∗ → [0, 1] defined for any n = #N and X ∈ {0, 1}N , by α(X) =

∑
i Xi
n is

called the linear median. It corresponds to the grading curve g(x) = x .

The linear median was first proposed and studied in the unpublished Ph.D. dis-
sertation [14] of our co-author A. Jennings. It was rediscovered independently by
Caragiannis et al. [9] for its nice statistical properties under the name ‘uniformmedian.’
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These authors use a different representation based on the Moulin phantom character-
ization. Namely, if there are n voters and � = [0, 1] then the linear median can be
computed via the Moulin median formula:

ϕ(�r) = med(r1, . . . , rn, α0, . . . , αn),

where αk = k
n ,∀k = 0, . . . , n, that is, the Moulin n+1 phantom voters are uniformly

distributed on the interval [0, 1]. It is not evident from the median representation why
this ‘uniform median’ function satisfies participation, consistency, or continuity. But
these properties are immediate consequences of the linear grading curve g(x) = x
representation since it is continuous and independent of the size of the electorate. We
thus obtain:

Proposition 9 The linear median satisfies anonymity, continuity, consistency, soverei-
gnty, participation and continuity with respect to new members. On the other hand, it
is neither ordinal nor strictly responsive.

The proof is trivial from previous subsections as g is independent on the electorate
size, is continuous, is voter sovereign, etc.

Axiom 11 (Proportionality) A voting function ϕ∗ : [0, 1]∗ → [0, 1] is proportional if

∀X ∈ {0, 1}N , ϕ∗(X) =
∑

i Xi

#N
.

Theorem 16 Avoting functionϕ∗ : [0, 1]∗ → [0, 1] is strategy-proof andproportional
iff it is the linear median.

This a direct consequence of the fact that a SP function is completely determined
by its phantom function as proved in Theorem 2.

6 Maximizing social welfare

Social welfare is often taken to be the sum of individual utilities. This section deals
with the maximization of social welfare under the strategy-proofness constraint. We
will measure the individual utilities by the Lq -distance to the peaks and our objective
is to compute the SP socially optimal mechanism for q ∈ {1, 2}. (In this section we
assume that � = [m, M].)
Definition 10 (Ex-Post Social Welfare) The ex-post social welfare for a given voting
rule ϕ : [m, M]n → [m, M] and a given norm Lq is defined to be:

SW (ϕ, �r) := −
∑

i

‖ϕ(�r) − ri‖q .

It is well-known that, if the number of voters is odd, the unique voting rule which
maximizes ex-post social welfare for the L1 norm is the median. If the number of
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voters is even, the voting rule must be the median of the votes along with one fixed
phantom vote, α. (See for instance [16], Section 12.4.) On the other hand, it is trivial
to establish that the unique voting rule that always maximizes the L2 ex-post social
welfare is the arithmetic mean: φ(r1, . . . , rn) = 1

n

∑n
i ri—which is clearly not a SP

voting rule. Since no fixed SP voting rule is ex-post optimal for the L2-norm for every
realization �r , we can optimize ex-ante.

Theorem 17 The linear median, corresponding to g(x) = m+x(M−m) is the unique
voting rule that minimizes

E( f ) =
∫ M

m
· · ·

∫ M

m

n∑

i=1

(xi − f (�x))2dxn . . . dx1

over the set of all strategy-proof voting rules f . (Proof: See appendix E.)

7 Conclusion

We introduced the notions of phantom functions and grading curves and demonstrated
their usefulness in (i) unifying a number of existing characterizations of strategy-proof
voting rules on the domain of single-peaked preferences, and (ii) obtaining insightful
new characterizations.

As an important example, we have characterized the linear median as the unique
strategy-proof voting rule satisfying proportionality or maximizing the ex-ante social
welfare under the L2-norm and a uniform ex-ante prior. It has been shown to possess
further salient properties such as consistency and participation (because its grading
curve, the identity, is size electorate independent). On the other hand, the linearmedian
presupposes a cardinal scale. However, adding the natural condition of ordinality
characterizes, in the anonymous case, the class of order (statistics) functionswhichplay
an important role in the majority judgment—ordinal—method of voting (Balinski-
Laraki [16]Chapters 10–13).Aparticularly appealing order function is themiddlemost
(Chapter 13 in [16]).
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Appendix A: Proof of Lemma 3

If a voting rule ϕ : �N → � is strategy-proof, then it has a unique continuous

extension in �
N → �.
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Proof We define a clamp function �c : �
N × � × � → �N (component-wise) by:

�c(�r , x−, x+)i := min{x+,max{x−, ri }}.

�c is weakly-increasing with respect to x+ and x−.
Fix �r ∈ � and a sequence �si in � converging to �r . Define the sequence �ti to match

�si in every component j where r j ∈ {μ−, μ+}, and to match �r in every component
where r j /∈ {μ−, μ+}. limi→∞ |ϕ(�si ) − ϕ(�ti )| = 0 by uniform continuity of ϕ.

• Case ∃a, b ∈ �, a < ϕ(�c(�r , a, b)) < b:
By strategy proofness and monotonicity, ∀x, y ∈ � with x ≤ a < b ≤ y,
ϕ(�c(�r , x, y)) = ϕ(�c(�r , a, b)). �ti is eventually confined to this region. Thus:

lim
i→∞ ϕ(�si ) = lim

i→∞ ϕ(�ti ) = ϕ(�c(�r , a, b)).

• Case �a, b ∈ �, a < ϕ(�c(�r , a, b)) < b:
Choose arbitrary a, b ∈ � with a < b. We must have either ϕ(�c(�r , a, b)) ≤ a or
b ≤ ϕ(�c(�r , a, b)).

• Subcase ϕ(�c(�r , a, b)) ≤ a:
Choose arbitrary c ∈ � with c ≤ a. Again, since c < b we must have either
ϕ(�c(�r , c, b)) ≤ c or b ≤ ϕ(�c(�r , c, b)), but in this case the latter would lead to a
contradiction (since ϕ(�c(�r , c, b)) ≤ ϕ(�c(�r , a, b)) ≤ a < b). Thus, ϕ(�c(�r , c, b)) ≤
c < b.
As above, strategy-proofness and monotonicity imply

∀y ∈ �,ϕ(�c(�r , c, y)) ≤ ϕ(�c(�r , c, b)) ≤ c.

Since c was chosen arbitrarily from � with no lower bound and �ti is eventually
confined to this region, it follows that

lim
i→∞ ϕ(�si ) = lim

i→∞ ϕ(�ti ) = inf � = μ−.

• Subcase b ≤ ϕ(�c(�r , a, b)):
A completely analogous argument to the subcase above gives

∀c ≥ b,∀x ∈ �,ϕ(�c(�r , x, c)) ≥ ϕ(�c(�r , a, c)) ≥ c

and

lim
i→∞ ϕ(�si ) = lim

i→∞ ϕ(�ti ) = sup� = μ+.

If both subcases were to exist (for different a, b ∈ �) then we would have
ϕ(�c(�r , a1, b1)) ≤ a1 < b1 and a2 < b2 ≤ ϕ(�c(�r , a2, b2)). This leads to a contra-
diction at a0 = min{a1, a2} and b0 = max{b1, b2}:

ϕ(�c(�r , a0, b0)) ≤ a0 < b0 ≤ ϕ(�c(�r , a0, b0)).
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Thus, whichever subcase holds for an arbitrarily chosen a < b in � must hold for all
a < b in �.

Since �si → �r was arbitrary and limi→∞ ϕ(�si ) is well-defined, we conclude that

this limit is the unique continuous extension of ϕ to �
N → �. 
�

Appendix B: Proof of Theorem 1

This section aims to prove the following: the voting function ϕ is strategy-proof iff
there exists a phantom function α : � → � such that:

∀�r;ϕ(�r) :=
⎧
⎨

⎩

α �μ− if ∀ j, r j ≤ α �μ−
αθ(�r ,ri ) if (i ∈ N ) and ri = min{r j : r j ≥ αθ(�r ,ri )}
ri if (i ∈ N ) and ∀ε > 0, αθ(�r ,ri+ε) ≤ ri ≤ αθ(�r ,ri )

(6)

Throughout the proofs, xi often denotes the i th smallest element of the voting
profile �r .
Definition 11 For a given phantom function α, and a given voting profile �r we define
α�r ,i := αθ(�r ,xi ) where xi is the i th smallest element of (rk)k∈N andwe defineα�r ,n+1 :=
α �μ− = α(μ−, . . . , μ−).

Lemma 5 Let us fix a phantom function α. For all �r , there exists a voter i such that
one of the following holds

• ri = min{r j : r j ≥ αθ(�r ,ri )}.• ∀ε > 0, αθ(�r ,ri+ε) ≤ ri ≤ αθ(�r ,ri ).• ∀ j ∈ N , r j < α �μ− .

Proof Fix voting profile �r . Consider the following cases:

• (i) Case xn < α�r ,n+1: Then ∀ j ∈ N , r j ≤ xn < α�r ,n+1 = α �μ− .
• (ii) Case x1 ≥ α�r ,1: Then x1 = min{r j : r j ≥ αθ(�r ,x1)}.• (iii) Case ∃k > 1 s.t. xk−1 < α�r ,k ≤ xk : Then xk = min{r j : r j ≥ αθ(�r ,xk )}.• (iv) None of the above cases are true:
Let i = min{ j : x j ≥ α�r , j+1}. (The set is nonempty, otherwise case (i) would
hold.) By this definition, xi ≥ α�r ,i+1 and either i = 1 or xi−1 < α�r ,i . In either
case, we must have xi < α�r ,i . (If α�r ,i ≤ xi then case (ii) or case (iii) would be
true, respectively.)
Now we will show that ∀ε > 0, αθ(�r ,xi+ε) ≤ α�r ,i+1. If i = n, this is because
αθ(�r ,xn+ε) = α �μ− = α�r ,n+1. For i < n, there is no r j strictly between xi and xi+1,
so { j : r j ≥ xi + ε} ⊆ { j : r j ≥ xi+1}. It follows that θ(�r , xi + ε) ≤ θ(�r , xi+1)

and αθ(�r ,xi+ε) ≤ αθ(�r ,xi+1) = α�r ,i+1.
We conclude that ∀ε > 0, αθ(�r ,xi+ε) ≤ α�r ,i+1 ≤ xi ≤ αθ(�r ,xi ).


�
Lemma 6 The function ϕ, defined from a fixed α as in equation 6 is properly defined
for all �r .
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Proof Given Lemma 5 there is always a voter i that verifies one of the properties that
define ϕ. We must show that if different i satisfy the property this does not lead to an
ambiguous definition.

• If the first and second property are verified then α�r ,i ≤ ri ≤ α �μ− . Bymonotonicity
of α, α �μ− = α�r ,n+1 ≤ α�r ,i , therefore α�r ,i = α �μ− . There is no contradiction.

• If the first and third property are verified then ∀ε > 0, αθ(�r ,ri+ε) ≤ ri ≤ α �μ− .
Therefore by monotonicity of α, α �μ− = ri . There is no contradiction.

• If the second is verified for a voter i and the third for a voter k with ri ≤ rk , then
we have ri = min{r j : r j ≥ αθ(�r ,ri )} and ∀ε > 0, αθ(�r ,rk+ε) ≤ rk ≤ αθ(�r ,rk ). Since
ri ≤ rk , we have αθ(�r ,rk ) ≤ αθ(�r ,ri ). Hence ri ≤ rk ≤ αθ(�r ,rk ) ≤ αθ(�r ,ri ) ≤ ri . This
proves that αθ(�r ,ri ) = rk . This case does not lead to an ambiguous definition.

• If the second is verified for a voter i and the third for a voter k with rk < ri , then
we have ri = min{r j : r j ≥ αθ(�r ,ri )} and ∀ε > 0, αθ(�r ,rk+ε) ≤ rk ≤ αθ(�r ,rk ).
Therefore by monotonicity of α, for ε > 0 such that ri > rk + ε:

θ(�r , ri ) ≤ θ(�r , rk + ε) as such αθ(�r ,ri ) ≤ αθ(�r ,rk+ε) ≤ rk < ri .

This is absurd since ri = min{r j : r j ≥ αθ(�r ,ri )}. Therefore this case never
happens.

• Suppose the second is true for two different voters i and k. Therefore ri = min{r j :
r j ≥ αθ(�r ,ri )} and rk = min{r j : r j ≥ αθ(�r ,rk )}. Without loss of generality we can
suppose that ri ≤ rk . Therefore by monotonicity of α, αθ(�r ,rk ) ≤ αθ(�r ,ri ) ≤ ri .
Since rk is the min of {r j : r j ≥ αθ(�r ,rk )} we have that rk ≤ ri . As such rk = ri .
Therefore αθ(�r ,rk ) = αθ(�r ,ri ). This case does not raise an ambiguous definition.

• Suppose the third is true for two different voters i and k. Therefore for all ε > 0,
αθ(�r ,ri+ε) ≤ ri ≤ αθ(�r ,ri ) and αθ(�r ,rk+ε) ≤ rk ≤ αθ(�r ,rk ). Let us suppose that ri �=
rk .Without loss of generality, wewill use ri < rk . Choose ε > 0 so that rk > ri+ε.
Then by monotonicity of α we have αθ(�r ,ri+ε) ≤ ri < rk ≤ αθ(�r ,rk ) ≤ αθ(�r ,ri+ε).

Which is absurd.As such ri = rk . This case does not cause an ambiguous definition
of ϕ.

We have considered all the cases. The definition is not ambiguous. 
�
Lemma 7 If ϕ verifies strategy-proofness then there is a phantom function α such that
equation 6 holds.

Proof Let us use the phantom function α such that α(X) := ϕ(X). We will show for
each case used in the equation 6 that we obtain the desired value of ϕ(�r). Lemma 5
provides that we have studied all the cases and that therefore the proof is complete.

1. Case ∀ j, r j ≤ α �μ− : Since α �μ− = ϕ(μ−, . . . , μ−) ∈ �, α �μ− ≥ μ−. If α �μ− = μ−,
then ∀ j, r j = μ− so ϕ(�r) = ϕ( �μ−) = α �μ− . If μ− < α �μ− = ϕ(μ−, . . . , μ−),
then we can use strategy-proofness on each dimension to raise each component of
the input of ϕ without changing the output. Thus ϕ(�r) = ϕ( �μ−) = α �μ− .

2. Case ∃i, ri = min{r j : r j ≥ αθ(�r ,ri )}: Let X = θ(�r , ri ). If ϕ(�r) < αX , then
ϕ(�r) < αX ≤ ri . By strategy-proofness we could take every component of �r which
is greater than or equal to ri and raise it toμ+, and also lower all other components
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to μ−, without increasing the output of ϕ. Thus ϕ(θ(�r , ri )) ≤ ϕ(�r) < ϕ(θ(�r , ri )),
which is a contradiction.
If ϕ(�r) > αX , we will also find a contradiction. If there is no r j strictly smaller
than ri , then θ(�r , ri ) = �μ+ and αX = α �μ+ = ϕ( �μ+) ≥ ϕ(�r), a contradiction.
Otherwise, let r j be the largest component of �r strictly smaller than ri . Then
r j < αθ(�r ,ri ) = αX < ϕ(�r). By strategy-proofness, we can lower all components
less than or equal to r j to μ− and raise the others to μ+, weakly increasing the
output of ϕ. This gives ϕ(θ(�r , ri )) ≥ ϕ(�r) > αX = ϕ(θ(�r , ri )), a contradiction.
Therefore if ∃i, ri = min{r j : r j ≥ αθ(�r ,ri )} then ϕ(�r) = αX .

3. Case ∀ε > 0, αθ(�r ,ri+ε) ≤ ri ≤ αθ(�r ,ri ):
Suppose thatϕ(�r) < ri . By strategy-proofness,we can raise all components greater
than or equal to ri to μ+ and lower the others to μ−, weakly decreasing the output
of ϕ. This gives ϕ(θ(�r , ri )) ≤ ϕ(�r) < ri ≤ αθ(�r ,ri ) = ϕ(θ(�r , ri )), a contradiction.
Suppose that ϕ(�r) > ri . Choose ε > 0 such that ri +ε is strictly between ri and the
smallest component of �r strictly larger than ri . (If there is no larger component, then
any arbitrary ε > 0 will do.) By strategy-proofness, we can lower all components
less than or equal to ri to μ− and raise the others to μ+, weakly increasing the
output of ϕ. This gives ϕ(θ(�r , ri +ε)) ≥ ϕ(�r) > ri ≥ αθ(�r ,ri+ε) = ϕ(θ(�r , ri +ε)),
a contradiction.
Therefore if ∀ε > 0, αθ(�r ,ri+ε) ≤ ri ≤ αθ(�r ,ri ), then ri = ϕ(�r).


�
Lemma 8 For a function ϕ, if there is a phantom function α such that Eq. 6 holds then
ϕ is strategy-proof.

Proof First we prove weak responsiveness then strategy-proofness.

• Weak responsiveness: This proof is by induction. Let �s differ from �r only in
dimension i and ri < si . Let k be such that ϕ(�r) ∈ {αθ(�r ,rk ), rk}when ϕ(�r) �= α �μ− .

1. Case ϕ(�r) = α �μ− :
α �μ− is the minimum of ϕ therefore ϕ(�r) ≤ ϕ(�s).

2. Case si ≤ ϕ(�r):
We have ϕ(�r) ≤ rk , therefore si ≤ rk and i �= k. If si = rk then rk ≤ αθ(�r ,rk ).
We have∀ε > 0, θ(�s, sk+ε) = θ(�r , rk+ε) and θ(�s, sk) ≥ θ(�r , rk). Therefore,
∀ε > 0, αθ(�s,sk+ε) ≤ sk ≤ αθ(�s,sk ). Otherwise si < rk implies θ(�s, sk) =
θ(�r , rk) and θ(�s, sk + ε) = θ(�r , rk + ε). Therefore, ∀ε > 0, αθ(�s,sk+ε) ≤
sk ≤ αθ(�s,sk ). In both cases, we can conclude that ϕ(�r) = ϕ(�s).

3. Case ϕ(�r) < ri :
If rk = ri , then ϕ(�r) = αθ(�r ,rk ). Let sl = min{s j : s j ≥ ϕ(�r)}. Then θ(�s, sl) =
θ(�r , rk) and sl = min{s j : s j ≥ αθ(�r ,sl )}. Therefore ϕ(�r) = ϕ(�s). Otherwise
if k �= i , θ(�s, sk) = θ(�r , rk) and for any ε such that 0 < ε < ri − rk , we have
θ(�s, sk + ε) = θ(�r , rk + ε). We can conclude that ϕ(�r) = ϕ(�s).

4. Case ϕ(�r) = ri :
Let X be defined by X j = μ+ iff j = i or r j > ri . We have θ(�r , ri + ε) <

X ≤ θ(�r , ri ). Let x = min {r j : r j > ri }.
(a) Subcase αX < ri :

If there were no j �= i such that r j = ri then i = k and we would have
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X = θ(�r , ri ). As such, αθ(�r ,ri ) < ri = ϕ(�r). This is absurd. Therefore
such a j exists. As such, without loss of generality, we can consider that
i �= k. It follows that θ(�s, sk) = θ(�r , ri ) and θ(�s, sk + ε) = θ(�r , rk + ε).
To conclude ϕ(�s) = sk = rk = ϕ(�r).

(b) Subcase ri ≤ αX and si ≤ x :
We have X = θ(�s, si ) and θ(�s, si + ε) ≤ θ(�r , ri + ε). As such ϕ(�s) =
min(αX , si ) ≥ ri = ϕ(�r).

(c) Subcase ri ≤ αX and si > x :
Let t differ from r only in dimension ri with ti = x . We can show by
induction that ϕ(r) ≤ ϕ(t) by using (b). We can show by induction that
ϕ(t) ≤ ϕ(s) by using (3) or (4). Transitivity of inequalities therefore
provides ϕ(r) ≤ ϕ(s).

5. Case ri < ϕ(�r) < si :
Let t differ from r only in dimension ri with ti = ϕ(�r). We can show by
induction that ϕ(r) ≤ ϕ(t) by using (2). We can show by induction that ϕ(t) ≤
ϕ(s) by using (4). Transitivity of inequalities therefore provides ϕ(r) ≤ ϕ(s).

There are a finite number of values rk and αX between ri and si . As such by
inductive steps we have shown that ϕ is weakly responsive.

• Strategy-proofness: Let �s differ from �r only in dimension i . Suppose that ri < ϕ(�r):
– If ri < si , then by weak responsiveness ϕ(�r) ≤ ϕ(�s).
– If ϕ(�r) = α �μ− and si < ri then ϕ(�r) = ϕ(�s) = α �μ− .
– If si < ri < ϕ(�r) = αθ(�r ,rk ) then sk = min{s j : s j ≥ αθ(�r ,sk )} therefore

ϕ(�r) = ϕ(�s).
– If si < ri < ϕ(�r) = rk then θ(�r , rk) = θ(�s, sk) and θ(�r , rk+ε) = θ(�s, sk+ε).
Therefore ϕ(�r) = ϕ(�s).

The proof for ri > ϕ(�r) is symmetrical in every case except:

– If αθ(�r ,rk ) < ri < si then rk = min {r j : r j ≥ αθ(�r ,rk )}. Let l be such that
sl = min {s j : s j ≥ αθ(�r ,rk )}. We have sl = min {s j : s j ≥ αθ(�r ,sl )}. It follows
that ϕ(�r) = ϕ(�s).


�
Theorem 18 (Phantom function characterization) The voting function ϕ is strategy-
proof iff there exists a phantom function α : � → � such that Eq. 6 is verified.

Proof The proof is immediate by using Lemmas 6, 7 and 8. 
�

Apendix C: Missing proofs for the new characterizations

C.1 Proof of Theorem 6

A voting rule ϕ is strategy-proof iff there exists a phantom function α (the same as in
Theorem 2) such that:

∀�r;ϕ(�r) := med(r1, . . . , rn, αX0(�r), αX1(�r), . . . , αXn(�r)). (7)
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Proof Let ϕ be a strategy-proof voting rule defined by a phantom function α as in
Theorem 2. Let μ : �N → � be defined as:

∀�r , μ(�r) := med(r1, . . . , rn, αX0(�r), αX1(�r), . . . , αXn(�r)).

Since ϕ is the unique strategy-proof voting rule defined by α we only need to prove
that ϕ = μ. We will use the shorthand Xk := Xk(�r) since the context is clear (e.g. �r
will be fixed). Considering the two cases in the formula of Theorem 2:

• Case ϕ(�r) = αX .
Let us first show that there is k such that αX = rk or αX = αXk .
Suppose that ∀ j, αX �= r j then μ+(X) = { j : r j > αX }. Therefore there is only
one choice for Xk where k = #μ+(X), that is Xk = X . Therefore αXk = αX .
Given our assumption we have therefore shown that there is k such that αX = rk
or αX = αXk . In other words αX is one of the arguments given to the median
function. It now remains to show that αX is selected by the median (e.g. is the
output of μ).
If μ+(X) = { j : r j ≥ αX } then for all j ∈ μ+(X) we have r j ≥ αX . Also, for
any l such that l ≥ k, we have that αXl ≥ αX . Therefore we have n + 1 values
in the median formula of μ that are greater of equal to αX . A symmetrical proof
gives us n + 1 values that are less or equal to αX .
If μ+(X) ⊂ { j : r j ≥ αX } then there is rk = αX . For all j ∈ μ+(X) we have
rk ≤ r j . For any l such that l ≥ #{ j : r j ≥ αX }, we have that αXl ≥ rk . Therefore
we have n + 1 values in the median formula of μ that are greater of equal to
αX = rk . A symmetrical proof gives us n + 1 values that are less or equal to αX .
Consequently μ(�r) = αX .

• Case ϕ(�r) = ri .
Let X and Y be such that αX ≤ ri ≤ αY and μ+(X) = { j : ri < r j } ∧ μ−(Y ) =
{ j : ri > r j }. For any l ≥ #μ+(X) we have αXl ≥ ri . Therefore we have (ri
included) n+1 elements that are greater or equal to ri . A symmetrical proof gives
us that there are n + 1 that are lesser or equal to ri . Consequently, ri is the median
of our set of values, that is: μ(�r) = ri .

Therefore ϕ = μ. 
�

Appendix D: Missing proofs for additional properties

D.1 Proof of Proposition 4

For a strategy-proof voting rule ϕ : �N → � the following are equivalent:

(1) The phantom function α verifies α(�) = {μ−, μ+}
(2) ϕ is strictly responsive.

And when moreover � is a rich,9 (1) and (2) are equivalent to:
(3) ϕ is ordinal and not constant.

9 � is rich if for any α < β in � there exists a γ ∈ � such that α < γ < β.
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Proof (2) → (1) : Suppose that ϕ is strategy-proof and strictly responsive. If there
exists X ∈ � such that αX /∈ {μ−, μ+}, then set �r and �s such that if j ∈ μ+(X) then
r j = αX , s j = μ+ and if j ∈ μ−(X) then r j = μ−, s j = αX . We have ϕ(�s) = ϕ(�r)
which contradicts strict responsiveness. Therefore α(�) ⊆ {μ−, μ+}. If #α(�) = 1
then the function is a constant and is therefore not strictly responsive. Consequently,
α(�) = {μ−, μ+}.

(1) → (2) : Suppose that ϕ is strategy-proof and α(�) = {μ−, μ+}. For any ϕ(�r)
and ϕ(�s) such that for each k, rk < sk . Since all the phantoms are extreme we have: i
and j such that ri = ϕ(�r) and s j = ϕ(�s). Let �t be defined as for all k if rk < ri then
tk = rk , otherwise if sk = ri then tk = rk+sk

2 , otherwise tk = sk . We have ϕ(�t) ∈ {tk}
therefore by weak responsiveness, since ri /∈ {tk}, we have ri < ϕ(�t) ≤ s j

(3) → (1) : Suppose that ϕ is strategy-proof and ordinal. If there exists X ∈ � such
that αX /∈ {μ−, μ+}, let �r be such that there are two alternatives a < b < αX such that
if i ∈ μ+(X) then ri = b otherwise ri = a. Letπ be bijective andπ(a) < αX < π(b).
Then:

αX = ϕ(π(r1), . . . , π(rn))

= π ◦ ϕ(�r)
= π(b)

> αX

We have reached a contradiction, therefore α(�) = {μ−, μ+}.
(1) → (3) : Here we use the median representation in Theorem 6. Suppose that ϕ

is strategy-proof and α(�) = {μ−, μ+}. For any strictly responsive and bijective π

and for any voting profile �r :

ϕ(π(r1), . . . , π(rn)) = med(π(r1), . . . , π(rn), αX0(π(�r)), αX1(π(�r)), . . . , αXn(π(�r)))
= med(π(r1), . . . , π(rn), αX0(�r), αX1(�r), . . . , αXn(�r))
= med(π(r1), . . . , π(rn), π(αX0(�r)), π(αX1(�r)), . . . , π(αXn(�r))))
= π ◦ med(r1, . . . , rn, αX0(�r), αX1(�r), . . . , αXn(�r))
= π ◦ ϕ(�r)

Therefore ϕ is ordinal. 
�

D.2 Proof of Theorem 12

A strategy-proof voting rule ϕ∗ : �∗ → � verifies participation iff with the order
μ− < ∅ < μ+, its associated phantom function α is weakly increasing.

Proof ⇒: Suppose μ− < ∅ < μ+. We will prove by reductio ad absurdum. Assume
that α is not weakly increasing. Therefore there is an elector i , such that for X and Y
that only differ in i we have Xi < Yi and α(X) > α(Y ). By definition of a phantom
function either Xi = ∅ or Yi = ∅. Suppose Xi = ∅ (therefore Yi = μ+), then for
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�r = Y we have that by removing his vote, voter i contradicts the participation property
(e.g. participation). A similar proof works for Yi = ∅.

⇐: Suppose that α is weakly increasing. Let ϕ∗(�r) = a where elector i did
not cast a ballot. Let �s be the voting profile that is identical to �r except that si
is a ballot. We will use now the curve characterisation (Theorem 7): ∀�r;ϕ∗(�r) :=
sup

{
y ∈ � : αθ(�r ,y) ≥ y

}
. If si ≤ a then αθ(�r ,si ) ≥ αθ(�r ,a) ≥ si therefore ϕ(�s) ≥ si .

We also have that αθ(�r ,a) ≥ αθ(�s,a) therefore ϕ∗(�r) ≥ ϕ∗(�s). Otherwise if si ≥ a
then αθ(�r ,si ) ≤ αθ(�r ,a) ≤ si therefore ϕ(�s) ≥ si . We also have that αθ(�r ,a) ≤ αθ(�s,a)

therefore ϕ∗(�r) ≤ ϕ∗(�s). It follows that not submitting ones true value si cannot be
beneficial. 
�

D.3 Proof of Proposition 5

In a vote by issue, a strategy-proof voting function verifies participation iff when a
elector i decides to become a voter with ballot x then for any property H containing
x , if WH was a winning coalition of H for the initial set of voters then WH ∪ {i} is a
winning coalition for the new set of voters.

Proof ⇒: Suppose that α is weakly increasing for the order μ− < ∅ < μ+. Let V
be a fixed set of voters such that i /∈ V . For H = {y ≥ a}, W ⊆ V is a winning
coalition iff X ∈ �∗ such μ+(X) = W verifies αX ≥ a. Let Y that differs from
X only in dimension i with Yi = μ+, then αY ≥ a. Therefore μ+(Y ) is a winning
coalition. A similar proof works for H = {y ≤ a}.⇐: Suppose that when a electorate
i decides to become a voter with ballot x then for any property H containing x , ifWH

was a winning coalition of H for the initial set of voters then WH ∪ {i} is a winning
coalition for the new set of voters. Let us take x = αX where i is not a voter for X .
Then μ+(X) ∪ {i} (resp. μ−(x)) is a winning coalition for {y ≥ x} (resp. {y ≤ x})
therefore αY ≥ αX (resp. αY ≤ αX ) where Y differs from X only in dimension i and
Yi = μ+ (resp. Yi = μ−). 
�

D.4 Proof of Theorem 14

A SP voting function ϕ∗ = (ϕn) : �∗ → � is anonymous and consistent iff there
is a weakly increasing function g : [0, 1] → � (electorate size independent) and a
constant x ∈ � such that the phantom function α : �∗ is defined as:

αX :=
⎧
⎨

⎩
g

(
#μ+(X)

#N

)
if #N �= 0

x if #N = 0

Furthermore the voting function verifies participation iff x ∈ g([0, 1]).
Proof ⇒: Let us first show the existence of x and g : [0, 1] → � such that for
all X ∈ �∗ the equation holds. x = α�∅ therefore x exists. For any other X if

q = #μ+(X)

#μ−(X)+#μ+(X)
we define g(q) = αX . Observe that this is well defined as

by consistency and anonymity, we can duplicate and merge the electorate and so we
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must have αX = αY = g(q) whenever #μ+(Y )

#μ−(Y )+#μ+(Y )
= q. Now let us show that g

is weakly increasing. For any X and Y such that #μ+(X)

#μ−(X)+#μ+(X)
≤ #μ+(Y )

#μ−(Y )+#μ+(Y )
by

consistency we can duplicate X and Y into X ′ and Y ′ that have the same number of
voters. As such αX ≤ αY . It follows that g is weakly increasing over the set of ratio-
nals. Since the values over the irrationals do not matter we can complete the definition
with a weakly increasing g without loss. ⇐: For any X ∈ �∗ we have αX = αX��∅.
By using the barycentric weights we have that for any X and Y we have:

#μ+(X)

#μ−(X) + #μ+(X)
≤ #μ+(X � Y )

#μ−(X � Y ) + #μ+(X � Y )
≤ #μ+(Y )

#μ−(Y ) + #μ+(Y )

Therefore since g is weakly increasing. αX ≤ αX�Y ≤ αY . It follows that we verify
consistency. Finally we wish to show that if x ∈ g([0, 1]) then our voting function
verifies participation. For any n > 0 and 0 ≤ k < n we have:

k

n + 1
<

k

n
<

k + 1

n + 1

Therefore since g is weakly increasing α is weakly increasing except maybe in α�∅.
Therefore the function verifies participation iff x ∈ g([0, 1]). 
�

D.5 Proof of Theorem 15

A strategy-proof, homogeneous (= consistent and anonymous) voting function ϕ∗ :
�∗ → � is continuous with respect to new members iff its grading curve g is contin-
uous.

Proof ⇒: We have ∀�r , �s, limn→+∞ϕ(

n︷ ︸︸ ︷
�r � · · · � �r ��s) = ϕ(�r). Therefore for any

X ,Y ∈ �∗ with at least one voter each:

limn→+∞g

(
n#μ+(X) + #μ+(Y )

n(#μ−(X) + #μ+(X)) + #μ−(Y ) + #μ+(Y )

)

= g

(
#μ+(X)

#μ−(X) + #μ+(X)

)

Therefore, since g is weakly increasing, g is continuous in all rational numbers.
Therefore by monotonicity and density of the rationals within the real numbers we
have that g is continuous.

⇐: Let g be continuous. Then for all X ,Y :

limn→+∞g

(
n#μ+(X) + #μ+(Y )

n(#μ−(X) + #μ+(X)) + #μ−(Y ) + #μ+(Y )

)

= g

(
#μ+(X)

#μ−(X) + #μ+(X)

)
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Therefore by continuity of ϕ:

∀�r , �s, limn→+∞ϕ(

n︷ ︸︸ ︷
�r � · · · � �r ��s) = ϕ(�r).


�

Appendix E: Proof of Theorem 17

Fix natural n. The linear median, corresponding to α(X) = m +
∑

i Xi
n (M − m) is

the unique SP voting function that minimizes the L2-norm between inputs and output,
integrated with the L2-norm over the uniform distribution on [m, M]n .
Proof We desire to find the SP voting function f that minimizes

E( f ) =
∫ M

m
· · ·

∫ M

m

n∑

i=1

(xi − f (�x))2dxn . . . dx1

Since f is a SP voting function, it is fully characterized by its αX values as in lemma 1.
Thus we can minimize E( f ) by optimizing each αX value independently. Fix X .

∂E

∂αX
=

n∑

i=1

∫ M

m
· · ·

∫ M

m
2(xi − f (�x)) ∂

∂αX
(xi − f (�x))dxn . . . dx1

Let k1, k2, . . . , ka be the indices of X with Xki = 1 and k̂1, k̂2, . . . , k̂b be the indices
of X with Xk̂i

= 0. ∂
∂αX

f will be 1 where f (�x) = αX (and 0 elsewhere) which is
exactly in the region where xk̂1 , xk̂2 , . . . , xk̂b < αX < xk1 , xk2 , . . . , xka . Thus,

∂E

∂αX
= −

⎛

⎜⎜⎜⎝

b∑

i=1

∫ M

αX

· · ·
∫ M

αX︸ ︷︷ ︸
a

∫ αX

m
· · ·

∫ αX

m︸ ︷︷ ︸
b

2(xk̂i − αX )dxk̂1 . . . dxk̂bdxk1 . . . dxka

+
a∑

i=1

∫ M

αX

· · ·
∫ M

αX︸ ︷︷ ︸
a

∫ αX

m
· · ·

∫ αX

m︸ ︷︷ ︸
b

2(xki − αX )dxk̂1 . . . dxk̂bdxk1 . . . dxka

⎞

⎟⎟⎟⎠

=
(

b∑

i=1

(M − αX )a(αX − m)b−1
∫ αX

m
2(αX − xk̂i )dxk̂i

−
a∑

i=1

(M − αX )a−1(αX − m)b
∫ M

αX

2(xki − αX )dxki

)
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= (M − αX )a(αX − m)b(a + b)

(
αX −

(
m + a

a + b
(M − m)

))

Since a
a+b =

∑
i Xi
n , a minimum for E( f ) is

αX = m +
∑

i Xi

n
(M − m).

Since this true for all X , this gives the voting function that minimizes the L2-norm for
votes coming from the uniform distribution on [m, M]n . 
�
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