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Abstract

Many multi-person trackers follow the tracking-by-detection paradigm applying
a person detector in each frame and linking detections of the same target
to form tracks in the association task. While the basic concept is the same
among these methods, various motion models, distance metrics to measure
the similarity of targets, and matching strategies are used. This makes it
difficult to compare different methods and also to assess the influence of single
tracking components on the final performance. For these reasons, all parts of the
association task are thoroughly investigated in this study. Starting with a simple
baseline which is consequently improved with the help of experimental results,
a strong tracking-by-detection-based framework is developed that achieves
state-of-the-art performance on two multi-person tracking benchmarks.

1 Introduction

The objective of multi-person tracking (MPT) is to detect and identify all persons
in every frame of a given video. Applications range from crowd monitoring to
autonomous driving and surveillance related tasks.
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To solve the MPT problem, most methods pursue the tracking-by-detection
(TBD) paradigm. A detector is applied on each image independently and the
obtained detection sets are matched such that detections of the same target form
a track with a unique ID. This problem of assigning the correct detections to
the corresponding tracks is called the association task. While some approaches
try to integrate detection and association more tightly [2, 9, 31, 33, 43], the
strict separation of the two sub-tasks in TBD can still achieve state-of-the-art
results. Currently, the top performing entries of the standard MPT benchmarks
MOT17 [22] and MOT20 [6] follow the TBD paradigm [1, 7, 23, 28, 46]
leveraging an of-the-shelf detection model and focusing on the association task.

Different strategies to improve the association can be observed in the literature.
Motion models based on Kalman filter [16] are used to make the estimated target
positions more accurate [4, 5, 10, 40]. In addition, camera motion compensation
techniques are integrated to deal with motion of non-static cameras [2, 10, 15, 28,
29]. The core of the association is the distance measure which determines how
likely a detection belongs to a so-far tracked target. On the one hand, motion-
based metrics such as Intersection over Union (IoU) are utilized and on the other
hand, the appearance of targets is leveraged. For example, in DeepSORT [40]
and its further development StrongSORT [10], a person re-identification model
is applied to extract appearance features from the image patches of the detections
and cosine distance between the high-dimensional features is taken as association
metric. While DeepSORT uses motion distance only for gating, i.e., prohibiting
unlikely assignments, StrongSORT combines it with appearance distance as
also done in [1, 7]. Besides the distance metric, the association strategy has a
large influence on the performance. While most methods make all assignments
at once with the Hungarian algorithm [17], DeepSORT proposes a matching
cascade that prefers previously observed targets and ByteTrack [46] performs a
second matching step in which low-confident detections are utilized.

In this study, all aforementioned components of the association task in MPT
are analyzed in detail. Starting with a baseline TBD approach with strong
motion models, a large number of experiments with different distance measures,
both motion- and appearance-based, and their combinations are conducted. In
addition, matching strategies with multiple stages are investigated. With the help
of the experimental results, a strong TBD method is developed which achieves
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state-of-the-art results on the two MPT datsets MOT17 [22] and MOT20 [6].
Furthermore, ablative experiments of the proposed framework are performed
showing the influence of the single tracking components as well as the sensitivity
of the tracking parameters on the final performance.

2 Baseline and Motion Models

A baseline tracker using only IoU as matching metric is built before more
advanced matching measures and strategies are investigated. In addition, various
motion models for target and camera motion are compared in this section.

Let T t−1 = {T t−1
1 , . . . , T t−1

k } be the tracks found until frame It−1 and
Dt = {Dt

1, . . . , T
t
l } the detections generated on the frame It of a video

V = [I1, . . . , In] of length n. The association task is to assign the detec-
tions Dt to its corresponding targets T t−1. For this, distances between all
confident detections and tracks are calculated and used as cost values. After-
wards, the overall costs of assignments are minimized, e.g., with the Hungarian
algorithm [17]. More precisely, given a detection D = (BD, s) ∈ Dt with box
BD and confidence s and the box BT of a track T ∈ T t−1, a distance measure
d can be calculated using the IoU between detection box BD and track box BT :

dIoU = 1 − IoU(BD, BT) (2.1)

Before calculation of the distance matrix of detections and tracks, the detections
are filtered w.r.t. confidence, i.e., detections with a score s smaller than the
threshold strack are removed and not used in the association. In addition, a max-
imum distance dmax is enforced to prohibit unlikely assignments. Unmatched
tracks that are not assigned a detection become inactive and are kept for imax
frames in the set of tracks before deletion. Thus, they can be re-activated for
a short time period to bridge occlusions, for instance. Unmatched detections
with high confidence s ≥ sinit start new tracks. Note that some trackers [10, 28,
40, 46] follow an initialization strategy, in which detections first start tentative
tracks that have to be confirmed in subsequent frames in order to become active.
While this strategy suppresses frame-wise false positive detections, it introduces
false negatives since the tentative tracks do not contribute to the tracking output.
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If the quality of detections is high and a large threshold sinit is set, such an
initialization technique can reduce the overall performance, so it is not used in
this study unless otherwise stated.

Most MPT approaches have in common, that a Kalman filter (KF) [16] is used
to model the motion of targets. However, various formulations of the state
vector x and different implementation details can be found in the MPT literature.
The most used variants are originally from the SORT [4] and DeepSORT [40]
frameworks. The state vectors of the two KF types are as follows:

xSORT = (u, v, a, r, u̇, v̇, ȧ)T (2.2)
xDeepSORT = (u, v, r, h, u̇, v̇, ṙ, ḣ)T (2.3)

The box center position is (u, v) and the aspect ratio is r = w/h with w and h
denoting box width and height, respectively. A derivative of a variable x with
respect to time is indicated by ẋ. Whereas SORT explicitly models the box area
a = w · h and its derivative ȧ but keeps the aspect ratio r fixed, DeepSORT
instead models the box height h and its derivative ḣ. Thus, the process and
measurement noise covariance matrices also differ next to other implementation
details, which can be found in the papers [4, 40] or the public source code.

Recently, further developments have been proposed for the DeepSORT variant
– the Noise Scale Adaptive (NSA) KF [8] and the height preservation (HP)
adaptation [30]. In the update step of the NSA KF, the measurement noise
covariance matrix R is weighted with the confidence of the measurement, i.e.,
the detection confidence score s, as follows:

RNSA = (1 − s) · R (2.4)

The higher the detection confidence, the smaller the adapted measurement noise
covariance RNSA and the more influence has the detection on the track state
update. The other adaptation is related to the state vector x. It is empirically
found in [30], that predicting inactive tracks for multiple frames without state
update, the track box size can change dramatically which hinders re-activation
after occlusion. To prevent this, HP can be applied simply setting the derivative
ḣ to zero before the KF prediciton step, which is also done in [1] and [46].

Besides target motion, modelling camera motion is also important. For camera
motion compensation (CMC), again two different methods from literature are
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Table 2.1: Motion Model Results.

KF Type NSA CMC HOTA KF Type NSA CMC HP HOTA
SORT 7 7 67.61 DeepSORT 7 7 7 67.40
SORT 3 7 67.67 DeepSORT 3 7 7 67.82
SORT 7 ECC 67.77 DeepSORT 7 ECC 7 68.03
SORT 7 ORB 68.36 DeepSORT 7 ORB 7 68.13
SORT 3 ECC 68.03 DeepSORT 3 ORB 7 68.62
SORT 3 ORB 68.35 DeepSORT 3 ORB 3 68.67

investigated – the Enhanced Correlation Coefficient (ECC) Maximization [12]
and a model from [28] that is based on the ORB [26] feature detector and the
RANSAC [13] algorithm. The ORB method is a sparse image registration
technique in that foreground objects like moving persons can be neglected, in
contrast to the global ECC method. A similar approach is found in [1].

To compare the different motion models, several experiments are run on the
validation split (Val) of MOT17, which is created by dividing the train sequences
into two halves and using the second ones [35, 46, 48]. As detection model, a
publicly available YOLOX [14] model from [46] is utilized, which has been
trained on a combined dataset consisting of CrowdHuman [27], CityPersons [45],
ETH [11], and the first half of MOT17 train split. Note that this YOLOX model
can be regarded as the current standard in MPT on the MOT datasets, since
many state-of-the-art methods are using it [1, 10, 5, 28, 23, 37, 36, 46]. If not
otherwise stated, the parameters of the tracker are set to sinit = 0.7, strack = 0.6,
dmax = 0.8, imax = 30 and the resolution of the input images is 1440×1080
pixels. To measure the overall tracking accuracy, HOTA [20] is evaluated.

The results with different KF types, KF adaptations and CMC models are
summarized in Table 2.1. Without any extensions, the SORT KF performs
slightly better than the DeepSORT KF. However, the results of the DeepSORT
KF can be largely improved with the NSA adaptation, while NSA in combination
with SORT does not enhance the results in all configurations. This is not
surprising, as NSA is developed as extension for the DeepSORT KF and the
measurement noise covariance matrices R differ among the KF types. As
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expected, ORB outperforms ECC in all experiments. W.r.t. the baselines, ORB
improves the overall tracking performance by 0.75 HOTA and 0.73 HOTA for
SORT KF and DeepSORT KF, respectively. Additionally adding the height
preservation (HP) in the DeepSORT KF variant, a HOTA of 68.67 is achieved
which is a gain of 1.27 HOTA in comparison to the DeepSORT KF baseline.
Therefore, the DeepSORT KF with NSA and HP extensions is used in all
subsequent experiments, together with the CMC model based on ORB features.

3 Distance Measures

As mentioned previously, the distance measure is the core of each TBD algorithm.
In the baseline experiments of the last section, the IoU has been leveraged which
is the most used motion-based distance metric in MPT. In this section, further
distance measures for the association are explored. First, motion-based matching
is analyzed in Section 3.1. Then, appearance-based matching is studied in
Section 3.2. Both types of infomation are combined in Section 3.3, before
further techniques like incorporating the detection confidence and applying
gating mechanisms are treated in Sections 3.4 and 3.5, respectively.

3.1 Motion-based Matching

The authors of SimpleTrack [18] experiment with the Generalized IoU (GIoU)
[24] as similarity measure in combination with appearance information, which
enhances the performance of their tracker. This raises the question, whether
other IoU related measures also can improve the matching accuracy. Therefore,
different adaptations of the original IoU are investigated in the following. Given
two boxes A = (xA, yA, wA, hA) and B = (xB , yB , wB , hB), the IoU is the
relation of the intersection A ∩B to the union A ∪B:

IoU = A ∩B

A ∪B
(3.1)

The IoU has the drawback that non-overlapping boxes always yield an IoU of
0, independent from how far away the boxes are from each other. To solve this
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issue, the GIoU is proposed as

GIoU = IoU − C \ (A ∪B)
C

(3.2)

whereC denotes the smallest enclosing box of A and B. While the spatial distance
of the boxes A and B has influence on the box C, it is not modelled explicitly.
In contrast, the euclidean distance dL2(A,B) =

√
(xA − xB)2 + (yA − yB)2

is directly used in the Distance IoU (DIoU) [47]:

DIoU = IoU − d2
L2(A,B)
c2 (3.3)

Here, c denotes the diagonal of the smallest enclosing box C. The same paper
further introduces the Complete IoU (CIoU) [47], which not only explicitly
models spatial distance but also aspect ratio consistency:

CIoU = DIoU − αv (3.4)

v = 4
π2

(
arctan

(
wA

hA

)
− arctan

(
wB

hB

))2
(3.5)

α = v

(1 − IoU) + v
(3.6)

Note that the IoU and its variants are similarity measures with a maximum
similarity of 1. Thus, a distance measure can be created by subtracting the value
from 1 as in Equation 2.1.

If a Kalman filter is used as motion model, it is possible to integrate the
uncertainty of the motion estimation into the distance measure. For this,
DeepSORT [40] and StrongSORT [10] calculate the squared Mahalanobis
distance between a detection D and a track T , given the state formulation of the
detection box d = (u, v, r, h)T and the projection of the track state (mean and
covariance) into measurement space (y,S):

dmahal = (d − y)TS−1(d − y) (3.7)

Whereas DeepSORT uses only the Mahalanobis distance for gating, i.e., pre-
venting unlikely assignments by enforcing a maximum distance, here, dmahal
is directly used as matching distance. Additionally, the euclidean distance dL2
between detection and track center is considered.
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Table 3.1: Motion-based Matching Results.

d IoU GIoU DIoU CIoU L2 Mahal
HOTA 68.67 68.47 68.74 68.74 64.70 62.94

To compare the performance of the aforementioned motion-based distance
measures d in the association, several experiments are conducted tuning the
maximum distance threshold dmax for each metric separately. The highest
achieved HOTA values are reported in Table 3.1. One can see that the IoU-
based distance measures work much better than taking the L2 distance or the
Mahalanobis distance. While L2 distance does not consider the important
information of box dimensions, the Mahalanobis distance is only a rough
estimation of the object location if the state uncertainty is high [40]. In the
experimental setup, DIoU and CIoU achieve the highest HOTA value of 68.74,
closely followed by IoU and GIoU. Note that DIoU and CIoU yield the exactly
same tracking results. Since the aspect ratio of targets does not vary significantly
in MPT, v in Equation 3.4 becomes a very small value, thus CIoU ≈ DIoU
holds. For this reason, the DIoU is used in the rest of this study.

3.2 Appearance-based Matching

Similar to adopting an of-the-shelf detector, many MPT approaches take over a
model from the re-identification community for extracting appearance features
of targets [1, 10, 19, 34, 40, 41]. Such a network takes a small image patch of a
detected person as input and computes a high-dimensional feature vector that
represents the appearance of the person. In appearance-based matching, several
design choices have to be made when comparing the features of detections and
tracks. Which distance measure should be used? How many time steps shall
be considered to describe the appearance of a track? What is the best way to
combine features from different time steps? In this section, a large amount
of experiments is conducted to answer these questions empirically. Given
two m-dimensional feature vectors fD and fT from a detection and a track,
respectively, one can calculate either the cosine distance dcos or the euclidean
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distance dL2 to measure their appearance similarity:

dcos = 1 − fD · fT
T

‖fD‖ · ‖fT ‖
(3.8)

dL2 =
√

(fD,1 − fT,1)2 + (fD,2 − fT,2)2 + · · · + (fD,m − fT,m)2 (3.9)

Note that dcos ∈ [0, 2] and dL2 ∈ [0,∞] holds and ‖ · ‖ represents the Euclidean
norm. Studying the source code of a few appearance-based MPT methods, it is
observed that some methods apply a mask to the cosine distance matrix before
solving the assignment problem with the Hungarian method. More precisely, all
entries above the maximum distance threshold dmax are set to dmax + ε with ε
being a very small value, e.g., 1e−5. This causes unlikely assignments with a
distance above the matching threshold dmax to have the same contribution to
the overall cost that is minimized by the Hungarian algorithm.

While the detection feature fD is simply the output of the re-identification
model, there are multiple possibilities to build the track feature fT . In the
simplest case, the feature f t−1

D from the last assigned detection Dt−1 of the
track T t = [Dtinit , . . . , Dt−2, Dt−1] is used as track feature: fT = f t−1

D . To
benefit from temporal information, DeepSORT [40] builds a feature bank
FT = [f t−N

D , . . . , f t−2
D , f t−1

D ] with the features of the past N time steps. The
distance to a current detection feature f t

D is calculated for each feature of the
bank. The appearance distance d(D,T ) between a detection D and a track T is
then chosen to be the minimum of all distances derived from the feature bank:

dmin(D,T ) = dmin(D,FT ) = min
i∈[1,...,N ]

d(f t
D, f

t−i
D ) (3.10)

If the target is clearly visible both in one of the last N frames and the current
frame, the extracted features are of high quality and taking the minimum
appearance distance is a good choice. However, this is not always the case in
MPT, especially when facing severe occlusions. In such situations, the mean
distance might be a better choice:

dmean(D,T ) = dmean(D,FT ) = 1
N

N∑
i

d(f t
D, f

t−i
D ) (3.11)
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Moreover, it is possible to average the two measures, which results in a third
strategy to calculate the appearance distance between a detection and a track:

dmean+min(D,T ) = 1
2(dmean(D,FT ) + dmin(D,FT )) (3.12)

The last investigated strategy for computing the appearance distance is adopted
from [38]. Instead of using a feature bank, the track feature fT is updated in an
exponential moving average (EMA) fashion with the newly assigned detection
feature f t

D and a weighting factor α in each time step:

f t
T = αf t−1

T + (1 − α)f t
D (3.13)

The re-identification model from [1] is leveraged for feature extraction in the
experimental evaluation. It is a BoT (SBS) [21] model with ResNeSt50 [44] as
backbone, trained on the first half of MOT17 [22] train split. The performance of
the aforementioned appearance-based distance measures and strategies is again
compared on the MOT17 Val split, whereby the maximum distance threshold
dmax is optimized for each configuration separately. For experiments using the
EMA technique, the corresponding parameter α is also tuned.

The resulting HOTA values are reported in Table 3.2. One can see that masking
the distance matrix is beneficial for cosine distance but not euclidean (L2)
distance. With masking, cosine distance outperforms L2 distance by 0.36
HOTA. TakingN = 10 past time steps in a feature bank into account, the results
improve significantly by 1.40 to 2.25 points, depending on the strategy of the
distance calculation. This shows the importance of temporal information in
appearance-based matching. The best results are achieved by averaging the mean
and minimum distance of the features (mean+min). Increasing the number of
features yields improvements up to N = 10, while HOTA values decrease again
using 20 or even 100 features. The EMA strategy achieves competitive results but
HOTA is 0.25 points worse than the best configuration – the mean+min strategy
with N = 10 past features and masked cosine distance – which achieves 68.72
HOTA. Note that the overall performance of the appearance-based matching is
on par with the motion-based matching from the previous section (Table 3.1).
However, on indiviual sequenves of the dataset, differences in HOTA up to 4
points are observed. This motivates the combination of motion- and appearance-
based matching which is investigated in the next section.

68



A Detailed Study of the Association Task in Tracking-by-Detection-based Multi-Person Tracking

Table 3.2: Appearance-based Matching Results.

d Masking N Strategy EMA HOTA
Cosine 7 1 7 7 66.19
Cosine 3 1 7 7 66.47

L2 7 1 7 7 66.11
L2 3 1 7 7 66.03

Cosine 3 10 min 7 67.87
Cosine 3 10 mean 7 68.20
Cosine 3 10 mean+min 7 68.72
Cosine 3 1 mean+min 7 66.47
Cosine 3 2 mean+min 7 67.25
Cosine 3 5 mean+min 7 68.26
Cosine 3 10 mean+min 7 68.72
Cosine 3 20 mean+min 7 68.60
Cosine 3 100 mean+min 7 68.05
Cosine 3 1 7 3 68.47

3.3 Combined Matching

Motion- and appearance-based distance measures provide different types of
information. Thus, combining both kinds to an advanced distance measure is a
promising approach which is also followed in other works [1, 10, 18]. Given
two distance measures d1, d2 and corresponding weights w1, w2, a combined
distance dcomb can simply be built by a weighted sum:

dcomb = w1d1 + w2d2 (3.14)

For motion information, the IoU-based distance measures dIoU, dGIoU and dDIoU
are considered, while the feature cosine distance dcos is used for appearance
information. Experiments with different configurations are conducted on MOT17
Val. Note that the maximum distance threshold dmax is adjusted when changing
distance measures or one of the weights w1 or w2. The resulting HOTA values
are listed in Table 3.3. The previously achieved results using either motion-
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Table 3.3: Combined Matching Results.

d1 d2 w1 w2 HOTA d1 d2 w1 w2 HOTA
IoU 7 7 7 68.67 IoU Cosine 1 2 69.16

GIoU 7 7 7 68.39 IoU Cosine 1 3 69.13
DIoU 7 7 7 68.74 IoU Cosine 1 4 69.22
Cosine 7 7 7 68.72 IoU Cosine 1 5 69.04

IoU Cosine 1 1 68.91 GIoU Cosine 1 4 69.37
IoU Cosine 2 1 68.62 DIoU Cosine 1 4 69.41

or appearance-based information are also given for reference. The best results
are very similar with HOTA = 68.74 for DIoU and HOTA = 68.72 for cosine
distance, which justifies the usage of both cues. Combining IoU distance and
cosine distance with equal contribution (w1 = w2 = 1), HOTA improves to
68.91. Giving more weight to the motion-based measure (w1 = 2, w2 = 1), the
performance decreases. However, if the appearance information is taken more
into account (w1 = 1, w2 > 1), HOTA can be further enhanced up to 69.22
for w2 = 4. The same holds true for combining GIoU or DIoU distance with
appearance cosine distance. The largest HOTA value of 69.41 is obtained by
combining DIoU distance and cosine distance while setting w1 = 1 and w2 = 4,
i.e., giving four times the weight to the appearance information. This is a gain
of 0.69 points in HOTA compared to using only one distance measure.

Note that experiments have also been conducted with the Mahalanobis distance
dmahal (Equation 3.7) in combination with the appearance cosine distance as it
is done in StrongSORT [10]. The highest achieved HOTA in the experimental
setup is 69.13. While this is also an improvement w.r.t. using only appearance
information, the performance is worse than combining DIoU distance with the
appearance cosine distance. Therefore, the combination of DIoU distance and
cosine distance is utilized in the remainder of this study.
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Table 3.4: Use Detection Confidence Results.

d dscore HOTA d dscore HOTA d dscore HOTA
IoU 7 68.67 DIoU 7 68.74 DIoU+Cosine 7 69.41
IoU 3 68.78 DIoU 3 68.79 DIoU+Cosine 3 69.19

3.4 Use of Detection Confidence

Some IoU-based MPT methods incorporate the detection confidence s into the
distance calculation by simple multiplication [1, 28, 46]:

dIoU,score(D,T ) = 1 − (IoU(BD, BT ) · s) (3.15)

The motivation behind it is that more confident detections should be favored
in the association. Note that this strategy can also be applied together with
other IoU-based metrics and its influence is investigated empirically. Because
the multiplication of s ∈ [strack, 1] changes the scale of the distance measure
d, the maximum distance threshold dmax has again been tuned. The results
are depicted in Table 3.4. Integrating the detection score into the distance
matrix slightly improves HOTA by 0.11 and 0.05 points for IoU and DIoU
distance, respectively. However, in combination with the appearance cosine
distance, which yields the overall best results, using the detection score degrades
the performance. Thus, the detection score is not leveraged in the distance
calculation in the remainder of the study.

3.5 Gating

As mentioned before, DeepSORT [40] utilizes the Mahalanobis distance to
prevent unlikely assignments which is referred to as gating. The distance
measure is only used to prohibit assignments with a distance value above a
threshold but is not integrated into the matching distance. In this section, the
influence of such a gating mechanism on the tracking performance is analyzed.
Besides Mahalanobis distance, IoU, DIoU and appearance cosine distance are
tested as gating measures. The combination of DIoU and cosine distance from
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Table 3.5: Gating Results.

Gating 7 IoU DIoU Cosine Mahal
HOTA 69.41 69.45 69.47 69.41 69.42

Section 3.3 is taken as distance for matching. Tracking results with additional
gating are depicted in Table 3.5. In the experiments, only small HOTA gains
up to 0.06 points are achieved, although the gating thresholds have been tuned
carefully. For this reason and because a too small gating threshold can degrade
the tracking performance, gating is not used in the rest of this work.

4 Multiple Matching Stages

It is the common practice in MPT to solve the assignment problem for all tracks
and detections at once as also done in this study so far. However, a few works
split the set of tracks or detections into subsets which are processed one after
another [1, 28, 30, 40, 46]. Two strategies are revisited – a matching cascade
from the famous DeepSORT [40] tracker (Section 4.1) and the BYTE [46]
association method which recently lead to notable improvements (Section 4.2).

4.1 DeepSORT Matching Cascade

Given an example track T t = [Dtinit , . . . , Dt−k] at time step t, its age a is
defined as the time since the track has been observed for the last time. For this
example track, a = k holds. Note that in this definition, active tracks have an
age of 1, whereas inactive tracks have an age greater than 1. In DeepSORT [40],
tracks with an age of 1 are matched with all available detections. Then, all tracks
with an age of 2 are matched with the remaining unmatched detections and
so forth. The motivation behind this strategy is to favor tracks that have been
observed recently, since the accuracy of propagated track locations decreases
over time. However, in StrongSORT [10] – a further development of DeepSORT
– it is found that this matching cascade harms the tracking performance when the
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Table 4.1: DeepSORT (DS) Matching Cascade Results.

DS Matching Cascade HOTA DS Matching Cascade HOTA
7 69.41 3 67.86

tracker gets stronger because the additional prior constraints limit the matching
accuracy [10]. To investigate the influence of the DeepSORT matching cascade
on the so-far best tracker of this study (Section 3.3), it is utilized in an additional
experiment. The result is shown in Table 4.1. Integrating the matching cascade
significantly decreases HOTA by 1.55 points which confirms the results from
[10]. Obviously, this matching cascade is not used in further experiments.

4.2 BYTE Association

Usually, only high-confident detections are used in the association as low-
confident ones include many false positives that harm the tracking performance.
In contrast, an association technique named BYTE is proposed in [46], which
allows to make use of low-confident detections in a second matching stage.
Detections with confidence score below strack are not removed but compared to
unmatched tracks that have not been assigned a high-confident detection in the
first association. Since the low-confident detections are not utilized to start new
tracks but only for assignment to already tracked targets, the overall performance
can be largely increased. The authors of [46] show this by applying the BYTE
association to different trackers which leads to consistent improvements. Among
the trackers, the varying distance measures are kept in the first matching stage.
However, in the newly introduced second matching stage, only the IoU distance
is leveraged as the authors argue that most tracks in this stage suffer from
occlusion or motion blur, where appearance features are not reliable [46].

Since the tracking pipeline of this study differs quite a lot from other approaches
with the improved motion modelling from Section 3.1 and the combined distance
measure from Section 3.3, it is also experimented with appearance-based
cosine distance next to other distance measures in the second association stage.
Although it is not mentioned in the paper [46], the publicly available source
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Table 4.2: Second Matching Results. The best result using only one matching stage is achieved
with a combination of DIoU and cosine distance: HOTA = 69.41 (Table 3.3).

Use Inactive Distance HOTA Use Inactive Distance HOTA
7 IoU 69.66 3 IoU 70.29
7 DIoU 69.70 3 DIoU 70.22
7 Cosine 69.68 3 Cosine 70.22
7 DIoU+Cosine 69.73 3 DIoU+Cosine 70.14

code reveals that only active tracks are considered in the second matching stage.
In this study, it is also tested whether the inclusion of inactive tracks in this stage
can be beneficial. Resulting HOTA values of the conducted experiments related
to the second matching stage can be found in Table 4.2.

In contrast to [46], appearance-based distances like the cosine distance and the
combination with DIoU also achieve good results. Compared to the baseline,
where only one matching stage is used (HOTA = 69.41), gains up to 0.32 HOTA
are obtained. Note that the applied distance threshold of the second stage dmax,2
influences the performance, so it is tuned carefully for each configuration.

When additionally inactive tracks are used, IoU-based matching results in 70.29
HOTA which is a huge improvement compared to using only active tracks in
the second matching stage. It is observed that the optimized distance threshold
dmax,2 is much lower than in the implementation of [46] (0.19 vs. 0.5). Setting
such a low threshold ensures that only inactive tracks with accurately predicted
locations can be matched. With the usage of inactive tracks, no prior constraints
are applied that could limit the matching accuracy, similar as the matching
cascade of DeepSORT (see Section 4.1). Since the IoU-based matching in
the second stage yields an improvement of 0.88 HOTA in comparison to the
one-stage baseline, it is leveraged in all further experiments.
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Table 5.1: Parameter Tuning Results.

imax N Strategy sinit strack dmax,1 dmax,2 HOTA
Before Tuning 30 10 mean+min 0.7 0.6 3.18 0.19 70.29
After Tuning 28 16 mean 0.7 0.6 3.13 0.19 70.77

5 Parameter Tuning and Sensitivity

Before evaluating different motion models to develop a baseline tracker for this
study, some parameters had to be set initially: the number of frames an inactive
track is kept (imax), confidence thresholds for detections to be considered in the
association and to start new tracks (strack and sinit) and the maximum distance
threshold to prevent unlikely assignments (dmax,1). Extending the tracking
framework with additional components, further parameters are introduced.
Integrating appearance features (Section 3.2), the number of past time steps in
the feature bank (N ) and the strategy how to calculate the cosine distance (min,
mean, mean+min) have to be chosen. With the utilization of a second matching
stage (Section 4.2), another maximum distance threshold has to be set (dmax,2).
Since the number of parameters has increased during this study, some might
not be set optimal anymore. For this reason, an extensive grid search has been
performed to find the best parameter configuration of the tracker. The results
are summarized in Table 5.1, whereby parameters that have changed are bold.
Optimizing the set of parameters gives a notable plus of 0.48 HOTA.

To get a better understanding of the importance and the sensitivity of the tracking
parameters, hundreds of experiments have been conducted in that each parameter
has been varied within a decent interval around the best value (specified by
grid search), while all the other parameters were fixed at their optimum. The
resulting HOTA curves are shown in Figure 5.1.

The confidence threshold sinit of a detection to initialize a new track obviously
has a large influence on the tracking performance. With a too low threshold, many
false positives are introduced, whereas with a too large threshold, many targets
are missed. The track threshold strack decides, whether a detection is considered
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Figure 5.1: Sensitivity of Tracking Parameters.

in the first association stage or the second. Priority is given to detections with
confidence above strack and in the second stage, a stricter maximum distance is
enforced for the lower-confident detections. In the experiments, strack = 0.6
achieved the best results. This value is 0.1 smaller than sinit, which equals the
relation in [46].

Another important parameter is imax. The higher the value, the longer the
occlusions that can be bridged. If this so-called inactive patience, however, is
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too high, wrong assignments to inactive tracks can occur, since the location
accuracy decreases over time. For the number of appearance features in the
feature bank, the empirically found best value is N = 16. If only a few features
are considered, the full potential of the temporal information is not leveraged,
whereas features from too far in the past might not be representative anymore
due to changes in appearance.

The best values for the matching thresholds dmax,1 and dmax,2 are 3.13 and 0.19,
respectively, on MOT17 Val. Too small values prevent correct assignments while
too large values allow wrong assignments. The fluctuations in the corresponding
HOTA curves are caused by the small depicted HOTA ranges and in addition –
like for all parameters – are attributable to the finite dataset size.

6 Post-processing

The so-far developed tracking framework works fully online which means that
the tracking results are final after processing each frame of the input video. Some
applications without real-time requirements allow to refine the tracking results
with post-processing techniques to improve the performance. Besides simple
linear interpolation of fragmented tracks, two more sophisticated post-processing
methods introduced in StrongSORT [10] are investigated – the Appearance Free
Link (AFLink) model and Gaussian Smoothed Interpolation (GSI).

AFLink is a small convolutional neural network that takes the center positions
and corresponding frames of two tracks as input and computes a connectivity
score solely based on spatio-temporal information. If this connectivity score
is higher than a threshold and some spatio-temporal constraints are fulfilled,
the two tracks are linked hypothesizing that they belong to the same target.
Implementation details can be found in the StrongSORT paper [10].

Since the maximum gap in a fragmented track is imax = 28 (see Table 5.1),
which corresponds to roughly one second on MOT17, many of those gaps can
be successfully filled with linear interpolation (LI). However, in some cases
the linear approximation is not accurate enough. Therefore, GSI employs
Gaussian process regression [39] to model non-linear motion of targets. Another
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Table 6.1: Post Processing Results.

AFLink Interpolation HOTA AFLink Interpolation HOTA
7 7 70.77 3 LI 72.52
3 7 70.84 3 GSI 72.81

advantage compared to the linear interpolation is that the noisy trajectories are
smoothed. It is referred to [10] for details of the GSI algorithm.

Table 6.1 depicts the post-processing results after application of AFLink as well
as linear and Gaussian smoothed interpolation. AFLink slightly improves HOTA
by 0.07 points. Since the model does not integrate appearance information,
strict spatio-temporal constraints have to be enforced to prevent wrong connec-
tions. For potentially larger improvements, more sophisticated approaches like
ReMOT [42] could be applied which is left for future work. Based on appearance
features enhanced by self-supervised learning, tracks are not only merged in
[42], but erroneous tracks consisting of different targets are additionally cut
apart. Looking at the results of the two interpolation techniques, it is observed
that both significantly improve the overall performance with gains of 1.68 and
1.97 points in HOTA for LI and GSI, respectively. As expected, the non-linear
GSI outperforms the simple linear interpolation.

7 Ablation Study

In this work, several components related to the association task in MPT have been
investigated and a strong tracking framework based on the TBD paradigm has
been developed. Starting from a simple baseline with standard Kalman filter (KF)
for track propagation and IoU distance as association metric, extensions of the
KF and a camera motion compensation (CMC) module were introduced. Then,
motion-based matching was combined with appearance-based matching leading
to a sophisticated distance measure. Afterwards, low-confident detections were
integrated into the association within a second matching stage. Finally, parameter
tuning and post-processing were performed. All these steps lead to consistent
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Table 7.1: Ablation Study. Abbreviations: CMC = camera motion compensation, NSA+HP = Noise
Scale Adaptive Kalman filter + height preservation, DIoU+Cosine = Distance IoU + cosine distance,
PT = parameter tuning, PP = post-processing (AFLink + Gaussian smoothed interpolation).

CMC NSA+HP DIoU+Cosine 2nd Matching PT PP HOTA
7 7 7 7 7 7 67.40 (±0.00)
3 7 7 7 7 7 68.13 (+0.73)
3 3 7 7 7 7 68.67 (+0.54)
3 3 3 7 7 7 69.41 (+0.74)
3 3 3 3 7 7 70.29 (+0.88)
3 3 3 3 3 7 70.77 (+0.48)
3 3 3 3 3 3 72.81 (+2.16)

improvements of the overall tracking performance measured in HOTA that are
summarized in Table 7.1. Besides the offline post-processing, the largest gains
in the online tracker come from the second matching stage (+0.88 HOTA), the
combined distance measure (+0.74 HOTA), and the CMC model (+0.73 HOTA).
All components together boost HOTA significantly from 67.40 to 72.81.

8 Comparison with the State-of-the-Art

The final tracker of this study is named StrongTBD because of the large
improvements w.r.t. the TBD baseline from Section 2. StrongTBD is compared
to the state-of-the-art on MOT17 [22] and MOT20 [6] test splits in this section.
Before delving into the results, it should be noted that annotations of the
test splits are not publicly available and evaluation is done by submitting the
tracking results to the official server (motchallenge.net). Besides HOTA, other
performance measures such as MOTA [3] and IDF1 [25] are also computed. To
prevent parameter tuning on the test data, one is restricted to four submissions.
However, the tracking performance is highly dependent on the setting of some
parameters, especially on the detection thresholds sinit and strack (see Section 5).
For example, changing sinit and strack from 0.7 to 0.4 and 0.6 to 0.3, respectively,
MOTA increases by approximately 10 points on the MOT20-08 sequence in the
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Table 8.1: State-of-the-Art Methods on MOT17.

Method MOTA IDF1 HOTA FP FN IDSW
MAATrack [30] 79.4 75.9 62.0 37320 77661 1452
RTU++ [36] 79.5 79.1 63.9 29508 84618 1302
StrongSORT [10] 79.6 79.5 64.4 27876 86205 1194
SAT [37] 80.0 79.8 64.4 25125 86505 1356
ByteTrack [46] 80.3 77.3 63.1 25491 83721 2196
QuoVadis [7] 80.3 77.7 63.1 25491 83721 2103
FOR_Tracking [23] 80.4 77.7 63.6 28674 79452 2298
BoT-SORT [1] 80.5 80.2 65.0 22521 86037 1212
ByteTrackV2 [28] 80.6 78.9 63.6 35208 73224 1239
StrongTBD 81.6 80.8 65.6 24171 78759 954

Table 8.2: Values of sinit on MOT17 and MOT20 test sets.

MOT17 01 03 06 07 08 12 14 MOT20 04 06 07 08
sinit 0.8 0.75 0.75 0.7 0.7 0.8 0.65 sinit 0.7 0.4 0.7 0.4

submissions of StrongTBD. This and the fact that some works do not report
their applied thresholds makes a fair comparison among methods difficult. The
trend of using various thresholds for different sequences of the datasets [1, 28,
46] further complicates the comparison.

Nevertheless, Table 8.1 lists the 10 best performing trackers on MOT17 with
ascending MOTA values. StrongTBD achieves the highest values in MOTA,
IDF1, and HOTA. Furthermore, it has the least number of identity switches
(IDSW). Despite the aforementioned comparability issues, the results show
that the developed tracker can compete with the state-of-the-art. To make
these results reproducible, the sinit values of the submission for the sequences
of MOT17 are reported in Table 8.2. Note that for the tracking thresholds
strack = sinit − 0.1 holds, just as in [1, 28, 46].
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Table 8.3: State-of-the-Art Methods on MOT20.

Method MOTA IDF1 HOTA FP FN IDSW
SAT [37] 75.0 76.6 62.6 15549 113136 816
OC-SORT [5] 75.7 76.3 62.4 19067 105894 942
RTU++ [36] 76.5 76.8 62.8 19247 101290 971
FOR_Tracking [23] 76.8 76.4 61.4 27112 91254 1443
ByteTrackV2 [28] 77.3 75.6 61.4 22867 93409 1082
ReMOT [42] 77.4 73.1 61.2 28351 86659 1789
ByteTrack [46] 77.8 75.2 61.3 26249 87594 1223
QuoVadis [7] 77.8 75.7 61.5 26249 87594 1187
BoT-SORT [1] 77.8 77.5 63.3 24638 88863 1313
StrongTBD 78.0 77.0 63.6 25473 87330 1101

Table 8.2 also shows the values of sinit on the final submission on the MOT20
dataset. The results on this benchmark of the 10 best performing trackers are
given in Table 8.3. StrongTBD obtains the highest MOTA and HOTA as well as
the second highest IDF1, which confirms the competitiveness of the developed
tracking framework. Note that the parameter configuration of StrongTBD has
been adapted on the MOT20 dataset in order to be more comparable to the
second best entry BoT-SORT [1]. More precisely, the input resolution of the
MOT20-04 and MOT20-07 sequences are set to 1600×896 pixels, while a
resolution of 1920x736 pixels is used in MOT20-06 and MOT20-08. In addition,
an IoU distance threshold of 0.7 is integrated, which helps to prevent IDSW
in crowded scenes. Furthermore, the same initialization strategy as in [1, 28,
46] is followed, in that new tracks are tentative until they get confirmed with an
assigned detection in the subsequent frame. As already discussed in Section 2,
such a strategy is beneficial if the threshold sinit is quite low which is the case
for MOT20-06 and MOT20-08 (see Table 8.2). The target density on MOT20
with 127 persons per image is much higher than on MOT17 with only 21.1
persons per image [32]. As StrongTBD has been developed on MOT17 Val,
some design choices are not optimal for very crowded scenes as in MOT20. In
the future, more focus should be put on tracking in such challenging scenarios.
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9 Conclusion

In this study, all components of the association task in MPT have been analyzed
in detail. Two of the most important findings are that the combination of
motion- and appearance-based distance measures outperforms the sole usage of
one information type and that leveraging low-confident detections in a second
association stage yields significant improvements. The influence of various
tracking components from motion models to post-processing techniques has
been investigated as well as the sensitivity of the results to the setting of
tracking parameters. The empirical results were used to develop a sophisticated
tracking-by-detection method that achieves state-of-the-art performance on the
two challenging MPT benchmarks MOT17 and MOT20. Further potential lies
in enhancing the association accuracy in very crowded scenes as in the MOT20
dataset, which sould be investigated more thoroughly in the future.
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