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Consumer‑grade UAV imagery 
facilitates semantic segmentation 
of species‑rich savanna tree layers
Manuel R. Popp 1 & Jesse M. Kalwij 1,2,3*

Conventional forest inventories are labour-intensive. This limits the spatial extent and temporal 
frequency at which woody vegetation is usually monitored. Remote sensing provides cost-effective 
solutions that enable extensive spatial coverage and high sampling frequency. Recent studies 
indicate that convolutional neural networks (CNNs) can classify woody forests, plantations, and 
urban vegetation at the species level using consumer-grade unmanned aerial vehicle (UAV) imagery. 
However, whether such an approach is feasible in species-rich savanna ecosystems remains unclear. 
Here, we tested whether small data sets of high-resolution RGB orthomosaics suffice to train U-Net, 
FC-DenseNet, and DeepLabv3 + in semantic segmentation of savanna tree species. We trained these 
models on an 18-ha training area and explored whether models could be transferred across space 
and time. These models could recognise trees in adjacent (mean F1-Score = 0.68) and distant areas 
(mean F1-Score = 0.61) alike. Over time, a change in plant morphology resulted in a decrease of model 
accuracy. Our results show that CNN-based tree mapping using consumer-grade UAV imagery is 
possible in savanna ecosystems. Still, larger and more heterogeneous data sets can further improve 
model robustness to capture variation in plant morphology across time and space.

A response of woody vegetation to a change in ecological drivers is often only visible over multiple years1,2. Moni-
toring such trends through repeated sampling is required to capture short-term effects and potential long-term 
trends following a change in environmental factors. Additionally, the covered area must be sufficiently large to 
provide environmental context and to cancel out smaller-scale noise in the data3,4. Conventional forest inventory 
methods, however, are limited regarding these aspects due to high time and work intensity.

Remote sensing provides a cost-effective solution enabling extensive spatial coverage with high sampling 
frequency over prolonged periods5,6. In recent years, artificial neural networks, such as convolutional neural net-
works (CNNs), have been increasingly used7. CNNs are a class of artificial neural networks particularly suitable 
to analyse images. Combined with high-resolution remote sensing data, these networks can enable automated 
vegetation monitoring at a species level8–10. Aeroplanes or unmanned aerial vehicles (UAV) sensors can obtain 
high-resolution imagery. A UAV usually offers higher operational flexibility and low ground sampling distance 
at a relatively low cost11–13. Consumer-grade UAV imagery has been successfully used to train CNNs for map-
ping species-specific tree canopy cover in forest ecosystems with high accuracy14–16. U-Net is one of multiple 
CNN architectures frequently used for this purpose10,17. A more resource-intense alternative is FC-DenseNet, 
which uses blocks with dense connections between layers, producing even more accurate predictions of tree 
species18,19. Recent studies employed variations of the DeepLabv3 + architecture10,19. This architecture uses atrous 
spatial pyramid pooling to integrate context on a variable scale without compromising computational efficiency20. 
The successful application of these CNN architectures indicates a potential for long-term monitoring of species 
composition9,10.

Semantic segmentation using CNNs works well for data sets containing few classes, separable through distinct 
features7,10. Therefore, trees with a characteristic crown shape and structure, e.g., coniferous trees, are relatively 
easy to classify10. Moreover, class frequencies of CNN training data are ideally balanced, facilitating accurate 
prediction of all classes21. Best results are thus achieved for agricultural fields, urban areas, and managed forests 
with few species and consistent features within classes16,19,22,23. Savanna ecosystems, however, host considerable 
taxonomical and morphological diversity24,25.
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Savanna ecosystems are landscapes comprising of grassland with scattered trees, occupy one-fifth of the 
Earth’s land surface, and provide important habitat for wildlife and livestock26,27. Savannas are also among the 
ecosystems most sensitive to future land-use changes and climate26. Important drivers of savanna ecosystem 
dynamics comprise large herbivores, fire regimes, and management practices27,28. The interplay of such factors 
makes savannas highly dynamic ecosystems, especially in Southern Africa28. Savanna ecosystem functioning and, 
hence, providing ecosystem services greatly depends on the vitality and composition of its vegetation layer27,29. 
Therefore, efficient methods to monitor trends in savanna vegetation dynamics are required. However, to what 
extent the replacement of forest inventories by a fully automated approach is feasible for savanna ecosystems 
remains unclear.

Savanna vegetation is heterogeneous regarding tree species composition, age, height, and spatial arrangement, 
with tree species showing high phenotypic plasticity30,31. Savanna trees are regularly affected by browsing and 
fire, causing diverse morphology of adult plants due to damage and stress-induced altered growth behaviour32,33. 
This combination of heterogeneous communities, a large number of species, and irregular tree crown shapes 
makes species-level semantic segmentation complex and challenging10.

The introduction of an automated approach to monitoring vegetation dynamics is only viable if it saves 
effort—All things considered—Compared to a conventional method. A general limitation of deep learning is the 
need for extensive training data sets34. This reduces the benefits of automated species identification if an ad hoc 
trained CNN is required since manual delineation of tree classes for training and evaluating such models is time 
intensive. While data sets for species-poor or managed forest stands can be labelled using aerial images alone35, 
species-rich or poorly studied ecosystems may require labour-intensive field campaigns to collect ground truth 
information. Thus, it needs to be tested whether an automated approach to tree species mapping produces an 
output of sufficiently high quality with a small training dataset.

A suitable area to test the performance of CNNs on savanna vegetation comprises typical species in a natural 
or extensively managed habitat where browsers and fire affect woody vegetation. Such areas can be found in 
the Waterberg region (Northern Sotho: Thaba Meetse) in northern South Africa36–38. The Waterberg represents 
a considerable area of the savanna biome of southern Africa and is dominated by veld types characteristic of 
mountainous savanna. Here, extensively managed nature reserves are located, providing suitable areas for training 
and quality assessment of CNNs with savanna vegetation. A research project in Lapalala Wilderness—aimed at 
experimentally testing the impact of elephant reintroduction on savanna dynamics—provided an opportunity 
to test such methods under controlled field conditions.

In this study, we tested CNN-based semantic segmentation of savanna tree species on orthomosaics generated 
from UAV imagery with regards to (1) spatial transferability of models within an ecoregion, (2) training and use 
of a model within a spatially restricted area, and (3) transferability of the second model over time. Additionally, 
we tested whether class-specific F1-scores were affected by factors concerning the quantity and distribution of 
the covered area, using metrics mean patch area, total class area, and compactness of the patches.

Results
Computing effort.  The CNN architectures varied considerably in computing effort and time. Model train-
ing with tiles of 512 × 512 pixels ran at 180 s per epoch for DeepLabv3 + . In contrast, FC-DenseNet training took 
the longest, with 927 s per epoch (Table 1). Consequently, training each FC-DenseNet took approximately 78 h, 
split into multiple runs of 24 h for technical reasons. U-Net and DeepLabv3 + were trained in single runs of less 
than 24 h. Model inference took about 0.7–1.3 h ha−1. Due to limited memory, GPU could not be used for the 
largest tile size during model inference, increasing computing time by one order of magnitude.

Model performance.  Model performance on the test data set varied strongly between classes (Table 2). The 
background class, comprising bare soil, rocks, and herbs, was predicted with very high accuracy by all models. 

Table 1.   Number of training epochs and mean training time in seconds per epoch with standard deviation 
(SD). Tile size is both number of rows and number of columns of the input image matrix of the respective 
model. BS is the batch size at which the model was trained. For FC-DenseNet, smaller batch sizes were 
chosen due to the models high GPU memory requirements. The number of training epochs was restricted to 
a maximum of 300. Final models were selected by maximum mean intersection over union on the validation 
data. Mean training time per epoch was calculated for epochs 2–150.

Architecture Tile size BS Epochs Seconds per epoch ± SD

U-Net

256 256 299 196.0 ± 1.9

512 16 161 198.7 ± 1.9

1024 4 299 199.7 ± 4.5

FC-DenseNet

256 16 256 940.3 ± 4.5

512 4 295 927.3 ± 6.5

1024 1 236 914.2 ± 2.3

DeepLabv3 + 

256 256 299 197.5 ± 1.7

512 16 299 179.8 ± 1.5

1024 4 299 176.1 ± 1.5
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In contrast, F1-Scores for species such as Commiphora mollis and Terminalia sericea, as well as for class “Other 
woody vegetation”, were low. Input tile dimensions did not have a consistent effect on the overall performance of 
the models (Fig. 1, Supplementary Table E1). For U-Net and DeepLabv3 + , there was no significant effect of tile 
dimensions on F1-Scores. FC-DenseNet with 1024 × 1024 pixel tiles produced the poorest result, with a mean 
F1-Score of 0.28 and a maximum of 0.94 for the background class. For smaller tile dimensions, FC-DenseNet 
F1-Scores were similar to that of the other CNNs.

Best F1-Scores with a mean of 0.61 on the test data were achieved by DeepLabv3 + with the 512 × 512 pixel 
tile size (Table 2). Individual F1-Scores of this model showed a broad range from 0.23 (Terminalia sericea) up 
to 0.85 (Burkea africana) and 0.95 for the background class. It also produced good predictions of Diplorhynchus 
condylocarpon (F1 = 0.84) and Combretum apiculatum (F1 = 0.82), the latter of which was most often confused 

Table 2.   F1-Scores per class, their mean, as well as overall accuracy for predictions on the three 1-ha test plots 
of CNN architectures trained with square tiles of 256, 512 and 1024 pixel side length. Best values for each class 
or category are printed in bold. The outer right two columns display values at 512 × 512 pixel tile size for test 
images recorded adjacent to the training areas (a) at approximately the same time as the training data set and 
(b) during the 2022 rainy season.

F1-Score

U-Net FC-DenseNet DeepLabv3 + 

(a) (b)256 512 1024 256 512 1024 256 512 1024

Other 0.31 0.31 0.29 0.38 0.38 0.18 0.41 0.44 0.39 0.24 0.16

Burkea africana 0.80 0.80 0.75 0.81 0.84 0.21 0.82 0.85 0.81 0.87 0.81

Combretum apiculatum 0.78 0.76 0.76 0.83 0.83 0.49 0.82 0.82 0.82 0.82 0.53

Combretum molle 0.61 0.62 0.58 0.70 0.67 0.47 0.67 0.69 0.70 0.67 0.50

Combretum zeyheri 0.47 0.43 0.44 0.56 0.56 0.10 0.50 0.50 0.44 0.45 0.12

Commiphora mollis 0.18 0.15 0.19 0.33 0.31 0.03 0.16 0.32 0.27 0.50 0.15

Dichrostachys cinerea 0.47 0.47 0.41 0.61 0.63 0.49 0.65 0.60 0.64 0.84 0.65

Diplorhynchus condylocarpon 0.75 0.52 0.76 0.82 0.83 0.30 0.83 0.84 0.83 0.88 0.68

Elephantorrhiza burkei 0.43 0.59 0.35 0.58 0.49 0.22 0.56 0.75 0.66 0.91 0.81

Grewia spec 0.48 0.47 0.50 0.60 0.60 0.39 0.62 0.63 0.59 0.69 0.55

Lannea discolor 0.39 0.37 0.42 0.45 0.47 0.13 0.44 0.57 0.53 0.57 0.46

Mundulea sericea – – – – – – – – – 0.59 0.21

Ozoroa paniculosa 0.33 0.19 0.24 0.44 0.33 0.02 0.50 0.51 0.38 0.62 0.25

Pseudolachnostylis maprouneifolia 0.42 0.47 0.42 0.31 0.03 0.05 0.50 0.57 0.26 0.32 0.07

Pterocarpus rotundifolius 0.49 0.53 0.45 0.45 0.49 0.32 0.46 0.50 0.50 0.74 0.34

Terminalia sericea 0.19 0.31 0.49 0.15 0.24 0.05 0.21 0.23 0.35 0.84 0.68

Bare ground/herbs 0.94 0.95 0.94 0.96 0.96 0.94 0.95 0.95 0.95 0.95 0.96

Mean F1-score 0.50 0.50 0.50 0.56 0.54 0.28 0.57 0.61 0.57 0.68 0.47

Cohen’s kappa (κ) 0.67 0.65 0.67 0.71 0.72 0.50 0.71 0.72 0.72 0.79 0.66

Overall accuracy 0.82 0.81 0.82 0.84 0.84 0.73 0.84 0.85 0.85 0.88 0.82

Figure 1.   F1-Scores of the models on specific test data sets. The three panels on the left compare the 
performance of U-Net, FC-DenseNet and DeepLabv3 + trained on orthomosaics of Blocks 1, 2, and 3 with 
different input tile dimensions (256, 512, and 1024 pixel width and height) and tested on plots 4, 6, and 7. The 
rightmost panel shows F1-scores of DeepLabv3 + trained with 512 × 512 pixel tiles from 15 ha of Blocks 1, 2 and 
3 recorded in 2021 (a) tested on the remaining 3 ha of the same blocks, and (b) tested on the 2022 images of 
these 3 ha. Colours indicate input tile dimensions.
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for other Combretum species (Fig. 2). The remaining classes were predicted with F1-Scores ranging between 0.50 
(Combretum zeyheri, Pterocarpus rotundifolius) and 0.75 (Elephantorrhiza burkei). An exemplary prediction of 
this model on test data is shown in Fig. 3.

The mean patch area and compactness of the patches had no substantial impact on F1-Scores for the respec-
tive class (Table 3). Four out of nine models showed a significant linear relationship between F1-Score and total 
class area within the training data (all p-values < 0.05, Appendix E2). Relationships between F1-Score and the 
class area within the test data were not significant.

DeepLabv3 + predictions on orthomosaics that were spatially adjacent and temporally close to the training 
areas achieved the highest F1-Scores: ranging between 0.24 for unspecified woody vegetation, and 0.95 for bare 
ground/herbaceous vegetation (Table 2). Concordantly, this model reached the highest mean F1-Score (0.68) and 
best overall accuracy (0.88). Apart from woody background vegetation, only Combretum zeyheri and Pseudol-
achnostylis maprouneifolia were predicted with F1-Scores below 0.5. The model achieved good results for Burkea 
africana, Combretum apiculatum, Dichrostachys cinerea, Diplorhynchus condylocarpon, and Terminalia sericea. 
F1-Score for Elephantorrhiza burkei was very good (0.91). On the other hand, the model performed poorly on 
orthomosaics of the same test areas recorded nine months later. Here, predictions reached a mean F1-Score of 
0.47 only. With the exception of bare ground/herbs (F1 = 0.96), F1-Scores were consistently lower on the 2022 
test data than on test data recorded at the same time as training data.

Discussion
To our knowledge, this is the first study to assess the suitability of CNNs for semantic segmentation of multiple 
savanna tree species from UAV RGB imagery. Our results illustrate the suitability of CNN-based tree mapping 
in savanna ecosystems, albeit within certain restrictions. With clumped sampling and spatially distant test sites, 
DeepLabv3 + with 512 × 512-pixel input tiles achieved acceptable performance, indicating some potential to 
deploy trained CNNs at new locations with similar species composition. F1-Scores were similar to those found 
in other studies segmenting multiple classes14,39,40. The choice of CNN architecture had no major impact on 
model prediction, indicating that properties of the data set rather than model complexity limited model accuracy. 
Similarity amongst tree species, heterogeneity within tree species, and quality of the orthomosaics were likely 
the main limiting factors.

Within strict spatial and temporal constraints, DeepLabv3 + has shown the ability to accurately predict indi-
vidual tree species cover. It achieved a similar F1-Score as a U-Net trained on 51 ha of temperate forest14. A 
major limitation, however, was the poor transferability of the model over time. A low mean F1-Score on ortho-
mosaics recorded during a different month suggests that phenotypic changes during a phenological phase can 
cause major deterioration of model predictive quality (but see Egli and Höpke41). A possible explanation for this 
deterioration is the high number of species in a savanna ecosystem, which increases the probability of feature 
overlap. Additional factors affecting model transferability in time could be caused by variations in orthomosaic 
quality or in light conditions during recording7. However, orthomosaics for each block were recorded over several 
hours or days and, hence, covered some variability in wind, cloud cover, and position of the sun. Consequently, 
differences between the 2021 and 2022 data set were mainly morphological. For example, plants adjust leaf ori-
entation based on external factors such as moisture and solar irradiation, which change during the vegetation 
period and are subject to interannual variation42. The resulting difference in model prediction accuracy indicates 
that to monitor species composition across years, training data sets ideally cover a range of phenotypical and 
phenological variation.

Figure 2.   Visualising the confusion matrix for predictions of DeepLabv3 + trained with 512 × 512 pixel input 
tiles. Predictions were made on three separate 1-ha test plots spatially distant from the training areas. Model 
output is depicted on the horizontal axis, and true labels on the vertical axis. Colour intensity corresponds to the 
number of pixels for the respective combination.
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Considerable positive relationships between class training area and class F1-Score may result from the posi-
tive impact of training sample size. Large, randomly sampled training data sets increase the likelihood that the 
heterogeneity of traits within a class is well covered7. However, the correlation was not consistent across models 

(c)(b)(a)

Figure 3.   Example prediction of DeepLabv3 + for a ca. 1 ha test plot split in two rows. The CNN was trained 
with a data set comprising 6 ha of training tiles from blocks 1, 2, and 3. The depicted test orthomosaic was 
recorded in block 7. The images were split vertically to fit the page format. The upper and lower rows display the 
left and right half of the plot, respectively.
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and tile sizes. The good results achieved on test data sampled in close temporal and spatial proximity to the train-
ing data indicate that semantic segmentation of tree species within an area is possible with reasonable accuracy. 
This is even the case with a CNN trained on a comparably small training data set if the training data represents 
the entire area. Consequently, an adequate selection of training locations has an even more substantial impact 
on the quality of the classification than the mere size of the available data set. Indeed, spatial autocorrelation can 
cause an overestimation of model performance of up to 28% in temperate forests43. While this is to be avoided 
during model evaluation, maximising similarities between training data and the data that is to be predicted 
could help improve results when deploying the CNN. We expected large, compact trees to provide additional 
larger-scale patterns in contrast to smaller, often irregularly growing shrubs. However, mean patch area and 
patch compactness were unrelated to CNN performance, indicating that other factors determined class-specific 
prediction accuracy. For example, large individuals or large homogeneous patches may not fit into single image 
tiles, limiting the maximum usable patch area. Moreover, the overall shape of tree crowns could be less relevant 
than fine-grained structures. This is in line with a lack of a consistent impact of tile size on mean F1-Scores: 
While the poor performance of FC-DenseNet with 1024 × 1024-pixel tiles was likely due to the small batch size 
this configuration allowed, the model performance of U-Net and DeepLabv3 + was not affected by tile size. This 
is despite the larger tiles more frequently containing entire trees and, hence, providing context information 
such as the shape of crown outlines. A possible explanation is the lack of distinct large-scale crown structures. 
Differences between species-specific F1-Scores are likely affected by consistency and distinctness of leaf shape, 
size, and arrangement7. Such could explain the high F1-Score for species such as Burkea africana despite its 
relatively low cover within the training data (appendix B). These factors can also explain the confusion amongst 
Combretum species, as well as between Burkea africana and Pseudolachnostylis maprouneifolia. In these cases, 
confusion was somewhat higher between species with leaves or leaflets of similar size (Fig. 2). Confusion with the 
class “Other” is most likely due to the heterogeneity of such features within this particular class. In the absence 
of distinct large-scale features, it is crucial to reveal class-specific fine-scale patterns, raising the importance of 
very high-resolution UAV imagery for the identification of savanna trees to genus or species level.

CNN trained exclusively on data recorded during a narrow range of time lacked the robustness required for 
vegetation monitoring. Still, there is enormous potential to employ CNN to scale up manual tree crown delinea-
tion across sites with similar tree species composition and phenological conditions. Also, since class boundaries 
in savanna ecosystems are predominantly between trees and bare soil, an accurate prediction of bare soil or herb 
cover can be used to facilitate tree crown delineation. To this end, a CNN can be trained on a small data set. 
Subsequently, new data can be classified using the trained model. After manual correction, these new data can 
be used for further training and improvement of the CNN (Fig. 4). In addition to ad hoc delineated images, data 
sets can be shared to make CNNs more robust and to widen the range of applications7. For example, researchers 
are working on creating diverse databases for CNN training, which will provide means of pre-training, transfer 
learning, and enable training of CNNs deployable across larger spatial extents and temporal ranges19,44.

In this study, sample size and ground sampling distance were restricted by the availability of time and human 
resources, as is often the case in practice. Sample size, however, is a major factor determining the generalisation 
capabilities of CNN7,45. To make accurate predictions under new conditions, the abundance of heterogeneous 
samples in the data set plays a key role46. Ideally, to increase the robustness of the predictions, CNNs used in 
vegetation monitoring are trained on data sets recorded at different times and, hence, cover a range of pheno-
typical and phenological variability15,47.

Recent studies suggest that lower ground sampling distance enhances model performance14,41. Since the width 
of leaves/leaflets is usually within a range of millimetres to a few centimetres, sub-centimetre sampling distance at 
the canopy level will likely greatly improve prediction accuracy. This could be achieved by lowering the UAV flight 
altitude or by employing a camera with a higher resolution. Despite a relatively low flight altitude, our sampling 
distance was much coarser compared to studies in temperate forests14,41, because most savanna trees are only a few 
meters in height. Moreover, orthomosaics often contain data gaps due to the complex surface of the vegetation. 
An increase in side overlap of the flight grid would enrich the dense cloud for the generation of orthomosaics 
and thereby reduce artefacts and data gaps resulting from undersampling48. However, such adjustments of flight 

Table 3.   Correlation between mean patch area in ha, total class cover in ha, and compactness of patches 
(mean smallest circumscribing circle) and F1-score. Values represent the slope of a linear regression line. 
Asterisks indicate p-values below 0.05. No p-value was below 0.01. Degrees of freedom = 14.

Model

Training data Test data

Mean patch area Class area Compactness Mean patch area Class area Compactness

U256 186 0.253* 0.874 145  − 0.122  − 0.194

U512 139 0.125  − 0.373  − 36.2  − 0.0615 0.283

U1024 147 0.254* 1.49 127 0.0418 0.957

F256 78.6 0.244 1.13 150  − 0.185  − 0.734

F512 20.3 0.297* 2.57 133  − 0.122  − 0.344

F1024  − 142 0.186 2.94  − 82.4  − 0.0717 0.815

D256 99.3 0.241 1.03 155  − 0.154  − 0.368

D512 115 0.187  − 0.502 115  − 0.174  − 0.743

D1024 5.47 0.248* 1.3 88.1  − 0.081  − 0.073
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parameters would dramatically increase flight time. This may be a considerable disadvantage, especially in cases 
where flight time exceeds battery capacity, causing interruptions and increased resource requirements. Another 
solution to reduce the impact of data gaps in orthomosaics could be predicting species on raw UAV images and 
creating orthomosaics from the resulting species maps. The applicability of such an approach should be tested in 
further studies. Normalised digital surface models can be calculated from UAV imagery and could be provided 
as an additional input band for model training and inference49,50. Recent studies, however, found the potential 
improvement of predictions to be minor and potentially outweighed by increased computational complexity9,14. 
In contrast, fusing images recorded across multiple seasons can increase model accuracy significantly40. If eco-
nomically feasible, changes in tree phenology should thus be harnessed to improve classification quality. Finally, 
the potential impact of JPEG compression loss on orthomosaic quality and, subsequently, on model performance 
could be assessed in further studies51.

Conclusion
We showed the possibilities and limitations of consumer-grade UAV imagery for semantic segmentation of 
savanna tree species. Good results can be achieved when the training data set is similar to the data on which 
predictions are made. Thus, some a priori knowledge of the new data is required. Training data should be 
recorded during the same time of year and, ideally, on comparable plant communities. Prediction accuracy varies 
considerably between tree species. Species with distinct leaf size and arrangement, as well as species with high 
abundance in the training data, are most likely to be predicted with high accuracy. To train models that are robust 
across space and time, large data sets are required. Orthomosaics need to be of high resolution and high quality to 
achieve accurate predictions. Currently, model training is computationally intense. While DeepLabV3 + achieved 
the best results, U-Net can be an option with somewhat lower requirements.

Methods
Study area.  Data were acquired in Lapalala Wilderness—a 48′000 ha nature reserve within the Waterberg 
Biosphere, Limpopo Province, South Africa (Fig. 5). For long-term monitoring of vegetation as part of the Lapa-
lala Elephant Landscape Experiment (LELE) project, eight blocks of 6 ha each were installed along the main road 
of the reserve. Blocks were divided into 1-ha plots. For this study, we used imagery of the three northernmost 
blocks as well as one random plot from each of the remaining blocks (Fig. 5).

The region had a subtropical climate, with more than 95% of the 594.4 mm of annual precipitation falling 
between October and April (Appendix A). Average daily minimum and maximum air temperatures ranged 
from 18.1 °C to 31.5 °C in February and 2.3 °C to 23.0 °C in July, the warmest and coldest months, respectively. 
Geology in the reserve was dominated by sedimentary rocks, with local intrusions of basic norite/epidiorite52,53. 
Plant community composition within the reserve was heterogeneous and appeared to be determined mainly 
by the pH and clay content of the soil37. Therefore, locations with soil characteristics as similar as possible were 
selected for placement of the research blocks. Soils in the blocks were mainly Lithic and Nudilithic Leptosols 

Figure 4.   Suggestion for a semi-automatic workflow to generate large data sets for CNN training.
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that developed on red sandstone and diamictite with a sandy matrix (Appendix C)54. An exception was the area 
surrounding block 4, where soils were thicker and could be classified as Acrisols, according to ISRIC World Soil 
Information and FAO55.

The vegetation type covering most of Lapalala Wilderness was described as Waterberg Mountain Bushveld38. 
Woody vegetation in the reserve comprised species such as Combretum spp., Diplorhynchus condylocarpon, 
Pterocarpus rotundifolius, and Terminalia sericea. Overall, more than 60 tree species were found within the 
research plots (Appendix B).

Woody vegetation in Lapalala Wilderness was affected by browsers such as black rhinoceros (Diceros bicornis), 
various ungulate species, and recently reintroduced African elephant (Loxodonta africana). Because of poor soils 
with low pH, grasses in the area had a low nutritional value37,38. Grasses lignified at the beginning of the rainy 
season and, thus, intermediate feeders also browsed seasonally56,57. Management practices affecting vegetation 
included prescribed burning and mechanical bush clearing (Appendix D)58.

Image data collection.  Aerial images were recorded in March 2021 and January/February 2022 using a 
DJI Phantom 4 Pro quadcopter (DJI Sciences and Technologies Ltd., Shenzhen, China) and an integrated RGB 
camera with a 24 mm lens. The exact date of each flight is listed in Appendix G. With each individual flight, a 
single 1-ha research plot plus some peripheral areas were mapped. The UAV followed a crisscross pattern at 
speeds of about 3 m s−1, recording with a -65° gimbal angle. The flight route was configured to achieve 95% front 
overlap and 65% side overlap, as required for the subsequent creation of high-quality orthomosaics48. During 
all flights, an altitude of 40 m was maintained, resulting in a ground sampling distance of about 1.2 cm. Images 
were saved with JPEG compression.

Orthomosaics were created using Agisoft Metashape v 1.5.4 (Agisoft LLC, St. Petersburg, Russia). To improve 
the spatial accuracy of the orthomosaics, five reference points were marked at the corners and centre of each plot. 
Reference point locations were determined using a ppm 10xx GNSS sensor (Pforzheimer Präzisions Mechanik 
GmbH & Co. KG, Ispringen, Germany) mounted on a tablet, achieving a horizontal accuracy of < 1 m.

Reference data generation.  Woody plants within the plots were mapped in the field in November 2021. 
Orthomosaics were used as background maps for orientation during tree mapping with ArcGIS Field Maps 
(ESRI, Redlands, USA). For each individual tree or homogeneous cluster of trees of a single species, we recorded 
the centre coordinates, taxon name, and approximate crown diameter. Common tree species were identified fol-
lowing Van Wyk and Van Wyk59. Species endemic to the region were identified using Coates-Palgrave60. Taxon 
names were checked and updated following the World Flora Online61. A comprehensive species list can be found 
in Appendix B.

Segmentation classes were manually delineated in ArcGIS Pro v 2.9.3 (ESRI, Redlands, USA) based on field 
data and using the orthomosaics as background. The number of tree species in the plots was high, and their 
respective abundances were imbalanced, with many covering only tiny fractions of the area (Fig. 6). To reduce 
the number of small classes, all five species of the genus Grewia were merged into one class. Furthermore, species 
with a share of less than 1% of the total tree cover were combined into a single background class.

Our data set comprised blocks 1, 2, and 3, as well as one random plot from each of the remaining five blocks 
(Fig. 5). Spatial separation of training areas from validation and test plots was required to minimise spatial 
autocorrelation which otherwise would have caused significant overestimation of model performance10,43. In the 
first step, this was secured through physical distances of more than 1 km between neighbouring blocks. Here, 

Figure 5.   Map indicating the position of the research blocks (N = 8). Symbols indicate (Filled square) full block 
(6 ha) training area; (Open circle) single plot (1 ha) validation area; and (Filled circle) single plot test area. The 
green line traces the borders of Lapalala Wilderness, whereas the yellow line indicates the main roads. The inset 
shows the location of the study area within South Africa. Projection: UTM zone 35S.
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blocks 1, 2, and 3 were used for training, while three of the remaining single plots were used as testing data sets 
and two for validation (Fig. 5).

In the second step, one plot each from blocks 1, 2, and 3 was put aside for testing, while all of the single plots 
4, 5, 6, 7, and 8 were used for validation. Additional orthomosaics of these test plots were recorded in January 
2022 and used as a second test data set. These data sets had no spatial overlap with the training data but were 
spatially adjacent to training areas and, hence, were expected to have similar characteristics10. Test plots from 
the first field campaign were recorded under similar tree phenological conditions, causing further similarities 
between training and test data10,43.

To train CNNs such as U-Net, Ronneberger et al.17 favoured large input tiles over a large batch size. Schiefer 
et al.14, on the other hand, achieved the best results with smaller tiles. To find the best model, we tested multiple 
tile sizes with side lengths of 256, 512, and 1024 pixels. Non-overlapping square tiles were generated using the 
GDAL/OGR Python API of OSGeo v 3.2.3. The respective number of tiles per 1-ha plot were 1259, 308, and 74. 
These were average values since the actual dimensions of the plots showed slight variation.

To improve model generalisation, training data were augmented on the fly. Data augmentation comprised 
random horizontal flip, rotation by an angle within ± 0.35 rad, random scaling by factors ∊ [0.9, 1.1], random 
brightness changes by up to ± 25%, random contrast changes by 50–200%, and random saturation changes 
within 60–175%. These values were selected after visually inspecting the effect of the augmentation operations 
and searching for the limits of what we perceived as natural. A preliminary test run showed that wider ranges 
for these parameters had no benefit on validation accuracy.

CNN training.  For this study, we trained three different CNN architectures: (1) U-Net, (2) FC-DenseNet, 
and (3) DeepLabv3 + . Details can be found in Appendix F.

CNNs were trained on the bwUniCluster 2.0 cluster computer on Red Hat Enterprise Linux 8.3.1–5 using 40 
2.1 GHz CPUs (Intel Xeon Gold 6230) and four CUDA-compatible GPUs (NVIDIA Tesla V100, 8 GB RAM each). 
These resources allowed for batch sizes of 4, 1, and 4 tiles with 1024-pixel side lengths for U-Net, FC-DenseNet, 
and DeepLabv3 + , respectively. For training with smaller tiles, batch sizes were increased inversely proportional 
to tile area. To mitigate the impact of extreme class imbalances, weighted categorical cross-entropy was used as 
loss function. The weight w for each class i was calculated according to Eq. (1):

where p was the proportional share of class i  on the training data set, and x was a parameter that could be 
optimised. We chose this function since it provided flexibility in relative scaling of class weights while retain-
ing simplicity. Optimalisation of individual class weights is computationally intensive and beyond the scope of 
this study. Multiple test runs over 80 epochs, with x between 0.001 and 10, showed the fastest growing learning 
curves on the validation set around 0.1, 0.005, and 0.2, for U-Net, FC-DenseNet, and DeepLabv3 + , respectively. 
These values for x were used in all further training runs of the models. As optimiser, we selected Adam, which is 
computationally efficient and suitable for a wide range of problems62. After short test runs, including the values 
0.1, 10–2, 10–3, and 10–4, the initial learning rate (α) was set to 10–4. Default values (β1 = 0.9 and β2 = 0.999) were 
used for the remaining parameters. The metric tracked during learning was mIoU, which is a standard metric 
for segmentation purposes63. It is calculated as:

where n is the number of classes, Oi is the overlap (intersection) between the predicted area for class i and the 
ground-truth area for the same class (true positives). Ui is the area of union for these areas, i.e., the sum of true 
positives, false positives, and false negatives. The number of epochs was limited to a maximum of 300, or 40 

(1)wi =
1

pxi
,

(2)mIoU =
1

n

n∑

i=1

Oi

Ui
,

Figure 6.   Histograms showing class share by area before and after merging classes. The left panel shows all 
classes separate; the right panel shows small classes agglomerated. The largest class is bare ground.
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consecutive epochs, without improvement of validation mIoU. Models were saved at the end of each epoch. 
Best models were selected based on maximum validation mIoU after smoothing small-scale fluctuations of the 
learning curve through local polynomial regression.

Code was written in Python v 3.8.6 using modules TensorFlow with TensorFlow-GPU v 2.8.064, TensorFlow-
addons v 0.15.0, and NumPy v 1.22.2.

Accuracy assessment.  To evaluate model performance, predictions of the trained models were compared 
with manually delineated ground truth data. Model predictions were written to 16 layers with x- and y-offset by 
25%, 50%, and 75% of the tile size in the respective dimension. For each test plot, a final prediction was derived 
through a majority vote. Subsequently, a confusion matrix was calculated based on final predictions and ground 
truth data. From this confusion matrix, precision (P), recall (R), and F1-Score for each class, as well as overall 
accuracy, were derived. F1-Score was calculated according to Eq. (3).

Models were operationalised on a machine with GeForce GTX 970 (4 GB) GPU, Intel i7-4790K CPU (4 GHz, 
4 cores), and 32 GB RAM.

Statistical analyses.  We used multiple paired t-tests to test for the impact of CNN architecture and input 
tile dimensions on model performance. Normal distribution of differences was usually met (Appendix E). Fur-
thermore, we calculated the total area covered, mean patch area, and mean smallest circumscribing circle (a 
measure for compactness of patches) for each class in the ground truth data used for training. We then tested 
for correlations between these class metrics and corresponding F1 scores. Analyses were carried out in R v 4.2.1 
using packages landscapemetrics v 1.5.2 and rstatix v 0.6.065–67.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.

Code availability
All code used during model training and statistical analyses is accessible at: https://​github.​com/​Manue​lPopp/​
LELEN​et.
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