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Abstract

The ability to anticipate possible human actions in the distant future is of
fundamental interest for a wide range of applications, including autonomous
driving, surveillance, and human-robot interaction. Consequently, various
methods have been presented for action anticipation in recent years, with
deep learning-based approaches being particularly popular. In this work, we
give a short overview of the recent advances of long-term action anticipation
algorithms.

1 Introduction

In the last years, we have seen a tremendous progress in the capabilities of
computer systems to classify and segment activities in videos. These systems,
however, analyze the past or in the case of real-time systems the present with
a delay of a few milliseconds. For applications, where a moving system has
to react or interact with humans, this is insufficient. For instance, to be able
to offer a hand at the right time or to generate proactive dialog to provide
more natural interactions, collaborative robots that work closely with humans
have to anticipate the activities of a human in the future. Compared to human
action recognition and early action recognition, where entire or part of action

109



Zeyun Zhong

segments are observable, action anticipation aims to predict future action without
observing any part of it, as displayed in Figure [I.T]

As the anticipation results are just assumptions, this tends to be significantly
more challenging than traditional action recognition, which performs well
with todays well-honed discriminative models [7,|17]]. Consistent with action
recognition, anticipation approaches start with prediction on only one single
video frame [28]] and tend to use longer temporal context [24,29] in recent years.
Apart from using a long action history, many approaches attempt to leverage
several modalities other than just the raw video frames, such as the motion
information and objects contained in the scene, to further improve the predictive
ability.

While many recent works anticipate activities only for a very short time horizon
of a few seconds [9, 8], there is a parallel line of work [6] which addresses
the problem of anticipating all activities that will be happening within a time
horizon of up to several minutes, which is particularly interesting for robot
systems that require certain time to react and plan the future tasks.

In spite of the enormous amount of research conducted in this area, the problem
is still challenging due to the fundamental challenges inherent to the task such
as the multi-modal distribution of future action candidates, especially for the
scenario where we are going to predict far into the future (long-term anticipation).
As action recognition is usually a fundamental sub-component of an anticipation
system, the challenges of action recognition [[14]] are also included, such as the
tremendous intra-class variance among the activities, huge spatio-temporal scale
variation, target motion variations, etc. Moreover, low image resolution, object
occlusion, illumination change and viewpoint change further aggravate these
challenges.

Although classical learning approaches, such as Conditional Random Fields
(CRFs) [15]], Markov models [23]], and other statistical methods [19}[22]], have
been widely used in the literature, we put our focus on deep learning techniques
and how they have been extended or applied to daily-living action anticipation,
leaving the classical approaches outside the scope of the present review. In this
context, the terms action anticipation, action prediction, and action forecasting
are used interchangeably.
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Figure 1.1: The action anticipation task aims to anticipate future action(s) before it happens,
whereas action recognition and early action recognition require the observation of complete and
partial actions, respectively.

This survey is structured as follows. In Section[2} we describe both short-term
and long-term anticipation tasks which are commonly used in the literature, so
that the reader can better distinguish between them. In Section[3] we introduce
the current approaches that address the long-term anticipation task and discuss
their limitations. Finally, we conclude this survey in Section 4}

2  Problem Statement

Based on the prediction time horizon, action anticipation approaches can be
grouped into two categories: short-term anticipation approaches and long-term
anticipation approaches. While short-term approaches predict a single action a
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Figure 2.1: Category of the action anticipation task. While the short-term anticipation aims at
predicting a single future action, long-term task aims to predict a sequence of the following actions.

few seconds into the future, long-term approaches predict a sequence of future
actions with their durations up to several minutes into the future. In the following
sections, we show the detailed task definition of both categories usually used in
the literature.

2.1 Short-term anticipation

Most short-term anticipation approaches follow the setup defined in [28| |4}
S[l. As illustrated in Figure the task aims to predict a future action by
observing a video segment of length 7,. The observation segment is 7, seconds
preceding the action, i.e., from time 74 — (7, + 7,) to 7, — T,, Where 7,
denotes the “anticipation time”, i.e., how many seconds in advance actions are
to be anticipated. The anticipation time 7, is usually fixed for each dataset,
whereas the length of the observation segment is typically dependent on the
individual method. Methods in this category typically use synchronous data to
perform the anticipation task, meaning that the input to the model is a sequence
of frames that have the same temporal spacing before the action [9} |8]].

112



Long-term Action Anticipation

Some work [18] [21]] attempts to predict the starting time of the next action
as well. As this task involves the duration of each action, these approaches
usually use asynchronous data as input to the model, containing a sequence of
action categories and inter-arrival times. The inter-arrival time is defined as
the difference between the starting time of last and the current action. With the
predicted inter-arrival time, the starting time of the next action can be easily
deduced.

2.2 Long-term anticipation

There is a parallel line of research addressing the long-tern anticipation task,
which is proposed in [6]]. The goal is to anticipate the category and the duration
of future actions for a given time horizon, which can take up to several minutes,
as illustrated in Figure 2.1(b)] Long-term approaches typically take a sequence
of observed action categories and their durations to predict another sequence of
actions and durations [6} |1, [31]].

3  Long-term Anticipation Approaches

3.1 Methods

Farha et al. [[6] first introduced the long-term action anticipation task and
proposed two models to tackle the task. One is based on an RNN model, which
outputs the remaining length of the current action, the next action class and its
length, as shown in Figure[3.1} The long-term prediction is conducted recursively,
i.e., observations are combined with the current prediction to produce the next
prediction. Another method is based on a CNN model, which outputs a sequence
of future actions in a form of a matrix in one single step. Considering the
limitations of these two methods, i.e., the RNN model is time-consuming and
suffers from error accumulation and the CNN model introduces many parameters
when predicting long sequences, Ke et al. [[12]] proposed a method to explicitly
address these issues. They chose to condition on a time variable representing the
prediction horizon. Specifically, they transformed the prediction time horizon
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Figure 3.1: Architecture of the RNN system [[6]. The input is a sequence of (length, 1-hot class
encoding)-tuples. The network predicts the remaining length of the last observed action and the
label and length of the next action. Appending the predicted result to the original input, the next
action segment can be predicted. Figure is taken from [6].

to a time representation, and concatenated it with the original inputs forming
time-conditioned observations. Their model is therefore capable of anticipating
a future action at arbitrary and variable time horizons in a one-shot fashion.
Additionally, they introduced a time-conditioned skip connection between the
last observed action and the initial anticipation based on the intuition that the
last action of the observation is generally relevant to the future actions.

Inspired by [12]], Gong et al. [|[10] proposed an encoder-decoder structure based on
transformer architecture [27, 2], which effectively captures long-term relations
over the whole sequence of actions. The encoder learns to capture fine-grained
long-range temporal relations between the observed frames from the past, while
the decoder learns a sequence of future action queries, capturing global relations
between upcoming actions in the future along with the observed features from
the encoder. Because of the proposed parallel decoding, the model is able to
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make more accurate and faster inference without potential error accumulations
caused by autoregressive decoding. However, the number of predictable future
actions is also limited to the number of action queries used in the training process,
which might need to be adapted, if the model is applied for other datasets.

Predicting future is inherently multi-modal. Given an observed video segment
containing an ongoing action, multiple actions could be possible to be the next
action following the observed one. This uncertainty becomes even larger if
we are going to predict far into the future. Therefore, it may be beneficial
to model the underlying uncertainty, allowing to capture different possible
future actions. However, in most approaches, action prediction is taken as a
classification problem and optimized under cross-entropy loss, suffering from
overly high resemblance to dominant ground truth, while suppressing other
reasonable possibilities [3[]. Moreover, approaches that are optimized with mean
square error tend to produce the mean of the modes 28| 20]. To this end,
some approaches are proposed to tackle the uncertainty in the future predictions,
which are described below.

Farha and Gall [1]] introduced a framework that predicts all subsequent actions
and corresponding durations in a stochastic manner. In their framework, an
action model similar to the one proposed in [6] (shown in Figure[3.T) and a
time model are trained to predict the probability distribution of the future action
label and duration, respectively. While action labels are taken as classifications
and optimized under cross-entropy (CE) loss, durations are taken as real-valued
variables which are modeled with a Gaussian distribution and optimized with the
negative log likelihood (NLL). At test time, future action label and its duration
are sampled from the learned distributions. Long-term predictions are achieved
by feeding the predicted action segment to the model recursively.

Zhao and Wildes [31]] proposed Conditional Adversarial Generative Networks
to address the underlying uncertainty when predicting future action sequence.
More specifically, different from many works that operate with continuous time
variable [|6, |1} |12}, |10]], they treated both action labels and time as discrete data
which are formated as one-hot vectors. These vectors are first projected to
higher dimension continuous spaces and concatenated, and then fed to a seg2seq
generator [26]] to compute logits of future action labels and their corresponding
time. To obtain differentiable sampling to generate future sequences with
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both quality and diversity during training, the Gumbel-Softmax relaxation
technique [11]] that mimics one-hot vectors from categorical distributions and a
normalized distance regularizer [30] that encourages diversity are adopted. A
ConvNet classifier is used as the discriminator to allow to train the generator
adversarially.

Mehrasaetal. [21]] proposed using arecurrent variational auto-encoder (VAE [[13]])
to capture the distribution over the times and categories of action sequences.
To overcome the problem that a fixed prior distribution of the latent variable
(usually A/(0, I) in VAE models) may ignore temporal dependencies present
between actions, authors learned a prior that varies across time. At test time,
a latent code is sampled from the learned prior distribution, based on which
the probability distributions of the action class and the corresponding time are
inferred.

3.2 Limitations

Despite the impressive performance on the standard benchmarks [25]16]], current
approaches have several limitations, which are described below.

Limited representativity of the evaluation datasets. The commonly used
benchmark datasets for long-term anticipation, i.e., Breakfast [|16] and 50Sal-
ads [25]], contain only videos of a specific kitchen activity, which usually last
several minutes. Since there is only one activity per video, i.e., either preparing
a breakfast or preparing a salad, it is easier to predict the following actions than
in the real-world scenarios, where a completely different action might occur next.
Furthermore, since these videos are typically only several minutes long, the
current setting may not be directly applicable for longer videos, especially for
real-world applications. Moreover, these datasets do not contain any concurrent
actions. However, actions in the real-world scenarios, such as making a phone
call and taking notes may be performed simultaneously.

Difficult deployment of methods that incorporate uncertainty. Methods that
incorporate uncertainty typically learn a joint distribution of all data samples.
For evaluation, authors usually draw many samples from the learned distribution,
and compute the average metric value of all drawn samples [1} 31]], or select
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the most frequent sample as the final result [21]]. However, such an evaluation
protocol requires multiple runs of the model, which is time-consuming and
therefore difficult to deploy for real-time systems.

4 Conclusion

In this survey, we gave a short overview of the current approaches that are
proposed to tackle the long-term action anticipation task. We analyzed different
methods from two perspectives: research question each individual method
addresses and method description. In the end, we also described the limitations
of the current approaches. In conclusion, long-term action anticipation is an
interesting and relatively new research topic, which attracts increasing attention
in the community, and benefits many intelligent decision-making systems. While
great strides have been made, there is still large room for improvement in action
anticipation using deep learning techniques.
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