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Abstract. Random forests (RFs) are a versatile choice for many machine learning
applications. Despite their promising efficiency and simplicity, RFs are seldom
used in collaborative scenarios like federated learning (FL). In FL, training data is
scattered among a federation of clients. To train federated models, a central server
aggregates inputs from all clients. For RFs as non-parametric models, coordinating
the training phase and aggregating the global model is non-trivial. Design choices
regarding the evaluation of candidate splits and the aggregation of decision trees
prove to be context-specific. In this work, we identify aggregation techniques
proposed in extant literature. The identified techniques are categorized across
dimensions like training coordination, inference process, and privacy. We find
an important distinction between synchronous and asynchronous techniques and
evaluate the practical suitability of aggregation techniques by comparing advan-
tages and drawbacks for prediction robustness and technical feasibility. Our results
facilitate design choices of future federated RFs.

Keywords: Random Forest, Federated Learning, Literature Review

1 Introduction

Across many data-heavy applications like healthcare or finance, machine learning (ML)
applications are becoming increasingly relevant. Supervised ML applications require
large amounts of training data, which is troublesome when that data is residing in
siloed environments Rieke et al. (2020). Collaborations could enrich the data sets and
improve the predictions for all parties, but the exchange of sensitive data is often not
possible due to strict privacy regulations or the protection of proprietary knowledge
(Kairouz et al. 2021). Federated learning (FL) seeks to overcome these impediments by
adapting ML techniques to multi-client environments. Federated ML models are trained
collaboratively without violating data privacy requirements. In traditional FL, clients
start by training parametric models like neural networks on locally available data sets. In
each iteration, the local model updates are aggregated by a central server. The aggregated
model is then made available to all participating clients (McMahan et al. 2017).

Studies suggest that the success of ML models in practice is determined by a range of
factors surpassing quality measures established in research (Ishikawa & Yoshioka 2019).
Factors like explainability and user-friendliness are critical for the long-term adoption of
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a model, especially in areas with high accountability standards (Varghese 2020). Neural
networks are the most researched models in FL but dissatisfy some of these requirements
(Paleyes et al. 2022). More explainable, less complex predictors like decision trees or
regression models may suffer from inferior predictive performance (Bell et al. 2022).
Random forests (RFs) can bridge this gap between explainability and predictive quality
Varghese (2020). RFs are supervised ML models built by compiling multiple decision
trees in an ensemble and aggregating the outputs for predictions (Breiman 1996). They
can process categorical and high-dimensional data with good predictive performance
(Cutler et al. 2012), while facilitating the employment of explainability techniques
(De Fazio et al. 2023). For a deep technical introduction into RFs, we suggest the review
of Biau & Scornet (2016) as a starting point.

The unique balance between prediction quality and explainability (Varghese 2020)
makes RFs appealing models for FL as well. However, the non-parametric nature of the
underlying decision trees necessitates dedicated aggregation techniques for federated
RFs (FRFs) (Li et al. 2021). A range of these techniques has been proposed so far.
However, existing knowledge of different techniques may be inaccessible to potential
users because authors use different terminology and focus on specific applications. By
synthesizing the body of work on FRFs and characterizing existing techniques, we aim
to guide researchers and practitioners in identifying relevant solutions. Thus, we ask the
research question (RQ):

RQ: Which aggregation techniques for FL with RFs exist in research, and how
do they compare with each other?

To answer our RQ, we review aggregation techniques for FRFs found in scientific
literature. The identified techniques are structured by applying categorical mappings
to make them more accessible to the reader. Subsequently, we evaluate the techniques
based on developed criteria regarding their suitability in practice. Together, the literature
review and subsequent evaluation contribute to an improved understanding of different
aggregation techniques for RFs and non-parametric models in general. Our results
serve as a basis for informed and thus more confident decisions on the design of the
aggregation process, ultimately facilitating design choices for the application of non-
parametric models in FL.

2 Background on Federated Learning

With the increasing interest in collaborative ML models, FL gained a lot of interest over
the past years (Yang et al. 2019). In traditional FL, raw training data remains distributed
at each client and is not exchanged across client boundaries, achieving strong data protec-
tion. A central server receives “focused updates intended for immediate aggregation [. . . ]
used to achieve the learning objective” (Kairouz et al. 2021). A fundamental question for
the application of FRFs is the interconnection of data provisioning by local clients and
the aggregation by a central server, which can be designed in numerous ways. To describe
this central concept, we use the term aggregation technique as the combined strategy for
data provisioning by technically or legally separated clients and the aggregation of this
data into a shared model.



An important distinction of FL regards the participating clients. Cross-device FL is
concerned with training a global model by leveraging inputs of many unreliable clients
whose individual contribution is asymptotically insignificant (Kairouz et al. 2021). Cross-
silo FL on the other hand describes federated systems which involve fewer but more
powerful and reliable clients, such as data centers (Kairouz et al. 2021). FL can further
be differentiated regarding the partitioning of training data. The most common scenario
is horizontal FL, where clients share the same feature space but hold data on different
samples. Conversely, in vertical FL, clients share the same samples but hold data on
different feature sets. In practice, vertically partitioned data is most relevant in the context
of cross-silo FL. Federated transfer learning constitutes situations where neither feature
nor sample spaces align (Kairouz et al. 2021).

An emerging paradigm in FL is multi-task learning (Kairouz et al. 2021), where every
local learning task is considered separately. This is especially relevant when data is not
identically and independently distributed (IID). While IID assumptions are often violated
globally, they may hold for subsets of client data. Under these conditions, multi-task FL
can outperform global models (Kairouz et al. 2021).

3 Review Methodology

To synthesize and assess the current state of research on FRFs, we conducted a scoping
review. This method is well-suited for the exploration of research areas that have not been
reviewed thoroughly yet (Mays et al. 2001). In particular, we followed the framework of
Arksey & O’Malley (2005) to conduct the review.

3.1 Study Selection

Table 1 summarizes our search strategy, including search terms and inclusion criteria.
Figure 1 visualizes the review process. The search yielded 293 unique records after
removing duplicates (n = 159). In a first iteration, title and abstract of the records were
screened and 234 manuscripts with no apparent relevance were excluded. The full texts of
the remaining 59 records were retrieved and examined in more detail, where we excluded
38 publications due to insufficient eligibility. In the end, we charted 21 publications.

Table 1. Settings for the conducted scoping study

Criterion Detail

Language English
Timeframe 01/2016 - 10/2022
Databases IEEE Xplore, ACM Digital Library, Scopus, ProQuest
Source Journals, Conferences, arXiv preprints
Status Peer-reviewed or currently under review
Search area Abstract only
Search terms (["distributed" OR "federated" OR "incremental"] AND ["learning" OR

"machine learning" or "ML"] OR FedML) AND (forest OR tree OR trees)



Figure 1. Outline of the review process

3.2 Data Charting

In addition to general metadata, we extracted information for six facets representing cen-
tral characteristics of the identified aggregation techniques. These facets were determined
through a targeted, exploratory analysis of the included publications. In this process, we
prioritized categories with high discriminatory power. We developed an initial set of
eight candidates, which we found to be relevant beyond the scope of FRFs. Two of these
(namely, explainability and problem domain) were discarded, as they were not present in
enough sources and thus did not provide sufficient insights into the differences between
techniques within our sample. The remaining six facets are described below.

4 Review Results

An overview of the identified aggregation techniques and the evaluated mapping di-
mensions is displayed in Table 2. The overwhelming majority of the proposed systems
apply cross-device FL. Clients are typically not only data sources but also influence the
training phase and prediction process. Most studies investigate configurations between
2 and 100 clients (Hauschild et al. 2022, Liu et al. 2020b), where each client resem-
bles an institutional data domain. The work of Kalloori & Klingler (2022) even aims
at “involving corporate companies instead of mobile devices in the federated learning
process”.

Partitioning. The first facet captures the partitioning of training data across clients.
We differentiate between horizontal, vertical FL, and federated transfer learning.

Researchers have explored data partitioning for FRFs with a clear tendency toward
horizontal FL. Aggregation techniques within vertical FL appear to be particularly
homogeneous with respect to our mapping dimensions like privacy (83% apply HE) and
inference (83% joint inference). Interestingly, we did not find any examples for federated



Table 2. Overview of the identified aggregation techniques.

Year Authors Partitioning Coordination Task Privacy Architecture Inference

2021 Aliyu et al. Horizontal Asynchronous Class - Blockchain Local
2022 Gencturk et al. Horizontal Asynchronous Class MPC Server, P2P Local
2019 Giacomelli et al. Horizontal Asynchronous Class HE Server Server
2022 Hauschild et al. Horizontal Asynchronous Class - Server Server
2022 Kwatra & Torra Horizontal Asynchronous Class A Server Local
2022 Ma et al. Horizontal Asynchronous Class - Server N/A
2021 Ma et al. Horizontal Asynchronous Class HE Server Server
2022 Markovic et al. Horizontal Asynchronous Class - Server N/A
2020 de Souza et al. Horizontal Asynchronous Class A Blockchain Local
2021 Zhang et al. Horizontal Asynchronous Class - Server Local
2021 Kwatra & Torra Horizontal Asynchronous Class, Reg - Server N/A
2022 Kalloori & Klingler Horizontal Synchronous Class DP Server Local
2022 Liu et al. Horizontal Synchronous Class DP MC Local
2020b Liu et al. Horizontal Synchronous Class, Reg DP Server Local
2016 Guo et al. Horizontal Synchronous Reg - Server Local
2022 Ge et al. Vertical Synchronous Class - Server Joint
2021 Hou et al. Vertical Synchronous Class HE MC-Server Joint
2021b Liu et al. Vertical Synchronous Class HE MC-Server N/A
2021 Liu et al. Vertical Synchronous Class, Reg HE Server Joint
2020 Wu et al. Vertical Synchronous Class, Reg HE, MPC, DP MC Joint
2022 Yao et al. Vertical Synchronous Class, Reg HE Server Joint

transfer learning (FTL) in the reviewed work. The notion of transfer learning precedes
FL and describes differences in domains, tasks, and distributions (Pan & Yang 2009),
which is a broader mandate than the FL-specific definition by Kairouz et al. (2021).
Following the earlier notion, some have labeled personalized or multi-task FL as FTL
(Saha & Ahmad 2021). We keep to the stricter definition, as it is more precise and does
not overlap with the fields of horizontal and vertical FL.

Coordination. The second facet describes the coordination of the model training
phase. We identified two architectural patterns, which we termed asynchronous and
synchronous training, in consistency with other FL research (Zhang et al. 2020). The
coordination of the model training phase determines the contents of the interaction
between client and server. In asynchronous training of FRFs, clients build decision trees
independently on their local data without model-specific communication. After finishing
training, clients send their local models to the server, which aggregates the received data
into a global RF. On the other hand, synchronous aggregation techniques collaboratively
build decision trees across all clients under the coordination of an aggregation server.
For each new node, clients provide information about the composition of their local data
set. The server then finds and broadcasts the optimal split according to the provided data.
With the globally selected split, nodes are expanded by recursively partitioning the local
data at each client.

Across the 21 included publications, 11 employ asynchronous coordination, all
within horizontal FL. The aggregating entity may apply a processing strategy to modify
the composition of the federated model. The observed strategies fall into weighting,
filtering, merging, or full compilation of all decision trees. Filtering reduces the size of
the global RF by only considering a subset of local trees, either randomly (Hauschild
et al. 2022) or performance-based (Markovic et al. 2022, Ma et al. 2021). Weighting
techniques regulate the influence of each tree on the final prediction. Similar to filtering,
we found different performance-based weighting methods (Gencturk et al. 2022, Ma et al.



2022). Lastly, merging techniques create decision trees by merging sets of local input
trees. The identified approaches range from simple, node-wise selection rules (Kwatra &
Torra 2022) to complex, transformation-based mechanisms (Kwatra & Torra 2021).

Ten of the reviewed sources instead employ synchronous training. In horizontal
FL, each client holds a unique local data set with the respective labels. During training,
clients provide summarized representations of the label distributions, so the central server
can determine the global split (Guo et al. 2016, Kalloori & Klingler 2022). In systems
relying on aggregating distribution data, clients communicate using histograms, which
can be implemented for both classification (Kalloori & Klingler 2022) and regression
tasks (Guo et al. 2016). A key property of histograms is the ability to merge adjacent bins.
This enables a dynamic aggregation process, where the set of evaluated candidate splits
is not explicitly defined at the time of aggregation. Alternatively, the server distributes a
fixed set of split values to all clients (Liu et al. 2022, 2020b). In this case, the results are
aggregated directly, since all clients evaluate the same candidate splits.

In vertical FL, clients either have access to all or none of the labels. If label data is
available to all clients, they can autonomously compute the locally optimal split (Ge et al.
2022). The server can then determine the globally optimal split by comparing all local
results. However, most vertical synchronous techniques assume labels are proprietary
data of a single entity. In this scenario, clients can only share preliminary data for
candidate splits, for instance in the form of quantile statistics (Yao et al. 2022, Liu et al.
2021b). This data always has to be forwarded to the entity holding the labels.

Task. The reviewed work covers both classification (class) and regression (reg) tasks.
The type of prediction task was determined either by explicit comments of the authors or
by analyzing the proposed algorithms.

Only one publication focuses exclusively on regression tasks, whereas five ap-
proaches allow for both classification and regression. The most commonly mentioned
prediction task is binary or multi-class classification with 15 identified sources.

Privacy. We identified four different privacy preservation techniques throughout train-
ing and prediction. Secure multi-party computation (MPC) allows for secure evaluation
of a function based on private inputs of each client (Damgård et al. 2012). Homomorphic
encryption (HE) transforms clients’ inputs with homomorphic functions, scrambling
the inputs but maintaining algebraic relations between them. Differential privacy (DP)
introduces noise in models to mask a client’s contribution (Kairouz et al. 2021). Lastly,
anonymization (A) protects samples by removing or blurring any identifiable information.

Out of all included publications, seven integrate HE schemes to secure their commu-
nication. Wu et al. (2020) employ HE to reduce communication overhead compared to
solely relying on MPC. Their HE scheme supports addition, multiplication, and the dot
product. Additionally, they employ an MPC protocol based on additive secret sharing
for the secure comparison of the computed split impurities (Wu et al. 2020). Gencturk
et al. (2022) propose a P2P network where MPC allows for anonymous computing of the
performance of local models on other clients’ data. Four approaches apply DP, including
Kalloori & Klingler (2022), who use histograms with added noise to communicate
distribution data to the server. Liu et al. (2020b) propose a complex, multi-layer system
for perturbing label information. Anonymization is employed in the form of k-anonymity



(Kwatra & Torra 2022) and by excluding identifiable information from the aggregation
process (de Souza et al. 2020).

Architecture. Different communication architectures of aggregation techniques are
compared in our fifth facet. Server describes the traditional setting, where all clients have
the same role within the system and communication is routed through a central server. In
architectures with a main client (MC), all coordination is handled by one of the clients. It
embodies the role of the server, but still participates in the training. MC-Server scenarios
are relevant for vertical FL, where one client holds all label data. Communication is
handled by an aggregation server, which additionally forwards all local partition data
to this main client. Peer-to-peer (P2P) architectures enable communication protocols
without a centralized server. Finally, blockchain-based systems (blockchain) rely on
decentralized ledgers, where clients store retrieval information for locally trained models.

The traditional client-server architecture is the prevalent communication setup among
the reviewed approaches. Only three techniques with asynchronous training implement
blockchain-based (Aliyu et al. 2021, de Souza et al. 2020) or P2P (Gencturk et al. 2022)
architectures. We found variations regarding the entity controlling the flow of information
among synchronously trained techniques. Some approaches introduce a main client with
additional responsibilities for the protocol (Hou et al. 2021, Wu et al. 2020).

Inference. Our sixth facet describes the provision of the global model along with the
involved parties. Three types of prediction processes can be distinguished. First, each
client may apply the global model independently in a local inference system (local).
Each client, therefore, has access to the federated model and has full control over the
prediction process. Server-side inference (server) is initiated by a prediction request,
which is processed by the aggregation server. Access to the federated model is provided
via an API or a web application. Lastly, joint inference (joint) requires both clients and
server to become active to generate predictions. Hence, the global model does not reside
at one entity but is distributed across multiple clients. This design requires consensus
across all stakeholders on the usage of the federated model.

Most systems apply local inference, especially in horizontal FL. A simple approach
is letting the server distribute the global RF to all authorized recipients after completing
training (Kwatra & Torra 2022). Alternatively, each individual client decides which deci-
sion trees should be incorporated into their local ensemble. Hereof, Aliyu et al. (2021) let
clients publish local models to a blockchain, from where authorized users can download
the models for local usage. In synchronous training, participants can keep track of the
collaboratively built trees during training (Liu et al. 2020b), skipping the distribution
step. Three approaches enable server-side inference, all applying asynchronous training.
The global model may not be distributed due to privacy concerns, easier practical use,
and monetized prediction processes. Joint inference between clients and server is only
implemented in approaches with vertically partitioned data. The aggregation server only
holds encrypted or referential information about the model (Liu et al. 2021). In addition
to privacy protection, this can be employed to prohibit usage without the consent of all
involved clients.



5 Evaluation

Within our study, we found that FRFs are typically applied in cross-silo environments.
The nature of the clients eliminates many challenges associated with the cross-device
setting prevalent in FL research, such as limited computational resources and unreliability
of clients (Kairouz et al. 2021). Hence, cross-silo techniques should not be discussed
in terms of cross-device requirements. We, therefore, developed evaluation criteria
applicable to the cross-silo setting. As we set out to evaluate the suitability for a broad
range of applications in practice, we limited our scope to domain-agnostic criteria.
Hence, we settled on prediction robustness and technical feasibility. We excluded other
interesting facets (e.g., explainability) since their implications remain largely independent
of the applied techniques. The two selected dimensions allow us to draw generalizable
conclusions regarding the practical suitability of aggregation techniques.

We focus on the differentiation between synchronous and asynchronous training
phases, as our findings hint at the importance of this property. The simple, binary
categorization directly applies to all reviewed techniques. Furthermore, it allows us to
make assumptions about the data flow during training without losing generalizability
of our results. Going forward, we first motivate and describe the developed criteria
before presenting the results for synchronous and asynchronous training. An overview
of the main findings can be found in Table 3. Importantly, our review did not identify
asynchronous techniques within vertical FL. For the remainder of the evaluation, we will
thus limit the scope to the horizontal setting.

5.1 Prediction Robustness

In FL, clients independently collect their own training data, which is never shared with
other parties. Because data is collected differently across clients, the common assumption
of IID data seldom holds in practice (Kairouz et al. 2021). In reality, the sizes of local
data sets can differ substantially across clients. Additionally, not all local data sets
may follow the same distribution. Robustness against statistical heterogeneity has been
identified as a core challenge in FL (Li et al. 2020).

Across our sample, we saw two node expansion strategies for synchronous training.
First, the server can directly compute their aggregated quality if all clients locally

Table 3. Main findings of the conducted comparison

Dimension Synchronous Training Asynchronous Training

Statistical
heterogeneity

No performance loss compared
to non-federated baseline

Prediction quality may degrade with im-
balanced distributions and dataset sizes

Multi-task
capabilities

Requires prior knowledge about
the similarity of local datasets

Optimal composition of aggregated
model(s) can be determined a posteriori

Communication
overhead

May increase considerably with the
size and complexity of the system

Highly parallelizable and scalable due to
only a single communication phase

Adaptability Rigid model structure necessitates
complete retraining for updates

Client contributions are fully decoupled
and hence dynamically modifiable



evaluate the same set of candidate splits (Liu et al. 2022, 2020b). Second, clients may
send distribution data summarizing their local sample to the server (Kalloori & Klingler
2022, Guo et al. 2016). The server then computes candidate splits after aggregating the
local distributions. In terms of prediction robustness, the second strategy is preferable,
since merging local distribution data reveals the structure of the global data set to the
server, resulting in an optimal split which is agnostic to size disparities. Shifts in local
distributions do not affect the global model either, as it is built on representations of
the global distribution. Depending on the granularity of local distribution data, like the
histogram bin size (Guo et al. 2016), the resulting model can be equivalent to one trained
on the union of local data sets. This is also referred to as “lossless” (Chen et al. 2021)
performance.

In asynchronous training, clients are fundamentally decoupled and candidate splits
can only be evaluated on locally available data. Each local decision tree thus only
incorporates information extracted from one data set. If size imbalances are unaccounted
for in the aggregation process, the prediction output may be biased toward clients with
larger data sets. Weighting the trees with respect to the size of the training data set
can counter this effect, albeit not consistently across different configurations Hauschild
et al. (2022). On top of size imbalances, distribution heterogeneity can negatively
impact the prediction quality of asynchronously trained models due to the lack of data
exchange across client boundaries during training. This cannot be countered easily, as
the introduction of inter-client knowledge would go against the asynchronous approach.

The creation of individualized models for all clients can elegantly circumvent the
issue of statistical heterogeneity (Li et al. 2020). In this context, we found asynchronous
training to be more suitable because each decision tree is based on the local distribution
of a single client. The utility of the model can thus be maximized by letting clients decide
the composition of the model for their local prediction task (de Souza et al. 2020). In
synchronously trained FRFs, each tree is based on contributions from all clients. Multi-
task strategies are only practical if clients are known to have similar local distributions
prior to training. Quantifying the similarity of local data sets a priori is possible (Liu
et al. 2022) but adds further complication and is a potential source for data leakage.
Synchronous aggregation techniques are hence less suitable for multi-task FL.

5.2 Technical Feasibility

The practical suitability of aggregation techniques also depends on their technical
feasibility. For a start, communication efficiency can be a central bottleneck in FRFs,
since the communication delay between clients and server makes up a large share of the
total training time in cross-silo FL (Zhang et al. 2020). Furthermore, technical feasibility
also entails the ability to adapt to dynamic environments (Ishikawa & Yoshioka 2019).
This becomes especially relevant when requirements are insufficiently defined from
the start or when recurring changes are anticipated (Ishikawa & Yoshioka 2019). An
aggregation technique capable of dynamically reacting and adapting to systemic changes
is more versatile and thus more likely to be applied in practice.

Synchronous coordination has a few drawbacks regarding technical feasibility. First,
building a decision tree synchronously is communication-intensive. Clients first need to



share their input data with the server, which then distributes the optimal split (Kalloori &
Klingler 2022), resulting in at least two communication phases per node. Node expansion
within the same tree layer can be parallelized. However, the server cannot expand a node
until all clients have provided their data. The slowest client determines the processing
speed for each node (Zhang et al. 2020). In asynchronous training, only one large
communication phase is necessary to make local models available to the server. Since
clients train independently, their contributions are fully decoupled. The communication
overhead associated with asynchronous training hence does not grow problematically
with the number of clients or the size of local models.

Each synchronously built decision tree is based on multiple local data sets. When
new clients are introduced, or incremental updates are necessary, the global RF thus has
to be completely retrained to incorporate new information. The cost-benefit relation of
maintaining a synchronously trained model becomes less economical the more frequently
a system is modified. Asynchronous FRFs on the other hand allow for continuous
integration of new clients and facilitate the revocation of inputs. Moreover, they enable
individualized updates to decision trees within the global RF, for instance when data
is accumulated over time and models need to be continuously retrained. In case future
system requirements are not fully understood from the start, the flexibility associated
with asynchronous training ensures that the federated system remains adaptable.

Additionally, the impact of privacy preservation techniques on communication effi-
ciency must also be considered. Encryption techniques in particular require a significant
amount of computation and can dominate the processing time (Zhang et al. 2020). Since
encryption has to be applied before sending local data, the cumulative overhead of
encryption grows with the number of transmission phases and the amount of transmitted
data. Summed up, the communication overhead for synchronous aggregation techniques
is comparably high and can depend on a range of factors. The training complexity and
the rigidity of the resulting FL model limit synchronous training to static environments.

6 Discussion

6.1 Principal Findings

In this study, we analyzed extant literature on the aggregation of RFs in FL. We identified
21 studies investigating FRFs. Therein, we found the majority of approaches to apply
horizontal FL. Our results suggest that a key feature determining the properties of an
aggregation technique is the coordination of the training phase. The choice regarding
synchronous or asynchronous training determines the information flow between the
involved parties. The behavior of the resulting system depends on whether the decision
trees are built on local data of a single client per tree, or in a round-based process involv-
ing multiple clients. Thus, we compared synchronous and asynchronous approaches in
terms of their prediction robustness and their technical feasibility.

Our results indicate that synchronously trained models can produce superior federated
models in the presence of non-IID data, where local data sets are of unequal size or
follow different underlying distributions. This is because the resulting global RF is
structurally similar to its non-federated counterpart. The impact of size imbalances in



asynchronous training can be mitigated by size-based weighting (Hauschild et al. 2022).
Still, we found no other examples of size-based processing techniques. Additionally,
the effects of distribution heterogeneity cannot be mitigated in asynchronous training
because cross-client information is unavailable. The combined impact of size imbalances
and distribution heterogeneity on asynchronous FRFs has not been investigated yet,
but the prediction quality may degrade as well. However, building a global model in
the presence of statistical heterogeneity may not align with the practical requirements.
Individualized models tend to perform better here since they are tailored to the non-IID
local distributions (Kairouz et al. 2021). For individualization approaches like multi-task
FL, asynchronous training has an advantage due to the decoupled nature of the decision
trees. Synchronous techniques are less applicable, as they produce decision trees with
tightly interwoven client contributions. This can undermine the utility for individual
stakeholders, a crucial factor for the success of a federated system (Huang et al. 2022).

Regarding the technical feasibility, asynchronous training incurs far less communica-
tion overhead because the training process for individual clients is largely decoupled.
This makes it the preferable option for environments that require scalability and adapt-
ability. The global model allows for targeted, dynamic updates, which hints toward
potential applications in incremental FL. Since each tree only depends on the input of a
single client, their influence on the final prediction can easily be adjusted. In synchronous
training, there may be scenarios where frequent retraining becomes uneconomical due to
the complex training process. Additionally, there is a trade-off in synchronous training
between performance and a more accurate representation of local data (Guo et al. 2016).
Analogously, the cost of privacy-preservation techniques such as encryption comes
into play, since the associated overhead increases with the frequency and size of data
transmissions.

6.2 Implications

Our work yields several important implications for research and practice. For one, we
provide a structured categorization of extant work on the aggregation of RFs in FL. With
the rising interest in both RF and FL, their intersection becomes ever more relevant.
By synthesizing and highlighting recent efforts in this intersection, we demonstrate the
benefits of non-parametric approaches, ultimately contributing to the transition from
inferior local models to federated systems. With the categorization of existing approaches,
our work sets the stage for gaining deeper insights into the structural relationships
between aggregation techniques. Our results show that the choice of synchronous or
asynchronous training is an important driver of the robustness and applicability of FRFs.
With this distinction, we complement the standard comparison from a data distribution
perspective (horizontal vs. vertical) with a training coordination perspective (synchronous
vs. asynchronous). This distinction allows for novel, model-agnostic insights into FL
systems. Finally, the investigation into the practical suitability of aggregation techniques
enables more knowledgeable design choices. Concretely, asynchronous coordination
of the training phase tends to be more feasible in practical applications. This is due
to its simplicity, superior efficiency, and the decoupled nature of client contributions.
Nevertheless, the ability of synchronous FRF implementations to produce a potentially



lossless global model may be a decisive trait under certain circumstances. Complex
decisions often hinder the instantiation of ML systems. Our research facilitates the
decision-making process and makes an informed application of FRFs more attainable.
Our results are applicable across many disciplines.

6.3 Limitations and Future Research

FRFs are used across many domains, making it likely that we did not capture all rele-
vant literature. However, our search covered a large share of extant work. We assumed
cross-silo FL in the evaluation, since this is what most reviewed approaches focused on.
Yet, some techniques can be applied in cross-device FL as well (Aliyu et al. 2021). Fur-
thermore, our review found no aggregation techniques within vertical FL implementing
asynchronous training. Since we focused on comparing synchronous and asynchronous
coordination, we limited the evaluation to horizontal FL. Whether asynchronous training
could be applied successfully in scenarios with vertically partitioned data is an open
question. The evaluation speaks toward the practical applicability of techniques with
asynchronous training. Our considerations for the prediction robustness in the presence
of statistical heterogeneity are less conclusive and depend on assumptions about the
underlying data. A quantitative investigation into the effects of statistical heterogeneity
on synchronous and asynchronous training is the logical next step.

7 Conclusion

RFs are a popular choice for ML tasks because they are simple to use and reliably produce
good results. Their application in FL environments, however, has thus far received
limited attention. We conducted a comprehensive review on FRFs and synthesized
aggregation techniques. Furthermore, we evaluated the identified aggregation techniques
based on previously developed criteria to expose differences. Our results show that
extant research generally assumes the cross-silo setting. As for the partitioning of
local data, vertical FRFs have been explored less than horizontal FRFs. The most
influential design choice for FRFs is the coordination of the model training phase
since synchronous or asynchronous training have implications for the robustness of
the resulting system against statistical heterogeneity and its applicability in dynamic,
uncertain environments. We present implications for both future research on FL protocols
and the practical application of FRFs. Future research can derive recommendations for
suitable aggregation techniques from our findings. More research is necessary to better
understand the characteristics of federated data sets and their implications on design
choices for cross-silo FL. Going forward, we encourage further research into the decision
for synchronous or asynchronous training, specifically in the form of quantitative studies.
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