
Demo: Coexistence of Low Delay and Loss-based
Congestion Controls in SDN-based Networks

Mario Hock, Michael König, Roland Bless, Martina Zitterbart
Karlsruhe Institute of Technology

Karlsruhe, Germany
E-Mail: mario.hock@kit.edu, michael.koenig2@student.kit.edu, bless@kit.edu, zitterbart@kit.edu

I. INTRODUCTION

The Internet serves an ever increasing variety of applications.
Their requirements range from high throughput bulk transfers
(i.e., high volume data transfers) to interactive or real-time
applications that need low and bounded delays. Still, delay
requirements are not properly considered in the current Internet.
Hereby, the congestion control that is incorporated in TCP plays
a crucial role. Currently, loss-based congestion controls (e.g.,
TCP Reno or CUBIC TCP) prevail.

It is well-known that loss-based congestion control can lead
to large queues since they fill up the buffer to its maximum
size in case of congestion. This, however, increases the delay
that is experienced by the packets, thus resulting in a bad
quality-of-experience for the above mentioned delay-sensitive
applications. Deploying congestion controls that focus on the
support of low delays could significantly improve this situation.
However, a gradual deployment of these congestion controls
or a parallel operation of low delay and loss-based congestion
controls is challenging, since on regular tail-drop buffers the
low delay congestion controls will be suppressed by the loss-
based congestion controls.

In [1] we have shown that the capabilities of off-the-shelve
OpenFlow switches can be used to facilitate the coexistence of
low delay and loss-based congestion controls. Depending on
the feature set of the deployed OpenFlow switches and on the
existing network topology, different strategies can be used. In
the demo we will use the “Separate Queues” approach. This
means that all flows that use a low delay congestion control
will be enqueued in a different queue than flows with a loss-
based congestion control, at the bottleneck. The throughput
ratio between the queues is determined by a scheduler, e.g.,
weighted round robin. In the demo, we use equal weights for
both queues. The occupancy of each queue is determined by
the congestion control of the respective flows and, thus, be
usually high for the queue with loss-based flows and low for
the queue with low delay flows. If separate queues are not
supported in the used OpenFlow switch, either the “Separate
Paths” or the “Limit Queue Occupancy” approach can be used.
The first one is similar to the “Separate Queues” approach
but requires redundant links at the bottleneck. The second one
exploits rate limiters, so-called OpenFlow meters, to limit the
maximal bandwidth used by the loss-based flows. This enables
the low delay flows to control the buffer occupation at the

congestion
control

coexistence
mechanism

QoE

low delay
enabled game feels smooth (high QoE),

upload rate: high

disabled game feels sluggish (low QoE),
upload rate: very low

loss-based

enabled game feels sluggish (low QoE),
upload rate: high

disabled game feels sluggish (low QoE),
upload rate: very high (since other
sender is suppressed)

TABLE I
EXPERIENCES OF THE PLAYERS DURING THE DEMO

toggle button for
coexistence mechanism

Live statistics

Client 1
Loss-based TCP

Client 2
Low delay TCP

Fig. 1. Demo – Ready to play a round of “Pong”

bottleneck and, therefore, results in a low delay for all flows.
However, due to the way loss-based congestion control works,
the throughput of the loss-based flows is often reduced below
the rate limit.

II. DEMO

The demo makes the delay that is created by the loss-
based congestion control perceivable to the audience and, thus,
demonstrates the advantages of low delay congestion control.
The audience can play a network-enabled version of the well-
known PONG game. In parallel, long living file transfers will
generate congestion at a bottleneck that is shared by all flows.



Dependent on the congestion control in use and whether the
co-existence mechanism is enabled, the quality-of-experience
for the players will vary (summarized in table I and further
explained in the following). Figure 1 shows how the demo
setup will look like. In addition to the two laptops on which
the game is played, a third laptop (or a dedicated monitor)
will display live statistics of the network. The coexistence
mechanism can be toggled anytime by clicking a button, placed
atop the statistics graphs (shown in green in Fig. 1).

A. Delay

Within the game the delay can be perceived in the movement
of the paddle. If the delay is high, the paddle moves sluggishly
with noticeable lag. This makes the game hard to play and
gives a bad quality-of-experience. As an illustration, the game
shows where the paddle should be, i.e., the local view of the
client itself, and where the paddle actually is, i.e., the location
that is echoed back from the game server to the client (server
view). At the beginning the coexistence mechanism is enabled,
Client1 uses a loss-based congestion control and Client2
uses a low delay congestion control. In this case the player at
Client2 has a strong advantage in the game and both paddle
markers of this player (local view and server view) are almost
coincident. At the same time, the paddle markers of the other
player will splitting up on every movement with the server
view lagging behind. If the coexistence mechanism is switched
off, the delay created by the loss-based congestion control
will also affect the connection of the other player. Thus, both
players will experience the same bad quality-of-experience.
This shows that network-based coexistence mechanisms play
an important role for the gradual deployment of low delay
congestion control.

B. Throughput

Besides the quality-of-experience of the game, the throughput
of the long living file transfers also depend on the congestion
control and the coexistence mechanism. Without a coexistence
mechanism, flows with loss-based congestion control can
suppress flows with low delay congestion control at a common
bottleneck. Some congestion controls are designed to resist
such a suppression. CDG [2] and YeAH TCP [3], for example,
contain a special compatibility mode that can alter their behavior
to act similar to a loss-based congestion control. Such a
mechanism, however, can only avoid suppression in terms
of throughput but this still results in a high queuing delay.
With an SDN-based coexistence mechanism, in contrast, the
low delay congestion control can achieve a fair throughput and
a low delay.

This behavior can be seen in the throughput and delay plots
that are displayed in real time on one of the screens. Figure 2
shows a screenshot of these plots for Client2. Within the
displayed timespan the coexistence mechanism was toggled
from off to on. It can be seen that, at first, the throughput
of the file transfer is close to zero and the queuing delay is
high. After the coexistence mechanism was enabled, the delay
quickly drops to a low value and the throughput rate raises.

CoEx mechanism
disabled

CoEx mechanism
enabled

Delay too high for
smooth gameplay

File transfer: 
Very low data rate

High throughput
and low delay

Fig. 2. Throughput and delay of the TCP LoLa client

C. Standard Demo Setup

The demo setup is shown in Fig. 3. It consists of two laptops
(Client1 and Client2) on which the Pong game is
running. The game is implemented as a client-server application.
The server component runs on a third laptop (Game-Server).
In addition to that Client1 and Client2 perform a file
transfer (to the Game-Server).
Client1 and Client2 are connected to a simple 1 Gbit/s

non-SDN switch. The Game-Server is connected with
100 Mbit/s to an SDN switch. This is the bottleneck link for
both clients. The two switches are interconnected with 1 Gbit/s.

In order to increase the portability of the demo, the
SDN switch is emulated by a fourth laptop, equipped with
multiple network interfaces. The network statistics are gath-
ered and displayed with the open source tool TCPlog1

and TCPlivePLOT2. TCPlog is running on the clients,
TCPlivePLOT on the server. The measurement data is also
transmitted over the given network links. In order to avoid any
interference with the actual data streams, a fixed bandwidth
is allocated at the bottleneck switch for this control traffic.
The coexistence mechanism can be toggled by pressing a
button on the Game-Server, the toggling information is also
transmitted over this control channel.

We picked the broadly used CUBIC TCP as loss-based
congestion control and the novel TCP LoLa as low delay
congestion control (more infos in section III). In a typical
run of the demo Client1 represents a legacy host, running
CUBIC TCP. Client2 runs TCP LoLa.

D. Varying Setup: Quiz

In addition to that, the demo setup also offers the possibility
to change the used congestion controls. This makes it possible
to conduct a little quiz with the audience: For both clients
a random (or specifically chosen) congestion control is set.
Participants can then play the game and have to decide what
kind of congestion controls are in use. Hereby, toggling the

1https://git.scc.kit.edu/CPUnetLOG/TCPlog
2https://git.scc.kit.edu/CPUnetLOG/TCPlivePLOT



CUBIC TCP

high delay

TCP LoLalow delay

Client 1 Client 2

Game Server
shows network statistics

Bottleneck
SDN-Switch with optional
coexistence mechanism

1 Gbit/s

100 Mbit/s
No bottleneck
no coexistence
mechanism required

1 Gbit/s1 Gbit/s

server view

client view

lag!

Fig. 3. Demo Setup

coexistence mechanism can either be a way to get more insights
about the situation, or its state is also kept hidden and has to
be found out, as well.

III. CONGESTION CONTROLS

This section gives some background about the different
congestion controls that are used in the context of this demo.

A. TCP Reno (loss-based)
TCP Reno can be considered the base-line congestion control

in the Internet. It is loss-based and follows the well-known
AIMD principle. AIMD stands for “Additive Increase, Mul-
tiplicative Decrease”. This means that TCP Reno typically
increases its Congestion Window (CWnd) linearly, if no
congestion is assumed. If a packet loss occurs, TCP Reno
assumes a congestion and reduces its CWnd by factor 0.5.

The congestion window describes the amount of data that
corresponding TCP flow is allowed to have “in flight” (i.e.,
data that is sent but not yet acknowledged). Most congestion
controls use a congestion window, but use different algorithms
to determine an appropriate size.

It is known that TCP Reno does not scale well in networks
with high bandwidth and/or high propagation delays.

B. CUBIC TCP (loss-based)
CUBIC TCP is the standard congestion control in Linux. It

solves the scalability issue of TCP Reno by changing the CWnd
increase function and the decrease factor. Instead of a linear
increase, CUBIC TCP uses a cubic function. The inflection
point of the cubic function is usually shifted to the value on
which the last packet loss occurred. This means that the slope
of the function is very low around this point but increases with
distance to this point. This leads to an improved scalability.
Instead of 0.5 CUBIC TCP reduces its CWnd merely to a factor
of 0.7 after a packet loss.

Both TCP Reno and CUBIC TCP reduce their CWnd only
after a packet loss. This usually only happens if the bottleneck
buffer is completely exhausted. This means that with large
buffers, both congestion controls induce large queuing delays.
With small buffers both congestion controls are known to only
achieve a reduced throughput.

C. TCP Vegas (low delay)
TCP Vegas is a low delay congestion control and was used in

the evaluation of [1]. It is able to detect congestion before the
bottleneck buffer is exhausted. Instead of packet loss TCP Vegas
uses an increased round-trip-time (RTT) as congestion signal.
TCP Vegas, however, does not scale well with the bandwidth,
also TCP Vegas is prone to the so-called late-comer advantage
problem: If multiple long living flows that are not started at
the same time share a bottleneck, the “late comer” often gets
a larger bandwidth share. In addition to that this situation can
lead to increased queuing delays.

D. TCP LoLa (low delay)
TCP LoLa [4] is a novel congestion control that explicitly

focus on keeping low queuing delays and on scalability to high
bandwidths. In addition to that TCP LoLa provides convergence
to fairness among competing TCP LoLa flows, independent of
their RTTs.

TCP LoLa is also delay-based. It monitors the RTT and tries
to detect if a persisting standing queue [5] is formed at the
bottleneck and tries to determine its size. Since the main task
of a congestion control is to regulate CWnd, the standing queue
is of particular interest, due to the following relation: If CWnd
is too small, the bottleneck link cannot be fully utilized. In
this case no standing queue builds up. If CWnd is too large,
the excess in-flight data forms a persisting standing queue. In
order to achieve high throughput and low delay, TCP LoLa
tries to keep the size of the standing queue on a low level, but
above zero.

IV. REQUIREMENTS FOR THE DEMO

• A table with space for 4 laptops
• Power supply for the laptops
• A big screen to display the statistics (if possible)
• Poster board
• Setup-time: 1 hour
• No Internet connection required

ACKNOWLEDGMENT

This work was supported by the bwNET100G+ project,
which is funded by the Ministry of Science, Research, and
the Arts Baden-Württemberg (MWK). The authors alone are
responsible for the content of this paper.

REFERENCES

[1] M. Hock, R. Bless, and M. Zitterbart, “Toward Coexistence of Different
Congestion Control Mechanisms,” in 2016 IEEE 41st Conference on Local
Computer Networks, November 2016, pp. 567–570.

[2] D. A. Hayes and G. Armitage, “Revisiting TCP Congestion Control Using
Delay Gradients,” in NETWORKING’11. Springer-Verlag, 2011, pp.
328–341.

[3] A. Baiocchi, A. P. Castellani, and F. Vacirca, “YeAH-TCP: Yet Another
Highspeed TCP,” in Int. Workshop on Protocols for Future, Large-Scale
and Diverse Network Transports (PFLDNeT), vol. 7, 2007, pp. 37–42.

[4] M. Hock, F. Neumeister, M. Zitterbart, and R. Bless, “TCP LoLa:
Congestion Control for Low Latencies and High Throughput,” in 2017
IEEE 42st Conference on Local Computer Networks (to be published),
October 2017.

[5] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled Delay
Active Queue Management,” Internet-Draft, Internet Engineering Task
Force, Work in Progress, March 2017.


