KIT | KIT-Bibliothek | Impressum | Datenschutz

Challenges and Opportunities for Large‐Scale Electrode Processing for Sodium‐Ion and Lithium‐Ion Battery

Klemens, Julian 1; Wurba, Ann-Kathrin 2; Burger, David ORCID iD icon 1; Müller, Marcus ORCID iD icon 3; Bauer, Werner ORCID iD icon 4; Büchele, Sebastian 3; Leonet, Olatz; Blázquez, J. Alberto; Boyano, Iker; Ayerbe, Elixabete; Ehrenberg, Helmut 4; Fleischer, Jürgen 2; Smith, Anna 3; Scharfer, Philip 1; Schabel, Wilhelm 5
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)
3 Institut für Angewandte Materialien (IAM), Karlsruher Institut für Technologie (KIT)
4 Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS), Karlsruher Institut für Technologie (KIT)
5 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Sodium-ion batteries are an emerging technology that is still at an early stage of development. The electrode processing for anode and cathode is expected to be similar to lithium-ion batteries (drop-in technology), yet a detailed comparison is not published. There are ongoing questions about the influence of the active materials on processing parameters such as slurry viscosity, coating thicknesses, drying times, and behavior during fast drying. Herein, the expected drying time for the same areal capacity of anodes (graphite vs. hard carbon) and cathodes (Lithium Iron Phosphate vs. Prussian Blue Analogs) are compared based on respective specific capacities reported in the literature. Estimates are made for the materials` impact on production speed or dryer length. Within the experimental part, water-based slurries of the same composition are mixed using different active materials according to identical procedure and the viscosity is compared. When drying at a constant drying rate (0.75 g m-2 s-1), Lithium Iron Phosphate electrodes with different areal capacities (1-3 mAh cm-2) are shown to have the highest adhesion. For high drying rates (3 g m-2 s-1) at constant areal capacity, especially the investigated electrodes based on hard carbon show that no binder migration occurs.


Verlagsausgabe §
DOI: 10.5445/IR/1000162037
Veröffentlicht am 20.12.2023
Originalveröffentlichung
DOI: 10.1002/batt.202300291
Scopus
Zitationen: 6
Web of Science
Zitationen: 5
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Institut für Produktionstechnik (WBK)
Lichttechnisches Institut (LTI)
Post Lithium Storage (POLiS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2023
Sprache Englisch
Identifikator ISSN: 2566-6223
KITopen-ID: 1000162037
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Weitere HGF-Programme 38.02.02 (POF IV, LK 01) Components and Cells
Erschienen in Batteries & Supercaps
Verlag John Wiley and Sons
Band 6
Heft 11
Seiten Art.Nr.: e202300291
Vorab online veröffentlicht am 28.08.2023
Schlagwörter SIB, post-lithium, LFP, PBA, Hard Carbon
Nachgewiesen in Web of Science
Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page