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We consider light-fermion three-loop corrections to gg → H H using forward scattering kinematics in 
the limit of a vanishing Higgs boson mass, which covers a large part of the physical phase space. We 
compute the form factors and discuss the technical challenges. The approach outlined in this letter can 
be used to obtain the full virtual corrections to gg → H H at next-to-next-to-leading order.
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1. Introduction

The simultaneous production of two Higgs bosons is a promis-
ing process to obtain information about their self-coupling in the 
scalar sector of the Standard Model and beyond. Its study will be 
of primary importance after the high-luminosity upgrade of the 
Large Hadron Collider and thus it is important that there are pre-
cise predictions from the theory side.

The cross section for Higgs boson pair production is domi-
nated by the gluon-fusion process, which is loop-induced [1]. Thus, 
at next-to-leading (NLO) order the virtual corrections require the 
computation of two-loop four-point function with massive internal 
top quarks. There are numerical results which take into account 
the full dependence of all mass scales [2–4]. Furthermore, there 
are a number of analytic approximations which are valid in various 
limits, which cover different parts of the phase space. Particularly 
appealing approaches have been presented in Refs. [5–7] where 
the expansion around the forward-scattering kinematics has been 
combined with the high-energy expansion and it has been shown 
that the full phase space can be covered. Thus, these results are at-
tractive alternatives to computationally expensive purely numerical 
approaches.

Beyond NLO, current results are based on expansions for large 
top quark masses. Results in the infinite-mass limit are available 
at NNLO [8–10] and N3LO [11,12] and finite 1/mt corrections have 
been considered at NNLO in Refs. [13–15].
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In Ref. [16] the renormalization scheme dependence on the top 
quark mass has been identified as a major source of uncertainty 
of the NLO predictions. In general, such uncertainties are reduced 
after including higher-order corrections, i.e., virtual corrections at 
NNLO including the exact dependence on the top quark mass. This 
requires the computation of 2 → 2 scattering amplitudes at three-
loop order with massive internal quarks; this is a highly non-trivial 
problem. Current analytic and numerical methods are not sufficient 
to obtain results with full dependence on all kinematic variables, 
as is already the case at two loops. However, after an expansion 
in the Mandelstam variable t (see Refs. [6,7,17]) and the applica-
tion of the “expand and match” [18–20] method to compute the 
master integrals, one obtains semi-analytic results which cover a 
large part of the phase space. Such a result allows the study of the 
renormalizations scheme dependence at three-loop order. In this 
letter we outline a path to the three-loop calculation and present 
first results for the light-fermionic corrections.

Let us briefly introduce the kinematic variables describing the 
2 → 2 process, with massless momenta q1 and q2 in the initial 
state and massive momenta q3 and q4 in the final state. It is con-
venient to introduce the Mandelstam variables as

s = (q1 + q2)
2 , t = (q1 + q3)

2 , u = (q1 + q4)
2 , (1)

where all momenta are incoming. For gg → H H we have

q2
1 = q2

2 = 0 , q2
3 = m2

H , q2
4 = m2

H , (2)

and the transverse momentum of the final-state particles is given 
by
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Fig. 1. Sample Feynman diagrams. Curly lines denote gluons, dashed ones Higgs bosons, while thin (thick) lines are massless (top) quarks.
p2
T = u t − m4

H

s
. (3)

For Higgs boson pair production one can identify two linearly 
independent Lorentz structures

Aμν
1 = gμν − 1

q12
qν

1qμ
2 ,

Aμν
2 = gμν + 1

p2
T q12

(
q33qν

1qμ
2 − 2q23qν

1qμ
3 − 2q13qν

3qμ
2

+ 2q12qμ
3 qν

3

)
, (4)

where qij = qi · q j , which allows us to introduce two form factors 
in the amplitude

Mab = ε1,με2,νMμν,ab = ε1,με2,νδab X0s
(

F1 Aμν
1 + F2 Aμν

2

)
.

(5)

Here a and b are adjoint colour indices and X0 = G F /2
√

2 ×
T F αs(μ)/(2π) with T F = 1/2. G F is Fermi’s constant and αs(μ)

is the strong coupling constant evaluated at the renormalization 
scale μ. We write the perturbative expansion of the form factors 
as

F = F (0) +
(

αs(μ)

π

)
F (1) +

(
αs(μ)

π

)2

F (2) + · · · , (6)

and decompose F1 and F2 into “triangle” and “box” form factors

F (k)
1 = 3m2

H

s − m2
H

F (k)
tri + F (k)

box1 ,

F (k)
2 = F (k)

box2 . (7)

In this notation F (k)

box1 and F (k)

box2 contain both one-particle irre-
ducible and reducible contributions. The latter appear for the first 
time at two-loop order; exact results for the so-called “double-
triangle” contributions can be found in [21].

Analytic results for the leading-order form factors are available 
from [1,22] and the two-loop triangle form factor has been com-
puted in Refs. [23–25]. The main focus of this letter is on the light-
fermionic contribution to the three-loop quantities F (2)

box1 and F (2)

box2
for t = 0 and mH = 0. Expansions around the large top quark mass 
limit of F (2)

tri , F (2)

box1 and F (2)

box2 can be found in Ref. [14] and results 
for F (2)

tri valid for all s/m2
t have been computed in Refs. [26–29].

We decompose the three-loop form factors as

F (2) = nl T F F (2),nl = nl T F

(
C F F F L + C A F AL

)
+ . . . , (8)

where the ellipses stand for further colour factors which we do not 
consider here. Sample Feynman diagrams contributing to F F L and 
F AL are shown in Fig. 1.
2

In this letter we consider t = 0 and mH = 0, i.e. the leading 
term in an expansion around t → 0 and mH → 0. This constitutes a 
crude approximation, however, in a large part of the phase space it 
contributes a major part of the corrections. For example, choosing 
t = 0 and mH = 0 at two loops (NLO), at a transverse momen-
tum of pT = 100 GeV the form factor Fbox1 deviates from its exact 
value by at most 30%, depending on the value of 

√
s considered. 

This means that more than two thirds of the form factor value 
are covered by the t = 0, mH = 0 approximation. Furthermore, we 
concentrate on the one-particle irreducible contributions. We note 
that Fbox2 vanishes for t = 0. More details are given below in Sec-
tion 3.

We present here results for the light-fermionic (“nl”) terms and 
show that this approach can be used to obtain the three-loop vir-
tual corrections to gg → H H . The remaining contributions contain 
many more integral topologies and more complicated integrals, 
which have to be integration-by-parts (IBP) reduced to master in-
tegrals.

In the next section we outline the techniques used for the cal-
culations and discuss the results in Section 3. In Section 4 we 
conclude and provide an outlook for the computation of the full 
corrections.

2. Technical details

The basic philosophy of our calculation has already been out-
lined in Ref. [7], where the two-loop amplitude for gg → H H has 
been considered in the small-t and high-energy limit and it has 
been shown that the combination of both expansions covers the 
whole phase-space. The starting point for both expansions is the 
amplitude expressed in terms of the same master integrals which 
are obtained from a reduction problem which involves the dimen-
sional variables s, t and mt .1 Using currently available tools such 
a reduction is not possible at three loops. To avoid such an IBP 
reduction, one can try to expand the unreduced amplitude in the 
respective limit. The high-energy expansion is obtained via a com-
plicated asymptotic expansion which involves a large number of 
different regions. On the other hand, the limit t → 0 leads to a 
simple Taylor expansion which can be easily realized at the level 
of the integrands. Furthermore, the expansion around forward-
scattering kinematics covers a large part of the physically relevant 
phase space [6].

Our computation begins by generating the amplitude with
qgraf [30], and then using tapir [31] and exp [32,33] to map 
the diagrams onto integral topologies and convert the output to
FORM [34] notation. The diagrams are then computed with the in-
house “calc” setup, to produce an amplitude in terms of scalar 

1 A Taylor expansion in mH in a first step eliminates the Higgs boson mass from 
the reduction problem.
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Feynman integrals. These tools work together to provide a high 
degree of automation. We perform the calculation for general QCD 
gauge parameter which drops out once the amplitude is expressed 
in terms of master integrals. This is a welcome check for our cal-
culation.

The scalar integrals can be Taylor expanded in mH at this point, 
as done at two loops in Refs. [7,35,36], however at three loops in 
this letter we keep only the leading term in this expansion, i.e., set 
mH = 0.

The next step is to expand the amplitude around the forward 
kinematics (t → 0) at the integrand level. This is implemented in
FORM by introducing qδ = q1 + q3 in the propagators and expand-
ing in qδ to the required order. Note that q2

δ = t . After treating 
the tensor integrals, where qδ appears contracted with a loop mo-
mentum, we need to perform a partial-fraction decomposition to 
eliminate linearly dependent propagators. The partial fractioning 
rules are produced automatically by tapir when run with the 
forward kinematics (q3 = −q1) specified.2 Note that although for 
the present publication we compute the “t = 0 contribution”, we 
must properly expand in qδ to produce the amplitude to order t0

due to inverse powers of t appearing in the projectors. These in-
verse powers ultimately cancel in the final result. This procedure 
yields amplitudes for Fbox1 and Fbox2 in terms of scalar Feynman 
integrals which belong to topologies which depend only on s and 
mt (and not on t).

At this point the amplitudes are written in terms of 60 inte-
gral topologies, however these are not all independent; they can 
be reduced to a smaller set by making use of loop-momentum 
shifts and identification of common sub-sectors. In one approach 
we find these rules with the help of LiteRed [38], which iden-
tifies a minimal set of 28 topologies. In a second approach we 
use Feynson [39] to generate these maps and end up with 53 
topologies. The difference in the number of topologies is due to
LiteRed mapping topology sub-sectors, while we used Feyn-
son only at the top level. When considering the full amplitude, 
i.e., not just the light-fermionic corrections, only the Feynson ap-
proach is feasible for performance reasons. It is also possible to 
use Feynson to find sub-sector mappings, which we will also use 
when considering the full amplitude (which is written initially in 
terms of 522 integral topologies).

The amplitude is now ready for a reduction to master inte-
grals using Kira [40] and FireFly [41,42]. The most compli-
cated integral topology took about a week on a 16-core node, using 
around 500 GB of memory. After minimizing the final set of mas-
ter integrals across the topologies with Kira, we are left with 
177 master integrals to compute. Comparing results obtained via 
the LiteRed and Feynson topology-mapping approaches reveals 
one additional relation within this set which is missed by Kira, 
however, we compute the set of 177 master integrals which was 
first identified.

To compute the master integrals, we first establish a system 
of differential equations w.r.t. x = s/m2

t . Boundary conditions are 
provided in the large-mt (x → 0) limit: we prepare the three-loop 
integrals in the forward kinematics, and pass them to exp which 
automates the asymptotic expansion in the limit that m2

t � s. This 
leads to three-loop vacuum integrals, as well as products of one-
and two-loop vacuum integrals with two- and one-loop massless 
s-channel 2 → 1 integrals, respectively. This expansion leads to 
tensor vacuum integrals, which our “calc” setup can compute up 
to rank 10. We compute the first two expansion terms in s/m2

t for 
each of the 177 master integrals. To fix the boundary constants for 

2 In an alternative approach, we have also used LIMIT [37] to generate the par-
tial fractioning rules.
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the differential equations we only need about half of the computed 
coefficients; the rest serve as consistency checks.

The differential equations are then used to produce 100 ex-
pansion terms for the forward-kinematics master integrals in the 
large-mt limit which we use to compute Fbox1. Since these results 
are analytic in the large-mt limit we can compare with the results 
obtained in Ref. [14] in the limit t = 0, and find agreement.

The final step is to use the “expand and match” approach [18–
20] to obtain “semi-analytic” results which cover the whole s
range. Note that this approach properly takes into account the 
threshold effects at the point s = 4m2

t . “Semi analytic” means that 
our final results consist of expansions around a set of x values, 
where the expansion coefficients are available only numerically. 
Starting from the (analytic) expansion around x = 0, each expan-
sion provides numeric boundary conditions to fix the coefficients 
of the subsequent expansion. Each expansion is only ever evalu-
ated within its radius of convergence.

3. Three-loop light-fermionic contributions to Fbox1

In this section we present the light-fermionic three-loop cor-
rections to the form factor Fbox1 for Higgs boson pair production. 
We note again that in our t = 0, mH = 0 approximation, Fbox2 van-
ishes; we observe this after IBP reduction and writing the result in 
terms of the minimal set of master integrals.

We obtain the renormalized form factors after the renormal-
ization of the parameters αs and mt and the wave functions of 
the gluons in the initial state. We then express our results in 
terms of α(5)

s and treat the remaining infrared divergences follow-
ing Ref. [43].3 This leads to finite results for Fbox1. In the following 
we present numerical results. For the top quark and Higgs boson 
masses, we use the values mt = 173.21 GeV and mH = 125.1 GeV.

Let us first discuss the one- and two-loop results. In Fig. 2 we 
show the real part of Fbox1 for pT = 100 GeV. In red, we show the 
approximation that we use at three loops, i.e., t = 0 and mH = 0. 
In black, we show curves with the full dependence on t and mH . 
At one loop this is the fully exact result, but at two loops this is 
an expansion to order t5 and m4

H ; we have shown in Ref. [7] that 
this provides an extremely good approximation of the (unknown) 
fully exact result. We observe that the t = 0, mH = 0 curves ap-
proximate the “exact” results with an accuracy of about 30% in the 
region below about 

√
s = 500 GeV. For higher energies the approx-

imation works better.
In Fig. 2 we also show blue curves which include expansion 

terms up to t5, but still only the leading term in the mH expansion. 
These curves lie very close to the red t = 0, mH = 0 curves, which 
show that for pT ≈ 100 GeV it is more important to incorporate 
additional terms in the mH expansion than in the t expansion. For 
higher values of pT we expect that higher t expansion terms be-
come more important. This can be seen in Fig. 3 where results of 
the two-loop form factor are shown for various values of pT . The 
panels also show that a large portion of the cross section is cov-
ered by the t = 0 approximation, even for pT = 200 GeV where, 
for lower values of 

√
s, about 50% are captured by the red curve.

In Fig. 4 we show the new results obtained in this letter. The 
plots show both the real (in red) and imaginary (in green) parts 
of the light-fermionic part of Fbox1, both separated into the C F

and C A colour factor contributions, and their combination. We ob-
serve a strong variation of the form factor around the top quark 
pair threshold region. This behaviour is not caused by a loss of 
precision of our semi-analytic expansions around this threshold; 
indeed Fbox1 is finite in the limit s → 4m2

t , however whereas at 

3 For more details see Section 4 of Ref. [14] where analytic large-mt results for 
Fbox1 and Fbox2 have been computed at three-loop order.
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Fig. 2. The real part of Fbox1 at one and two loops, for pT = 100 GeV. The t = 0, mH = 0 approximation is shown in red, and the t5, mH = 0 approximation in blue. At one 
loop we compare with the exact result with full mH and t dependence, in black. At two loops, in lieu of an exact result, we compare with the t5, m4

H approximation, in black.

Fig. 3. Two-loop results for various values of pT . The meaning of the curves is described in the caption to Fig. 2. Note that the red curves are independent of pT and thus 
they are identical in all panels.
two loops we observe leading logarithmic contributions which go 
like v log v , where v =

√
1 − 4m2

t /s, at three loops we find an ad-
ditional power of log v which is responsible for the large variation 
around this point.

If we assume the same convergence pattern for the expansion 
in t and mH as at one- and two-loop order the results shown 
4

in Fig. 4 approximate the (unknown) exact result for the light-
fermion contribution at the level of 30%. This is supported by the 
large-mt results where NNLO corrections to the form factors have 
been computed in Ref. [14]. For parameters within the range of 
validity of the large-mt approximation we confirm that the t = 0, 
mH = 0 approximation lies within the 30% range compared to the 
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Fig. 4. Real (red) and imaginary (green) parts of F F L
box1, F AL

box1 and F (2),nl
box1 as a function of

√
s.
results in the large-mt approximation where the full dependence 
on t and mH is retained.

The numerical value of the light-fermionic contribution to Fbox1
at three-loops exceeds the size of the two-loop form factor by al-
most an order of magnitude. Although this is compensated by the 
additional factor of αs/π , this hints at sizeable three-loop correc-
tions. However, for a final conclusion, the remaining diagrams need 
to be computed. The full computation will also allow a study of 
the top quark mass scheme dependence. These issues will be ad-
dressed in a future publication.

4. Conclusions

The computation of three-loop corrections to 2 → 2 scattering 
processes with massive internal particles is a technically challeng-
ing task. Currently-available techniques are most likely not suffi-
cient to obtain analytic or numerical results without applying any 
approximation. In this letter we apply the ideas of Refs. [5–7,17] to 
gg → H H and show that three-loop corrections can be obtained. 
We concentrate on the light-fermionic three-loop contributions 
which is a well-defined and gauge-invariant subset. The obtained 
results are valid for t = 0 and mH = 0 which approximates the full 
result to 30% or better for pT ≈ 100 GeV.

The approach outlined in this letter can also be used to com-
pute the remaining colour factor contributions, which are needed 
to study the overall impact of the three-loop virtual corrections 
and also the top quark mass renormalization scheme depen-
dence.

In addition to the remaining colour factors, we ultimately aim 
to compute the t1 m2

H approximation which would address the 30% 
error discussed in Section 3, improve the approximation for higher 
values of pT , and provide a non-zero value for Fbox2. To com-
pute these terms will require significantly more CPU time and, 
most likely, improvements to IBP reduction software in order to 
efficiently reduce the large numbers of integrals produced by the 
expansions.
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