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Abstract. Analyzing attacks and potential attack paths can help to
identify and avoid potential security incidents. Manually estimating an
attack path to a targeted software element can be complex since a soft-
ware system consists of multiple vulnerable elements, such as components,
hardware resources, or network elements. In addition, the elements are
protected by access control. Software architecture describes the structural
elements of the system, which may form elements of the attack path.
However, estimating attack paths is complex since different attack paths
can lead to a targeted element. Additionally, not all attack paths might
be relevant since attack paths can have different properties based on the
attacker’s capabilities and knowledge. We developed an approach that
enables architects to identify relevant attack paths based on the software
architecture. We created a metamodel for filtering options and added sup-
port for describing attack paths in an architectural description language.
Based on this metamodel, we developed an analysis that automatically
estimates attack paths using the software architecture. This can help
architects to identify relevant attack paths to a targeted component and
increase the system’s overall security. We evaluated our approach on five
different scenarios. Our evaluation goals are to investigate our analysis’s
accuracy and scalability. The results suggest a high accuracy and good
runtime behavior for smaller architectures.
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1 Introduction

As a society, we digitize various aspects of our lives with new smart devices.
This covers different sectors, such as the health sector with a wide variety of
eHealth services, the energy sector with smart meters, or production processes
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with Industry 4.0. Internet of Things (IoT) devices are the foundation for most
of these sectors. These devices exchange data with a wide range of possible
services, such as cloud services, thereby building a large and complex network of
heterogeneous devices and services.

Often, these devices or services contain vulnerabilities. However, not only
IoT devices are affected but also the backend of these systems, such as cloud
services or typical company networks with outdated Windows versions [12].
These vulnerabilities can be chained in so-called advanced persistent threats
(APT) and build complex attack paths and potentially enable attackers to reach
critical components, such as payment components [26] or even turn off critical
infrastructure, such as the power grid [9].

Analyzing these systems for attack paths is complicated since different devices
often have different vulnerabilities. Moreover, these vulnerabilities may manifest
in diverse areas of the system, including hardware resources, network resources,
and various software components. Therefore, it is essential to model different areas
of the system to estimate the potential impact of any vulnerabilities effectively.
Software architecture can provide the means to model these different areas. An
attack path is then a list of compromised architectural elements. Moreover, a
software architecture model may facilitate system analysis, even in cases where a
running system is unavailable. Therefore, it enables secure system design and
management during development and periods of downtime, such as following an
attack or maintenance. Notably, this concept aligns with the principles outlined
in the new OWASP Top Ten element “Insecure Design”[18], highlighting that
security threats are often embedded within the system design and, therefore, the
software architecture. Furthermore, a modeled software architecture enables the
creation of what-if scenarios to analyze and find the best solution by modeling
and analyzing different scenarios. Existing attack propagation approaches, such
as Bloodhound1, mainly focus on one aspect, such as the Active Directory, or
only use a network topology, which often does not contain information regarding
software components or deployments. Finally, given the high number of vulnerable
elements in many systems, it is not uncommon that there are many possible
attack paths that attackers could exploit. In such cases, effective vulnerability
management is necessary. One solution is to prioritize and select the most relevant
attack paths for mitigation. Therefore, meaningful filter operations are necessary
to identify relevant paths. Besides vulnerabilities, attackers may exploit access
control policies to gain access to various architectural elements. Once an attacker
has gained access to an element, they may use this element to launch further
attacks on other elements. Therefore, it is crucial to consider vulnerabilities
and access control to develop a comprehensive security analysis for identifying
combined attack paths. These attack paths help then to identify potential security
incidents, which are multiple unwanted security events that threaten the system
[11].

In Walter et al. [33], we developed a metamodel and analysis to tackle some
of these problems. However, we focused on the propagation of one attacker

1 https://bloodhoundenterprise.io/
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from one initial breach point in the software architecture. In contrast, this work
focuses on creating multiple attack paths leading to one targeted element in the
software architecture. This enables architects to identify potential security risks
to critical components. For instance, a software architect could be interested in
whether an attack path from an externally accessible component, such as a web
service, to a confidential database exists. In addition, this approach estimates
the used attacks based on the modeled vulnerabilities and the filtering options.
It does not require the concrete modeling of the attacker’s capabilities and
knowledge as the previous approach [33]. Our contributions to this paper are:
C1) We extended an architectural vulnerability metamodel by adding support
for modeling multiple attack paths leading to a target element and support for
filtering options. This enables architects to select attack paths based on the
relevant properties, such as the complexity of the used attacks. C2) Based on the
new extended metamodel, we developed an attack path generation. It generates
multiple attack paths to a targeted element and can consider filter options. These
filters can help software architects to identify relevant attack paths based on the
paths’ properties. Additionally, the filters fasten the calculation since they reduce
the problem size. In contrast to existing approaches (see Section 5), we consider
fine-grained access control policies and vulnerabilities based on the software
architecture for attack paths leading to one targeted element. The derived attack
paths can help software architects to harden the system.

We evaluated our approach on five scenarios based on real-world breaches
and research cases. The investigated properties are accuracy and scalability.
The results indicate a high accuracy and acceptable overall runtime for smaller
systems. The paper is structured as follows. We describe our metamodel and
the attack path generation in Section 2 and Section 3. The evaluation follows
in Section 4. Afterward, we discuss related work in Section 5. Finally, Section 6
concludes the paper.

2 Modeling Attack Paths & Path Selection

In Walter et al. [33], we provide a metamodel extension for the Palladio Com-
ponent Model (PCM) [21] to model access control properties and vulnerabili-
ties. PCM is an architecture description language (ADL) which supports the
component-based modeling and analysis for different quality properties, such
as confidentiality or performance [21, 25]. We also used the approach to esti-
mate the criticality of the accessed data [34] and analyze different usage and
misusage scenarios [32]. The main idea of their approach is to reuse the existing
vulnerability classifications Common Weakness Enumeration (CWE) [7], Com-
mon Vulnerabilities and Exposure (CVE) [5] and Common Vulnerability Scoring
System (CVSS) [6] to describe the vulnerabilities during an attack propagation.
These are commonly used to classify vulnerabilities and their attributes can be
found in public databases, such as the US National Vulnerability Database (NVD).
We also developed an approach to derive the architecture and vulnerabilities
automatically [15].
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We will explain our approach based on the running example from Walter
et al. [33]. Figure 1 illustrates the components, devices, and network entities.
The example is settled in an Industry 4.0 setting. It contains a technician
who can maintain a machine by accessing a terminal. The machine stores its
data on an external storage. This scenario is modeled by three components
(Terminal, Machine, ProductionDataStorage). Each of these components is
deployed on its own hardware device. A local network connects each hardware
device. Additionally, the storage device contains one additional component, which
contains confidential data about the production process. For simplicity reasons,
we reduced the number of access control policies to two. The StorageServer and
TerminalServer are only accessible by a user with the role Admin. Additionally,
in our case, we have one vulnerability for the TerminalServer. In this scenario,
the goal or the target of the attacker is to find potential attack paths, leading to
the ProductStorage since this component contains confidential data.

<<Device>>
TerminalServer

<<Device>>
StorageServer

<<Device>>
MachineController

<<Network>>
LocalNetwork

ProductStorage

ProductionDataStorage Machine

Terminal
<<Vulnerability>>
CVE-2021-28374

<<AccessPolicy>>
Admin

Fig. 1. Running Example with a vulnerable TerminalServer and Access Control policies
based on Walter et al. [33]

Figure 2 illustrates the extended vulnerability metamodel. The gray elements
are the original metamodel elements [33], the black ones are PCM elements, and
the white elements are the new elements. For simplicity reasons, we left out
non-relevant elements for this approach. The complete metamodel can be found
in our dataset [35]. The main element to integrate vulnerabilities in PCM is
the Vulnerability class. It annotates LinkingResources for network resources,
ResourceContainers for hardware devices and AssemblyContexts for instanti-
ated components with vulnerability information. This element is implemented by
two concrete elements the CWEVulnerability and the CVEVulnerability. The
CWEVulnerability describes more general vulnerabilities based on a CWE class,
and the CVEVulnerability describes a concrete vulnerability. The relationship
between CVE and CWE is not represented in the model excerpt but is included
in the metamodel. The Vulnerability has attributes, such as the attack vector
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(the location from which a vulnerability is exploitable) or the gained attributes
through the exploitation.

While our previous metamodel can already model vulnerabilities and access
control properties, the output is restricted to one attack propagation graph for a
list of concrete attacks. It cannot represent different attack paths leading to a
target or attacks limited by their properties. Hence, we need to add support for
different attack paths. Additionally, for identifying the relevant attack paths, we
need to add support for finding the relevant attack paths.

Vulnerability

CWEVulnerability

CVEVulnerability
AssemblyContext

ResourceContainer
vulnerable

co
m
pr
om

is
ed

CompromisedDataSurfaceAttacker

FilterCriterion

AttackPathElement

VulnerabilityFilter

MaximumPath

ExploitFilter

CredentialFilter

reasonImpactFilter

StartFilter

AttackPath

LinkingResources

Fig. 2. Excerpt of the extended metamodel with filters (white elements are new elements,
gray ones are taken from Walter et al. [33], and black ones are taken from PCM)

The starting point for an attack path is the attack’s initial start point, and
the targeted element is the element an attack wants to infiltrate. In our running
example (Figure 1), the targeted element is the ProductStorage. It is, therefore,
the element to which all the attack paths should lead. The start point of the
list is connected by its elements to the targeted element. The connection is
realized by vulnerabilities or exploited credentials. The attack path is represented
with the AttackPath element. The actual path elements are modeled as a list
of AttackPathElements. Each AttackPathElement describes a compromised
architectural element and stores the reason for the compromisation.

With the extension to the metamodel so far, our analysis can calculate attack
paths leading to one targeted element based on the modeled software architecture.
However, even in our small example, this could lead to many irrelevant attack
paths. For instance, for our running example, we get an attack path to the
targeted element for every architectural element, resulting in seven paths. In
larger systems, this might be even more. Many attack paths may be irrelevant
because they demand initial knowledge about specific credentials. For instance,
in our running example, there is an attack path from the MachineController to
the ProductStorage over the StorageServer. However, this path would require
the knowledge of the Admin credentials. Usually, a system architect might assume
that the admin’s credentials might be secure. Therefore, the attack path can
sometimes be considered irrelevant.

The selection of relevant paths is realized by filtering. We currently support
five filter options. The common abstract element to model attack path filters is
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the FilterCriterion. The filters are then realized as child elements, allowing
an easy metamodel extension for new filters. The first filter is the MaximumPath
filter, and it restricts the path length of the found attack paths. This property
can also be found in related approaches, such as [20]. This is beneficial if software
architects are only interested in short attack paths because they may be simpler
than longer paths. As described, in some cases, it is beneficial to restrict the initial
usage of credentials. This is represented by the CredentialFilter. Suppose the
software architect is only interested in an attack path from certain elements,
such as in our running the externally accessible Terminal, to the target element.
They can use the StartElement filter in that case.

The last two filters (ImpactFilter, ExploitFilter) use properties of the vul-
nerability for filtering. Hence, they are grouped together with the common parent
VulnerabilityFilter element. Because the initial metamodel does not include
all CVSS properties, we added the following: 1. AttackComplexity describes how
complex it is to exploit the vulnerability. 2. UserInteraction describes that the
attacker needs additional support from the user to exploit the vulnerability.
3. IntegrityImpact is the impact regarding integrity. 4. AvailablityImpact is the
impact regarding availability. A more detailed description of the properties can
be found in [6]. The ExploitFilter filters attacks based on the attackVector,
attackComplexity, UserInteraction. This enables an architect to find only attack
paths to a targeted element, which contains easily exploited vulnerabilities. This
can be helpful in considering different attacker types. The ImpactFilter filters
out vulnerabilities of a certain impact, such as only attack paths that affect the
confidentiality of a system.

The different filters are then selected in the SurfaceAttacker. It stores a
list of the filter criteria. Additionally, it contains the information necessary to
calculate an attack path by storing the targeted element.

3 Attack Path Identification

Based on a modeled software architecture, our approach can identify attack
paths leading to a targeted element. We identify the potential attack paths
based on an attack graph. In contrast to our previous work[33], the attack
graph contains all the vulnerabilities as long as they do not share the filtered
properties. The graph is especially not limited by a set of specified attacks.
Figure 3 illustrates an attack graph based on our running example. The graph
consists of vertices, which are the vulnerable architectural elements. In our
case, these are elements from the type LinkingResource, ResourceContainer,
and AssemblyContext. The edges are possibilities to compromise a vertex from
another vertex. For this, the original architectural elements represented by the
vertex need to be connected. For instance, this could be the network connection
like in our running example with the MachineController to the Terminal-

Server. Additionally, the edges have three types. The first type models the
necessary credentials to access a vertex. For instance, in our running example,
the TerminalServer is connected with the MachineController and the Admin



Identifying Potential Security Incidents 7

ProductionDataStorage

StorageServer

Admin

TerminalServer

Vulnerability Admin

Implicit

ProductStorage

Implicit

Vulnerability Admin

Admin

Vulnerability Admin

Terminal

Admin

VulnerabilityAdmin

Admin

Implicit

Machine

Admin

Vulnerability

Admin

LocalNetwork

Admin

Vulnerability Admin

MachineController

Admin

Vulnerability

Admin
Implicit

Fig. 3. Attack Graph of the running example with attack path p1 in red and attack
path p2 in blue

property gives access to the TerminalServer. Therefore, there is a directed edge
from the MachineController to the TerminalServer with the label Admin. The
second edge type models vulnerabilities, which can be exploited on the target
vertex. For instance, the Terminal is deployed on the TerminalServer and the
TerminalServer is vulnerable to CVE-2021-28374. Therefore, a vulnerability
edge exists between Terminal and TerminalServer. In our illustration, we
renamed CVE-2021-28374 with vulnerability. However, in the analysis, the edge
still has the information about its vulnerability. The last edge type is implicit
edges. These are edges between a ResourceContainer and the components
deployed on it. Here, we assume that a compromised hardware automatically
compromises the underlying software. For instance, in our running example, the
ProductStorage is deployed on the StorageServer. Hence, there is a directed
implicit edge from StorageServer to the ProductStorage.

Algorithm 1 illustrates the graph creation process in more detail. For the graph
creation, we need the software architecture (arch) and the selected filters (fil).
We first create an empty graph (l. 2) and then iterate over all relevant architectural
elements (ResourceContainer, AssemblyContext, LinkingResource). For each
element, we identify the connected neighbors (l. 4). Afterwards, we iterate over
the neighbors and identify how they are connected. If the neighbor element
is deployed on the current element, we add an implicit edge (l. 6/7). If the
neighbor has access control policies, we add an edge containing this policy. The
last step is to identify whether the neighbor has a vulnerability (l. 12). If it has
at least one vulnerability, we iterate over all the vulnerabilities of the neighbor.
We check whether each vulnerability’s attack vector is within the connection
vector to the current architectural element (l. 14). Besides the attack vector,
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Algorithm 1 Simplified Attack Graph Creation

1: procedure attackGraphCreation(arch,fil)
2: g := emptyGraph()
3: for all res := arch.getElements do
4: neighbours := getConnectedElements(res)
5: for all n := neighbours do
6: if isDeployment(res, n) then
7: g.createImplicitEdge(res, n)
8: end if
9: if n.hasACPolicy() then
10: g.createACEdge(res, n)
11: end if
12: if n.hasV ulnerability() then
13: for all vul = n.getV ulnerability() do
14: if isInAV ector(vul.AV ector()) &&
15: fil.notF iltered(vul) then
16: g.createV Edge(res, n, vul)
17: end if
18: end for
19: end if
20: end for
21: end for
22: end procedure

we also check whether the vulnerability can be filtered based on the use of
VulnerabilityFilters. For instance, a ExploitFilter with a selected high
complexity would create an attack graph that contains only vulnerabilities with
low attack complexity. This is helpful in scenarios where software architects want
only to consider low-complexity attacks.

Based on this attack graph, the attack paths are calculated by calculating
the path from a node to the targeted node. An attack path is a sequence of
nodes that are connected by edges. It has a starting node and a target node from
the targeted architectural element. For instance, based on the attack graph in
Figure 3, an attack path (p1) with the targeted element ProductStorage could

be: Terminal
Admin−−−−→ StorageServer

Implicit−−−−−→ ProductStorage The attack path
is also highlighted in red in Figure 3. Besides the start point, the path on the
graph and the endpoint, an AttackPath also contains a set of initially required
credentials. These can be calculated by first getting all required credentials. The
required credentials are all credentials that are on the edge of an attack path. In
our running example, this is the Admin. Afterward, all credentials gained during
the attack path are removed. The rest are then the initially required credentials.
Since we do not gain any credentials in our example path, the Admin attribute is
in the initial required set.

The actual attack path is calculated by first determining the start nodes. The
start nodes are all nodes except the target node. If a StartFilter exists, only
these elements are start nodes. Afterward, the analysis calculates paths to the
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target node. The path finding invalidates solutions, which require the filtered
credentials as initial credentials. However, it supports the gaining of credentials
during the path. Therefore, the path can contain the filtered credential. After a
path is found, we check for the length of the path. We discard it if it exceeds the
length specified in the MaximumPath filter. Otherwise, we add the path to the list
of attack paths. For our running example with the ProductStorage as a target,
we get seven attack paths, including our previous example, p1. However, not
all are reasonable. For instance, the attack path from the StorageServer only
exploits the deployment relationship. A software architect can specify a start filter
to get a better solution. We choose a StartFilter containing only the Terminal
since external technicians can access it. Then the output is only the attack
path p1. However, this attack path requires that the attacker knows the Admin
credentials since it is an initially required credential. While an attacker could
have it at the beginning, in general, we assume that an attacker does not have the
knowledge. Therefore, we create a CredentialFilter with the Admin. If we run

our analysis now, we get the following attack path (p2): Terminal
V ulnerability−−−−−−−−−→

TerminalServer
Admin−−−−→ StorageElement

Implicit−−−−−→ ProductStorage. The path
is highlighted in blue. This attack path still uses the Admin credential but gains
it by exploiting the vulnerability and, therefore, does not require it from the
start. A software architect can then use the resulting attack path and consider
mitigating the attack path or accepting the risk.

4 Evaluation

We structure our evaluation using the Goal Question Metric [3] approach. Af-
terward, we will explain our evaluation scenarios, design and discuss our results,
threats to validity, and limitations.

Goals, Questions, Metrics The first evaluation goal G1 is to investigate accuracy.
Accuracy is an important property that is also investigated in other related
approaches, such as [25, 10]. The evaluation question Q1 is: How accurately does
the analysis identify the attack paths? This question is important since a low
accuracy suggests that our analysis does not work adequately and that the attack
paths might be meaningless for software architects. Our metrics are precision
(p), recall (r) [31] and the harmonic middle F1 of both: p =

tp
tp+fp

r =
tp

tp+fn

F1 = 2 p∗r
p+r . The tp are true positives, meaning correctly detected attack paths.

fp are false positives that are attack paths, which are actually no attack paths
and fn false negatives are not found attack paths. Higher values are better.

Our second goal G2 is to evaluate the scalability of the approach. The number
of architectural elements is increasing due to trends like IoT. Furthermore, new
vulnerabilities are discovered continuously during the system’s lifespan. Hence,
continuously searching for the system’s existing attack paths is necessary. One
possible solution is to conduct checks similar to integration tests as recommended
by [24]. Typically, these tests run daily. Therefore, it is required that the analysis
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is completed within a few hours. Our questions are: Q2.1 How does the runtime of
the graph creation behave with an increasing number of elements? Q2.2 How does
the runtime of the path finding behave with an increasing number of elements? We
split the evaluation into two questions to investigate the goal in more detail. Q2.1
investigates the part where the analysis transforms the software architecture in an
attack graph, and Q2.2 then covers identifying an attack path on a given attack
graph. The G2’s metric is the relation between runtime and input elements.

Evaluation Scenarios We answer our evaluation question based on five scenarios.
Two scenarios (Target, Power Grid) are based on real-world system breaches.
One scenario is based on the research case TravelPlanner [14] and one scenario is
based on the cloud case study from [2]. The last scenario is based on our running
example. The Target, Power Grid and TravelPlanner scenarios are also used in
Walter et al. [33]. Hence, the architectural models are the same. Using these
scenarios for our evaluation increases the insight and illustrates the applicability
and comparability of our approach. Table 1 illustrates some characteristics of
the evaluation scenarios. It contains the name of the scenario, the number of
instantiated components (abbrev. comp), the number of hardware resources
(abbrev. hard.), the number of linking resources (network) and the number of
potential attack paths. In addition, it contains the evaluation results for G1.

Table 1. Characteristic of the evaluation scenarios and results for accuracy goal

Scenario comp. hard. network paths p r F1

Target 7 6 2 14 1.00 1.00 1.0

Power Grid 9 8 2 16 1.00 0.88 0.93

Cloud Storage 11 16 4 14 1.00 1.00 1.00

TravelPlaner 4 3 3 1 1.00 1.00 1.00

Maintenance 4 3 1 7 1.00 0.86 0.92

Our first scenario is a scenario based on the Target breach, which involved
attackers stealing access credentials from a supplier to access Targets’s billing
business backend. Afterward, they exploited different vulnerabilities in other
components to gain access to unencrypted credit card data. The model is based
on [26, 19]. It contains POS devices, FTP storage servers, and databases anno-
tated with vulnerabilities, as they were components compromised in the Target
breach [26]. These elements are segregated by the supplier in a separate network.
The targeted element is one POS device. The second scenario is based on the
cyberattack on the Ukrainian Powergrid in 2015, which resulted in a widespread
power outage. The model relies on the report of [9] and covers the attack propa-
gation from the back-office network to the ICS network. The target is the circuit
breakers in the ICS network. The third scenario is a research case study for threat
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modeling in a cloud environment [2]. In contrast to the previous scenarios, it
is not a real-world system breach. However, the software architecture is based
on concepts and ideas from real-world products. It resembles a cloud storage
environment. We manually created a PCM model based on the description for
the first proposed cloud infrastructure. Here, the targeted element is a database.
The fourth scenario is the confidentiality research case study TravelPlanner [14].
It is used to evaluate different security analyses, such as [25, 33]. The previous
scenarios are based on real-world breaches or inspired by real-world cloud centers.
Therefore, the attacker behavior was given by the case. This case study lets
us define the attacker’s behavior in more detail. The case is a simple mobile
application to book flights. It has four entities: customer, credit card center, travel
agency, and airline. The fifth scenario is our running example, the maintenance
scenario.

Evaluation Design For the accuracy analysis, we used the five scenarios. We
manually determined the number of attack paths for each scenario based on their
descriptions. We tried to find an attack path from each architectural element
(excluding the targeted element) to the targeted element. For the attack paths, we
used the vulnerabilities and potentially found credentials. However, we excluded
as initial credentials all credentials so that an attack path needs to either find
the necessary credentials or need to exploit a vulnerability. This is beneficial
to get more complicated attack paths than otherwise the attack path could be
just using the root or admin credentials. For each scenario, we then manually
checked whether each attack path was a valid attack path. An attack path is
valid if it is a list of connected vulnerable elements from the start point to the
target and each vulnerability can be exploited by the attacker. If it is a valid
path, we count it as tp. If it is not a valid path, we count it as fp. If we found
for one architectural element an attack path and the analysis did not show an
attack path, we counted this as fn. Based on these values, we then calculate p, r
and F1 for each scenario.

For analyzing the scalability, we first identified the influencing factors. We
separate this along Q2.1 and Q2.2. For Q2.1, based on our algorithm 1, the
most influencing factors are l. 3, 5, and 13 because of their loops. The other
lines, 2, 4, 6-12,14-17, are not relevant. For l. 3,5, the relevant attributes are the
architectural elements (l. 3 and l. 5). For l. 13, it is the vulnerabilities for an
architectural element. For the former, we choose to scale along the number of
connected resource containers. This creates a linked chain of vulnerable resource
containers and creates a worst-case scenario for the graph creation. The behavior
for architectural elements is similar in the algorithm, so the analysis time should
be similar. We did not investigate the scaling along the number of vulnerabilities
for one architectural element because, usually, the number for one element is not
very high. We measured the runtime starting from the graph creation with the
already loaded PCM models till the attack graph is returned. We scaled by the
power of 10 from 101 elements to 105 elements. Regarding Q2.2, the relevant
factors are the number of edges between distinct nodes and the path length. We
achieve the first by choosing the scaling along the ResourceContainer. For the
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second, we use a start filter and set it to the first element in the chained elements,
and the target element is the last. This will force a worst-case scenario for a
single path. We assume that software architects are more interested in only a
filtered list for bigger architectures. For instance, similar to our running example
with the Terminal, they are only interested in paths from externally accessible
components to certain internal components. Here, we measured the time after
the attack graph from Q2.1 is created till one attack path is returned. For both,
we repeated each measurement five times and calculated the average to avoid
outliers. We performed one warm-up analysis and run the analysis on a Debian
11 VM with 21 AMD Opteron Processor 8435 with 62.5 GB RAM.

Results & Discussion Accuracy The last three columns in Table 1 show the
evaluation results for G1. For each scenario, we get the perfect precision of 1.00.
This means that every attack path of the analysis was an actual attack path
regarding our manual comparison. We archived these perfect results since the
cases are small, and we focused on a restricted model with no dependencies to
unknown behavior, which simplifies the results. Regarding the recall, we archive
in the Cloud Storage, Target, and TravelPlanner scenarios the perfect results
of 1.00 and also an F1 score of 1.00. This means that our analysis can find all
the attack paths from our manual comparison in these scenarios, and they are
valid attack paths. However, in the Power Grid, our analysis missed two attack
paths and in the Maintenance scenario, one attack path. Therefore, we only have
a recall of 0.88 and 0.86 in these scenarios. The F1 score is 0.93 and 0.92. The
missed attack paths can be traced back to our usage of simple paths during the
attack path creation. For simplicity and performance reasons, the attack paths
are loopless and do not contain duplicates. However, in the missed cases, it would
be necessary to have loops to get the required credentials. For instance, in the
maintenance scenario, the attack path from the TerminalServer would require
one self-loop to get the necessary credentials.

Results & Discussion Scalability Figure 4 illustrates the scalability results. The
horizontal axis shows the number of resource containers and the vertical axis
shows the runtime in ms. The blue line with circles is the graph creation and
the red line with the boxes is the path finding. Both axes use a logarithmic scale.
The runtime of both functions is very close together. For 10 elements, the graph
creation needs around 26ms and the path finding around 42ms. It then slowly
increases till around 103 elements with 597ms (graph creation) and 693ms (path
finding). From there, the runtime grows longer until it takes around 5.7× 106ms
(graph creation) and 5.6×106ms (path finding) for 105 elements. This summarizes
to a runtime of around 3 hours. The scalability behavior is not ideal. However, the
runtime should still be sufficient for the usage in daily analysis runs. In addition,
the model sizes with 105 elements are quite high. Usually, the model sizes are
smaller. Even in bigger architectures like in IoT environments, the architecture
can be reduced by grouping similar elements, for instance, when there are groups
of sensors connected to the same backend.
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Threats to Validity We structure our threats to validity on the guidelines for case
study validity from Runeson and Höst [22].

Internal Validity is that only the expected factors influence the results. Our
evaluation depends on the modeled system as input and the results reflecting
modeled properties. Especially since we also manually created the reference
output. We tried to lower the risk by using real-world breaches and literature
to create the reference output. For the scalability, other factors, such as the
general system usage, could affect the runtime. To avoid this, we repeated the
experiment 5 times and ran it on a separate VM. We used multiple real-world
breach and research scenarios in our evaluation to ensure the External Validity
of our results. While we modeled systems are small, we covered all relevant
model elements for our extension and analysis features. While scalability may
vary with different architectural elements, our internal handling of elements
should produce similar results. Construct Validity is about the validity of the
investigated properties for the intended goal. In our case, the properties are
the metrics, and the goal is the evaluation goals. To lower the threat, we used
the GQM approach, which illustrates the connection between goals and metrics.
For accuracy, we use precision, recall and F1. These metrics are often used to
describe the accuracy in different related architectural approaches such as [25,
33]. Therefore, we assume the metrics to be appropriate and the risk to be low.
The scalability metric is a simple runtime metric and similar metrics are used
in related approaches, such as [20]. Reliability discusses how reproducible the
results are by other researchers. We use metrics to answer our evaluation question,
avoiding subjective interpretation and increasing reproducibility. Besides the
metrics, we also provide a dataset [35] for others to verify the results.
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Limitations Our approach requires an architecture model and the manual creation
of the vulnerability model. Our approach can identify attack paths only based
on known vulnerabilities. In addition, it can only be used to identify mitigation
locations, but does not support advanced mitigations, such as trusted execution
environments. While we already consider the involvement of third parties in our
filter, the actual attack calculation does not consider it besides in the filtering.

5 Related Work

We divided the related work in the section of Policy Analysis, Model-based
Confidentiality Analysis and Attacker Modeling.

Policy Analysis Our approach analyzes access control policies to estimate the
necessary credentials for an attacker. Other approaches can consider various
other policy quality aspects. One policy analysis approach is Margrave [8], which
can calculate change impact on policies. Another policy analysis is Turkmen
et al. [30], which uses SMT internally to analyze policies for different properties,
such as change impact and attribute hiding. In summary, all the approaches
mentioned focus on policy analysis, not attack propagation.

Model-driven Security Analyses Our approach uses model-driven concepts for
generating the attack paths. UMLSec [13] extends UML with security properties.
It adds different analysis types, such as secure communication link, fair exchange,
and confidentiality. Additionally, they include an attacker model for checking
the security requirements. In contrast, our approach focuses on the attack path
generation. Another UML extension for security is SecureUML [17]. They focussed
on access control. So far, they do not support attack propagation or attack path
generation. There exist various approaches which analyze information flow or
access control based on some model, such as SecDFD [29], and Data-centric
Palladio [25]. In contrast, both use dataflow definitions, but do not consider
attack paths calculation. Attacker-related approaches are the Sparta approach [27],
Berger et al. [4] or Cyber Security Modeling Language (CySeMoL) [28]. The first
two are dataflow analyses in threat detection. In contrast to our approach, these
focus on single threat detection and not combining different vulnerabilities/threats
to attack paths. CySeMoL [28] calculates potential attack paths but does not
use a fine-grained access control system.

Attacker Modeling Schneier [23] introduced the idea of attack trees, which are used
in many approaches to model attacker behavior [16]. Polatidis et al. [20] present
an approach for attack path generation. Other approaches are, for instance, Aksu
et al. [1] and Yuan et al. [36]. In contrast to our approach, all the mentioned
approaches use a network layer perspective instead of a component-based software
architecture and do not consider fine-grained access control policies.
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6 Conclusion

We proposed an approach for generating potential attack paths to a targeted
architectural element. Our presented metamodel extension enables architects
to model filtering options for attack paths and specify targeted elements. In
contrast to Walter et al. [33], our attack analysis provides multiple attack paths
to the targeted elements and can remove non-relevant paths by using the filter
options. The evaluation indicates that our approach can find in several scenarios
attack paths with high accuracy and for smaller systems within a reasonable
time. Our approach can help to identify potential weak spots in the software
architecture. Software architects can use this information to add mitigation
mechanisms to harden the system and prevent attacker propagation. In the
future, we want to investigate the problem with the missing attack paths in the
evaluation. Additionally, we want to consider mitigation approaches and combine
the approach with dataflow analyses similar to [34].
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