AT

Karlsruhe Institute of Technology

Software Design and Quality

The Kconfig Variability Framework as a
Feature Model

Bachelor thesis of

Kaan Berk Yaman

at the Department of Informatics
KASTEL - Institute of Information Security and Dependability

Reviewer: Prof. Dr. Ralf Reussner
Second reviewer: Prof. Dr.-Ing. Anne Koziolek
Advisor: M.Sc. Jan Wittler

Second advisor: Dr. Christopher Gerking

13.12.2022 - 13.04.2023

I declare that I have developed and written the enclosed thesis completely by myself. I
have submitted neither parts of nor the complete thesis as an examination elsewhere. I
have not used any other than the aids that I have mentioned. I have marked all parts of
the thesis that [have included from referenced literature, either in their original wording
or paraphrasing their contents. This also applies to figures, sketches, images and similar
depictions, as well as sources from the internet.

Karlsruhe, 31.03.2023

(Kaan Berk Yaman)

Abstract

Variability in software is often managed using external tools. One such tool is Kconfig,
which is utilised by the Linux kernel, a highly variable software project. Kconfig works with
plain-text files that define the variability structure of the underlying software project. These
plain-text files are called Kconfig files. Analysis of Kconfig files can provide meaningful
insights for developers. Feature-oriented programming (FOP) is also used to manage
variability in software. The variability structure of a software project is defined using
feature models in FOP. There are tools for analysing feature models. However, it is not
possible to use these tools for the analysis of Kconfig files, as currently no transformation
between Kconfig files and feature models exist. In this thesis, we present a method to
correctly transform Kconfig files into feature models, so that Kconfig files can be analysed
with tools meant for feature models. We verify the correctness of our transformation
by automatic and manual means. Our method transforms selected Kconfig files with
non-trivial structure successfully into semantically equivalent feature models.

Zusammenfassung

Zur einfachen Handhabung von Softwarevariabilitat werden oft externe Werkzeuge ein-
gesetzt. Ein solches Werkzeug ist Kconfig, welches vom Linux-Kernel zur Erstellung
von konkreten Softwarekonfigurationen benutzt wird. Kconfig arbeitet mit Textdatei-
en, in denen die Variabilitatsstruktur des zugehorigen Softwareprojekts definiert wird.
Diese Dateien werden oft als Kconfig-Dateien bezeichnet. Kconfig-Dateien konnen analy-
siert werden, um Probleme in der Variabilitatsstruktur festzustellen. Feature-orientierte
Programmierung (FOP) wird auch zur besseren Handhabung von Softwarevariabilitét
eingesetzt. Die Variabilitatsstruktur eines Softwareprojekts wird im Umfang von FOP in
einem sogenannten Feature-Modell dargestellt. Es gibt Werkzeuge, welche zur Analyse von
Feature-Modellen verwendet werden kénnen. Diese kann man jedoch nicht zur Analyse
von Kconfig-Dateien nutzen, da bisher eine Transformation zwischen Kconfig-Dateien und
Feature-Modellen fehlt. In dieser Arbeit stellen wir eine Methodik zur korrekten Trans-
formation von Kconfig-Dateien in Feature-Modelle vor, sodass Werkzeuge zur Feature-
Modell-Analyse auch auf Kconfig-Dateien angewandt werden konnen. Wir evaluieren die
Korrektheit unserer Transformation mit automatischen und manuellen Vorgehen. Unsere
Methodik kann ausgewéhlte Kconfig-Dateien mit nichttrivialer Struktur erfolgreich in
semantisch dquivalente Feature-Modelle tiberfiithren.

1ii

Contents

Abstract
Zusammenfassung
1. Introduction

2. Foundations
2.1. Kconfig

2.2. Feature-oriented programming

3. Related Work

3.1. Tools that transform Kconfig files
3.2. Feature-oriented programming and Kconfig

4. Concept

4.1. Scope of the transformations L.

4.2. Transformation rules .
4.2.1. Boolean symbols
4.2.2. Tristate symbols

4.2.3. Mixed-type dependencies
4.2.4. Reversedependencies

4.2.5. Choice blocks .
426. Menus

5. Implementation
5.1. Implementation details

5.2. Challenges during implementation.

6. Evaluation
6.1. Methods of evaluation .

6.2. Human readability of the created feature models
6.3. Converting feature model configurations to Kconfig configurations

6.4. Results
6.5. Interpretation
6.6. Threats to validity . . .
6.6.1. External validity
6.6.2. Internal validity

11
11
13
13
16
18
21
21
25

31
31
31

33
33
34
34
35
38
38
38
38

Contents

7. Conclusion

7.1. Benefits . . .

7.2. Future Work
Bibliography

A. Appendix

vi

41
41
41

45

51

1. Introduction

Variability in software is becoming increasingly more important as computers become
more ubiquitous. Different target platforms have different constraints for software develop-
ers to work around and moreover to consider whilst implementing new functionality [13].
External tools are often utilised to manage software variability [7].

The Kconfig framework has been initially developed for the Linux kernel but it has since
then become a generic tool for managing software variability [16], being used in projects
such as ZephyrOS [41] and NuttX [1]. Kconfig manages variability over preprocessor
variables, also called configuration symbols, which are used to exclude or include source
code whilst building software [35, 26]. A Kconfig file contains definitions of configuration
symbols that occur in the underlying source code and how these configuration symbols are
related to each other, such as dependencies between configuration symbols. The Kconfig
framework additionally offers many different graphical and non-graphical interfaces [22]
for the end user to utilise for the creation of concrete software configurations. The main
feat of Kconfig is the fact that software configurations created using any of the front-
ends offered by Kconfig are valid, as the framework considers the dependencies between
configuration symbols and ensures that all selected configuration symbols have their
dependencies properly resolved [21].

Because Kconfig files can get very complex, many tools have been developed to analyse
Kconfig files and detect configuration defects. Examples to this are undertaker and the
Linux Variability Analysis Tools [31].

Another tool, or so to say methodology, to manage software variability is the use
of feature-oriented programming (FOP). In FOP, concrete software products are seen
as a group of software features. The dependencies and relations between the features
that are provided by a certain software project are described in a feature model [2]. A
feature model implies a software product line (SPL), a set of software products that share a
common set of managed features, these features being those that are defined in the feature
model. If a concrete software product in a software product line is composed according
to the underlying feature model, it will be valid, assuming the correctness of the feature
model [19].

There are already many well-established tools for feature model analysis and manipula-
tion [11]. One such tool is FeatureIDE [25, 39], which can be used to detect inconsistencies
in feature models.

Although there is no mention of feature-oriented design in the official Kconfig docu-
mentation [21], the similarities between the Kconfig framework and the feature-oriented
approach are clear; there are many works that argue that the Kconfig framework allows the
definition of software product lines [29, 36] and Kconfig modules effectively correspond
to features within a feature model [34, 10]. There is currently no way to use tools that

1. Introduction

work with FOP feature models (e.g. FeatureIDE) to analyse Kconfig files, as a correct and
well-defined transformation of Kconfig files to such feature models does not exist.

We want to close the gap between Kconfig files and feature models so that the tools that
are used for analysing feature models can be also used on Kconfig files. Analysis of Kconfig
files through automated tools is a hot topic in Linux kernel development and bringing
feature models and Kconfig files together with a correct transformation of Kconfig files
into feature models would allow developers using the Kconfig framework to seamlessly
integrate feature model analysis tools into their workflow.

Our thesis aims to presents a method to transform Kconfig files into feature models so
that the resulting feature models and the underlying Kconfig files are logically equivalent,
i.e. every non-solution to the feature model corresponds to an invalid configuration of the
Kconfig file, whilst every solution to the feature model corresponds to a valid configuration
for the Kconfig file. We also aim to make the menu structure present in a Kconfig file,
which we describe in detail in the next chapter, recognizable in the resulting feature model;
hence it is our goal to develop a transformation scheme for Kconfig files that ensures
preservation of semantics and structure.

This thesis is structured as follows: In the second chapter, we introduce the terminology
around Kconfig and feature-oriented programming. In the third chapter, we give an
overview of related work; not only papers but also various open-source projects that have
relevancy for our thesis. Chapter 4 introduces the aforementioned method: In this chapter,
we talk about important design decisions and present many working examples to showcase
different transformation rules we have established. In chapter 5, we talk about Kfeature, a
tool we have developed that implements the transformations introduced in chapter 4. The
fifth chapter also discusses certain problems that have arisen during the implementation
of the Kfeature tool. In chapter 6, we evaluate the correctness of our transformation rules.
Chapter 7 concludes the thesis, with references to future work that may build upon our
contribution.

2. Foundations

In this chapter, we give a brief overview of the Kconfig variability framework and introduce
the basics of feature-oriented design/programming, with specific focus on what a feature
model is and what structure a feature model has.

2.1. Kconfig

The Kconfig framework was initially designed and developed to manage variability in the
Linux kernel: Over time, many different optional features and modules were added to
the Linux code tree, and it was no longer meaningful to compile and include every single
module whilst building the kernel [15]. Instead of compiling all modules, users can use
one of the many graphical interfaces offered by Kconfig to select the modules and features
they want to compile and include in the built kernel.

Because the Linux kernel is written in C, including and excluding of modules/features is
done over preprocessor variables [35]: Code that belongs to a certain module is excluded
if the preprocessor variable that corresponds this module is not set. An example of this
can be seen in figure 1, the preprocessor variable CONFIG_IP_PNP_DHCP decides if the field
dhcp_client_identifier gets initialized or not.

The Kconfig tool can parse and process Kconfig files, which contain definitions of
configuration symbols. A configuration symbol is a preprocessor variable that excludes or
includes a certain feature or module (as already shown in figure 1). Configuration symbols
can depend on other configuration symbols; this is relevant for cases where a module or
feature utilises another module or feature, so that these must also be built if the latter is
included in the kernel [21]. For the example given in figure 1, the configuration symbol
IP_PNP_DHCP depends on IP_PNP.

The syntax used in Kconfig files is not formally defined (there is a parser grammar [30]
that is offered as-is without any analysis of the syntax itself), but certain code constructs
are described in the official Linux kernel documentation [21]:

« Configuration symbols. These are defined with the config keyword. The header
of a configuration symbol may contain multiple options, such as depends on, for
defining dependencies between configuration symbols. Configuration symbols have
types, such as string, tristate and boolean, although 95% of configuration symbols
in the Linux kernel are either of tristate or boolean type [28]. tristate configu-
ration symbols can assume three different values: t, f and m. In the Linux kernel,
such tristate configuration symbols are used to manage features/modules that can
be included in the built kernel without being explicitly active (m stands for module,
i.e. build module but do not activate it) [9]. Example configuration symbol definitions
with dependencies can be seen in figure 28.

w N =

W N O U R WN R

10
11
12
13
14
15
16

2. Foundations

#if defined(CONFIG_IP_PNP_DHCP)
static char dhcp_client_identifier[253] __initdata;

#endif
Listing 1: Extract from [17]
config IP_PNP_DHCP
bool "IP: DHCP support"
depends on IP_PNP
help
If you want your Linux box to mount its whole root file system (the
one containing the directory /) from some other computer over the
net via NFS and you want the IP address of your computer to be
discovered automatically at boot time using the DHCP protocol (a
special protocol designed for doing this job), say Y here. In case

the boot ROM of your network card was designed for booting Linux and
does DHCP itself, providing all necessary information on the kernel
command line, you can say N here.

If unsure, say Y. Note that if you want to use DHCP, a DHCP server
must be operating on your network. Read
<file:Documentation/admin-guide/nfs/nfsroot.rst> for details.

Listing 2: Extract from [20]

Figure 1.: A preprocessor directive with the configuration symbol IP_PNP_DHCP.
IP_PNP_DHCP is also defined in the respective Kconfig file. The CONFIG_ pre-
fix is used to discern between regular variables and configuration symbols [22].

« Menu blocks. A menu block is effectively a nested Kconfig file. The header of a
menu block definition may contain dependencies, in this case the menu block is only
visible when its dependencies are satisfied. An example for a menu block can be
seen in figure 34: “Menu block M” depends on SYMBOL_A and a choice block and a
tristate configuration symbol.

+ Choice blocks. Configuration symbols contained within a choice block are mutually
exclusive. Choice blocks may depend on other configuration symbols. An example of
a choice block can be seen in figure 30: CHOICE_D contains two configuration symbols
and depends on SYMBOL_Y.

« If blocks. The condition of the if block is appended as a dependency to all configu-
ration symbols that are in the aforementioned if block.

« Combining multiple Kconfig files. The source keyword can be used to refer to
external Kconfig files whilst parsing.

The list above is not exhaustive; the specifics of the individual constructs are further
explored in chapter 4.

0 N O U B~ W N =

2.2. Feature-oriented programming

End users and developers can use the various interfaces [22] provided by Kconfig to
construct configurations in accordance with the constaints defined in the underlying
Kconfig file. One of these interfaces is menuconfig, which generates a graphical menu
interface with the configuration symbols defined in the Kconfig file it was called on. How
this menu is structured depends on multiple factors:

« The structure of the menu can be defined explicitly with menu blocks. In this case,
everything contained in the menu block is hidden behind a submenu (see figure 2).

+ Beyond normal configuration symbols, there exists so-called menuconfig symbols.
Configuration symbols that depend on a menuconfig symbol are hidden behind the
menu entry of the menuconfig symbol (see figure 3).

« If a configuration symbol depends on another configuration symbol, the menu entry
of the depender is only visible when the dependee is selected (see figure 4).

menu "Menu block M"

config SYMBOL_B
bool "Configuration symbol B"

config SYMBOL_C
bool "Configuration symbol C"
endmenu

[W] Configuration symbol E
I EEETIOCITEEEE [] Configuration symbol C

Figure 2.: The configuration symbols contained in the menu block are shown when the
submenu is entered. The submenu itself appears as an entry in the main menu.

Once a configuration is generated, the resulting . config file (a plain textfile containing
variable assignments) is processed further by Kbuild. Kbuild is an adapted version of GNU
make [8]. We will not explain in detail how Kbuild works, as the focus of this thesis is
exclusively on Kconfig.

2.2. Feature-oriented programming

Feature-oriented programming considers the feature as the fundamental building block of
software. A concrete software product is a certain combination of features. What a feature
exactly is, is not always well-defined, but in this thesis, we take the definition used by Kun
Chen et al. [24] as reference:

“A feature describes a product characteristic from user or customer views.”

O 0 N O Ul A W N

=
[<)

2. Foundations

menuconfig SYMBOL_A
bool "Configuration symbol A"

config SYMBOL_B
bool "Configuration symbol B"
depends on SYMBOL_A

config SYMBOL_C
bool "Configuration symbol C"
depends on SYMBOL_A

Configuration symbol B
Configuration symbol C

-B- Configuration symbol A
[
[

[l§] Configuration symbol A

Figure 3.: Dependers of a menuconfig symbol are contained in a submenu hidden behind
the menu entry of the menuconfig symbol.

The relationships between features are defined in a feature model [19]: A selection of
features represent a valid software product if they fulfil the constraints presented by the
feature model. The structure of a feature model is not standardized; although it is clear that
feature models should have a tree-like structure. In this thesis, we will restrict ourselves
to feature models as defined and used by Leich et al. [25]. Several authors [6, 5] call this
family or “tradition” of feature models “FODA-like” or “FODA feature models”, wherein
FODA refers to Feature-Oriented Domain Analysis [18], a predecessor of FOP.

With this consideration, we would like to introduce some structures that occur in feature
models:

+ Root feature. Every feature model must have a root feature.

« Parent-child relationships. A child feature can only be selected if its parent feature
is also selected. A feature can only have one parent feature.

« Or groups. The children of a feature may be put in an or group. In this case, at least
one of the children must be selected if the parent feature is selected.

« Alt groups. The children of a feature may be put in an alt (alternative) group. In
this case, exactly one of the children must be selected if the parent feature is selected.

« Feature options. Features may be optional, mandatory or abstract. Abstract features
are used to bring the feature model in a certain structure or form, but they have no
relevancy in the implementation level [38].

+ Cross-tree constraints. A cross-tree constraint is a logical expression containing
feature names as variables. A valid software product (= selection of features) must
satisfy all cross-tree constraints.

2.2. Feature-oriented programming

config SYMBOL_A
bool "Configuration symbol A"

config SYMBOL_B
bool "Configuration symbol B"
depends on SYMBOL_A

config SYMBOL_C
bool "Configuration symbol C"

[Nl Configuration symbol A

[1 Configuration symbol C

[g] Configuration symbol A
[]
[1 Configuration symbol C

Configuration symbol B

Figure 4.: The menu entry of the depender is only visible when the dependee is selected.
Additionally the entry of the depender is placed right below the entry of the
dependee; indented, graphically hinting a hierarchy between the two configura-

tion symbols.

All of the constructs listed above were used in the feature model given in figure 5.
Here, Car is the root feature. The feature Motor is mandatory and the children of Motor
are in an or group, so that a car can have either an ElectricMotor or a GasMotor (or
both, in that case, it is an hybrid car). The feature Gearbox is also mandatory but the
children of Gearbox are in an alt group, so that a car can either have Automatic or Manual
transmission, but not both. Additionally, there is a cross-tree constraint: If TowHitch is
selected, GasMotor must also be selected. A possible solution to this feature model would
be [Car, Motor, ElectricMotor, Gearbox, Automatic, Chassis], as this selection of features

fulfil all the constraints given by the feature model.

Car Legend:
— | T @ Mandatory
® ey T o Optional
I'«'Inﬁor Gearbox | | TowHitch | | Chassis P
T ‘,_ Or Group
"\\ Pan S /\ Alternative Group
P . !
- Feature

- S &
GasMotor | | ElectricMotaor | | Autormatic | | Manual

TowHitch = GasMotor

Figure 5.: A feature model for cars. Example adapted from Apel and Késtner [2]. Graphic

generated with FeatureIDE.

3. Related Work

In this chapter, we give an overview of related work in areas relevant to this thesis. These
works are the literary fundament that we will build upon going forward.

3.1. Tools that transform Kconfig files

Due to the lack of a formal language definition and a Kconfig ABI, tools that work with
Kconfig files usually transform the Kconfig files they want to process. Seldom a Kconfig
file is used as-is.

One such tool that transforms the Kconfig files it processes is undertaker [37]. undertaker
parses Kconfig files and generates SAT problems using the Linux kernel source code to
find “dead” code blocks (code blocks that can never appear in a valid kernel configuration)
and “undead” code blocks (code blocks that appear in all valid kernel configurations) in
the kernel code tree (hence the name undertaker). The results returned by undertaker
can then be used to remove unnecessary configuration symbols and cut out redundant
preprocessor directives in source code. undertaker utilises a well-defined formal transfor-
mation of Kconfig files to expressions in propositional logic. A similar transformation is
done with the preprocessor directives in the source code and then the resulting logical
expressions are compared to detect differences between the constraints defined in the
Kconfig file and the constraints inferred by the preprocessor directives in code. Tartler
et al. [37] define the approach used by undertaker as follows: “The variability constraints
defined by both spaces are extracted separately into propositional formulas, which are
then examined against each other to find inconsistencies we call configurability defects.”

Fernandez-Amoros et al. [12] provide a method for Kconfig-to-logic translation: This
translation is general-purpose, the paper’s goal is similiar to ours: To bridge the gap
between “logic engines” and Kconfig files. Oh et al. [28] use a related transformation
and additionally introduce the tool kmax, which uses the expressions that are generated
through the transformation to find out if the Kconfig file contains (or moreover defines)
unsatisfiable constraints by invoking an external SAT solver. Transformation of tristate
symbols seems to be a challenge for both: Aforementioned Fernandez-Amoros et al. [12]
ignore tristate symbols and give no translation for these. Oh et al. [28] underapproximate
tristate symbols by reducing them two states (m and t); prioritising tool performance over
semantic correctness.

3.2. Feature-oriented programming and Kconfig

Many authors [28, 29, 27, 6] have already described (moreover recognized) the Linux
kernel and its variants as a software product line, hence the link between Kconfig and

3. Related Work

feature models is not new; although the official Kconfig documentation does not use any
FOP terminology.

Sincero and Schrioder-Preikschat [34] define a set of rudimentary mappings that can
be used to transform certain feature models structures into Kconfig code. The semantic
equivalence of the resulting Kconfig code and the initial feature model isn’t verified
within the scope of [34], although it is implied that the mappings can be used inversely to
transform Kconfig code into feature models. Ultimately, Sincero and Schroder-Preikschat
[34] argue that the Kconfig framework can be used as a feature modelling tool. She et al.
[32] also suggest several “simplified mappings” between Kconfig and FOP concepts and
even transform a small Kconfig file snippet to an equivalent feature model, but they do
not give any instructions to reproduce this transformation for arbitrary Kconfig files.
The mappings provided by [34, 32] can however be utilised whilst we develop our own
transformation rules.

Dintzner, Deursen, and Pinzger [10] introduce the tool fmdiff: fmdiff can be used to
compute or detect the effects of changing Kconfig files (eg. adding, removing and modifying
of configuration symbols) on individual kernel variants. fmdiff does by this transforming
the initial and the changed Kconfig file into feature models and then comparing the
created feature models (using the Eclipse Modelling Framework and the EMF Compare
tool). The paper unfortunately does not describe the transformation process in detail,
and additionally, it uses a feature model structure/definition that greatly differs from the
typical FODA-like notation, so that we cannot build upon the transformations used by
fmdiff whilst working out our own transformation rules.

10

4. Concept

In this chapter, we document the considerations we had during the conception of this
thesis and constructively introduce the transformation rules we have concieved.

4.1. Scope of the transformations

This thesis aims to present a method for the transformation of Kconfig files into feature
models. The word “method” here refers to a group of atomic transformations that can
be applied respectively to create a feature model that corresponds to the source Kconfig
file. But what does “correspond” mean here exactly? Before we go further, we would like
present a three-layer decomposition of Kconfig files:

+ The structural layer. These are the Kconfig constructs that affect the menu interface
generated by menuconfig.

+ The constraint layer. These are the Kconfig constructs that define the constraints
that need to be fulfilled by the configurations that are generated using a given
Kconfig file. This is so to say the semantic content of the Kconfig file. All constructs
in the constraint layer are also in the structural layer, but this does not apply in the
other direction (eg. menu blocks without dependencies, help text in configuration
symbols).

+ The template/default value layer. These are the Kconfig constructs that suggest
a certain default configuration for a given Kconfig file. Examples to such constructs:
imply and default options in configuration symbols (both described in detail later
in this section).

Our transformations will attempt to preserve the semantic and the structural content of
Kconfig files, so that:

1. The resulting feature model contains the configuration constraints defined in the
Kconfig file we have transformed.

2. The menu structure implied by the Kconfig file should be recognizable in the resulting
feature model, as in, the feature model should be human-readable; we do not aim to
model all the semantics of a Kconfig file via cross-tree constraints.

Before we give in-depth descriptions of the transformation rules, it is important to talk
about what we aim to transform. There are certain aspects of a Kconfig file that we have
decided to ignore; as in, we do not see these aspects of the Kconfig language relevant for

11

4. Concept

the transformation rules (in accordance to the two goals we have stated above) and/or due
to time constraints, we have chosen to make certain assumptions about the Kconfig files
we aim to transform:

12

Kconfig allows configuration symbols to have default values [21]: This is done using
the default keyword within symbol definitions. When the Kconfig configuration
interface (e.g. menuconfig) is invoked, the default values of the configuration symbols
are assumed, but this does not restrict the user from changing these values. The
default value for a configuration symbol is to be understood as a suggestion. Default
values do not contribute to the constraints defined by a Kconfig file. Hence our
transformation rules ignore default values.

In the Kconfig files found in the Linux kernel, there exists a configuration symbol
called MODULES which controls module support: Tristate symbols can assume the
value m only when MODULES is set to true, i.e. setting MODULES to f converts all tristate
symbols into boolean symbols. For ease of transformation, we assume that module
support is always given.

The dependency type imply, which corresponds to a weak reverse dependency [21],
is ignored. imply effectively defines a conditional default value, and we have already
made the decision to ignore default values.

The help keyword in configuration symbol definitions is ignored. Help text has no
relevancy for the semantic content of a Kconfig file.

Configuration symbols that are not of boolean or tristate type are ignored. This
means we will ignore string, hex and int configuration symbols. These configura-
tion symbols (if no range is set) can assume infinitely many different values. The
naive approach of representing every state of such a configuration symbol as a seper-
ate feature does not work, as that would create an infinitely large feature model. We
would suggest that there is no possibility to transform such configuration symbols
into features, but we cannot formally prove our statement. Due to time constraints,
we choose to focus more on transformations we deem possible. Beyond this, as
already mentioned in the foundations chapter, boolean and tristate configuration
symbols make up the vast majority (about 95%) of all configuration symbols (in case
of the Linux kernel), so that limiting ourselves to these two types does not (greatly)
endanger the external validity of our transformations.

Composite dependencies (dependencies expression that are not single symbols)
are limited to true multiple dependencies (multiple non-composite dependency
options in a configuration symbol definition). This is done to limit the scope of this
thesis. Initially, we have attempted to work out a transformation rule for arbitrary
dependency expressions, but ultimately the rule could not be implemented, nor be
subsequently evaluated, so that we have scrapped it.

We do not provide a transformation rule for if blocks. if blocks are used to group
up dependencies, e.g. when two configuration symbols A, B depend on the same

4.2. Transformation rules

configuration symbol C, they can be put in an if block, ie. if C ... endif. Such
an if block is more of a syntactical shorthand, so that the absence of a transformation
rule for if blocks shouldn’t limit the extent of our method.

Now that we have defined the scope of our transformations, we continue with the
transformation rules we have developed in the next section.

4.2. Transformation rules

In this section, we introduce the eight transformation rules we have developed in extent of
this thesis. For each rule, we first document the considerations we had whilst establishing
the respective rule and motivate the transformation in a constructive manner, so that
the reader can better understand the design decisions we have made in scope of each
transformation rule.

4.2.1. Boolean symbols

Individual boolean symbols can be set to true or false. Hence boolean configuration
symbols are transformed to features. This is one of the mappings already suggested by She
et al. [32].

A feature model must however have a single root feature [2]. We have come up with
two different approaches to ensure that a root feature is always present:

« Each transformation rule assumes that a mandatory feature called “Kconfig” already
exists in the target feature model. Every feature (before considering dependencies)
depends on “Kconfig”, consequently configuration symbols without any further
dependencies are child features of “Kconfig”.

« Some Kconfig files might contain a mainmenu entry [21]. This can be seen as the root
of a Kconfig file. This mainmenu entry is hence transformed to a mandatory feature
that acts as the root of the resulting feature model.

Because not all Kconfig files have a mainmenu entry, we have chosen the first approach
going forward: All transformation rules presented in the following subsections make the
assumption that a mandatory root feature called “Kconfig” exists in the target feature
model.

4.2.1.1. Dependencies between boolean symbols

In the official Kconfig documentation, a dependency between two configuration symbols
is described as an “upper bound on the depender” [21]. Within the context of two boolean
symbols, when symbol A depends on B, the value of A is bounded above by the value of
B. As boolean symbols can only assume the values t and f, this dependency implies the
following value matrix:

13

4. Concept

Value of symbol A Value of symbol B Dependency satisified?
f f yes
f t yes
t f no
t t yes

This value matrix corresponds to the truth table of the logical expression A = B. In
this case, a dependency between two boolean symbols is transformed to a child-parent
relationship between the features that correspond to the boolean symbols: Feature A
is an optional child of feature B. The reverse transformation (from an optional parent-
child relationship between two features to two configuration symbols with a dependency
between them) has already been proposed by Sincero and Schroder-Preikschat [34].

4.2.1.2. Multiple dependencies between boolean symbols

In case of multiple dependencies, it is important to mention that we must preserve the
tree structure of the feature model. A feature cannot have multiple parents, hence the
transformation we have described in the previous paragraph cannot be used for boolean
configuration symbols with multiple dependencies. If A depends on B and C, there are
several approaches to modelling this dependency within the context of the target feature
model:

« The multiple dependency can be transformed to a cross-tree constraint. In this case,
no structural changes must be done to the feature model to represent the dependency.

+ The multiple dependency can be broken up into individual dependencies. In this case,
one of the dependencies is structurally represented (as in, one of the dependencies is
transformed into a child-parent relation in the feature model) whilst the remaining
dependencies are represented as cross-tree constraints.

Both of these approaches have their advantages and disadvantages:

« One of the goals of our transformation is human-readability. Making the assumption
that dependencies that are structurally represented are easier to comprehend than
those that are “hidden” behind cross-tree constraints, it is preferable to transform
dependencies to structural relationships as much as it is possible to do so. With this
consideration, it is not feasible to transform a multiple dependency into a cross-tree
constraint without further inspection of the dependency.

« When a composite dependency is broken up into its individual dependencies (which
should be always possible in case of true multiple dependencies), a heuristic must be
used to decide which of these sub-dependencies should be transformed to a structural
relationship.

We have hence decided to break up multiple dependencies into their atomic parts and
use an heuristic that prioritizes human-readability to choose the partial dependency we
should represent structurally. In this case we have chosen to use a heuristic that attempts

14

4.2. Transformation rules

to avoid branch dominance, so that the sub-dependency with the dependee with the
least depth is represented structurally; i.e. the depender becomes the child feature of the
dependee with the least depth. This heuristic should help increase human-readability by
distributing nodes evenly, which is often proposed as a metric of graph readability [4].

Another metric of human-readability, or moreover a graphical property that should
increase the readability of a graph, is the clustering of related nodes [4]. In this case, if
a certain feature has many children, this makes it evident to the observer of the graph
that this feature is a gateway feature. This same argument can be presented for branch
depth: If a certain branch is particularly deep, this makes it evident to the observer that
the root feature of this branch is a gateway feature, so to say, this branch represents many
transitive dependencies.

In this case, we make a compromise: We allow clusters to be formed naturally in
breadth, but we try distribute nodes evenly in depth by making the depender the child
of the dependee with the least depth, representing further dependencies as cross-tree
constraints. This heuristic is affected by menus, this is discussed in-depth in section 4.2.6.

The rule for transforming boolean symbols is as follows:

RuLE 1: Whilst transforming Kconfig files into feature models, transform a boolean
symbol A as follows:

1. Create a feature called A and add this as a child of the root feature of the feature
model.

2. See respective sub-rules if A has a dependency.
Rutk 1.1: If A depends on another boolean symbol B:

1. Transform B according to rule 1. If A needs to transformed during the trans-
formation of B, abort transformation; the Kconfig file contains a dependency
loop.

2. Make feature A child of feature B.
RuLE 1.2: If A depends on multiple boolean symbols B, ..., B;:

1. Transform By, ..., B; according to rule 1. If A needs to be transformed during
any of these transformations, abort transformation; the Kconfig file contains
a dependency loop.

2. Find B; with B; = min(d(Bx)),k € {1,...,i}. d here is the depth function. If
Bj isn’t unique, choose the B; with the lowest index.

3. Make feature A child of feature Bj, which corresponds to the aforementioned
boolean symbol B; (see rule 1).

4. For all By with [# j,l € {1,..., j}, add a cross-tree constraint: A implies B1.

An example transformation using this rule is given in figure 6.

15

4. Concept

4.2.2. Tristate symbols

A tristate configuration symbol can assume three different values: If the tristate symbol is
not selected, it assumes the value f. A tristate symbol can be selected as a module (which
corresponds to the value m) or can be selected as an active module (this corresponds to the
value t).

Features in a feature model have a strictly two-state nature: A feature is either selected
or not selected. Hence in the case of tristate symbols we cannot simply replicate the
transformation we have used for boolean symbols. The transformation rule for tristate
symbols must be a one-to-many mapping.

It is important to mention that the transformation rule for tristate symbols will directly
affect the transformation rules involving dependencies with tristate symbols. Hence we
try a conformist approach: We first investigate the structure of dependencies with tristate
symbols and try to find an adequate transformation rule for tristate symbols themselves
in a way that the transformation rules for the dependencies are correct.

We have already established the fact that a dependency is an upper bound relationship
between two configuration symbols. A dependency between two tristate symbols A and B
(A depends on B) has the following value matrix:

Value of symbol A Value of symbol B Dependency satisified?
f f yes
f m yes
f t yes
m f no
m m yes
m t yes
t f no
t m no
t t yes

Let us define this dependency formally using second-order logic:

Considering two predicate variables A and B, we define the unary relations F, M and
T. The predicate variables A and B are in these relations when the tristate symbols that
correspond to them assume the values f, m and t respectively. We additionally define the
binary relation D, which holds true for D(A, B) when the tristate symbol corresponding
to the predicate variable A depends on the tristate symbol corresponding to the predicate
variable B. The following formulae must hence hold true:

VA,B: D(A,B) = (M(A) = M(B) VT(B)) (D
(if A is set to m, B has to be either set to t or m)

VA,B: D(A,B) = (T(A) = T(B)) (IT)
(if A is set to t, B has to be set to t as well)

J

We can take these formulas as the fundament of our transformation. For a tristate symbol
A, let us introduce two features in our target feature model: A_m, which corresponds to

16

4.2. Transformation rules

config SYMBOL_A
bool "Config symbol

config SYMBOL_B
bool "Config symbol
depends on SYMBOL_A

config SYMBOL_C
bool "Config symbol
depends on SYMBOL_B

config SYMBOL_X
bool "Config symbol

config SYMBOL_Y
bool "Config symbol
depends on SYMBOL_X
depends on SYMBOL_C

AII

Bn

CII

xll

Yn

Kconfig Legend:

A~

AN, " Optional
I.-.// R

C) Abstract Feature
SYMBOL A | | SYMBOL X

Concrete Feature

L

SYMEOL B | | SYMBOL Y

|

SYMBOL_C

SYMBOL_ Y = SYMBOL_C

Figure 6.: Example transformation of the given Kconfig file. All configuration symbols
were transformed using rule 1. The multiple dependency of SYMBOL_Y was
handled by rule 1.2; SYMBOL_Y is here the child feature SYMBOL_X as it has less
depth than SYMBOL_C, which was recognized correctly according to the heuristic
we have defined in the respective sub-rule. All other (singular) dependencies
were handled according to rule 1.1 (SYMBOL_B, SYMBOL_C).

17

4. Concept

the formula M(A); when A_m is selected, symbol A assumes the value m, and A_t, which
corresponds to the formula T(A). It is important that A_t and A_m are not selected at the
same time, as a tristate symbol can either assume the value m or t. There are two ways to
model this exclusivity:

« We introduce an abstract parent feature A and add A_m and A_t as the children of this
parent feature, so that if A is selected, either A_m or A_t must be selected (but not
both). This is done with a mandatory XOR relation (alt group) between the parent
and the children features. If this approach is used, (I) can be modelled as a cross-tree
constraint between A_m and B. It is important that A is an abstract feature, as A itself
does not correspond to a configuration symbol.

« We add a cross-tree constraint between A_m and A_t, i.e. A_m excludes A_t and
vice versa. If this approach is used, (I) must be modelled as a composite cross-tree
constraint, i.e. A_m implies B_t or B_m.

Preferring the approach that minimises the amount of semantics hidden behind cross-
tree constraints, we end up with the following rule:

RuLE 2: Whilst transforming Kconfig files into feature models, transform a tristate
symbol A as follows:

1. First, create a new abstract feature called A and add this to the root feature of
the feature model.

2. Now add two features as children to A: A_-m and A_t. Set the children of A as
mandatory alternatives (alt group), so that selecting A implies A_m xor A_t.

RuLE 2.1: If A depends on another tristate symbol B:

1. Transform B according to rule 2. If A needs to be transformed during the trans-
formation of B, abort transformation; the Kconfig file contains a dependency
loop.

2. Add a cross-tree constraint: A_m implies B.
3. Add a cross-tree constraint: A_t implies B_t.
RuULE 2.2: If A depends on multiple tristate symbols By, ..., B;:

1. Process every pair (A, By),l € {1,...,i} according to rule 2.1, considering
every dependency of its own regard.

An example transformation using this rule is given in figure 7.

4.2.3. Mixed-type dependencies

Boolean configuration symbols can depend on tristate configuration symbols and vice
versa. For this case, we introduce a further rule:

18

O 0 N O U A W N =

L I e R T =
N O Ul A W N RO

4.2. Transformation rules

config SYMBOL_A

tristate "Configuration symbol A"

config SYMBOL_B

tristate "Configuration symbol B"

config SYMBOL_C

tristate "Configuration symbol C"
depends on SYMBOL_B
depends on SYMBOL_A

config SYMBOL_D

tristate "Configuration symbol D"

config SYMBOL_E

tristate "Configuration symbol E"
depends on SYMBOL_D

SYMEOL A
AN
~

SYMBOL A M| | SYMBOL A T

Figure 7.: Example transformation of the given Kconfig file

Kconfig

1

SYMBOL_B SYMBOL C

A

SYMBOL B M| [5¥

A,
. ~

MBOL B T || SYMBOL C M| [SYMBOL C T

SYMBOL_E_M = SYMBOL_D
SYMBOL_E_T = SYMBOL_D_T
SYMBOL_C_M = SYMBOL_B
SYMBOL C T—SYMBOLB T
SYMBOL_C_M = SYMBOL_A
SYMBOL_C_T = SYMBOL A T

T

SYMBOL D
AN
- .

SYMBOL D M || SYMBOL D T

Legend
o/ Optional
I _S_YF;BDL g _f:_ Alternative Group
= Abstract Feature

A,
- . Concrete Feature
",

SYMBOLE M| | SYMBOL E T

. All configuration symbols

were transformed using rule 2. The multiple dependency of SYMBOL_C and the
single dependency of SYMBOL_E were handled by rule 2.2 and 2.1, respectively.

19

4. Concept
1| config SYMBOL_A
2| tristate "Configuration symbol A"
3
4| config SYMBOL_B
5/ boolean "Configuration symbol B" ch”lﬁg Legend:
6) \\--"') o Optional

. = g ——r A Alternative Group
7| config SYMBOL_C SYMEF)L_A SYMBOL B | | SYMBOL C Abstract Feature
8 boolean "Configuration symbol C" K"‘ l ‘ Concrete Feature
9 SYMBdL_ﬁ._M SYMBEL_A_T SYMBBL_E SYM':EEEL_D
10| config SYMBOL_D AN
11| boolean "Configuration symbol D SYMBGL_E_M SYMB;:SL_E_T
12 depends on SYMBOL_C
13

. SYMBOL_E_M = SYMBOL_A
14| config SYMBOL-E SYMBOL E T = SYMBOL AT
15| tristate "Configuration symbol C" SYMBOL_E = SYMBOL_D
16| depends on SYMBOL_A
17 depends on SYMBOL_B
18| depends on SYMBOL_D

Figure 8.: Example transformation of the given Kconfig file. SYMBOL_E was transformed
using rule 3. SYMBOL_E is the child of SYMBOL_B and not SYMBOL_D as SYMBOL_B
has less depth; this is the case as we explicitly mentioned that we should use the
heuristic from rule 1.2 whilst processing boolean dependees of tristate dependers.

RuLE 1.3: If a boolean symbol A depends on a tristate symbol B:

1. Add a cross-tree constraint: A implies B.

RuULE 2.3: If a tristate symbol A depends on a boolean symbol B:

1. Make feature A child of feature B.

RULE 3: If a configuration symbol A has a mixed-type multiple dependency:

1. If A is a tristate symbol, for each other tristate symbol B; which A depends
on, process every pair according to rule 2.1. If A also depends on boolean

configuration symbols, see rule 2.3 and use the heuristic from rule 1.2.

2. If Ais a boolean symbol, see rule 1.2 and 1.3.

An example transformation using this rule is given in figure 8.

J

20

In case of boolean symbols depending on tristate symbols, it is sufficient for the dependee
to assume the value mfor the depender to assume the value t. This might seem contradictory
to the truth table for dependencies between tristate symbols (as m and t are understood as
distinct values) but experimenting with menuconfig shows that boolean dependers do not
differentiate between m and t.

4.2. Transformation rules

The dependency between a boolean depender A and a tristate dependee B cannot
be represented as a child-parent feature relation because alt groups cannot be defined
selectively. All children of A (A_mand A_t) are in an alt group and if B was then made a child
feature of B, the transformation would have been semantically incorrect, as B would have
been in an alt group with A_m and A_t. Ergo we use a cross-tree constraint to transform
such a dependency.

4.2.4. Reverse dependencies

The select option in configuration symbols can be used to set a “lower bound” on another
symbol, i.e. the dependee.

If A selects B, the following value matrix is to be considered (assuming A and B are
boolean configuration symbols):

Value of symbol A Value of symbol B Dependency satisified?
f f yes
f t yes
t f no
t t yes

This value matrix is identical to the value matrix of “A depends on B”. We can hence
process reverse dependencies as we process regular dependencies.

RuULE 4: If a configuration symbol A selects another configuration symbol B:
1. Process this relation as “A depends on B” according to the respective rules.

Process multiple selections in similar manner.

It might not be evident why the select keyword exists considering that is (logically)
equivalent to an ordinary dependency. The official Kconfig documentation warns: “select
should be used with care. select will force a symbol to a value without visiting the
dependencies. By abusing select you are able to select a symbol FOO even if FOO
depends on BAR that is not set.” Kconfig handles select a bit differently than depends;
there is no transitive dependency resolution. This should however not be an issue if select
is only used with configuration symbols that have no dependencies; in that case select is
no different than depends, hence our rule should hold.

4.2.5. Choice blocks

Choice blocks consist of multiple configuration symbols that are mutually exclusive: If the
choice block is selected, only one of the configuration symbols might be set to t. In case of
tristate choice blocks, if the choice block is set to m, an arbitrary amount of the contained
configuration symbols might be set to m, however setting the choice block to t forces one
of the contained symbols to be set to t and all others to be set to f, hence the m option is
disabled when the choice block is set to t.

21

4. Concept

A reverse transformation of alt feature groups into boolean choice blocks has already
been proposed by [34]. We build upon this transformation with certain considerations:

« Although choice blocks can be named, they may not occur as dependees [31]. At
this instance they are similar to menu blocks.

« Choices are, by default, mandatory. A mandatory choice block must have a value set
if all of its dependencies are satisfied.

« The Kconfig language specification is unclear about mixed choice blocks (e.g. tristate
choice blocks containing boolean configuration symbols) [31]. We will assume
that boolean and tristate choice blocks only contain configuration symbols of their
respective types.

Modelling the mandatory nature of choice blocks may first seem trivial due to the
presence of mandatory features in feature models, but this is unfortunately only the case
if a choice block depends on a single boolean symbol: Only child-parent relationships
can be defined as mandatory. Because we have already established that only one of the
dependencies may be represented structurally in case of multiple dependencies (see rule 3),
we need to work with cross-tree constraints to ensure that our transformation semantically
preserves mandatory choice blocks. Without any consideration of syntax, the following
logical formula must be true for a mandatory choice block C that depends on multiple
other configuration symbols A; with j € {1,...,i}:

AlA...ANA = C (1)
(If all dependencies of C are selected/true, C must be selected/true)

Because C = Aj,j € {1,...,i} is already implied through the dependency between
C and A}, (II) but as a bi-implication should also hold true for a mandatory choice block
C. The bi-implication might however be redundant if C = A, already occurs for any
j €{1,...,i} as a cross-tree constraint. Additionally, it is important to mention that the
formula above is not equivalent to multiple individual implications for each dependency
(Ay, = C,A; = C and so forth): A mandatory choice C should only be selected
when all of its dependencies are satisfied. If C is a boolean choice block, rule 1.3 applies,
so that if any of the A; in (III) are tristate configuration symbols, the expression A; for the
respective configuration symbol should be replaced by M(A;) Vv T(A)), i.e. it is sufficient
for the dependee to be set to any value but f. This should however not be an issue
whilst transforming, as in rule 2 the abstract parent feature Aj of Aj_m and Aj_t exactly
corresponds to this expression.

With these considerations, we propose the following rules for the transformation of
tristate and boolean choice blocks:

RuLE 5: Whilst transforming a Kconfig file into a feature model, process a boolean
choice block C as follows:

1. Create an abstract feature C.

22

4.2. Transformation rules

2. If the choice block depends on another configuration symbol B, first process
that dependency as if C is a boolean configuration symbol. If C doesn’t depend
on anything, make C child of the root feature of the feature model.

3. If C is not optional:

« If C depends on multiple configuration symbols A; (j € {1,...,i}): Add
cross-tree constraint: A1 AND ... AND Ai IMPLIES C.

« If C depends on a single configuration symbol A: If A is a tristate symbol,
add cross-tree constraint A IMPLIES C.If A is a boolean symbol, make C
a mandatory child feature of A.

« If C does not have any dependencies, make C a mandatory child of the
root feature.

4. Process all configuration symbols A; contained in the choice block C, but
ignore their dependencies.

5. Make all features corresponding to the contained configuration symbols of C
children of feature C.

6. Make the children of C mandatory alternatives (alt group).

7. Now process the dependencies of all A; contained in C. Ensure that features
corresponding to A; remain children of ¢, i.e., do not represent any of these
dependencies structurally.

An example transformation using this rule is given in figure 9.

In case of tristate choice blocks, we effectively build upon rule 2: We want tristate choice
blocks to have the same structure tristate configuration symbols have: Three features for
the three states. A tristate choice block assumes the value m when one or more tristate
configuration symbols contained in the choice block are set to m: Here “one or more” calls
for an or group. When the choice block is set to t, exactly one of the enclosed configuration
symbols must be set to t: This calls for an alt group.

We can describe this constraint in second-order logic (using the relations T and M we
have used for rule 2). For a choice block C with enclosed tristate symbols A, ..., A}, the
following should hold true:

T(C) = (T(A)®...8T(A))) AN=(M(Ay) V...V M(A)))) (Iv)

M(C) = ((M(A1) V...V M(A) A =~(T(A) V...V T(4)))) (V)

J

We ensure that these expressions hold true by making the features corresponding to
M(A;) fori e 1,...,j children of C_m. These features are in an or group. We do the same
for the features corresponding to T(A;) fori € 1,..., j; these features become children of
C_t and are in an alt group. The second term in (IV) and (V) are already modelled through

23

4. Concept

config SYMBOL_A
boolean "Configuration symbol A"

config SYMBOL_B
tristate "Configuration symbol B"

choice CHOICE_C
boolean "Choice block C"
depends on SYMBOL_A
depends on SYMBOL_B

config SYMBOL_D
boolean "Configuration symbol D"
depends on SYMBOL_X

config SYMBOL_E
boolean "Configuration symbol E"
depends on SYMBOL_Y

endchoice

config SYMBOL_Y
boolean "Configuration symbol Y"

config SYMBOL_X
tristate "Configuration symbol X"

Krconfig

SYMBOL_A SYMBOL B
e
(_‘_z’ “__\\

-

———

-

r

SYMEOL X

~
e

—
AT

e

SYMBOL Y

-,

CHOICE C | | SYMBOL B M || sYMBOL B T || SYMBOL X M | | symBoL x T

P
~ et
- "

-’/ \'L

SYMBOL D | | SYMBOL_E

SYMBOL_E = SYMBOL_Y
CHOICE_C = SYMBOL B

SYMBOL_A A SYMBOL_B = CHOICE_C

SYMBOL_D = SYMBOL_X

Legend:
7 Optional

._.-"f__ Alternative Group
Abstract Feature

Concrete Feature

Figure 9.: Example transformation of the given Kconfig file. CHOICE_C was transformed
using rule 5. As defined in the rule, the dependency between SYMBOL_E and
SYMBOL_Y is not represented structurally, so that SYMBOL_D remained a child
feature of CHOICE_C. Because CHOICE_C is not an optional choice, a cross-tree
constraint with a conjunction over all dependees of CHOICE_C was added to the

feature model.

24

4.2. Transformation rules

the mutually exclusive nature of C_t and C_m. Breaking up the enclosed tristate symbols

means that we omit the abstract parent feature Ai which we normally create whilst using

rule 2. This is however not an issue: Ai can be replaced by Ai_m OR Ai_t in cross-tree

constraints so that all rules also work for tristate symbols enclosed in choice blocks.
Ergo we end up with the following transformation steps:

RuULE 6: Tristate choice blocks are to be processed differently; given the tristate
choice block C:

1. Process C as if it was a tristate symbol: Create the features C, C_t, C_m. Resolve
C’s dependencies according to rule 2.

/\ Due to a Kconfig implementation bug, tristate choice blocks are always
optional (see figure 11).

2. For each tristate configuration symbol A; within C, create a feature Aj_m and
Aj_t. Make these features children of C_m and C_t, respectively.

3. Whilst resolving the dependencies of the configuration symbols within the
choice block, follow rule 2, but avoid structural changes; model all dependen-
cies as cross-tree constraints. Because for a given A; in C there is no abstract
parent feature Aj, substitute Aj with Aj_m OR Aj_t:

Type of dependency Cross-tree constraint(s) to add
A; depends