
Architecture Design and Internal Implementation of a Universal
Coupling Between Controllers and Physics in a Tokamak
Flight Simulator
Chuanren Wu, a* Pierre David, b Emiliano Fable, b Domenico Frattolillo, c,d Luigi Emanuel Di Grazia,c

Massimiliano Mattei, c,d Mattia Siccinio,b,e Wolfgang Treutterer,b and Hartmut Zohm b,e

aKarlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology,
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
bMax Planck Institute for Plasma Physics, 85748 Garching, Germany
cConsorzio CREATE, Via Claudio 21, Napoli, 80126, Italy
dUniversità degli Studi di Napoli Federico II, Dipartimento DIETI, Via Claudio 21, Napoli, 80126, Italy
eEUROfusion, 85748 Garching, Germany

Abstract — The flight simulator predicts the dynamic behavior of a full plasma discharge (described in
terms of one-dimensional profiles) by employing multiple control loops based on synthetic diagnostics,
which could also emulate realistic sensor and actuator models. It serves as a valuable tool for designing
and optimizing plasma scenarios, as well as for assessing the feasibility of controlling discharges. The
Fenix flight simulator, originally developed for the ASDEX Upgrade, has been ported to EU-DEMO and is
capable of modeling any tokamak.

One of the essential elements in a flight simulator is the link between the co-simulated plasma physics
and the control loops. This element is tightly coupled to the specifications of both the plasma model and the
control algorithms to be implemented; but on the other hand, to ensure the portability and applicability of
the flight simulator to different scenarios or devices, the coupling between plasma and control algorithms
should be neutral to any concrete device and configuration. In addition, as a serial component of the
control loop, data exchange takes place at every single step of the control simulation, therefore an efficient
implementation is critical for the overall simulation performance. This paper summarizes the universal
approach recently implemented in Fenix, which satisfies all the above requirements while remaining
lightweight.

Keywords — Flight simulator, feedback control, full discharge, co-simulation, ASDEX Upgrade.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Integrated control simulation approaches[1–10] com-
bine scenario modeling with controllability studies in a
self-consistent manner. More recently, tools are being

developed that also allow for simulating full tokamak
discharges and checking the feasibility of the operational
and physics goals. The first-of-its-kind flight simulator
Fenix[7–11] was originally developed for ASDEX
Upgrade (AUG) full-discharge modeling.

Currently, Fenix is also used for studies on the EU-
DEMO tokamak reactor prototype,[12] and can be even
ported to other existing or planned tokamaks. Such a *E-mail: chuanren.wu@kit.edu

http://orcid.org/0000-0002-2523-1476
http://orcid.org/0000-0003-4837-8507
http://orcid.org/0000-0001-5019-9685
http://orcid.org/0000-0003-3648-8186
http://orcid.org/0000-0001-7951-6584
http://orcid.org/0000-0002-8870-7806

flight simulator incorporates realistic controller and
actuator models with nonlinear responses from the co-
simulated plasma dynamics. For the controllers, Fenix
builds upon the ITER PCSSP,[13] which has been devel-
oped in Simulink®.[14]

For the plasma response, Fenix
relies on the ASTRA transport code,[15,16] which serves
as a general transport simulation framework and includes
a broad list of third-party or user-defined modules for
modeling particular physics, as is enumerated in Fig. 1 in
the next section.

The plasma model consists of a set of one-dimen-
sional (1-D) partial differential equations solving for the
main ion and electron temperatures, the ions and electron
species densities, and the plasma current density profile.
Moreover, a two-dimensional Grad-Shafranov solver
computes the magnetostatic equilibrium of the system,
and the circuit equations allow for the dynamical evolu-
tion of this equilibrium. The integrated simulation of a
flat-top scenario or a full discharge on a moderate work-
station computer completes in the order of a few minutes
of wall time. For example, a full-discharge simulation of
AUG typically takes 5 to 10 min, while it takes more time
for DEMO only due to the longer discharge duration.

Fenix demonstrated its capability as a flight simulator by
successfully applying it on AUG as its initial application. It
was used for validations of the reduced physics models,[11]

the controller modules (which emulate the actual AUG con-
trol system), and even for prediction of novel discharges as a
check on request from experimental leaders.[7–9] As Fenix
was ported to EU-DEMO with further developments,[10] the
same software architecture was kept, where the basic frame-
work and common code modules were generalized for being
shared between these two devices. Among these common
modules, the bridge between the control environment and the
plasma model has been the focus of this recent development
to make it correct, robust, and universal. Interfaces to the two
main blocks of the flight simulator are implemented in this
coupling module:

1. In the control loop (interface to Simulink), the
module takes actuator signals, such as the signal for gas
puff, pellets, heating, pumping, coil voltages, etc., as
input, while the diagnosed data, such as plasma current,
radiation power, density, and temperature profiles in the
1-D-grid, as well as the plasma shape given by the (fixed-
or free-boundary) equilibrium solver, e.g. Fable et al.[16]

incorporated in ASTRA, are fed back to the controllers as
output. In the current implementation, the synthetic diag-
nostics of 1-D profiles and equilibria are raw simulation
data from the physics modeling or directly computed
from them. They do not faithfully reflect the experimental

ones. Future development will enhance the realism of the
diagnostic data by reconstructing the physical quantities.
This will entail the integration of real-time tools, similar
to those used in the experiments, and potentially might
also include real-time techniques like in Felici et al.[6]

Although the full set of the 1-D profiles (densities, tem-
peratures, fluxes, conductivities, etc.) are available from
the physics calculation and can be logged in Fenix, only a
selection of the data is exposed to the controllers depend-
ing on the input of the control system.

2. In the physics simulation (interface to ASTRA),
the data flow is reciprocal to its counterpart in the control
loop, i.e., the coupling module passes all control signals
to the physics model, while it is fed with plasma
responses. In general, Simulink can work with variable,
as well as with fixed time steps individually for each
model component. Synchronization with physics is trig-
gered whenever one or multiple components in the
Simulink model are stepped. ASTRA and Simulink
exchange both the present time and the time step consis-
tently alongside the other signals during the communica-
tion, such that they will end up at a synchronous time at
the end of their respective steps.

Previously for proof of concept of a flight simulator, this
coupling was hardwired for a specific machine assuming
specific configurations.[7–9] Each signal was handled (e.g.,
memory-allocated, copied, unit-converted, specifying the
order in the data structure) individually. Therefore, modifying
the connections without remembering all details could be
quite error prone. A complete refactoring aimed at unifying
and universalizing the coupling module for both the DEMO
simulator and the original AUG would greatly improve the
overall structure and also reduce potential mistakes by mod-
ifying the hardwiring. While general multiscale co-simula-
tion frameworks, such as Veen et al.[17], already exist, our
approach prioritizes cleanliness, lightweight design, and ease
of installation by avoiding the use of third-party libraries for
coupling the physics co-simulation. Compared to the pre-
vious hardwired implementation, the revamped solution is
not only much more maintainable, but the same code without
any modification can also be extended to other machines or
configurations. The resulting implementation has been
applied and validated in recent studies.[10–12,18]

II. ARCHITECTURE CONCEPT AND DESIGN
CONSIDERATIONS

Multiple concepts are capable of achieving the same

WU et al. · ARCHITECTURE DESIGN AND INTERNAL IMPLEMENTATION OF A UNIVERSAL COUPLING

goal. As such, the software architecture was chosen based

simulation, where the forked ASTRA process belongs
also to a special resource being managed in this way.
Hence, the lifetime and visibility of the “state” data are
only limited to each individual simulation rather than as
global variables living in Simulink like in the previous
proof-of-concept implementation, which again enhances
the robustness and correctness by mitigating the risk of
forgetting to re-initialize any reusable global variable
between two consecutive simulations.

Error handling is mainly on the Simulink side. The
diagnostic messages from the physics calculations, pre-
viously printed on the screen (stdout and stderr), are
redirected to and logged in Simulink. In the case of failed
communications or a crashed ASTRA process, the
Simulink part of the coupling module, see Fig. 1, detects
and handles these events when the responses time out,
while control is given back to user, who will be asked to
decide whether to terminate the ongoing run or further
wait for a potential response.

In the design being established from the previous
discussions, inter-process communications will be needed
for the data exchange. The standard methods are pipes,
sockets, and shared memories. The last one was chosen to
achieve the maximum performance of the flight simula-
tor. Being portable and lightweight, the implementation
of the shared memory communications does not necessi-
tate any specific library apart from the standard POSIX
interface. The block diagram of the established design is
shown in Fig. 1.

The architecture was designed with flexibility in
mind, which means that these modules can be employed
in different tokamak configurations as is, without mod-
ifying the code infrastructure. Therefore, the physical
meanings, units, and types (scalar or vector), as well as
the number of diagnostic and control signals, should be
transparent to the code. As such, these metadata are
described in a simple table as input of the configuration,
which will be elaborated in the next section.

For simplicity, all signals are uniformly stored and
exchanged only in the binary format of the Institute of
Electrical and Electronics Engineers (IEEE) 754 double
precision, which has sufficient mantissa to exactly repre-
sent also a large range of integers. There is no end-
ianness issue when doing this, since in the current
version both Simulink and ASTRA run on the same
computer. To keep the interface on the ASTRA side
clean and simple, the module only exposes two func-
tions for reading and writing data respectively, both of
which take a variable number of arguments where each
of them corresponds to a signal in the order specified by
the configuration.

on the following considerations. To ensure the robustness
of the whole flight simulator, ASTRA was invoked as a
standalone process such that it was isolated in its own
address space. Specifically, the ASTRA process was
spawned by the standard fork–exec scheme, and its life-
time was managed by this coupling module living in the
Simulink process. Upon spawning, pipes were established
for logging purposes, and the paths of files describing the
physics model were passed as command line arguments to
the child process, thereby ensuring maximum compatibil-
ity with the original ASTRA program.

There were several advantages to doing this. First,
whenever the transport solver crashed because of numer-
ical errors or unphysical solutions, the crash would not
propagate to Simulink, as the latter is slow to (re-)start
and may contain unsaved development progress. If the
physics calculation crashed, the aborted ASTRA process
was cleaned up by the operating system while its parent
process, i.e., the Simulink instance, detected the anoma-
lous stop of the physics process in the coupling module
by the waitpid system call. Then, the resources acquired
for this simulation case would be released during the
aborting of the Simulink simulation loop and control
given back to the user again.

Second, since the standard Simulink scheme does not
give control back to the user when an element hangs or
waits, if an algorithm on the physics side does not termi-
nate, the user of the flight simulator will not be able to
operate, e.g., will not be able to evaluate and save the
previous data or be able to stop the current simulation
except restarting Simulink. The multiprocess architecture
easily solves this problem, too. If the elapsed time of a
physics calculation step exceeds a user-defined threshold
value, the user will be asked whether to stop the simula-
tion or to wait longer. In the first case, the recorded
simulation data up to the current step will still be avail-
able in Simulink after stopping the unresponsive ASTRA
process. Besides, this approach requires only minimum
changes to make ASTRA compatible with the flight-
simulator design. The feature of Simulink called the “S-
function” was chosen to implement this coupling with the
co-simulated physics.

Based on the decision made previously, resource
management is straightforward. The operating system
will recycle the resources (e.g., acquired memory, opened
files, and semaphores) of the ASTRA process after each
completed or terminated simulation. On the Simulink
side, the mechanism of S-function provides a RAII
(Resource Acquisition Is Initialization) interface to man-
age the resources during each normal start-stop cycle of
simulations, as well as for exceptional termination of a

To ensure the portability, a minimum requirement is
considered: the code is written in C89 and it requires only
a small subset of POSIX. Furthermore, it can be seen in
Fig. 1 that both modules on the Simulink side and the
ASTRA side are symmetric to some degree. Indeed, the
symmetric parts, especially the procedures for establish-
ing and performing communications, are unique but
shared in both modules for consistency.

III. DATA STRUCTURE AND FLEXIBLE DEFINITION OF THE
EXCHANGED DATA

As limited by the internal mechanism of Simulink,
the ports on the block representing the input and output of
tokamak physics are internally identified only by the
order they appear on the left (for input) and right (for
output) side of this S-function block. Therefore, each port
has common metadata that basically consist of the port
width (dimension) and the order in the port list. With this
information, the data structure of the shared memory and
the procedure for configuring the exchanged data can be
designed.

Both the diagnostic and the control signals have the
same layout of shared memory, which is described in
Fig. 2. It contains only the necessary information, which
can be understood by both Simulink and ASTRA inde-
pendent of the exact tokamak configuration. The layout is
designed to be backward compatible for future

extensions. As given in Fig. 1, the two instances of this
table are protected by their own semaphores for data
consistency and time-step synchronization.

The data structure in Fig. 2 was created during run-
time by code that takes Table I as input, where the latter
is a MATLAB® table defined by user. The “Port Name”
columns in this table contain arbitrary text as notes, and
these texts are tagged on the corresponding ports of the
Simulink block for indication of the port usages.
Moreover, Table I was generated by user-defined
MATLAB functions to ensure the consistency of the
data definition and also to further increase the flexibility.
For instance, one could use the raw mesh grid of the
temperature and density profiles as synthesized diagnos-
tic data. In this case, they will have the same width,
which is the number of grid points, e.g., 100. This num-
ber can be specified as a unique global constant in
Simulink, which will be evaluated and in all relevant
fields of Table I consistently.

During this process, no recompilation is needed. Hence,
the port configuration is fully under the user’s control rather
than a part of the hard-coded program. Once a simulation is
initialized, the only run-time overhead is copying (and
optionally scaling) the uniform data in memory spaces,
whose performance is restricted by the memory bandwidth
and should not be the bottleneck of the entire simulation. To
summarize, the flexible approach of defining exchanged data
is visualized in Fig. 3.

Fig. 1. Block diagram of the coupling and synchronization in Fenix.

IV. CONCLUSION Moreover, the scheme is valid for any code coupling of
this sort, also beyond the flight simulators for fusion.

Acknowledgments

This work was carried out within the framework of the
EUROfusion Consortium, funded by the European Union via

Fig. 2. Layout of a shared-memory block for diagnostic data or control signals in Figs. 1 and 3.

TABLE I

MATLAB Tables Containing the Port Configurations

Example of Control Signals Example of Diagnostic Data

Port Name Width Scaling Factora Port Name Width Scaling Factora

D-pellet source 1 10−19 Iplasma 1 106

Pump speed 1 1.0 Te profile 100 1.0
Coil voltages 10 1.0 ne profile 100 1019

aThe units themselves are not explicitly stored in the metadata; instead, during the configuration phase, the user defines the scaling
factors. The utilization of these scaling factors stems from legacy variable handling, and in future development, the goal is for them
to converge to a uniform value of 1 and ultimately be removed entirely. Presently, the scaling is calculated efficiently by optimized
code only on the Simulink side.

Fig. 3. Human interface and internal handling of metadata.

The design and implementation details of the cou-
pling between the plasma model and control environment
in the tokamak flight simulator Fenix were presented. The
completely refactored module is now robust, universal,
and flexible, where all data are handled
consistently.

the Euratom Research and Training Programme (grant agree-
ment no. 101052200-EUROfusion). The views and opinions
expressed, however, are those of the authors only and do not
necessarily reflect those of the European Union or the European
Commission. Neither the European Union nor the European
Commission can be held responsible for them.

Disclosure Statement

No potential conflict of interest was reported by the
authors.

ORCID

Chuanren Wu http://orcid.org/0000-0002-2523-1476
Pierre David http://orcid.org/0000-0003-4837-8507
Emiliano Fable http://orcid.org/0000-0001-5019-9685
Domenico Frattolillo http://orcid.org/0000-0003-3648-
8186
Massimiliano Mattei http://orcid.org/0000-0001-7951-
6584
Hartmut Zohm http://orcid.org/0000-0002-8870-7806

References

1. S. KIM et al., “Full Tokamak Discharge Simulation of
ITER by Combining DINA-CH and CRONOS,” Plasma
Phys. Control Fusion, 51, 10, 105007 (2019); https://doi.
org/10.1088/0741-3335/51/10/105007.

2. M. ROMANELLI et al., “JINTRAC: A System of Codes
for Integrated Simulation of Tokamak Scenarios,” Plasma
Fusion Res., 9, 3403023 (2014); https://doi.org/10.1585/pfr.
9.3403023.

3. V. PARAIL et al., “Self-Consistent Simulation of Plasma
Scenarios for ITER Using a Combination of 1.5D Transport
Codes and Free-Boundary Equilibrium Codes,” Nucl.
Fusion, 53, 11, 113002 (2013); https://doi.org/10.1088/
0029-5515/53/11/113002.

4. P. MOREAU et al., “Development of a Generic
Multipurpose Tokamak Plasma Discharge Flight
Simulator,” Fusion Eng. Des., 86, 6–8, 535 (2011);
https://doi.org/10.1016/j.fusengdes.2011.01.013.

5. B. MAVKOV et al., “Experimental Validation of a Lyapunov-
Based Controller for the Plasma Safety Factor and Plasma
Pressure in the TCV Tokamak,” Nucl. Fusion, 58, 5, 056011
(2018); https://doi.org/10.1088/1741-4326/aab16a.

6. F. FELICI et al., “Real-Time Physics-Model-Based
Simulation of the Current Density Profile in Tokamak
Plasmas,” Nucl. Fusion, 51, 8, 083052 (2011); https://doi.
org/10.1088/0029-5515/51/8/083052.

7. F. JANKY et al., “Simulation of Burn Control for DEMO Using
ASTRA Coupled with Simulink,” Fusion Eng. Des., 123, 555
(2017); https://doi.org/10.1016/j.fusengdes.2017.04.043.

8. F. JANKY et al., “ASDEX Upgrade Flight Simulator
Development,” Fusion Eng. Des., 146B, 1926 (2019);
https://doi.org/10.1016/j.fusengdes.2019.03.067.

9. F. JANKY et al., “Validation of the Fenix ASDEX Upgrade
Flight Simulator,” Fusion Eng. Des., 163, 112126 (2021);
https://doi.org/10.1016/j.fusengdes.2020.112126.

10. E. FABLE et al., “The Modeling of a Tokamak Plasma
Discharge, from First Principles to a Flight Simulator,”
Plasma Phys. Control. Fusion, 64, 044002 (2022).

11. E. FABLE et al., “A Practical Protocol to Emulate a
Reactor Scenario on Present Machines, with Application
to the ASDEX Upgrade Tokamak via Predictive
Modeling,” Nucl. Fusion, 63, 7, 074001 (2023); https://
doi.org/10.1088/1741-4326/acd205.

12. M. SICCINIO et al., “Development of the Plasma Scenario
for EU-DEMO: Status and Plans,” Fusion Eng. Des., 176,
113047 (2022); https://doi.org/10.1016/j.fusengdes.2022.
113047.

13. M. WALKER et al., “The ITER Plasma Control System
Simulation Platform,” Fusion Eng. Des., 96–97, 716
(2015); https://doi.org/10.1016/j.fusengdes.2015.01.009.

14. “Simulation and Model-Based Design,” MathWorks®;
https://www.mathworks.com/products/simulink.html.

15. G. V. PEREVERZEV and P. N. YUSHMANOV, “ASTRA
Automated System for TRansport Analysis,” Garching:
Max-Planck-Institut für Plasmaphysik (2002); https://hdl.
handle.net/11858/00-001M-0000-0027-4510-D.

16. E. FABLE et al., “Novel Free-Boundary Equilibrium and
Transport Solver with Theory-Based Models and Its
Validation Against ASDEX Upgrade Current Ramp
Scenarios,” Plasma Phys. Control. Fusion, 55, 12, 124028
(2013); https://doi.org/10.1088/0741-3335/55/12/124028.

17. L. E. VEEN et al., “Easing Multiscale Model Design and
Coupling with MUSCLE 3,” Int. Conf. Comput. Sci.,
12142, 425 (2020).

18. L. E. DI GRAZIA et al., “Development of Magnetic
Control for the EU-DEMO Flight Simulator and
Application to Transient Phenomena,” Fusion Eng. Des.,
191, 113579 (2023); https://doi.org/10.1016/j.fusengdes.
2023.113579.

WU et al. · ARCHITECTURE DESIGN AND INTERNAL IMPLEMENTATION OF A UNIVERSAL COUPLING

https://doi.org/10.1088/0741-3335/51/10/105007
https://doi.org/10.1088/0741-3335/51/10/105007
https://doi.org/10.1585/pfr.9.3403023
https://doi.org/10.1585/pfr.9.3403023
https://doi.org/10.1088/0029-5515/53/11/113002
https://doi.org/10.1088/0029-5515/53/11/113002
https://doi.org/10.1016/j.fusengdes.2011.01.013
https://doi.org/10.1088/1741-4326/aab16a
https://doi.org/10.1088/0029-5515/51/8/083052
https://doi.org/10.1088/0029-5515/51/8/083052
https://doi.org/10.1016/j.fusengdes.2017.04.043
https://doi.org/10.1016/j.fusengdes.2019.03.067
https://doi.org/10.1016/j.fusengdes.2020.112126
https://doi.org/10.1088/1741-4326/acd205
https://doi.org/10.1088/1741-4326/acd205
https://doi.org/10.1016/j.fusengdes.2022.113047
https://doi.org/10.1016/j.fusengdes.2022.113047
https://doi.org/10.1016/j.fusengdes.2015.01.009
https://www.mathworks.com/products/simulink.html
https://hdl.handle.net/11858/00-001M-0000-0027-4510-D
https://hdl.handle.net/11858/00-001M-0000-0027-4510-D
https://doi.org/10.1088/0741-3335/55/12/124028
https://doi.org/10.1016/j.fusengdes.2023.113579
https://doi.org/10.1016/j.fusengdes.2023.113579

	Abstract
	I. INTRODUCTION
	II. ARCHITECTURE CONCEPT AND DESIGN CONSIDERATIONS
	III. DATA STRUCTURE AND FLEXIBLE DEFINITION OF THE EXCHANGED DATA
	IV. CONCLUSION
	Acknowledgments
	Disclosure Statement
	References

