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Abstract — The flight simulator predicts the dynamic behavior of a full plasma discharge (described in 
terms of one-dimensional profiles) by employing multiple control loops based on synthetic diagnostics, 
which could also emulate realistic sensor and actuator models. It serves as a valuable tool for designing 
and optimizing plasma scenarios, as well as for assessing the feasibility of controlling discharges. The 
Fenix flight simulator, originally developed for the ASDEX Upgrade, has been ported to EU-DEMO and is 
capable of modeling any tokamak.

One of the essential elements in a flight simulator is the link between the co-simulated plasma physics 
and the control loops. This element is tightly coupled to the specifications of both the plasma model and the 
control algorithms to be implemented; but on the other hand, to ensure the portability and applicability of 
the flight simulator to different scenarios or devices, the coupling between plasma and control algorithms 
should be neutral to any concrete device and configuration. In addition, as a serial component of the 
control loop, data exchange takes place at every single step of the control simulation, therefore an efficient 
implementation is critical for the overall simulation performance. This paper summarizes the universal 
approach recently implemented in Fenix, which satisfies all the above requirements while remaining 
lightweight.
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I. INTRODUCTION

Integrated control simulation approaches[1–10] com-
bine scenario modeling with controllability studies in a 
self-consistent manner. More recently, tools are being 

developed that also allow for simulating full tokamak 
discharges and checking the feasibility of the operational 
and physics goals. The first-of-its-kind flight simulator 
Fenix[7–11] was originally developed for ASDEX 
Upgrade (AUG) full-discharge modeling.

Currently, Fenix is also used for studies on the EU- 
DEMO tokamak reactor prototype,[12] and can be even 
ported to other existing or planned tokamaks. Such a *E-mail: chuanren.wu@kit.edu
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flight simulator incorporates realistic controller and 
actuator models with nonlinear responses from the co- 
simulated plasma dynamics. For the controllers, Fenix 
builds upon the ITER PCSSP,[13] which has been devel-
oped in Simulink®.[14] 

For the plasma response, Fenix 
relies on the ASTRA transport code,[15,16] which serves 
as a general transport simulation framework and includes 
a broad list of third-party or user-defined modules for 
modeling particular physics, as is enumerated in Fig. 1 in 
the next section.

The plasma model consists of a set of one-dimen-
sional (1-D) partial differential equations solving for the 
main ion and electron temperatures, the ions and electron 
species densities, and the plasma current density profile. 
Moreover, a two-dimensional Grad-Shafranov solver 
computes the magnetostatic equilibrium of the system, 
and the circuit equations allow for the dynamical evolu-
tion of this equilibrium. The integrated simulation of a 
flat-top scenario or a full discharge on a moderate work-
station computer completes in the order of a few minutes 
of wall time. For example, a full-discharge simulation of 
AUG typically takes 5 to 10 min, while it takes more time 
for DEMO only due to the longer discharge duration.

Fenix demonstrated its capability as a flight simulator by 
successfully applying it on AUG as its initial application. It 
was used for validations of the reduced physics models,[11] 

the controller modules (which emulate the actual AUG con-
trol system), and even for prediction of novel discharges as a 
check on request from experimental leaders.[7–9] As Fenix 
was ported to EU-DEMO with further developments,[10] the 
same software architecture was kept, where the basic frame-
work and common code modules were generalized for being 
shared between these two devices. Among these common 
modules, the bridge between the control environment and the 
plasma model has been the focus of this recent development 
to make it correct, robust, and universal. Interfaces to the two 
main blocks of the flight simulator are implemented in this 
coupling module:

1. In the control loop (interface to Simulink), the
module takes actuator signals, such as the signal for gas 
puff, pellets, heating, pumping, coil voltages, etc., as 
input, while the diagnosed data, such as plasma current, 
radiation power, density, and temperature profiles in the 
1-D-grid, as well as the plasma shape given by the (fixed- 
or free-boundary) equilibrium solver, e.g. Fable et al.[16] 

incorporated in ASTRA, are fed back to the controllers as
output. In the current implementation, the synthetic diag-
nostics of 1-D profiles and equilibria are raw simulation
data from the physics modeling or directly computed
from them. They do not faithfully reflect the experimental

ones. Future development will enhance the realism of the 
diagnostic data by reconstructing the physical quantities. 
This will entail the integration of real-time tools, similar 
to those used in the experiments, and potentially might 
also include real-time techniques like in Felici et al.[6] 

Although the full set of the 1-D profiles (densities, tem-
peratures, fluxes, conductivities, etc.) are available from 
the physics calculation and can be logged in Fenix, only a 
selection of the data is exposed to the controllers depend-
ing on the input of the control system.

2. In the physics simulation (interface to ASTRA),
the data flow is reciprocal to its counterpart in the control 
loop, i.e., the coupling module passes all control signals 
to the physics model, while it is fed with plasma 
responses. In general, Simulink can work with variable, 
as well as with fixed time steps individually for each 
model component. Synchronization with physics is trig-
gered whenever one or multiple components in the 
Simulink model are stepped. ASTRA and Simulink 
exchange both the present time and the time step consis-
tently alongside the other signals during the communica-
tion, such that they will end up at a synchronous time at 
the end of their respective steps.

Previously for proof of concept of a flight simulator, this 
coupling was hardwired for a specific machine assuming 
specific configurations.[7–9] Each signal was handled (e.g., 
memory-allocated, copied, unit-converted, specifying the 
order in the data structure) individually. Therefore, modifying 
the connections without remembering all details could be 
quite error prone. A complete refactoring aimed at unifying 
and universalizing the coupling module for both the DEMO 
simulator and the original AUG would greatly improve the 
overall structure and also reduce potential mistakes by mod-
ifying the hardwiring. While general multiscale co-simula-
tion frameworks, such as Veen et al.[17], already exist, our 
approach prioritizes cleanliness, lightweight design, and ease 
of installation by avoiding the use of third-party libraries for 
coupling the physics co-simulation. Compared to the pre-
vious hardwired implementation, the revamped solution is 
not only much more maintainable, but the same code without 
any modification can also be extended to other machines or 
configurations. The resulting implementation has been 
applied and validated in recent studies.[10–12,18]

II. ARCHITECTURE CONCEPT AND DESIGN
CONSIDERATIONS

Multiple concepts are capable of achieving the same
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simulation, where the forked ASTRA process belongs 
also to a special resource being managed in this way. 
Hence, the lifetime and visibility of the “state” data are 
only limited to each individual simulation rather than as 
global variables living in Simulink like in the previous 
proof-of-concept implementation, which again enhances 
the robustness and correctness by mitigating the risk of 
forgetting to re-initialize any reusable global variable 
between two consecutive simulations.

Error handling is mainly on the Simulink side. The 
diagnostic messages from the physics calculations, pre-
viously printed on the screen (stdout and stderr), are 
redirected to and logged in Simulink. In the case of failed 
communications or a crashed ASTRA process, the 
Simulink part of the coupling module, see Fig. 1, detects 
and handles these events when the responses time out, 
while control is given back to user, who will be asked to 
decide whether to terminate the ongoing run or further 
wait for a potential response.

In the design being established from the previous 
discussions, inter-process communications will be needed 
for the data exchange. The standard methods are pipes, 
sockets, and shared memories. The last one was chosen to 
achieve the maximum performance of the flight simula-
tor. Being portable and lightweight, the implementation 
of the shared memory communications does not necessi-
tate any specific library apart from the standard POSIX 
interface. The block diagram of the established design is 
shown in Fig. 1.

The architecture was designed with flexibility in 
mind, which means that these modules can be employed 
in different tokamak configurations as is, without mod-
ifying the code infrastructure. Therefore, the physical 
meanings, units, and types (scalar or vector), as well as 
the number of diagnostic and control signals, should be 
transparent to the code. As such, these metadata are 
described in a simple table as input of the configuration, 
which will be elaborated in the next section.

For simplicity, all signals are uniformly stored and 
exchanged only in the binary format of the Institute of 
Electrical and Electronics Engineers (IEEE) 754 double 
precision, which has sufficient mantissa to exactly repre-
sent also a large range of integers. There is no end-
ianness issue when doing this, since in the current 
version both Simulink and ASTRA run on the same 
computer. To keep the interface on the ASTRA side 
clean and simple, the module only exposes two func-
tions for reading and writing data respectively, both of 
which take a variable number of arguments where each 
of them corresponds to a signal in the order specified by 
the configuration.

on the following considerations. To ensure the robustness 
of the whole flight simulator, ASTRA was invoked as a 
standalone process such that it was isolated in its own 
address space. Specifically, the ASTRA process was 
spawned by the standard fork–exec scheme, and its life-
time was managed by this coupling module living in the 
Simulink process. Upon spawning, pipes were established 
for logging purposes, and the paths of files describing the 
physics model were passed as command line arguments to 
the child process, thereby ensuring maximum compatibil-
ity with the original ASTRA program.

There were several advantages to doing this. First, 
whenever the transport solver crashed because of numer-
ical errors or unphysical solutions, the crash would not 
propagate to Simulink, as the latter is slow to (re-)start 
and may contain unsaved development progress. If the 
physics calculation crashed, the aborted ASTRA process 
was cleaned up by the operating system while its parent 
process, i.e., the Simulink instance, detected the anoma-
lous stop of the physics process in the coupling module 
by the waitpid system call. Then, the resources acquired 
for this simulation case would be released during the 
aborting of the Simulink simulation loop and control 
given back to the user again.

Second, since the standard Simulink scheme does not 
give control back to the user when an element hangs or 
waits, if an algorithm on the physics side does not termi-
nate, the user of the flight simulator will not be able to 
operate, e.g., will not be able to evaluate and save the 
previous data or be able to stop the current simulation 
except restarting Simulink. The multiprocess architecture 
easily solves this problem, too. If the elapsed time of a 
physics calculation step exceeds a user-defined threshold 
value, the user will be asked whether to stop the simula-
tion or to wait longer. In the first case, the recorded 
simulation data up to the current step will still be avail-
able in Simulink after stopping the unresponsive ASTRA 
process. Besides, this approach requires only minimum 
changes to make ASTRA compatible with the flight- 
simulator design. The feature of Simulink called the “S- 
function” was chosen to implement this coupling with the 
co-simulated physics.

Based on the decision made previously, resource 
management is straightforward. The operating system 
will recycle the resources (e.g., acquired memory, opened 
files, and semaphores) of the ASTRA process after each 
completed or terminated simulation. On the Simulink 
side, the mechanism of S-function provides a RAII 
(Resource Acquisition Is Initialization) interface to man-
age the resources during each normal start-stop cycle of 
simulations, as well as for exceptional termination of a 



To ensure the portability, a minimum requirement is 
considered: the code is written in C89 and it requires only 
a small subset of POSIX. Furthermore, it can be seen in 
Fig. 1 that both modules on the Simulink side and the 
ASTRA side are symmetric to some degree. Indeed, the 
symmetric parts, especially the procedures for establish-
ing and performing communications, are unique but 
shared in both modules for consistency.

III. DATA STRUCTURE AND FLEXIBLE DEFINITION OF THE
EXCHANGED DATA

As limited by the internal mechanism of Simulink,
the ports on the block representing the input and output of 
tokamak physics are internally identified only by the 
order they appear on the left (for input) and right (for 
output) side of this S-function block. Therefore, each port 
has common metadata that basically consist of the port 
width (dimension) and the order in the port list. With this 
information, the data structure of the shared memory and 
the procedure for configuring the exchanged data can be 
designed.

Both the diagnostic and the control signals have the 
same layout of shared memory, which is described in 
Fig. 2. It contains only the necessary information, which 
can be understood by both Simulink and ASTRA inde-
pendent of the exact tokamak configuration. The layout is 
designed to be backward compatible for future 

extensions. As given in Fig. 1, the two instances of this 
table are protected by their own semaphores for data 
consistency and time-step synchronization.

The data structure in Fig. 2 was created during run- 
time by code that takes Table I as input, where the latter 
is a MATLAB® table defined by user. The “Port Name” 
columns in this table contain arbitrary text as notes, and 
these texts are tagged on the corresponding ports of the 
Simulink block for indication of the port usages. 
Moreover, Table I was generated by user-defined 
MATLAB functions to ensure the consistency of the 
data definition and also to further increase the flexibility. 
For instance, one could use the raw mesh grid of the 
temperature and density profiles as synthesized diagnos-
tic data. In this case, they will have the same width, 
which is the number of grid points, e.g., 100. This num-
ber can be specified as a unique global constant in 
Simulink, which will be evaluated and in all relevant 
fields of Table I consistently.

During this process, no recompilation is needed. Hence, 
the port configuration is fully under the user’s control rather 
than a part of the hard-coded program. Once a simulation is 
initialized, the only run-time overhead is copying (and 
optionally scaling) the uniform data in memory spaces, 
whose performance is restricted by the memory bandwidth 
and should not be the bottleneck of the entire simulation. To 
summarize, the flexible approach of defining exchanged data 
is visualized in Fig. 3.

Fig. 1. Block diagram of the coupling and synchronization in Fenix. 



IV. CONCLUSION Moreover, the scheme is valid for any code coupling of 
this sort, also beyond the flight simulators for fusion.
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Fig. 3. Human interface and internal handling of metadata. 

The design and implementation details of the cou-
pling between the plasma model and control environment 
in the tokamak flight simulator Fenix were presented. The 
completely refactored module is now robust, universal, 
and flexible, where all data are handled 
consistently. 
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