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Deutsche Zusammenfassung

Menschen verfügen über außergewöhnliche Greif- und Manipulationsfähig-
keiten, welche durch ein komplexes Zusammenspiel von Kinematik, Muskeln,
Sensorsignalen, reflexbasierten Reglern und Kognition auf semantischer Ebene
ermöglicht werden. Die menschliche Hand verfügt über 21 Freiheitsgrade die
über 38 Muskelstränge aktuiert werden und erlaubt durch ca. 18.000 Sensoren
die Wahrnehmung diverser Stimuli wie statische und dynamische Deforma-
tion der Haut, Vibration, Temperatur, Schmerz Gelenkkonfigurationen und
aufgebrachte Muskelkraft. Es ist daher nicht verwunderlich, dass ein überpro-
portional großer Teil des Motor- und somatosensorischen Cortex des Gehirns
der Steuerung und Sensorik der Hand zugeordnet ist. Um die Steuerung dieses
komplexen Systems zu ermöglichen unterteilen Menschen den Greifvorgang
unterbewusst in mehrere Aktions-Phasen welche Sensorstimuli mit kontext-
spezifischen Regelzielen verbinden. Der Greifvorgang wird darüber hinaus
stark durch erlerntes Vorwissen über die Aufgabe und die involvierten Objekte
beeinflusst.

Myoelektrischen Handprothesen und humanoiden Robotern fehlen viele dieser
Fähigkeiten des Menschen. Das Greifen bei humanoiden Robotern und Prothe-
sen basiert primär auf der visuellen Wahrnehmung der Szene durch den Roboter
oder Prothesenträger. Zwar kann ein Prothesenträger basierend auf visueller
Wahrnehmung und Vorwissen detailliert planen wie das Objekt zu greifen ist,
allerdings ist bei Prothesen die Bandbreite der Schnittstelle zur Steuerung zwi-
schen Mensch und Prothese stark limitiert. Jede einzelne Bewegung der Finger
und des Handgelenks muss durch eine Sequenz an Kontrollsignalen manuell
gesteuert werden. Auch Aspekte des Greifens wie die richtige Griffkraft, das
Rutschen von Objekten aus dem Griff und und Deformation der gegriffenen
Objekte muss über visuelle Information gesteuert werden. Die hohe kognitive
Last, die durch die manuelle Steuerung aller Aspekte des Greifens erzeugt wird,
ist einer der Gründe aus dem fast die Hälfte der Prothesenträger nach ein bis
zwei Jahren ihre Prothese gar nicht mehr oder nur passiv nutzen. Bei Huma-
noiden Robotern ist die Abhängigkeit von visuellen Informationen ebenfalls
eine gravierende Einschränkung, da das semantische Verständnis der Szene, der
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Aufgabe und der involvierten Objekte ebenso fehlt wie die jahrelange Erfahrung
im Greifen von Objekten.

Ziel dieser Arbeit ist es, in anthropomorphe Hände integrierte haptische Senso-
ren und Sensoren Wahrnehmung der Umgebung zu nutzen um semi-autonome
und autonome Steuerungen zu entwickeln, die das Greifen mit Prothesen und
Roboterhänden vereinfachen. Um diese Steuerungen zu ermöglichen werden
multi-modale Sensoren und ein leistungsstarkes eingebettetes System in Hände
und frei skalierbare Finger integriert. Speziell für Prothesenhände stellt diese
Arbeit ein semi-autonomes Kontrollschema vor, welches basierend auf nur zwei
Nutzereingaben die Auswahl und Regelung des richtigen Griffs sowie der Dre-
hung des Handgelenks steuert. Für das Greifen, Anheben, Halten und Abstellen
von Objekten stellt diese Arbeit einen voll-autonomen Ansatz basierend auf der
Erkennung von Kontakten, Interaktionskräften und Ereignissen vor. Der Ansatz
ist durch Erkenntnisse über die Steuerung des Greifens bei Menschen inspiriert.
Im Folgenden werden die drei zentralen Beiträge der Arbeit vorgestellt:

Anthropomorphe Hände mit Integriertem Multimodalem Sensorsystem:
Der erste Beitrag der Arbeit ist die Entwicklung und Integration eines multi-
modalen Sensorsystems sowie eines eingebetteten Systems in anthropomorphe
Hände. Das Sensorsystem besteht aus Druck- und Scherkraftsensoren, Gelenk-
winkelencodern, Beschleunigungssensoren und Temperatursensoren zur hapti-
schen Wahrnehmung sowie Distanzsensoren, inertialen Messeinheiten und einer
Kamera zur Wahrnehmung der Umgebung. Das Sensorsystem erweitert den
Stand der Technik im Hinblick auf die Menge an verschiedemen integrierten Sen-
sormodalitäten und dem Grad der Integration. Im Gegensatz zu vorhergehenden
Arbeiten ist das mechanische Modell der Finger inklusive aller haptischen Sen-
soren ist mechanisch frei skalierbar in Abhängigkeit von nur sieben Parametern.
Um diese Skalierbarkeit auf elektrischer Ebene zu ermöglichen ist das Sensor-
system in einzelne Module aufgeteilt die frei kombiniert werden können um die
gesamte verfügbare Oberfläche des skalierten Fingers auszunutzen. Zur Verar-
beitung, der Sensordaten und Steuerung der Hand werden eingebettete Systeme
entwickelt welche die Ausführung rechenintensiver Aufgaben wie neuronaler
Netze erlauben und direkt in der Hand verbaut sind. Darüber hinaus leistet
diese Arbeit einen Beitrag zum mechanischen Design anthropomorpher Hände,
unter anderem durch die Konzeption eines miniaturisierten und Reibungsarmen
unteraktuierten Mechanismus.

II



Semi-Autonomes Greifen: Mithilfe des Sensorsystems und des eingebetteten
Systems wird eine neuartige semi-autonome Steuerung für Prothesenhände
entwickelt, welche einige Aspekte des Greifens autonom steuert. Die Steuerung
nutzt visuelle Information des zu greifenden Objekts, um dem Nutzer automa-
tisch einen passenden Griff vorzuschlagen. Ebenso wird mithilfe der inertialen
Messeinheit die Handorientierung erfasst und basierend darauf ein Griff von
der Seite oder von Oben vorgeschlagen. Nach Bestätigung der Vorschläge durch
den Nutzer wird das Handgelenk automatisch orientiert und die Finger formen
den, für das Objekt passenden, Griff. Die Hand schließt automatisch sobald
sich das Objekt in Reichweite befindet. Im Gegensatz zu verwandten Arbeiten
erfolgt die Ausfürhrung der semi-autonomen Steuerung vollständig auf dem
eingebetteten System der Prothese und nutzt ausschließlich Sensoren welche in
der Hand selbst verbaut sind. Über den Stand der Technik hinausgehend wer-
den alle Freiheitsgrade der Prothese simultan gesteuert. Die Steuerung wurde in
einer Nutzerstudie evaluiert um die Reduktion der kognitiven und körperlichen
Belastung des Prothesennutzers im Vergleich zur Nutzung einer klassischen,
manuellen Prothesensteuerung zu ermitteln.

Vom Menschen Inspirierte Greifphasensteuerung: Der dritte Beitrag der
Arbeit ist die Entwicklung einer, vom Menschen inspirierten, Greifphasensteue-
rung für fünffingrige anthropomorphe Hände. wie neurowissenschaftliche Stu-
dien zeigen, unterteilt der Mensch den Greifprozess unterbewusst in einzelne
Aktionsphasen, jede gestartet durch ein bestimmtes Ereignis in den haptischen
Sensordaten und jede mit einen eigenen Steuerungsziel. Die Greifphasensteue-
rung in dieser Arbeit adaptiert diese Strategie um automatisch die Finger der
Hand mit dem Objekt in Kontakt zu bringen, Normalkräfte auszuüben, das
Objekt zu heben, abzustellen und loszulassen. Jede Phase dieser Steuerung nutzt
einen eigenen Regler mit einem korrespondierenden Regelziel, welches für diese
Phase spezifisch ist. Übergänge zwischen Phasen werden durch charakteristi-
sche Ereignisse in den haptischen Sensordaten ausgelöst. Jeder Motor in der
multiartikulierten Hand führt seine eigene Reglerinstanz aus, basierend auf
den Sensordaten aus den Fingern die von diesem Motor angetrieben werden.
Wärend verwandte Arbeiten Greifphasensteuerungen entweder auf einem Ba-
ckengreifer demonstrieren oder die Finger teilweise manuell gesteuert werden
müssen, werden in dieser Arbeit alle Finger einer fünf-fingrigen hand in allen
Phasen autonom gesteuert. Für Fälle in denen die Hand das Object an nicht mit
Sensoren ausgestatteten Flächen berührt, ist die GreifphasenSteuerung explizit
in der Lage anhand von unvollständigen Sensordaten zu regeln, wärend die Kon-
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takflächen in Verwandten Arbeiten üblicherweise auf sensorisierte Flächen der
Hand beschränkt werden. Die Greifphasensteuerung wurde in Greifversuchen
mit diversen Haushaltsgegenständen und Lebensmitteln getestet.
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1. Introduction

Humans exhibit exceptional grasping and manipulation skills which originate
from a complex interplay of kinematics and actuation, sensory stimuli, neuro-
morphic control and higher level cognition. The human hand is endowed with
21 degrees of freedom and actuated by 38 muscle strains (Jones and Lederman,
2006), resulting in extraordinary dexterity of fingers, thumb and wrist. Each
square centimeter of hand skin tissue is innervated by hundreds of tactile and
proprioceptive afferents, conveying diverse sensory information about static
and dynamic skin deformation, vibration, tension, joint configurations and
muscle states (Johansson and Vallbo, 1979). It is hence not surprising that a
disproportionally large part of the sensory and motor cortex inside the brain is
allocated to sensing and control of both hands (Ehrsson et al., 2000). To enable
control of such a complex system, the brain subconsciously breaks down the task
into several action-phases that link sensory stimuli to context-specific control
goals (Johansson and Flanagan, 2009a). The grasping or manipulation process
is heavily informed by prior knowledge about the task and properties of the
involved objects.

In comparison, humanoid robotic and prosthetic grasping and manipulation ca-
pabilities in every-day environments are blatantly lacking (Negrello et al., 2020).
Both humanoid robots and prosthesis users mainly utilize visual information to
control grasping tasks. In case of myoelectric prostheses (driven by electric mo-
tors and controlled through voluntary muscle contractions), the bandwidth of
the interface from user to the prosthesis is usually severely limited and feedback
from prosthesis to the user is typically not implemented. This lack of bandwidth
leads to a high cognitive burden while grasping, as every aspect of the grasp
like hand orientation, preshape and grasping force needs to be deliberately con-
trolled based on visual cues observed by the user. For myoelectric prostheses,
lack of a suitable control interface is identified as one of the main disadvantages
by user studies (Cordella et al., 2016), contributing to 44 % of prosthesis users
abandoning their prosthesis (Salminger et al., 2020). For an autonomous robot
the problem of having only visual cues is amplified by the lack of both general
understanding of the visual input and lack of prior knowledge compared to
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Chapter 1. Introduction

a human. While the benefits of multimodal haptic feedback and closed loop
control algorithms are evident in both cases, the inherent complexity of such an
approach, as observed in the human role model, makes progress in this field
challenging.

The thesis investigates how haptic and environmental sensing integrated into
prosthetic and humanoid robotic hands can be utilized to develop autonomous
behaviors that aid grasping and manipulation with prostheses and humanoid
robot hands. To enable these semi-autonomous and autonomous behaviors, a
multimodal sensor suit and a corresponding processing system are integrated
into anthropomorphic hands and freely scalable fingers. Specifically for prosthe-
ses, the thesis presents a semi-autonomous control scheme that automates parts
of the pre-grasping process, i. e. forming a preshape, rotating and stabilizing
the wrist and choosing an appropriate grasping force. Additionally, a human-
inspired grasp phases controller based on detection of contacts, interaction forces
and transient events is developed to enhance the grasping capabilities of the
hands.

To tackle the problems posed in the thesis, transfer and adaptation of the physiol-
ogy as well as control strategies employed in human grasping to robotic systems
has great potential to contribute to dexterous grasping and manipulation capa-
bilities. Learning from the proven human approach to grasping allows to divide
the inherently complex problem of dexterous grasping and manipulation into
more clearly defined subproblems. Such transfer lends itself especially to the
fields of humanoid robotic hands as well as prosthesis since the kinematics and
appearance of such hands is already close to the human role model.

We first introduce the central research questions posed in the thesis and present
contributions made towards solving these questions. Afterwards an overview
of the structure of the thesis is given.

1.1. Problem Statement

The thesis contributes to answering the question on how prostheses and hu-
manoid robotic hands can aid their users in grasping and manipulation tasks
through intelligent systems and control. The problem of enabling dexterous
grasping and manipulation is approached by transferring and adapting con-
cepts and techniques observed in humans to prosthetic and humanoid robotic
hands. To this end, an embedded multimodal perception system is developed
and subsequently utilized for semi-autonomous pre-shaping and autonomous
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Figure 1.1.: Overview of the contributions in the thesis. Sensors perceive the
state of the hand, robot/user as well as interactions with the environ-
ment. Based on the provided sensor information a semi-autonomous
pre-grasp control scheme controls hand preshape and wrist orienta-
tion prior to grasping known objects. During the actual grasp, an
automatic grasp-phases controller generates suitable finger motions
and contact forces to grasp, hold and replace unknown objects.

force-controlled grasping for arbitrary objects. While the contributions in the
thesis are primarily developed in the context of prosthetics, the majority of the
presented work is readily applicable to robotic grasping. An overview of the
contributions in this thesis is given in Figure 1.1. The thesis is structured around
three central research questions:

1. How to perceive the environment as well as capture the prosthesis user
state and intention to implement helpful autonomous behavior?
Multimodal sensing is key to robust closed-loop control of grasping and
manipulation tasks. This includes both sensor data about the local environ-
ment of the hand through tactile and distance sensing as well as vision data
but also information about the intent of the user. All sensor data streams
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Chapter 1. Introduction

should be ideally processed locally so that no external devices are needed
for control and cabling is minimized. As prostheses need to adapt to the
user’s size and dimensions, the developed solution must to be adaptable
to different hand sizes and especially different finger dimensions.

2. How to choose a hand preshape and wrist orientation prior to prehen-
sion?
With classical Electromyography (EMG) based control, a prosthesis user
has to manually control both hand aperture and wrist rotation to correctly
approach an object prior to grasping. A semi-autonomous control scheme
can partly automate and thereby simplify this process by automatically or
interactively choosing both preshape and wrist rotation, ideally leading to
a reduction in cognitive burden. The first research aspect is hence how to
interpret the available multimodal sensor data and then act appropriately
according to the estimated user’s intent. The second aspect is to implement
such a control scheme on resource-constraint hardware directly embedded
into the hand itself.

3. How to grasp safely with the right amount of force?
Most humanoid robotic hands and prostheses do not provide feedback
about the amount of grasping force to the user. Hence, both robots and
prostheses users have to estimate the amount of applied grasping force
based on only visual clues which can lead to dropping or unintendedly
squishing objects. Additionally, the coordination between thumb and
fingers is usually difficult to achieve for a prosthesis user, as at least two
degrees of freedom have to be controlled simultaneously. One possible
solution is to automatically control the movement of fingers and thumb
as well as the grasping force based on tactile data. The main challenge for
such an controller is to adapt to unknown objects with different weights,
surface properties, shape, size and softness. Furthermore, not only holding
an object is important in grasping, but also closing the fingers around the
object and placing the object back down.

1.2. Contributions

This thesis contributes to three areas of research: multimodal sensor systems for
prosthetic and humanoid robotic hands, semi-autonomous control of prostheses
and autonomous force control of the complete grasping process. With the
integration of a novel multimodal sensor system for haptic and environmental
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Chapter 1. Introduction

sensing and an embedded system into scalable fingers and the palm of the hands,
the groundwork for intelligent behavior is laid. Sensors and embedded system
are then used to implement a semi-autonomous control scheme for prosthesis,
that allows to choose grasp type and approach direction as well as to execute
the grasp using only two user inputs. Lastly the haptic sensor system is utilized
to implement an autonomous grasp force controller based on human-inspired
segmentation of the grasping process into distinct phases.

Athropomorphic Hands with a Multimodal Sensor System: The first contri-
bution of this thesis is the development and integration of a multimodal tactile
and environmental sensor system as well as an embedded system into an anthropo-
morphic hand. The sensor system comprises pressure and force sensors, joint
angle encoders, accelerometers as well as distance and temperature sensors.
These sensors are distributed throughout the mechanical structure of the fin-
gers, extending related work in terms of multimodality and level of integration.
Further sensors, including an Inertial Measurement Unit (IMU) and a camera
are embedded into the palm. For processing of the multimodal data, embed-
ded systems are designed that allow for sensor based control and allow to run
compute-intensive tasks like convolution neural networks. In contrast to re-
lated work, the mechanical model of the fingers is automatically scalable by seven
parameters to allow deriving different finger sizes from a single model. The
sensor system is modularized and adapts to the size of the fingers by combining
individual modules to match the size of the finger. Further, the thesis contributes
to the mechanical design of the hand, among other things in terms of a novel
underactuated mechanism design.

Semi-Autonomous Grasping: Using the multimodal sensor system devel-
oped in the first part, the thesis presents a novel semi-autonomous control
scheme that controls several aspects of the grasp automatically. The control
scheme utilizes object information extracted from camera images to suggest a
corresponding preshape. Based on the hand orientation, the control scheme
chooses an approach direction to the object and actuates fingers, thumb as well
as wrist accordingly upon approval by the user. During approach, the wrist
orientation is continuously monitored and adjusted to compensate for arm rota-
tion. The hand closes automatically as soon as it is close enough to the object. In
contrast to related work, the control scheme relies solely on sensors and processing
resources available in the prosthetic hand itself. Unlike previous methods, the control
scheme controls all degrees of freedom of the hand simultaneously. The scheme is

5



Chapter 1. Introduction

evaluated in a user study to access cognitive and physical workload reduction
in comparison to classical EMG-based control.

Human-inspired Grasp Phases Control: The third contribution of the thesis
is a human-inspired grasp phases controller for five-fingered hands. As studies in
neuroscience show, humans subconsciously divide the process of grasping into
distinct action phases, each triggered by a characteristic event and with its
own individual control goal. The grasp phases controller in the thesis adapts
this control strategy to wrap the fingers around an object, apply normal force
to the object, lift it, place it back down and unload the object. Each phase of
grasping employs its own sub-controller with a control goal specific to this
phase. Transitions between these phases are detected based on distinct haptic
events. Each motor in the hand is independently controlled by its own sub-
controller instance based on the haptic sensor data provided by the controlled
fingers. While related works demonstrate controllers either on parallel grippers
or manually select fingers for the grasp, the proposed grasp-phases controller
controls all fingers of a five-fingered hand fully autonomously. The controller explicitly
deals with incomplete sensor data arising from the object contacting non-sensorized
surfaces of the hand or fingers missing the object. The controller is evaluated in
grasping trials with household and food items.

1.3. Structure of the Thesis

The reminder of this thesis is structured into five parts. Chapter 2 intro-
duces relevant works in the areas of hardware design and control of prosthetic
hands. The following chapters describe the main contributions of this thesis.
Chapter 3 describes the developed prosthetic hands with their multimodal sen-
sor system and embedded system. In Chapter 4, the implementation of the
semi-autonomous control scheme for grasp selection is presented. The human-
inspired grasp phases controller is detailed in Chapter 5. The thesis concludes
with a discussion of the contributions in Chapter 6.
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The goal of the thesis is the conception and implementation of a system that
supports grasping and manipulation with prosthetic and humanoid robotic
hands by transferring sensing abilities and strategies observed in humans. This
chapter introduces and discusses the state of the art in different fields relevant
to this goal.

First, Section 2.1 introduces different haptic sensor technologies suitable for use
in humanoid robotic hands, with a focus of readily available systems. Further-
more, the integration of sensor systems and embedded electronics into fingers
and hands is detailed. Next, different approaches for semi-autonomous control
of prostheses is discussed in Section 2.2. Section 2.3 then details related work
in control in grasping and manipulation tasks with a focus on methods that
consider the whole grasping process beginning with closing the fingers around
an object, lifting, holding, replacing and releasing the object.

2.1. Multimodal Sensor-Systems

Humans rely heavily on haptic and visual perception to plan and execute grasps
for arbitrary objects. To be able to utilize grasping strategies similar to those in
humans, prostheses and humanoid robotic hands hence have to embed a multi-
tude of different sensors into their mechanical structure. Yet, anthropomorphic
hands and especially fingers are already complex mechanical systems where
installation space is heavily constrained. Sensor candidates for integration must
hence be carefully selected based on size, ease of integration and quality of
the signals they provide. Therefore, Subsection 2.1.1 first introduces human
haptic perception, followed by an introduction to potentially suitable sensing
technologies in Subsection 2.1.2. Subsection 2.1.3 then discusses the selection
of a multimodal sensor system from these technologies. We then present related
work regarding the integration of both sensors and embedded systems into
humanoid hands in Subsection 2.1.4.
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2.1.1. Human Hand Haptic Perception

Understanding the physiology of human tactile perception provides valuable
insights on how robotic sensory systems can be designed on hardware level and
is a necessary prerequisite to understanding human grasp control. The glabrous
(hair-free) skin on the palmar side of the hand is innervated by mechanoreceptive
units consisting of afferent fibers and endings. The mechanoreceptive afferents
(nerves carrying spike trains generated by receptors) are distinguished into
categories based on their receptive field and reaction to static and dynamic
stimuli (Knibestöl and Vallbo, 1970; Johansson and Åke B. Vallbo, 1983). Two
categories can be distinguished by analyzing the response to static and ramped
indentation. While one category (around 44 % of afferents), the slowy adapting
afferents (SA), respond with a sustained discharge to static indentation, fast
adapting (FA) afferents encode transient events without a lasting static response.
Each of these two categories can be further divided into type I afferents with a
small and well defined receptive field and type II afferents with a larger receptive
field with diffuse borders.

Figure 2.1 illustrates the receptive field and neural response to indentations of
the skin next to the receptor. Type I afferents show a well-defined and confined
spatial response. The sensitivity decreases rapidly as the distance from the recep-
tors increases by a few millimeters. This can be seen in the almost exponential
increase in indentation depth for each step in the height map of both type I affer-
ents. Both contain multiple areas of highest sensitivity attributed to multiple
receptors connected to the afferent fiber. Especially the SA type I afferents are
very sensitive to edge contours of objects indenting the skin (Johansson et al.,
1982b). Fast adapting type I afferents are excited by mechanical oscillations in
the range of 5 Hz to 40 Hz. This magnitude of response is dependent on the
specific function of the oscillation. While a sinusoidal mechanical indentation
may elicit only a minor response, ”fluttery” or ”stuttering” oscillations cause a
strong response (Johansson et al., 1982a).

Type II afferents show a far less localized response to tactile stimuli. They exhibit
a single region of maximum sensitivity that gradually fades over comparatively
large distances. In contrast to the type I afferents, the decrease in sensitivity is
more linear. Fast adapting type II afferents are exquisitely sensitive to mechanical
transients and mechanical oscillations between 100 Hz to 300 Hz (Johansson
et al., 1982a). The afferents respond to stimuli over large areas, for example a
whole finger or good portion of the palm (Johansson and Åke B. Vallbo, 1983).
Slow adapting type II afferents mainly respond to remote static skin stretch. The
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Figure 2.1.: Receptive fields and stimuli response of mechanoreceptive afferents.
The left shows a detailed view of the high-sensitivity receptive field
of each afferent. The receptive field is displayed as a height map,
indicating at which indentation depth in micrometers with a round
0.4 mm probe the afferent is exited depending on the position of
the stimulus. Below the receptive field, an exemplary spike train
response of the afferent to an indentation is displayed. The indenta-
tion is first increased as a constant rate and then held constant before
dropping rapidly. On the right, the high-sensitivity receptive field is
exemplarily embedded into a human hand for scale comparison and
to highlight the complete sensing range of the type II afferents. The
fast adapting type II afferent shows a large receptive field given a
sufficiently large stimulus. The slow adapting type II afferent shows
a larger receptive field when subjected to shear forces. (Graphs
based on figures and data in (Johansson and Åke B. Vallbo, 1983),
hand sketch based on OpenClipart illustration)

direction of stretch significantly influences the response of individual afferents.
Some are mainly sensitive to skin stretches in single directions, while others are
exited by skin stretch in two opposite directions.

As observed in (Johansson and Vallbo, 1979), the density of mechanoreceptive
units is highest in the fingertip and decreases towards the wrist. This density gra-
dient is not uniform but exhibits sudden changes. A sharp step down in density
is observed between the very tip of the distal phalanx and the Distal Interpha-
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langeal (DIP) joint. Another step down in unit density is apparent between the
finger and palm. The maximum density of FA I and SA I units is 140 units/cm2

and 70 units/cm2 respectively. In the palm these values decrease to 25 units/cm2

and 10 units/cm2. FA II and SA II units are allocated significantly more sparsely
in the glabrous skin. While FA II units follow the density gradient between
finger and palm with densities of 22 units/cm2 and 10 units/cm2 respectively,
SA II units exhibit an opposite trend with 10 units cm−2 in the fingertip and
18 units cm−2 for the palm. The total number of mechanoreceptors in the gla-
brous skin of the hand is estimated to be around 17.000 units at the age between
20 and 30.

2.1.2. Tactile Sensors

The sophisticated sense of touch exhibited by humans has inspired a broad
range of research into antropomorphic haptic sensors and artificial skins in
material science, mechanical and electrical engineering as well as robotics. A
large variety of measurement principles has been employed to develop such
sensors, including optical and visual, resistive, capacitive sensing, strain gauges,
magnetic flux, vibrations, Micro-ElectroMechanical Systems (MEMS) and the
piezo resistive effect. Each approach exhibits different advantages and disad-
vantages regarding resolution, range, hysteresis, spatial resolution, linearity,
noise, physical dimensions, accuracy, robustness and ease of production. In
contrast to other sensing modalities like sound and vision, very few haptic sen-
sors are readily available. This makes it necessary to pick the right technology
for the application from scientific literature, recreate the sensor and adapt the
design. This section hence highlights different design methods for tactile sensors
in the literature and discusses advantages and disadvantages relevant to the
application in anthropomorphic fingers and hands. the selection of the proper
technology is key because the sensors serve as the basis for all other parts of this
work, hence special attention is given to evaluate all available options.

A general overview of recent developments of haptic sensors is presented in
(Park et al., 2018) in terms of sensing devices and in (Zou et al., 2017) with a focus
on signal processing. Robotics-focused surveys can be found in (Saudabayev
and Varol, 2015) for sensors integrated into robotic hands and (Wang et al., 2018)
specifically for soft robots, in (Kappassov et al., 2015; Yousef et al., 2011) grouped
by sensing principle and in (Dahiya et al., 2010) grouped by miniaturization
technique.
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The application of haptic sensors to humanoid robotic hands presents a set of
requirements that makes this use case especially challenging. As these sensors
are physically interacting with the environment and a mechanical stress is hence
unavoidable, haptic sensors should be easy to fabricate and replace or are able to
self-heal. Jet, in many cases, current tactile sensor and skin technologies require
dedicated laboratories or sophisticated machinery for production. The tightly
constrained and irregularly shaped space inside the palm and the fingers of
humanoid robotic hands makes miniaturization of the sensors as well as the
corresponding signal processing electronics necessary. Due to the above reasons
the related work presented in the following will focus on sensors and systems
that are potentially robust, readily available, easy to manufacture/integrate
and do not require sophisticated external signal processing. While there is also
strong interest in tactile sensing for whole-body robotic skin, the application
differs in that spatial density of sensors in the hand is substantially higher and
sensing is far less distributed. The related work in this area will hence focus on
technologies allowing high spatial density and exclude sensors geared towards
a more area-wide applications. Potential technologies for inclusion in the sensor
system are the following:

• Hall effect-based tactile sensors

• Barometer based tactile sensors

• Capacitive tactile sensors

• Resistive tactile sensors

• Optical tactile sensors

• Visuotactile sensors

In the following, each technology is introduced with its advantages and disad-
vantages.

Parts of this sections have been reprinted from (Weiner et al., 2019) with changes
(CC BY 4.0).

Hall Effect-Based Tactile Sensors

(Kyberd and Chappell, 1993) first describe the basic principle of using a hall
effect sensor together with a moveable magnet in soft material for force sensing.
A variant using a hallow dome of soft material is reported in (Torres-Jara et al.,
2006). (Tomo et al., 2016a,b) and (Wang et al., 2016) utilize commercially available
digital 3-axis hall effect sensors in combination with a magnet embedded into
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Figure 2.2.: Schematic structure of magnetic shear force sensors with Printed
Circuit Board (PCB) (green), a mounted Hall effect sensor (black), a
cylindrical magnet (silver) and silicone (cut at sensor center line for
visualization)

flexible material above the sensor to measure normal and shear forces through
the displacement of the magnet. Arrays of these sensors were integrated into the
Allegro hand in (Tomo et al., 2017; Mohammadi et al., 2019; Funabashi et al., 2019)
and the iCub hands and fingers in (Tomo et al., 2018) and (Holgado et al., 2019b).
An interesting variation of the barometer-based sensing method is presented in
(Votta et al., 2019), where a single sensor is used to measure elastic deformation
of the finger structure induced by applied forces. By combining the permanent
magnet with an electromagnet, (Holgado et al., 2018) present a method for
dynamic change of the resolution of the sensor based on the current through the
electromagnet. Iterative improvements have since been made to the mechanical
structure and experimental characterization of the sensor in(Holgado et al.,
2019a, 2020a). Additionally, a version of the above sensor has been presented in
(Holgado et al., 2020b) that incorporates a capacitive proximity sensor into the
mechanical structure.

The clear advantage of utilizing 3D Hall effect sensors as the base of tactile
sensors is the ability to sense applied forces in all three dimensions. This makes
them especially interesting for grasp force control and friction coefficient es-
timation, despite a number of considerable disadvantages. Resolution of the
normal force direction is notably smaller than the resolution of both shear force
directions as only a small amount of soft material sits between the sensor and
magnet which is completely compressed easily. Small variations in the position
of the magnet above the sensor during manufacturing lead to large offsets that
are different for each sensor, making a per-sensor offset calibration necessary.
Shape and strength of the magnetic field of the magnet is highly nonlinear so
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that an linear change in the sensor value does not correspond to a linear change
in magnet position. The change in magnet position is additionally dependent on
the mechanical properties of the surrounding soft material, which again shows
nonlinear deformation behavior and introduces hysteresis into the measurement.
Because the magnetic flux is only measured in three dimensions, the position of
the magnet can not be reconstructed as the floating magnet has six degrees of
freedom inside the soft material. The magnetic field is symmetrical around the
axis between the magnetic poles, eliminating the rotational degree of freedom
around the normal force axis, but tilt around both shear force axes induces
unwanted measurement errors. A possible solution would be to suspend the
magnet in the middle between three sensors and compare the measured flux
values to an analytical model (lookup table) to obtain a precise estimate of the
magnets pose and thereby displacement. This approach has not been studied in
literature to the best of the authors knowledge.

(Hellebrekers et al., 2019) substitute the magnet above the sensor with magnetic
particles mixed into silicone. The mixture is then cured under an external mag-
netic field to align the particles. This way the magnetic field can deform together
with the silicone, allowing the sensor to sense stimuli on a large area that would
not be feasible to cover with a classical magnet. Since the particles form a com-
plex magnetic field that is not easily analytically described, the correspondence
between stimulus and sensor signal has to be determined using a regression
method. (Hellebrekers et al., 2020) employ a neural network for this regression
task, which later is enhanced by a self-supervised learning scheme to adapt to
unseen sensor modules as described in (Bhirangi et al., 2021). The adaptation to
new sensor modules takes around 400 interactions with the sensor.

Barometer Based Tactile Sensors

(Tenzer et al., 2014) utilize MEMS barometers to design tactile normal force
sensors. The sensors are completely covered and filled with polyurethane,
which acts as the force transmitting medium. When a force is exerted on the soft
material, it is transmitted to the sensor and measured as a change in the pressure
reading. An overview of the original sensors is depicted in Figure 2.3. These
sensors have been integrated into the three fingers of the iHY Hand (Odhner et al.,
2014) and subsequently sensor arrays have been made commercially available
by RightHand Robotics Inc.1. A robotic fingertip with similar sensor and an

1https://www.labs.righthandrobotics.com/takkstrip
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(a) (b)

Figure 2.3.: a) Inside view of the MEMS barometers originally used in (Tenzer
et al., 2014); b) Sensor array cast into polyurethne rubber; Reprinted
from: Tenzer et al. , “The Feel of MEMS Barometers”, Transactions
on Neural Systems & Rehabilitation Engineering, V. 30, ©2014 IEEE.

additional distance sensor is available from SparkFun Electronics2. The sensors
have also be integrated into a three finger tripper (Pelliccia et al., 2018). Recently,
this measurement principle has been adapted in (Kõiva et al., 2018) to sense
interactions of an artificial fingernail mounted on a custom sensorized fingertip
of a shadow hand in (Kõiva et al., 2013) with the environment. Barometers
have also been applied to the shadow hand as a skin, covering the palm of the
hand using a matrix of sensors in (Koiva et al., 2020). (Piacenza et al., 2018)
incorporate multiple barometer sensors into a tactile dome and regression based
mapping of the raw sensor signals to force intensity and position of contact on
the dome.

MEMS barometer based normal force sensors exhibit a very high sensitivity,
making them well suited for detection of initial contact between hand and
the environment. Since the barometers measure absolute pressure, only the
sensor range from 1 Bar (ambient pressure) to the maximum pressure readable
by the sensor can be used for force measurement. As the sensors are meant
for measuring ambient pressure, the upper sensing limit oftentimes is at about
2.1 Bar, meaning close to half of the sensing range of the sensor is not usable
during operation. Depending on the stiffness of the soft material, this can lead
to saturation of the barometer signal. As with 3D Hall effect-based shear force
sensors, the barometer based sensors are covered by soft material, resulting in a
compliant and high-friction surface well suited to physical interaction.

The original sensor implementation used comparatively large barometers cov-
ered by a lid with a large venting hole. When these sensors are casted into soft
material, the hole allows the mixture to flow into the casing and directly cover

2https://www.sparkfun.com/products/14687
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the sensors. Casting becomes far more difficult with miniaturized sensors where
the venting hole measures in the range of 0.1 mm to 0.4 mm as the mixture will
not flow into the sensor. This can be mitigated by casting small soft covers for
the sensors including a pressure chamber (Weiner et al., 2018a; Ma et al., 2021) or
by removing the covers, drilling lager holes and gluing the lid back on as done
in (Koiva et al., 2020). Alternatively, sensors for medical applications can be used
where the sensing element is covered by elastic gel ((Weiner et al., 2021), see
subsection 3.2.1), requiring no customization of the sensor. A pressure chamber
is used in (George Thuruthel et al., 2021) in combination with an self-healing
elastomer to realize detection and localization of damage through sensing of
abrupt pressure loss.

Capacitive Tactile Sensors

For the humanoid robot iCub, capacitive tactile sensors were developed in
(Schmitz et al., 2010) and integrated into the hand. One plate of the capacitor
is formed by a flexible PCB, the other by a deformable conductor. Both are
separated by silicone foam. The sensor signal is digitalized using a commer-
cially available capacitance-to-digital converter. In an extension of the work, the
production process is optimized in order to make the sensors easier to manu-
facture and more robust (Jamali et al., 2015), the resulting sensors are shown in
Figure 2.4. The capacitive sensing principle is also used as the basis for robotic
skin, spanning larger parts of the iCub robot (Schmitz et al., 2011; Maiolino et al.,
2013). Capacitive sensor arrays have been commercialized for force distribution
measurement for product design and engineering3, demonstrating practicality
of the principle.

The principle of capacitive tactile sensors is expanded in (Göger et al., 2013)
by incorporating capacitance-based distance sensing and demonstrating the
application of the sensor to an anthropomorphic hand. The system is improved
in (Alagi et al., 2016), depicted in Figure 2.4, allowing for individual sensor
cells to be joined or split to dynamically change sensor sensitivity and spatial
resolution.

Due to their simple structure, capacitive sensors can be easily adapted to dif-
ferent geometries inside hands and fingers, provided that the geometry can be
unfolded into a planar surface for the fabrication of a flexible PCB. While the
electronics for capacitance measurement is relatively simple, the extension to

3https://pressureprofile.com/sensor-systems/sensors

15

https://pressureprofile.com/sensor-systems/sensors


Chapter 2. Related Work

(a) (b)

Figure 2.4.: a) Capacitive normal force sensors of iCub in (Jamali et al., 2015); b)
Capacitive Sensing Module in (Alagi et al., 2016); Reprinted from:
Jamali et al. , “A new design of a fingertip for the iCub hand”, IROS
2015, ©2015 IEEE and Alagi et al. ; “A Versatile and Modular Capaci-
tive Tactile Proximity Sensor”, HAPTICS 2016, ©2016 IEEE.

proximity sensing requires more sophisticated electronics and hence more space.
It is also important to note that the magnitude of the proximity signal and to
some degree also the tactile reading depend on the material of the sensed object.
In an effort to reduce the amount of wiring needed for sensors with multiple
taxels, (Sonar et al., 2018) develop a readout scheme for a single large taxel based
on measurement of the capacity at different frequencies to localize the area of
contact on the sensor.

Resistive Tactile Sensors

Traditional Force Sensing Resistors (FSRs) made of resistive ink between two
conductive traces or plates have seen little use in tactile sensors since these
sensors usually exhibit poor sensitivity and linearity. Hence most research
in this area is focused on creating sensors with improved characteristics, for
example by varying the resistive material. In (Weiss and Wörn, 2005), a resistive
sensing method is introduced, using conductive foam and interlaced traces on
rigid PCBs. When the foam is compressed onto the traces, resistance between
the traces is changed, allowing for an estimation of the force acting on the foam
based on the change in resistance. A tactile fingertip based on this measurement
method using a Three-Dimensional Molded Interconnect Device (3D-MID) as
the fingertip structure for the Shadow hand is implemented in (Kõiva et al.,
2013). The fingertip structure is manufactured using injection-molding of special
thermoplastic which, in a second step, can be selectively metallized using a
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(a) (b)

Figure 2.5.: a) Resistive sensing fingertip in (Kõiva et al., 2013); b) Resistive
3D force sensing in (Zhang et al., 2015); Reprinted from: Kõiva
et al. , “A highly sensitive 3D-shaped tactile sensor”, International
Conference on Advanced Intelligent Mechatronics 2013, ©2013 IEEE;
Zhang et al. , “Fingertip Three-Axis Tactile Sensor for Multifingered
Grasping”, Transactions on Mechatronics V. 20 I. 4, ©2015 IEEE.

laser, forming electric traces on the surface. Using this method, the resistive
measurement principle can be applied and tailored to the 3D-geometry of a
finger without the need for more fragile flexible PCBs. The tactile fingertip is
depicted in Figure 2.5. Since injection-molding requires an expensive mold, this
approach is less suited for a scalable finger design.

The authors in (Suzuki, 2017) construct curved tactile fingertips using a flexible
PCB and conductive rubber instead of foam. By layering two sensors above one
another, shear forces can be estimated by comparing the difference in position
of the pressure distribution on upper and lower sensor. Another approach
for measuring shear forces is presented in (Zhang et al., 2015), who arrange
four sensing elements in a cross configuration covered by a soft dome, shown
in Figure 2.5. Shear forces can hence be estimated by taking the difference
between opposite sensing elements, similar to the strain gauge based TrackPoint
technology pioneered by IBM in (Berstis and Zimmerman, 2000). Utilizing
conductive fabric, (Wade et al., 2017) construct tactile skin for curved surfaces.
Above the force sensors, a layer of thermistors is utilized for active thermal
sensing of contacting objects. A customizable and low-cost variant of a resistive
tactile matrix is presented in (Fiedler et al., 2021) by cutting all conductive
traces out of aluminum foil using a cutting plotter, allowing for arbitrary shapes.
A conducting foil is then placed between two aluminum layers to form the
sensor. As the four works above make use of analog sensors, a large amount
of wires is needed to connect the sensors to the readout electronics for higher
spatial resolutions. All presented sensor foils need to be custom-made for the
application.
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(a) (b)

Figure 2.6.: a) Optical normal force sensor array in (De Maria et al., 2015); b) Prox-
imity sensor based force sensors on the yaws of a parallel gripper
in (Yamaguchi et al., 2018); Reprinted from: Sensors and Actuators
A: Physical, V. 175, De Maria et al. , “Force/tactile sensor for robotic
applications”, ©2012, with permission from Elsevier; Yamaguchi
et al. , “A Gripper for Object Search and Grasp through Proximity
Sensing”, IROS 2018, ©2018 IEEE.

Optical Tactile Sensors

Sensors based on an array of Light Emitting Diodes (LEDs) and phototransistors
covered by light scattering foam are presented and characterized in (De Maria
et al., 2012). When the foam is deformed, the intensity of reflected light changes
for each pair of LED and sensor, allowing to estimate normal and shear forces
acting on the foam. Sensors of this type have been included into the Sandia Hand
(Quigley et al., 2014) and PRISMA Hand II (Liu et al., 2019). A related principle
has been proposed in (Torres-Jara et al., 2006) using a dome of soft material over
multiple pairs of LEDs and sensors. The sensing principle is similar to the later
developed OptoForce sensors, 3-axis force sensors which have been commercially
available until 2020.

Three tactile systems using commercially available digital proximity sensors
have recently been introduced in (Patel et al., 2018; Yamaguchi et al., 2018) and
(Lancaster et al., 2019). The sensors are covered by a layer of a translucent
elastomer, allowing the sensor to measure the intensity of reflected light through
the material before an object comes in contact with the sensor. When an object
comes into contact with the elastic layer it is compressed causing even more
light to be reflected to the sensor. The measured light intensity can then be
translated into a force measurement as the material properties of the elastomer
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are known. The design hence combines both pre-touch distance information
and normal force in a single system with miniaturized sensors integrating signal
processing and digital bus interfaces. Due to the sensing principle, optical tactile
sensors are naturally resistant to electromagnetic interference. The downside of
this method is that the measurement is dependent on the optical properties of
the objects in proximity as well as stray light from external light sources.

Visuotactile Sensors

Vision based tactile sensors, named visuotactile sensors, convert tactile stimuli
into images. They consist of a camera directed at the backside of a transparent
and flexible material which is often covered by a opaque coating at front side.
The material is supported by a sheet of glass or plastic at the back side so that
pressure exerted on the soft material is not transmitted to the camera. When an
object comes in contact with the front side of the flexible material it is indented,
which creates a visual representation that is recorded by the camera.

The underlying principle has already been exploited for robotics in the 1960’s
as detailed in the survey paper in (Abad and Ranasinghe, 2020b), but recent
developments in both miniature cameras and artificial intelligence based image
processing have sped up the development considerably. A visuotactile sensor
called GelForce, presented in (Sato et al., 2008, 2010), places a camera inside a
transparent half-dome with opaque paint at the surface. Colored markers on
the inside of the half-domes surface are visually tracked to sense deformation
of the dome and calculate contact position and the force vector. In a later
version, the half-dome is painted with thermo-sensitive pigments such that
the domes color indicated the temperature of contacted objects. The authors
in (Chorley et al., 2009) and (Winstone et al., 2012) also employ a half-dome,
but here the markers are located at the tips of pegs that point inwards into the
half-dome. The pegs amplify the movement of the markers when the half-dome
is deformed, resulting in an increased sensitivity of the sensor. Multiple cameras
are employed in (Yamaguchi and Atkeson, 2016) on two gripper yaws covered
by a flat layer of transparent material with markers at the surface. The markers
allow calculation of forces and torque in normal direction and the transparent
material allows to capture images of the object in contact or close vicinity.

Another class of visuotactile sensors, called GelSight aims to capture the local
surface geometry at the area of contact. GelSight sensors are also composed
of a camera with transparent soft material on top. The outer geometry of the
soft material is flat and the outer surface is covered in reflective coating. A red,
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(a) (b)

Figure 2.7.: a) The commercially available Gelsight sensor; b) Image generated
by a Gelsight sensor with a screw pressed against the sensor’s sur-
face

green and blue LED is directed from the sides inward with an rotational offset
of 0°, 120° and 240° respectively. An object that indents the soft material will
hence not only create a visible imprint, the slopes of this imprint will also be
colored according to the color of the diode they are sloped towards. This allows
a reconstruction of the 3D contact geometry.

A first demonstrator for surface reconstruction was presented in (Johnson and
Adelson, 2009) and (Johnson et al., 2011). The application to robotic grippers
was first demonstrated in (Li et al., 2014) and improved in (Dong et al., 2017).
Later, (Donlon et al., 2018) published a simplified design called Digit including
Computer Aided Design (CAD) data, a python framework and simulation envi-
ronment for machine learning with the goal to make the technology available to
a broader community. The sensor technology has also been commercialized4 in
a sensor package suitable for use with the Allegro multi-finger hand, depicted
in Figure 2.7. To be able to capture the tactile imprint and forces simultaneously,
(Yuan et al., 2015, 2017) combine the design with colored markers as similar to
the GelForce sensors.

An alternate approach for simultaneous contact geometry and force measure-
ment is presented in (Li et al., 2018) who design polymer beams whose compres-
sion can be seen on the same image as tactile data. Since the markers interfere
with the 3D contact geometry reconstruction, (Abad and Ranasinghe, 2020a)
use ultraviolet (UV) markers that are only visible to the camera if illuminated
by a UV LED. Similar to the GelForce sensors, (Abad et al., 2021b) introduce
thermo-sensitive pigments to the sensors. In their latest work, (Abad et al.,

4https://digit.ml/
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2021a) integrate both UV markers and thermo-sensitive pigments to a sensor
that can sense contact geometry, forces and temperature.

While visuotactile sensors are able to provide rich information on contact geom-
etry, location and in some cases forces and temperature, there are three main
disadvantages of such sensors, namely size, shape and required processing
recourses. The cameras need to be mounted at a distance from the opaque
coating that corresponds to their minimum focal length, which is in the range
of centimeters for the cameras usually used in the these sensors. To reduce the
resulting thickness of the sensor (Donlon et al., 2018), (Ma et al., 2019) and (Wang
et al., 2021) introduce a mirror that reflects the tactile image to the side, which
allows to mount the camera perpendicular to the tactile surface. This reduces the
thickness of such sensors at the cost of sensor length. Secondly, the shape of the
GelSight sensor surface is flat, hence reliable sensor signals can only be gathered
if the contact between finger and sensor is roughly normal to the sensing surface.
While (Romero et al., 2020) presents the design of a fingertip-shaped sensor, it
offers reduced tactile resolution while increasing manufacturing complexity. The
third disadvantage is the need for high bandwidth connections and extensive
computing resources for transmission and processing of the image data. Lastly,
the reflective coating abrades over time as it is applied to the outside of the soft
material and is directly in contact with the manipulated objects.

2.1.3. Selection of Tactile Sensing Technologies

Although development of the sensor system is an important part of this work,
the focus lies on the integration of a sensor systems into humanoid robotic hands
and not on the development of sensor technologies themselves. Hence, read-
ily available sensors and technologies are preferred over involved fabrication
techniques at the potential cost of sensitivity and resolution. From this technical
point of view, this work has been inspired by the successful CellulARSkin, a large
scale robot skin made out of modules that makes heavy use of readily available
sensors and fabricating processes (Cheng et al., 2019). Another consideration is
the compatibility of the sensing technologies selected for inclusion in the sensor
system. Optimally, all sensor modalities should share a continuous mechanical
interface to the environment which should preferably be soft to increase friction
and compliance. As described in subsection 2.1.2, there is a range of possible
candidates for the realization of a human-inspired tactile sensor system. On the
other hand it becomes clear that no single sensing technology can substitute all
four kinds of mechanoreceptors in humans simultaneously. Hence, multiple

21



Chapter 2. Related Work

sensing technologies are combined in this work to build a more complete system
inspired from the human tactile sense.

In this context the technical realization of the sensing abilities of slow adapting
type II afferents proves especially challenging. Only few of the considered tactile
sensing technologies are able to sense shear forces. While visuotactile sensors
with visual markers offer the ability to track shear forces and are able to detect
object geometry similar to SA type I afferents their inherent size does not allow
for integration into human-sized fingers. The compute-intensive evaluation of
the resulting video stream presents an additional hurdle. Capacitive, resistive
and optical tactile sensors allow to estimate shear forces when used in an array
configuration of at least four sensors, but the resulting amount of analog signals
is strongly disadvantageous. Hall effec-based tactile sensors are not as sensitive as
visuotactile sensors and offer lower spatial resolution as optical tactile or capacitive
sensor arrays. Yet, they offer small-scale housing, are cast into compliant soft
material and offer a digital interface for sensor readout minimizing external
electronics and cables. For these reasons they are chosen as the basis for SA type
I afferents in the anthropomorphic fingers in this work. As 3D Hall effect sensors
offer sample rates into the kHz range, they can also serve to sense mechanical
transients corresponding to the capabilities of FA type I afferents and to an
extend FA type II afferents. Due to the poor normal force resolution of Hall
effect-based tactile sensors, an additional sensor modality is needed to represent
the function of SA type I afferents.

For normal force sensing inspired by SA type I afferents, a larger selection of
sensing technologies is available. Capacitive sensors allow adaptation to arbitrary
shapes since the sensing elements are flexible and can be cut into any shape.
Yet, they offer a comparably poor sensitivity depending on the sensor size and
are prone to interference when the grasped object is conductive. The sensors
need additional read out electronics, namely an Capacitance to Digital Con-
verter (CDC), that requires additional cabling and space in proximity of the
sensor. Resistive sensors can also be arranged relatively freely with respect to
the geometry of humanoid fingers and are less prone to interference due to the
material of grasped objects. But to make use of this potential, more complex
fabrication techniques like 3D-MID are necessary. Resistive sensors share the
disadvantage of requiring additional circuitry and hence space in the form of
Analog to Digital Converters (ADCs) for signal readout with capacitive sensors.
Proximity sensor based optical tactile sensors offer both pre-touch and normal
force sensing combined with integrated signal processing and a digital interface
in a single readily available sensor package. For these sensors to work optimally,
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the finger needs to be transparent and its surface should be flat to allow optimal
transmission of light from the inside of the finger material. The sensitivity to
normal force depends on the reflective properties of the grasped object and the
thickness of the transparent material.

Barometer based tactile sensors show exquisite sensitivity combined with a in-
tegrated signal processing electronics in miniature packages. While they are
not as adaptable to the finger’s geometry as capacitive or resistive sensors, their
small size of just 2 mm by 2 mm still allows to utilize multiple sensors even in
small spaces. Fabrication of barometer based tactile sensors is very simple as the
barometers only need to be cast into silicone to create normal force sensors. Due
to their integrated signal processing, easy fabrication and exceptional sensitivity,
barometer based tactile sensors are chosen as the main modality for normal force
sensing in this work. Similar to Hall effect-based tactile sensors the sample rate
of up to 200 Hz allows to incorporate to an extend the functionality of FA type
I afferents. Since optical tactile sensors offer valuable pre-touch information in
combination with integrated signal processing, they will be used sparingly to
provide supplementary information.

To mimic the functionality of FA type II afferents, an MEMS accelerometer
will be integrated into the finger to sense more global mechanical transients.
The tactile sensor system discussed above hence represents the functions of all
four mechanoreceptive units. As all selected sensors are readily available in
standard packages, the complete sensor system can be mounted on standard
PCBs. Fabrication of the PCBs and soldering of the components are standard
processes with very little variance. The working principle of hall-effect based
tactile sensors, barometer based tactile sensors and optical tactile sensors is dependent
on a soft material as mechanical interface. Therefore, these sensors can be cast
into the same soft material, easing the manufacturing process.

2.1.4. Sensorized Hands and Fingers

Providing meaningful sensory feedback for closed-loop control of grasping
and manipulation tasks requires not only measurement of normal forces and
contact locations. Like the human role model, anthropomorphic hands benefit
from further sensing modalities including temperature and vibrations sensors,
joint angle encoders, internal forces/torques and even pain receptors. Anthro-
pomorphic hands further offer the possibility to include sensing modalities
not present in the human role model like distance sensing or cameras, which

23



Chapter 2. Related Work

can further support the grasping process. All these sensors as well as their
corresponding cables need to be embedded into the heavily constrained space
of human-sized fingers, which is considered a major challenge in robotics as
detailed in (Saudabayev and Varol, 2015). Especially for prosthetic applications,
anthropomorphic appearance and dimensions are required for a prosthesis to
be accepted by most users (Cordella et al., 2016). This not only implies that each
finger needs to be sized individually, e. g. the middle finger should be larger
than the little finger, but also that the hand and finger sizes of the prosthesis
should match the size of the able hand.

This section highlights works that aim to solve different aspects of the issues
raised above while focusing on anthropomorphic hands and fingers, as these
present unique challenges compared to robotic grippers. Hands with extrinsic
actuation, for example by compressed air, are not included since the focus lies
explicitly on fully integrated hands akin to classical prostheses and humanoid
robotic hands. A broader overview of prosthetic and robotic hands can be found
in (Piazza et al., 2019), an overview of the (mechanical) capabilities of commercial
prosthesis is provided in (Belter and Dollar, 2013). The thesis makes use of
the nomenclature for human hand bones and joints, described for reference
in appendix A. In the following the integration of haptic and environmental
sensors into fingers and complete anthropomorphic hands is described.

Humanoid Robotic Fingers

Parts of the following discussion on related work have been reprinted from
(Weiner et al., 2019) with changes (CC BY 4.0).

In (Wang et al., 2011), the authors present tendon-actuated fingers integrating an
potentiometer-based joint angle encoder in each joint and an FSR-based tactile
sensor at each phalanx. The routing of the cables through the finger as well as
measures against cable break are not documented.

For the Shadow hand5, an anthropomorphic five-fingered robotic hand, multiple
sensing systems where integrated. A fingertip with an resistive sensing array
consisting of 12 taxels is presented in (Kõiva et al., 2013). The mechanical
structure of the fingertip is realized as an 3D-MID, with electrodes at the outside
of the fingertip shape. A Computer Numerical Control (CNC) milled conductive
foam is placed around the fingertip. At the inside of the fingertip, the ADC and
other electronic components can be directly soldered to the fingertip. The ADC

5https://www.shadowrobot.com/dexterous-hand-series/
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is connected to the finger internal Serial Peripheral Interface (SPI) bus provided
by the shadow hand. In addition, dynamic events can be measured using a
3-axis accelerometer. The fingertip was later extended with an mechatronic
fingernail (Kõiva et al., 2018). The fingernail sits on top of a soft nail bed which
includes both an barometer based normal force sensor and a Hall effect-based
shear force sensor. In addition, an accelerometer attached to the nail allows to
pick up mechanical transients, exemplarily shown for detecting the end of tape
on a tape roll. Recently, the palm of the hand was also sensorized using an array
of 60 barometer based normal force sensors mounted on a flexible PCB.

The tendon-actuated fingers of the three-fingered iHY Hand in (Odhner et al.,
2014) embed an array of barometer based tactile sensors on both the distal and
proximal phalanx. The Intermediate phalanx is fused into the distal phalanx,
resulting in two Degree of Freedom (DoF). Instead of a classical rotational joint,
the Proximal Interphalangeal (PIP) joint is constructed from a bar of flexible
material which elastically deforms as the finger is actuated. Four optical fibers
are running through the neutral phase of the bar with a light source at the
distal and two phototransistors at the proximal end. Hence, for each finger
eight analog signals need to be digitalized by corresponding signal processing
electronics. The resulting signals are used to estimate flexion, torsion and shear
of the joint using a model based approach. Signal transmission through the
joints is realized by free-moving cables with service loops at the joints.

The multimodal BioTac tactile fingertip from SynTouch6 incorporates 19 elec-
trodes embedded into a fluid-filled soft fingertip. When pressure is applied to
the fingertip, the distribution of the liquid inside the finger changes and the
impedance between the different electrodes changes with it. A pressure sensor
measures high frequency vibrations through the liquid and additional temper-
ature sensors in combination with heating elements enable temperature flux
measurements. The structure and working principle of the sensor is described
in (Wettels et al., 2014). The fingertip fuses the distal and intermediate phalanx.
A proximal phalanx or an PIP joint are not included. The intermediate phalanx
houses the signal processing electronics and pressure sensor while the distal
phalanx is covered by the electrodes. As the fingertip is not perfectly sealed, the
fluid needs to be refilled periodically7.

A finger specifically designed for use in prostheses is presented in (Ming Cheng
et al., 2017). The linkage-actuated finger includes all three finger joints and
embeds an unspecified tactile sensor in the fingertip as well as joint angle

6https://www.syntouchinc.com/en/sensor-technology/
7https://www.syntouchinc.com/wp-content/uploads/2018/08/BioTac-Manual-V.21.pdf
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measurement in metacarpophalangeal (MCP) and PIP joint. All sensors are
connected to a signal processing PCB located inside the distal phalanx. The
routing of the cables through the finger as well as measures against cable break
are not documented.

The authors in (Segil et al., 2019) present the design of a prosthetic fingertip for
the Bebionic hand with integrated normal force and proximity sensing. The
finger is 3D-printed with a cavity at the tip for a PCB with sensors. On this
PCB a single barometric pressure sensor and a distance sensor is placed. The
remainder of the cavity is then cast into silicone.

Humanoid Robotic Hands

Published works on sensorized humanoid hands are classified into three cate-
gories in this work. the first category puts special emphasis on actuation either
by means of novel underactuation mechanisms or in the contrary on a high
number of active DoF. While the sensor system is in most cases a side aspect in
these category of works, especially the strategies to integrate sensors into the
highly actuated structure are of high relevance.

The second category is highly focused on manufacturing aspects of sensorized
humanoid hands. This includes novel manufacturing techniques for the me-
chanical structure and embedding of sensors as well as integration of sensors
using for example 3D-printing techniques. Additionally works are included that
emphasize an especially robust or cost-aware design.

The third category is concerned with the sensor system itself as the primary
contribution. Works in this category for example explore new sensor principles
to be included in hands, present multimodal sensor systems or aim at advanced
control of grasping force or automatic control of parts of the grasping tasks.

Exemplary works are depicted in Figure 2.8. Parts of the following discussion on
related work have been reprinted from (Weiner et al., 2018a), “The KIT prosthetic
hand: Design and control”, IROS 2018, ©2018 IEEE.

Focus on Actuation

• The hands of the humanoid robot ARMAR-4 presented in (Asfour et al.,
2013) are pneumatically actuated five-fingered hands with human propor-
tions. The hand is shown in Figure 2.8c. Each finger is actuated by two
fluidic actuators, the thumb can additionally be actuated in circumvention
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direction. Actuation of both ring and little fingers are coupled, resulting in
nine DoF controllable over a valve system in the hand’s palm. Each finger
is equipped with joint angle encoders and pressure sensors for model
based contact force estimation. All electronics needed for valve control
and sensor signal processing are embedded into the back of the hand.

• The fingers of the UT Hand I described in (Peerdeman et al., 2014) utilize
flexure sensor based joint angle encoders and barometer based tactile
sensors inside the flexible fingertip. The thumb can either also embed
barometer-based tactile sensors or can be equipped with a BioTac fingertip
at the cost of the distal joint. Transmission of the sensor signals through
the finger is not discussed. The fingers are actuated by a single motor
through an underactuated mechanism. Additional solenoids allow to lock
individual fingers to realize different grasping patterns.

• The SSSA-MyHand, presented in (Controzzi et al., 2017) and shown in
Figure 2.8a, primarily focuses on dexterous and fast movement. The two
DoFs in each finger are actuated by a rigid four bar linkage system. Each
finger is sized individually. The authors state that they plan to embed
FSR sensors into the fingertips in the future, although, to the best of my
knowledge, this has not been reported until now. In contrast to most other
research prostheses, the control of the prosthesis is mostly realized on the
embedded system inside the palm of the hand. The microcontroller runs a
finite state machine based on information from Electromyography (EMG)
sensors and external input over a serial interface.

• In (Jeong et al., 2017) a prosthetic hand is presented that is driven twisting
a pair of tendons, thereby shortening the tendons. A custom tension
sensor embedded into the internal structure of each finger. The sensor
consists of a LED and phototransistor pair where the light of the LED can
be partially blocked by a pin. The part holding the pin deforms elastically
upon tension, altering the amount of light transmitted from the LED to the
phototransistor. Analog sensor signals are transmitted through the finger
using individual loose wires.

Focus on Manufacturing

• The Vanderbilt Hand described in (Dalley et al., 2010; Wiste et al., 2011) and
(Varol et al., 2014) does not include sensors inside the fingers, instead the
finger forces are calculated from the motor positions and currents. This
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is archived through a model of the series elastic elements in the tendon
force transmission. A distinguishing aspect of this hand is the consistent
and holistic use of additive manufacturing for the mechanical parts of
the hand. Both the palm of the hand as well as all three phalanges are
fabricated using a Stereolithography (SLA) process using thermoplastic
that is afterwards coated with nickel. The design is further developed
as the Vanderbilt Hand 2, depicted in Figure 2.8b, in (Bennett et al., 2015).
As with the first version, the hand structure is completely 3D-printed,
including the soft exterior of the fingers. Each finger is individually sized,
according to the 35th percentile male hand dimensions. The hand includes
an embedded system based on a 50 MHz microcontroller for motor control.
The embedded system features a CAN port for higher level control using
an external device. Later, (Wiste and Goldfarb, 2017) presented the SCCA
Hand, a minimalist design focused on actuation following the philosophy
of the first Vanderbilt Hand without including sensors or an embedded
system.

• The SoftBionic Hand presented in (Tavakoli et al., 2017) is equipped with soft
fingers with integrated soft capacitive sensors. Each finger consists of a 3D-
printed endoskeleton covered by soft silicone. The endoskeleton is printed
as a single piece including two joints using an Selective Laser Sintering
(SLS) process. Meandering spring structures are printed as the joint, while
the phalanges are printed as solid pieces as described in (Tavakoli et al.,
2017). A flexible capacitive sensor is embedded in the fingertip, made
from two layers of silicone mixed with carbon nanoparticles separated by
a non-conductive silicone layer. The sensor allows to sense conducting
materials before touching the finger and for non-conducting materials
to measure the change in capacitance induced by force exerted on the
fingertip. Small copper wires cast into the finger’s soft material connect
the sensors to corresponding readout electronics.

• The fingers of the PRISMA Hand II introduced in (Liu et al., 2019) are
specifically designed to increase robustness. Each finger is made of three
phalanges connected by elastic ligaments. The joint motion is accom-
plished by rolling contacts between the phalanges, actuated by tendons.
The finger base is also actuated in adduction/abduction direction. Each
fingertip houses four optical tactile sensors and corresponding signal pro-
cessing electronics aimed at normal and shear force detection as described
in detail in (Canbay et al., 2021). Routing of the electrical connection from
the fingertip through the finger is not documented.
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• Recently, the Galileo Hand has been introduced in (Fajardo et al., 2020).
The hand development’s primary objective to keep material cost low and
provide open source access to the relevant design data. Inside the palm
a microcontroller-based embedded system is placed including an Inertial
Measurement Unit (IMU) on the PCB. Additionally, a display is embedded
into the dorsal side of the palm to provide feedback to the user and enable
interactive IMU-based control over a menu.

• In (Ntagios et al., 2020) the authors present a 3D-printing technique to print
the complete hand from layers of ABS and TPU plastics. Rigid sections of
the hand are printed from ABS while the joints are made from a layer of
TPU only. The fingertips include a hollow where the readout electronics
for capacitive finger tip sensors are placed, connected to the actual pads
by printed conductive traces. The capacitive sensors themselves are also
printed from layers of ABS, TPU and conductive ink, sealed by poured
rubber.

Focus on Sensorization

• The Manus Hand Prosthesis, depicted in Figure 2.8d in (Pons et al., 2004) is
one of the earliest works to include tactile sensing in a prosthesis. Goal
of the development was a prosthesis suitable for dexterous manipulation
and autonomous grasp force control. It includes Hall effect-based tactile
sensors in the fingertips of index and middle finger as well as the thumb.
These three fingers also include Hall effect-based joint angle encoders. The
cables are loosely routed along the fingers to a hierarchical embedded
system. A host controller, connected to the user interface coordinates three
local controllers, which are connected to the motors and sensors of the index
finger, middle finger and thumb respectively. On the host controller a force
controller is implemented. The ring and little fingers are not actuated.

• The goal of the development of the HIT/DLR Hand in (Huang et al., 2006)
was a lightweight, yet easily controllable hand prosthesis. Thumb and
index are driven by one motor each, middle, ring and little finger are
driven by a third motor. The sensor system, as detailed in (Gao et al.,
2003), includes three joint angle encoders, three strain gauge based joint
torque sensors, two temperature sensors and a custom-made digital 6D-
force/torque sensor in each fingertip. All fingers have identical dimensions.
The sensor signals are transmitted via a flexible PCB inside the finger that
also carries an ADC to digitalize the signals of the joint torque sensors
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and a Field Programmable Gate Array (FPGA), aggregating all sensor
signals. Each finger FPGA is connected to a larger FPGA in the palm
that further aggregates the five finger sensor streams and makes them
externally available via an USB interface. Opening and closing of the hand
can be controlled by voice commands.

• The CyberHand hand prosthesis in (Carrozza et al., 2006; Edin et al., 2008)
is specifically designed to mimic the neurophysiological sensor modalities
of the human role model. Each of the identical fingers contains three joint
angle encoders as well as tendon tension sensors. The phalanges of each
finger are covered in a matrix of contact switches, further the finger tip
contains both a custom-made 3D force sensor in the internal structure as
well as another custom-made 3D force sensor embedded in soft material
at the fingertip. All sensors inside each finger are connected via a flexible
PCB to two external PCs.

• For the humanoid robot iCub, 12 capacitive taxels where integrated on the
fingertip of each finger (Schmitz et al., 2010; Jamali et al., 2015). The inner-
most layer of the sensor is constructed from a flexible PCB and contains the
electrodes for the capacitors and a CDC for all twelve electrodes. Above
that a protective plastic interface is mounted and on top a three-layer fabric
with the ground electrode is placed. The palm contains a microcontroller
that samples all CDCs. The cables connecting the microcontroller to the
converters are guided at the outside of the finger next to the neutral phase
of the joints. Recently, a variant of the iCub fingers with two Hall effect-
based tactile sensors was developed (Holgado et al., 2019a). The sensors
are embedded into a fingertip adapter that is placed on top of the actual
fingertip and is connected with flying cables to a controller at the forearm,
and from there to an external PC.

• The SmartHand prosthetic hand introduced in (Cipriani et al., 2010, 2011)
is, from a design standpoint, based on the CyberHand. the hand is shown
in Figure 2.8e. Joint angle encoders are included in each of the three finger
joints in addition to motor relative encoders. Each finger contains a tendon
tension sensor and both index and thumb include optical tactile sensors
in intermediate and proximal phalanx. Mechanically, the fingers are very
similar to the ones of the CyberHand. The palm of the hand includes an
embedded system that digitalizes the sensor data streams, makes them
available to external devises and provides motor control electronics.
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• The four-fingered Sandia hand presented in (Quigley et al., 2014) utilize
two antagonistic steel tendons in the fingers for both actuation and digital
signal transmission for sensors embedded into the fingertip and phalanges.
The two tendons supply Direct Current (DC) power to the sensors while
the sensor communication is modulated on top as Alternating Current (AC)
signals. While this approach eliminates all cables, it comes at the expense
of additional signal processing electronics at both ends of the tendon, to
modulate and demodulate the sensor signals. Further care must be take
to isolate the tendons from other metallic parts like the motor shafts or
pulleys, to not short the electrical connection. Each finger includes an array
of optical force sensors on a flexible PCB at the tip, two accelerometers at
the tip and the base of the finger and a strain gauge at the PIP joint. the
finger is covered by soft foam. The palm of the four-fingered hand includes
a camera and a structured light projector for image and depth sensing.
Additionally, two PCBs are included, one based on a microcontroller for
motor control and sensor signal interfacing to USB/Ethernet and one
FPGA-based PCB for in-hand camera interfacing over Ethernet.

• In (Zhang et al., 2018) the design of a hand prosthesis with a custom made
shear force sensor array in each fingertip is presented. Each finger is
driven by a motor directly embedded into the proximal phalanx of the
finger, leaving the fused intermediate/distal phalanx for sensorization.
The shear force sensor array is constructed from two flexible PCBs with
multiple electrodes, connected by a individual cells of quantum tunneling
composite material. This material changes its resistance in accordance with
applied pressure. Shear forces are calculated from differences in the output
of neighboring electrodes as detailed in (Zhang et al., 2015). All sensors are
connected to three PCBs in the fingertip where the signals are digitalized
and aggregated by a microcontroller. Each finger is connected to a central
processing system in the palm by Flat Flex Cables (FFCs). The embedded
system in the palm consists of a FPGA connected to a microcontroller.

• For the purpose of reactive grasping, the KIT Finger-Vision Soft Hand de-
scribed in (Hundhausen et al., 2020) embeds cameras into the fingertips
of soft robotic fingers. Each finger is constructed from a PET-plastic strip
acting as a leaf spring. 3D-printed bones are mounted on the spring to
define the phalanges, the spaces between the bones define the joints. A
high resolution camera is mounted at the finger tip and connected to a
FFC glued to the leaf spring and hence close to the neutral phase during
bending. The whole finger assembly is then cast into silicone to form the
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fingers shape. All five cameras from the fingers are connected to an hybrid
embedded system with FPGA and microcontroller inside the palm of the
hand. The FPGA is used to accelerate individual layers of Convolutional
Neural Networks (CNNs) evaluating the captured images in real time as
detailed in (Hundhausen et al., 2021).

2.1.5. Discussion

The preceding sections presented related work in sensorized fingers and hands
with respect to utilized sensors, their integration into the mechanical structure
and connection to readout electronics. These aspects are discussed in detail in
the following.

Sensor Modalities

Although a large variety of sensing technologies for robotic tactile perception
exist, their integration into anthropomorphic hands and fingers is often limited
to a few sensors of a single modality. This is for example the case in the iCub
hand (Jamali et al., 2015), UT Hand I (Peerdeman et al., 2014), SoftBionic Hand
(Tavakoli et al., 2017) and PRISMA Hand II (Liu et al., 2019). While some hands
adopt multiple sensing technologies like the Sandia Hand (Quigley et al., 2014)
or the SmartHand (Cipriani et al., 2010, 2011), these hands still lack the ability
to sense either shear forces, vibrations or localized contact. Tactile systems
embedded into prosthetic hands trying to represent all mechanoreceptive units
present in humans are rare, to the best of the author’s knowledge, the only
approach towards this goal is the one described in (Edin et al., 2008) for the
CyberHand hand prosthesis. Yet, in the CyberHand, the perception akin to SA
type II afferents is limited to two 3D shear force sensors at the finger tip while
the remainder of the fingers surface area is covered in tactile switches capable
only of indicating binary contact.

Especially for prostheses, not only tactile data is of interest, but also data on
the state of the hand, the grasp and ideally intention of the user. As (Friedl
and Roa, 2021) have shown in a comparative study with different tactile and
proprioceptive sensor setups, a combination of IMU, proximity sensor and Hall
effect-based sensors performs best in sensor-based grasping tasks. Multimodal
sensor data is especially critical in the case of automating grasping and is thereby
essential to the second contribution of this work. Sensors that can provide such
data are for example IMUs, cameras, distance sensors, joint angle encoders,
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motor encoders or temperature sensors. Although some of these sensors are
easy to integrate, for example an IMU, few hands make use of these sensors
as can be seen in Table 2.1. The table gives an overview of the sensorization,
embedded systems and mechanical properties of both commercial and research
prostheses.

In summary, a hand design embedding a multi-modal sensor system for haptic
and environmental persception into an athropomorphic hand is not demon-
strated in related work.

Integration of Sensors

Another important aspect is the integration of an embedded system for pro-
cessing of sensor information into the hand. This is primarily of interest for
prostheses, as the user otherwise has to carry an external device to use intelligent
functions of the hand if the controller is not directly embedded. For robotic
applications an embedded system directly integrated into the hand is also bene-
ficial to pre-process and aggregate data to not overload the robot bus system.
With a few exceptions like (Hundhausen et al., 2020) or (Fajardo et al., 2020),
the embedded system in the discussed hands is either completely missing or
primarily aimed at motor control. Sensor data acquired by the embedded sys-
tems in literature is usually not processed but directly transmitted to an external
computer.

Lastly, the anthropomorphic appearance and morphology is a decisive factor
for acceptance of prostheses (Cordella et al., 2016; Salminger et al., 2020). None
of the presented finger and hand designs considers adaptation or scalability of
dimensions or proportions of the prosthesis to the prosthesis user. The majority
of the works utilizes a single finger size for all four fingers, so even for one given
hand size, the dimensions of the individual fingers are not anthropomorphic.
Commercial prostheses are typically available in two to four sizes which allows
only limited adaptation to the specific morphology of the prosthesis user.

Contribuitons of the Thesis

The tactile sensor system in this work includes different physical sensors for
different tactile stimuli, thereby taking inspiration from the functionality of all
four human mechanoreceptive units. The sensors are namely barometer based
normal force sensors, Hall effect base shear force sensors, proximity sensor based
optical sensors and accelerometers. Multiple sensors with different technologies
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(a) (b) (c)

(d) (e)

Figure 2.8.: a) SSSA-MyHand without cosmetic cover in (Controzzi et al., 2017);
b) Vanderbilt Hand 2 in (Bennett et al., 2015) with palm cover re-
moved, showing motors and embedded system; c) Hand of the
humanoid ARMAR-IV in (Asfour et al., 2013); d) The MANUS hand
prosthesis in (Pons et al., 2004); e) The SmartHand hand prosthesis in
(Cipriani et al., 2011); Reprinted from: a) Controzzi et al. , “The SSSA-
MyHand: A Dexterous Lightweight Myoelectric Hand Prosthesis”,
Transactions on Neural Systems & Rehabilitation Engineering V. 25 I.
5, ©2018 IEEE; b) Bennett et al. , “A Multigrasp Hand Prosthesis for
Providing Precision and Conformal Grasps”, Transactions on Mecha-
tronics V. 20 I. 4, ©2015 IEEE; c) Asfour et al. , “ARMAR-4: A 63 DOF
torque controlled humanoid robot”, Humanoids 2013, ©2013 IEEE;
d) by permission from Springer: Autonomous Robots “The MANUS-
HAND Dextrous Robotics Upper Limb Prosthesis: Mechanical and
Manipulation Aspects”, J.L. Pons, E. Rocon, R. Ceres, D. Reynaerts,
B. Saro, S. Levin, W. Van Moorleghem, ©2004; e) Cipriani et al. “The
SmartHand transradial prosthesis”, Journal of NeuroEngineering
and Rehabilitation V. 8, (CC BY 2.0)
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Table 2.1.: Overview of commercial and research prostheses. AAdaptive underactuation of multiple fingers, S for spring-based mechanism, T for
tendon-based mechanism and W for whippletree-based mechanism; BEmbedded system integrated; C in case of joint angle encoders, G# for
motor relative encoders; DDimensions in mm, l = length, w = width, h = height; EMeasured weight in Gramm; FMeasured force in Newton, PG
= Power Grasp, FF = Finger Forces, P = Pinch; GIncluding wrist and socket; HIncluding hand adapter; Reprinted from (Starke, Weiner et al.,
2022) with changes (CC BY 4.0)
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SensorHand (SensorHand (2020)) 2 1 #  n.a.  # # # 178-210 l 460 100 PG
iLimb Pulse (Belter and Dollar (2013)) 11 5 #  n.a. # # # # 180-182 l x 75-80 w x 35-45 h 460-465 6.2-11.8 FF
Bebionic (Belter and Dollar (2013)) 11 5 #  n.a. # # # # 190-200 l x 84-92 w x 50 h 495-539 12.3-16.1 FF
Michelangelo (Belter and Dollar (2013)) 6 2 #  n.a. n.a. # # # 180 l 420 70 P
Vincent Hand (Belter and Dollar (2013)) 11 6 #  n.a. n.a. # # # 145-180 l x 65-85 w 386 (XS) 4.8-8.4 FF
Taska Hand (Taska (2020)) 10 6 #  n.a. n.a. # # # 179-181 l x 81-88 w 556-671 6.7-22 FF

MANUS-Hand (Pons et al. (2004)) 10 3 #    # # # 1.2*50th percentile male 1200G 60 PG
HIT/DLR Prosthetic Hand (Huang et al. (2006)) 13 3 S    # # # n.a. n.a. n.a.
CyberHand (Carrozza et al. (2006)) 16 6 # #   # # # n.a. 360 70 PG
SmartHand (Cipriani et al. (2011) 16 4 S    # # # 50th percentile male 520 16-36 PG
Vanderbilt (Wiste et al. (2011)) 16 4 S # G # # # # n.a. 320 10-34 FF
UT Hand I (Peerdeman et al. (2014)) 15 3 W #   # # # 185 l x 82 x w x 26 h n.a. n.a.
Vanderbilt 2 (Bennett et al. (2015)) 9 4 S  G # # # # 200 l x 89 w 546 15-30 FF
SoftHand Pro-D (Piazza et al. (2016)) 19 1 T  # # # # # 235 l x 230 w x 40 h n.a. 20 PG
SSSA-MyHand (Controzzi et al. (2017)) 10 3 #   # # # # 200 l x 84 w x 56 h 478 9.4-14.6 FF
Jeong 2017 (Jeong et al. (2017)) 11 6 # # #  # # # Average Male 380 15.7-48.2 FF
SCCA Hand (Wiste and Goldfarb (2017)) 11 5 S # G # # # # n.a. 437 146 PG
SoftBionic Hand (Tavakoli et al. (2017)) 10 2 T  G  # #  200 l x 91 w x 40 h 285 n.a.
Zhang 2018 (Zhang et al. (2018)) 11 6 T  G  # # # 171 l x 80.2 w x 27.4 h 450 8-12 FF
PRISMA Hand II (Liu et al. (2019)) 19 3 S # G  # # # 210 l x 80 w n.a. n.a.
Galileo Hand (Fajardo et al. (2020)) 15 6 #  G #  # # 162 l x 69.6 w x 25 h 350 50 PG
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are distributed along the surface of the finger. Having different sensors does
not only provide different aspects of tactile feedback, but allows to mutually
verify sensor signals as the different sensor technologies provide overlapping
information. Additionally, a camera, distance sensors and an IMU provide
environmental information.

In contrast to related works, this work considers scalability of both mechanical
parts and electrical systems of the fingers from the ground up. The developed
fingers are modelled to be automatically scalable according to a few numerical
parameters like phalanx lengths and joint heights. The multimodal sensor
system scales together with the mechanical model, so larger fingers will include
more sensors than smaller fingers.

While the sensor information in most research hands is transmitted to a PC
or other external device, the thesis introduces embedded systems that allow
reading of all sensor modalities and control locally in the hand. This includes
computational resources to evaluate camera images and parallel read-out of
close to 100 sensor streams from the fingers in real time.

In recent years, soft anthropomorphic hand designs and their sensorization have
been studied to increase robustness and safety of grasping while exploiting natu-
ral interaction with the objects and passive compliance and/or active regulation
of grasping forces, for example (She et al., 2015; Deimel and Brock, 2016; Zhao
et al., 2016; Fras and Althoefer, 2018; Wall and Brock, 2019). To understand the
potential for prosthetic applications, this thesis introduces a soft variant of the
sensorized fingers based on the mechanical design in (Hundhausen et al., 2020).
These soft fingers embed the same multimodal sensor system and are also fully
scalable.

In conclusion, the sensor system and fingers developed in this work address
several shortcomings in the state of the art. The developed sensor system does
not only allow to measure diverse tactile stimuli akin to human perception but
also captures information about the state of the hand and its user needed for
semi-autonomous control. The multiple sensor signals can be directly processed
on the embedded system inside of the prosthesis. The finger’s mechanics and its
electronics are freely scalable to the dimensions of any human finger, which to
the authors’ knowledge, is the first solution to address this problem in literature.
In addition, the thesis presents a novel mechanical implementation of an under-
actuated mechanism on the basis of the TUAT/Karlsruhe (Fukaya et al., 2000,
2013) mechanism as well as novel fabrication techniques for barometer based
pressure sensors.
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2.2. Semi-Autonomous Control of Prosthetic Hands

Recent advances in prosthetics and humanoid robotics have led to anthropo-
morphic hands with improved dexterity and grasping abilities (Belter et al.,
2013; Piazza et al., 2019). Therefore, simple yet reliable control strategies are
needed to enable user to exploit the hand’s dexterous grasping abilities to their
full extent (Cordella et al., 2016; Dhillon and Horch, 2005). Such easy-to-use
control aims at reducing the amount of attention a prosthesis user has to pay
during the execution of a grasp. Traditionally, electrically actuated prostheses
are controlled with signals captured by two EMG electrodes attached in the
socket on the user’s arm. Through contraction of the muscles in the forearm
the user can then sequentially control all degrees of freedom of the prosthesis.
While prosthetic hands get increasingly versatile, control of these added degrees
of freedom is difficult with the limited expressiveness provided by the EMG
interface. Hence, long control signal sequences are needed to control prostheses
with a multitude of functions. Besides the need for a long training time, the
direct control of more than two DoF with only two EMG electrodes results in a
high cognitive load for the user while controlling their device (Amsuess et al.,
2014). Therefore, a simplification of the prosthetic control strategy for the user is
desirable in order to reduce the user’s workload while operating their device.
The following description of related work has been published in (Starke et al.,
2022) without changes (CC BY 4.0).

An active field of research is the classification of electromyography (EMG) and
mechanomyography (MMG) signals from multiple sensors to improve upon the
muscle activation control strategies currently applied in commercial prostheses,
as for example proposed in (Ortiz-Catalan et al., 2014; Hahne et al., 2014; Wilson
and Vaidyanathan, 2017; Piazza et al., 2016; Zhuang et al., 2019; George et al.,
2020; Paskett et al., 2021). A comprehensive survey of these techniques can be
found in (Ciancio et al., 2016). However, acquiring fine-granular, continuous
and robust signals is challenging due to imperfect fitting of the socket and chang-
ing skin surface conditions, such as sweat and temperature (Chadwell et al.,
2016). Therefore, the emerging field of semi-autonomous control concentrates
on reducing the amount of commands sent by the user to execute an action
by incorporating environmental information extracted from additional sensor
modalities and predicting the user’s intention. These are especially interesting
where the user’s stump condition does not permit to capture feature-rich EMG
signals. For this specific user group, a prosthetic control should require as little
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direct EMG commands as possible to mitigate the proneness to errors caused by
wrong or missing muscular signal detection.

2.2.1. Semi-Autonomous Control Schemes

The idea of partially automating prosthetic control has a long history. For an
early version of the Southampton Hand, (Swain and Nightingale, 1980) utilize
predefined grasps adapted based on information from a gyroscope, force sensors
and slip detection supporting the user during grasping.

To assess the performance of different levels of autonomy in prosthetic control
regarding grasp success, subjective complexity and satisfaction, (Cipriani et al.,
2008) applied several control schemes to the CyberHand hand prosthesis. The
evaluation shows that less complex control schemes perform notably better in
terms of perceived satisfaction, required attention and difficulty. The authors
also noted that a full, individual control over all functionalities offered by the
prosthesis was seldom used by the subjects. The study thereby supports the
general merit of semi-autonomous control techniques.

Vision-Based Systems

the semi-autonomous control scheme described in (Došen et al., 2010) is based
on a cognitive vision system for prosthetic grasping. With a camera and a
distance sensor mounted externally on the dorsal side of a prosthetic hand
looking over the fingers, the object is detected and its distance can be measured.
Here, the user directly controls the wrist rotation, while grasp type and hand
aperture are determined based on visual and distance information and a set
of if-then rules of a decision making system. While offering nine different
grasp types and apertures, the system achieved an accuracy of 84 %. Grasping
failures were attributed to errors of the visual object detection. The work was
extended in (Došen and Popović, 2011) to include the wrist rotation into the semi-
autonomous control scheme, leaving the user only responsible for triggering the
grasping action.

Another approach using electrooculography and four sensors placed around the
eye to determine grasp affordances was presented in (Hao et al., 2013). The user
has to scan the object’s borders with the eyes and trigger the closing movement
by EMG signals as soon as the desired preshape is obtained. While grasping
in a defined setup shows an object recognition rate of 86.2 %, the robustness
regarding different object-eye distances remains to be assessed.
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(a) (b)

Figure 2.9.: a) The system architecture employed in (Markovic et al., 2015) for
their semi-autonomous control scheme; b) The experimental setup
for the user trails; Reprinted from: Marko Markovic et al. , “Sensor
fusion and computer vision for context-aware control of a multi
degree-of-freedom prosthesis”, 04.11.2015, Journal of Neural Engi-
neering, V. 12, I. 06, 10.1088/1741-2560/12/6/066022; ©IOP Publish-
ing. Reproduced with permission. All rights reserved.

In (Markovic et al., 2014) the authors present a semi-autonomous control archi-
tecture that is based on augmented reality glasses. In contrast to the approaches
described above, the user stays in control of the fine-tuning of the grasp. While
a first preshape is adopted based on the visual information of the stereo camera
system integrated in the glasses, the user is still able to adjust the grasp aperture
by a proportional myoelectric controller according to the transmitted feedback.
In their following work, (Markovic et al., 2015) use an IMU on the dorsal side of
the palm and combine it with a stereo camera system mounted in the room as
well as position and force sensors embedded into the prosthetic hand. Based on
this multi-modal sensor information, the wrist rotation and grasp preshape of
a prosthesis are controlled autonomously. The architectural overview and the
setup for user trials are depicted in Figure 2.9.

The semi-autonomous control was compared to three manual control schemes
with increasing difficulty. Compared to a manual control of grasp type, wrist
orientation and finger closing, the grasp execution was faster with the semi-
autonomous control.

Proximity and Tactile Based Systems

The grasp type selection scheme desribed in (Tavakoli et al., 2017) is based on
capacitive proximity and tactile sensors embedded into the fingers and palm
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of a custom-build prosthetic hand. If the object to be grasped is conductive
and is sensed by all sensors a power grasp is chosen, while a precision grasp
is chosen if only the thumb and index finger detect the object. If the object is
non-conductive, a power, precision or intermediate grasp is chosen if the object
first contacts the palm, index finger or both index finger and thumb respectively.
The proposed grasp type selection scheme remains to be evaluated in a user
trial.

A semi-autonomous control scheme with a multi-electrode user interface is
shown on the TASKA hand (Hansen et al., 2021). Using combined force and
proximity sensing at the fingertips, the finger closing motion and the grasp force
applied to the object are controlled autonomously. The fingers close as soon
as an object is detected by the proximity sensor until contact with the object
is detected, at which point the motors are switched to a position hold mode.
The user controls the grasping motion similar to a pure multi-electrode manual
control and the autonomous control system is activated based on a threshold set
on the decoded muscle signals. This shared semi-autonomous control is shown
to increase the grasp precision and decrease the workload for the user in tasks
where fragile objects are to be grasped and placed.

A number of recently published object recognition systems make use of neural
networks and propose grasps based on the recognized known objects (Degol
et al., 2016; Ghazaei et al., 2017; Hundhausen et al., 2019).

2.2.2. Discussion

Semi-autonomous control schemes make use of environmental and haptic data
to automate parts of the grasping process normally controlled manually by the
user. Vison based semi-autonomous control schemes like the ones introduced
in (Cipriani et al., 2008; Došen and Popović, 2011; Markovic et al., 2015) and
(Gonzalez-Vargas et al., 2015) show clear benefits of semi-autonomous control in
terms of reducing the cognitive load of prosthesis users. To achieve these results,
the presented semi-autonomous control algorithms rely on sensory information
not directly provided by the prosthesis. Instead they require external sensors,
attached to the human body or installed in the environment. Sensor modalities
used in prosthetic control range from IMU data (Markovic et al., 2015) over stereo
vision (Markovic et al., 2015; Cipriani et al., 2008) to distance sensors (Došen
et al., 2010; Hansen et al., 2021). Processing of and control based on sensor data
is performed by an external device or computer. Hence, while clearly showing
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the potential advantages of semi-autonomous control schemes for the user, the
presented control schemes are stationary, or at least need additional devices
attached to the user. In contrast, the control scheme presented in thesis uses the
sensor system and embedded system integrated into the prosthesis to extract
relevant object information, select an appropriate grasp and recognize the user’s
intention. No additional sensors attached to the human body or mounted in the
environment or additional external processing systems are needed. Feedback
to the user regarding automatically suggested grasps is provided via a color
display which is also embedded into the prosthesis at the dorsal side.

In the presented semi-autonomous control schemes, the distinct degrees of
freedom of the prosthetic hand are generally actuated in succession starting
with wrist and thumb positioning followed by the final hand closure. This leads
to a slower grasp execution compared to simultaneous actuation of all degrees
of freedom of the prosthesis. The semi-autonomous control in the thesis hence
controls all three DoFs, namely the thumb, fingers and wrist simultaneously
and in a reactive manner.

Proximity and tactile based semi-autonomous control schemes provide assistance
through detection of the object through proximity. In case of (Tavakoli et al.,
2017), while a power grasp or pinch grasp can be automatically chosen for
conductive objects, the grasp type for non-conductive objects has to be chosen
by the user through the first area of contact with the hand. Yet, choosing a
grasp type by bringing a specific part of the hand in contact with the object
first provides a novel control interface for augmenting EMG. In (Hansen et al.,
2021), while providing autonomous closing behavior for the fingers, the authors
describe no mechanism to automatically choose the grasp type based on sensor
data. While both methods are not as powerful in choosing the grasp type
automatically as vision-based systems, they provide more fine-grained control
and assistance as for the actual grasping motion. The thesis expands on these
proximity and tactile based schemes by implementing autonomous behaviors
for the complete grasping process starting with closing the fingers around to the
object to placing the object back down.

2.3. Autonomous Grasp-Phases Control

Humans posses dexterous grasping and manipulation capabilities unparalleled
in technical systems. These capabilities emerge as a result of over a decade of
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continuous learning during childhood (Forssberg et al., 1991, 1992). Neurosci-
entific studies show that human grasping is divided into individual phases,
namely reach, load, lift, hold, replace and unload (Johansson and Flanagan, 2009a).
Each phase has with its own control subgoal and a distinct sensory event that
triggers the next phase. For example, the subgoal for the reach phase is to close
the fingers while establishing contact between fingers and object is the sensory
event that triggers the next phase: load. As the approach in the thesis is based on
the human grasping strategy, we will discuss related work based on the division
into phases.

In Robotics, robust grasping of unknown objects with varying shape, weight,
stiffness, fragility, material properties and changing center of mass remains a
challenging problem (Billard and Kragic, 2019), yet fundamental to truly endow
both humanoid robots and prosthetic hands with the abilities they need to
perform dexterous grasping and manipulation tasks. Solving this problem
requires the development of intelligent controllers able to interpret multimodal
sensory data and to adapt to different objects and tasks. A key requirement
on such controllers is the ability to continuously estimate and update grasping
forces applied on an object during the execution of grasping and manipulation
tasks to ensure safety and stability of the grasp. Yet, a grasping task needs
not only a controller for grasp force control but also strategies to close the
hand around an object, place objects back on a support surface and release the
grasped object. While a majority of works in this area focus on stably holding
an object (phases load, lift and hold), there exists works that employ a more
holistic approach to grasping, spanning most of the phases observed in human
grasping.

To implement force adaptation strategies, tactile feedback at the contact points
between hand and object is crucial to describe their interactions in the different
phases of a grasp, i.e. to detect initial contact, and adapt the applied forces to
establish a stable grasp, to lift, hold and replace the object. An overview on
the use of tactile information in grasping and manipulation tasks is presented
in (Li et al., 2020). In the following, we first introduce controllers aimed at
stabilizing a grasp in Subsection 2.3.1 and then focus on more holistic works in
Subsection 2.3.2, taking into account multiple phases with different behaviors
for the different phases in grasping observed in human grasping.

The following parts up to the discussion are reprinted from (Weiner et al., 2021),
“Detecting grasp phases and adaption of object-hand interaction forces of a soft
humanoid hand based on tactile feedback”, IROS 2021, ©2021 IEEE;
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2.3.1. Controllers for Loading, Lifting and Hold

Numerous control strategies for grasping and holding of unknown objects
introduced in the literature share the common goal of estimating and controlling
the friction condition at the contact points between hand and object. This is
either achieved through measurement of shear and normal forces, slip detection
and prevention, or a combination of both. If both is not possible, some works
try to estimate the applicable normal force through the object’s stiffness. The
estimation of the required normal force based on these methods can then be
used as input for a normal force controller or other control law to securely hold
the object, even in the case of external disturbances.

Friction Coefficient Estimation

(Wettels et al., 2009) explicitly formulate the control target in terms of the friction
coefficient based on normal and shear forces estimated from raw sensor data
using machine learning. If the friction coefficient is out of the acceptable range,
the hand opens/closes by a fixed amount. A similar formulation has been used
in (Zhang et al., 2015) on the basis of 3D force sensors. (De Maria et al., 2015)
use a optoelectronic sensor array and machine learning for determining normal
and shear forces for friction coefficient based control. Additionally, objects are
explored to estimate the friction coefficient and the noise in the shear force signal
is used for slip detection. The normal force acting on the object is adapted by
opening/closing the gripper by a fixed amount. (Su et al., 2015) expand on this
work by implementing an online estimation of the friction coefficient. A similar
approach for the online estimation of the friction coefficient at each contact
point for the manipulation of heavy deformable objects based on OptoForce
sensor data is described in (Kaboli et al., 2016). Again a fixed position increment
for opening/closing is used to control the normal force. Grasp force adaption
based on normal, shear and torques measured at the contact points is shown in
(Ajoudani et al., 2016). Linear and rotational slip is in this work detected if a
fixed friction coefficient is lower than the measured friction coefficient. The slip
information is then used to either control the motor current or the stiffness of
the hands.
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Slip Detection

A different approach for normal force control is to explicitly deal with the
problem of slip detection. (Takahashi et al., 2008) employ a hybrid position/force
controller for grasping in which the controller target values are adapted based on
slip signals. The controller operates in position control mode for the approach,
in force constraint position control for contacting the object and in force control
for holding the object. Slip is detected by observing the change in the center
of pressure at the contact point between hand and object. The normal force
target for the controller is increased as slip is detected and decreased as long
as slip is absent. A similar system is described in (Al-Mohammed et al., 2018)
that increases the applied force at the contact points once slip is detected. In
addition, the grasping motion of the robot is stopped until the grasping force is
adapted.

A human-inspired grasp stabilization controller based on tactile feedback is pre-
sented in (Veiga et al., 2020), where each finger is independently controlled based
on slip prediction and a leaky integrator-based velocity controller. The leaky in-
tegrator for the velocity command is implemented a weighted sum with weights
smaller one, of the last velocity command and a value that is positive if slip is
predicted and zero otherwise. The independent control of individual fingers has
been shown to ensure stability of a grasp in complex in-hand-manipulation tasks
while avoiding complex coordination between fingers. (Nakagawa-Silva et al.,
2019) develop a biology-inspired neuromorphic controller where slip events
are encoded by spikes and used as input for a monotonic PI position controller.
For slip detection the current sensor signal is compared to the last signal and
if a threshold is exceeded, a spike is generated. The number of spikes is then
used as the input of a PI controller for controlling the position. The controller is
monotonic, meaning that the fingers can only close, not open.

Object Stiffness Estimation

A third class of approaches estimates the stiffness of the grasped object to guess
the amount of applied normal force. (Romano et al., 2011) estimate the stiffness
based on the distance change between the gripper yaws during initial contact.
A similar approach is used in (Deng et al., 2017) and (Ji et al., 2019) where it is
combined with slip detection to adjust the normal force during grasping. (Deng
et al., 2020) utilize an online method for simultaneous detection of contact events
and object material based on tactile data.
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2.3.2. Controllers for the Complete Grasping Process

Few works approach the problem of developing grasping controllers that adapt
grasping forces during all different phases of a grasp and manipulation task, be-
ginning with closing the fingers around an object, lifting, manipulating, placing
and releasing the object.

(Yamaguchi and Atkeson, 2017) implement four different behaviors for gen-
tle closing, holding, handover and in-hand manipulation. The authors utilize
feedback from a vision-based tactile sensor measuring normal and shear forces,
and detecting slip. The behaviors are evaluated individually, chaining of the
behaviors into a complete grasping and manipulation task is not evaluated.
Based on the neuroscientific findings on the human grasping strategy in (Jo-
hansson and Flanagan, 2009a), the authors implement a grasp strategy divided
into individual controllers for the phases close, load, lift and hold, replace, unload
and open. The events are derived from pressure sensor arrays attached to the
fingertips of a two finger gripper and a hand-mounted accelerometer. The grasp
strategy was evaluated against the baseline approach of always closing the
gripper with full force. While the baseline destroyed or damaged 30 objects used
in the evaluation, the proposed grasp strategy only crushed one object while not
significantly increasing the amount of dropped objects. The work demonstrates
how tactile feedback can be used to control complete grasping and manipulation
tasks on a robot autonomously.

Together with a prosthetic hand with embedded shear force sensors, (Zhang
and Jiang, 2018; Zhang et al., 2018) propose a human-inspired grasp phases
control scheme for the phases load, hold and unload. The prosthesis user first
selects individual fingers of the hand and brings them into contact with the
object using EMG signals from six electrodes. The fingers then apply force to
the object based on friction coefficient estimation and slip detection. The unload
phase is triggered by a decrease in the ratio between shear and normal forces,
while opening of the hand is triggered manually by the user using EMG signals.
The mathematical formulation and implementation of the controllers is not
disclosed. The control scheme is demonstrated in trials with five able-bodied
subjects and an amputee grasping four different objects, showing an average
increase of grasp success.
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2.3.3. Discussion

Most related work in sensor-based grasping primarily focuses on stable lifting
and holding unknown objects. Through the research in theses works three main
strategies for force control have been established and strengths and limitations
of the respective approaches are evident. These are discussed in the first part
of this section. The second part discusses limitations in works considered with
providing controllers for most or all phases observed in human grasping.

Force Control for the Phases Load, Lift and Hold

Control of grasping force to stabilize a grasped object is well-researched. These
controllers operate in the phases the phases load, lift and hold . For the force
control necessary in these phases, three main strategies are considered.

Methods based on Object Stiffness Estimation estimate the required grasping
force based on the stiffness of the grasped object. This method is simple, as
only the length of travel of the fingers or gripper yaws between the moment
of contact to reaching a set force threshold needs to be considered. Hence only
normal force sensors are required, simplifying the required sensor setup. Yet,
the estimate of required normal force based on object stiffness is just a heuristic,
failing especially for stiff yet fragile objects like raw eggs.

Slip Detection based methods try to detect vibration events at the interface
between the hand or gripper and the object. If such an event is detected usually
a simple reflex is triggered to tighten the grasp. Detection of slip requires
either dedicated sensors like floating accelerometers at the contacting surfaces
or analysis of the high frequency components of other tactile sensor modalities
like normal force. Often the sensor signals are subjected to a Fourier or wavelet
transform to isolate signal patterns characteristic for slip events, increasing the
computational complexity. While individual works consider the problem of slip
prediction, the majority of slip-based grasp controllers act reactively, slip is not
prevented. If multiple slip events occur, the object can slip far enough inside the
grasp to change its pose or completely fall out of the hand.

Friction Coefficient Estimation based methods estimate the friction acting between
the gripper or hand by monitoring the ratio between normal and shear forces
measured at the points of contact. If the friction is low, the normal force can be
increased or safely decreased if the friction is very high. This has the advantage
that the estimate for the required normal force is independent of object stiffness
and the estimate can be dynamically adapted. For this method to work reliably,
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the contact surfaces must be equipped with shear force sensors, increasing the
complexity of required sensorization. Since the friction is different for each
object, either a static friction value can be used as reference that is considered to
be safe or the friction is estimated during initial contact and lifting of the object.
Friction coefficient estimation tends to fail for objects that are crumbly like bread
or dusty. The minimum required friction can for example be estimated using
Slip Detection.

Due to the various advantages of force control based on friction coefficient estima-
tion regarding stability, the controller for the phases load, lift hold and replace
in the thesis utilizes a friction coefficient based controller with a fixed value for
the minimal desirable friction.

Limitations in Kinematics, Sensorization and Control of Holistic
Approaches

Works presenting a more holistic approach to grasping and manipulation akin to
human grasping, i. e. including closing of the fingers, replacing objects and open-
ing the fingers, are rare. These works, namely (Romano et al., 2011; Yamaguchi
and Atkeson, 2017; Zhang and Jiang, 2018), show great success in handling arbi-
trary objects in a reliable manner, showing the potential of a more human-like
approach. Yet, several limitations can be identified that are addressed in the
thesis.

All works that consider the Complete Grasping Process make use of either a parallel
gripper (Romano et al., 2011; Yamaguchi et al., 2018) or manually pre-determine
the fingers that are involed in the grasp (Zhang and Jiang, 2018). The automatic
selection and coordination of all fingers is not considered in (Zhang and Jiang,
2018) and not applicable in case of parallel grippers. In the case of (Zhang
and Jiang, 2018) this means that the prosthesis user has to manually bring the
selected fingers into contact with the object before autonomous force control is
started.

The yaws of parallel grippers are relatively easy to sensorize with a flat sen-
sor matrix, so that objects only contact the gripper at sensorized surfaces. A
humanoid hand exhibits a far more complex geometry. The object might con-
tact surfaces on the fingers and the hand that are not equipped with sensors,
increasing the uncertainty of the available sensor data. Individual fingers might
contact the object at an angle, right at a sharp feature or might miss the object
entirely. Almost all works restrict contact points between object and hand or
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gripper to surfaces that are sensorized, like (Wettels et al., 2009; De Maria et al.,
2015; Su et al., 2015; Kaboli et al., 2016; Ajoudani et al., 2016; Takahashi et al.,
2008; Al-Mohammed et al., 2018; Veiga et al., 2020; Nakagawa-Silva et al., 2019;
Romano et al., 2011; Yamaguchi and Atkeson, 2017). The authors in (Zhang and
Jiang, 2018) also concentrate on pinch and tripod grasps that contact the object
only on the sensorized fingertips.

Grasping starts with bringing the hand into close proximity of the object and
then closing the fingers to make initial contact. (Yamaguchi and Atkeson, 2017)
describe an controller for gentle closing of the hand, stopping the gripper yaws
as soon as fixed threshold of normal force is reached. The same strategy is
employed in (Romano et al., 2011) and in (Zhang and Jiang, 2018). The use of
proximity sensors for controlling the finger speed during closing to not impact
the object with high velocity is not considered.

In contrast to related wroks, the grasp-phases controller developed in the thesis
implements all phases observed in human grasping in a fully autonomous
manner. All fingers attempt to grasp and are automatically disabled if they miss
the object and opening the fingers is automatically coordinated. The approach
of the fingers is monitored using proximity sensing to enable fast closing of
the fingers and slowing them down as they approach the object. Grasping in
this thesis is not restricted to contacting the object with sensorized parts of the
hand. To deal with the uncertainty, the controller in this thesis makes use of
multimodal sensor data to verify individual measurements with measurements
from a different modality.
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3. Anthropomorphic Hands with a
Multimodal Sensor System

Perception of a hand’s close environment as well as interactions with the envi-
ronment are crucial to dexterous grasping and manipulation. The human hand
employs a multimodal sensing system with hundreds of sensors per square
centimeter for tactile sensing alone, in addition to proprioception and visual
cues. To apply human-inspired grasping strategies, a technical realization of
these sensor modalities must be integrated into the mechanical structure of an
anthropomorphic hand.

This chapter hence details the efforts made in this thesis to integrate a multi-
modal sensor system into anthropomorphic hands and especially fingers, as
these are the main tool to interact with objects. Three different contributions are
made. First, the development of a male and female hand prosthesis that embeds
a sensor system and an embedded system directly in the palm ( Section 3.1). As
the integration of sensors into the fingers while enabling free scalability of these
fingers is especially challenging, these developments are presented in detail in
Section 3.2. Section 3.3 then introduces a soft finger variant of the rigid fingers
described in the sections above. Lastly, the design of two embedded system
variants for sensor readout and on-board control is presented in Section 3.4.

3.1. The KIT Prosthetic Hands

The following section has been published in (Weiner, Starke, Rader et al., 2022)
and is inclueded here with changes (CC BY 4.0). The contribution of the theses
is the sensorization of the palm, the implementation of the embedded system
and a novel design for the underactuated mechanism. Hand prostheses allow
amputees to regain autonomy and abilities in their daily life. Recent advances in
prosthetic hand development have led to sophisticated multiarticulate devices.
However, the rejection rate of myoelectric prostheses is very high with 44 %
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(Salminger et al., 2020). One reason for this problem arises from limitations
in terms of intuitiveness-of-use and a high level of user control effort needed
to execute grasping tasks. These limitations can be relaxed by the integration
of intelligent hardware and software. In terms of hardware, underactuated
mechanisms have proven to be a very promising way to design robot hands
with a small number of active Degree of Freedoms (DoFs) as shown for example
by Fukaya et al. (2000), Belter and Dollar (2013) and Catalano et al. (2014)
among others. Such hands are able to adapt to the shape of objects to reliably
execute grasps while exploiting the physical interaction with the object. In
addition, intelligent control strategies significantly reduce the cognitive burden
on the user by taking information about the environment and user intention into
account to autonomously select suitable grasps while keeping the user in the
loop. The advantages of such approach has been demonstrated by several recent
developments e. g. by Došen et al. (2010), Markovic et al. (2015) and Ghazaei et al.
(2017) among others. However, semi-autonomous control requires profound
knowledge about the environmental situation and the user intention, which
must be acquired by an appropriate sensor system and sufficient computing
resources to extract such knowledge from sensor data.

The remainder of this section presents recent work on the development of
highly integrated prosthetic hands that are equipped with on-board sensors
and computing power to support the realization of semi-autonomous grasping.
Contributions to the prosthetic hands made in this thesis are the design of a novel
adaptive underactuated mechanism based on the TUAT/Karlsruhe mechanism
(Fukaya et al., 2000) for the female hand, the integration of sensors into the palm
and design of the embedded system. Furthermore, this thesis contributed to the
mechanical design, especially to the arrangement of the individual components.
Although this thesis also contributed to the older male version of the hand
(Weiner et al., 2018b), the focus in this section lies on the newer female hand,
which will be compared to the older male hand in relevant aspects. The hands,
as depicted in Figure 3.1, are driven by two DC motors, one motor for the thumb
and one for the fingers, with a total of 10 DoF. Specifically, the most recent
version of the prosthetic hand, the female version is presented and compared to
the previous male version. The female hand which is based on the male hand
regarding the design of prosthetic hands by Weiner et al. (2018b) and in-hand
visual data processing for object detection by Hundhausen et al. (2019). The
female prosthesis extends previous work on the male hand in terms of sensing
and visual perception capabilities, underactuated mechanism and shows the
scalability of the design to different hand sizes.
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Figure 3.1.: The KIT Prosthetic Hands; female (left) and male (right) intelligent
hand prostheses designed for semi-autonomous grasp control. Each
hand has two Direct Current (DC) motors actuating 10 DoF via an
underactuated mechanism. Each hand is equipped with a camera in
the palm, Inertial Measurement Unit (IMU) and a distance sensors
(female version) as well as an integrated embedded system for in-
hand sensor data processing and control. Reprinted from (Weiner,
Starke, Rader et al., 2022) with changes (CC BY 4.0).

The section is organized as follows: In Subsection 3.1.1 the key requirements
governing the development of our hand prostheses are explained. The me-
chanical design as well as the sensors and embedded system are detailed in
Subsection 3.1.2. Subsection 3.1.3 describes experimental results regarding
main characteristics and real-world grasping studies. The section concludes
with a summary and discussion of the presented hand ( Subsection 3.1.4).

3.1.1. Key Requirements

To provide support for the user performing diverse Activity of Daily Livings
(ADLs), as for example food preparation, housekeeping or tool use among
others, a prosthesis has to be reliable and versatile in terms of its grasping
capabilities, i. e. it should be able to successfully perform a wide variety of ADLs
(Matheus and Dollar, 2010). The user expects their prosthesis to be effortless
and intuitive despite the inherent complexity of the mechatronics and control
(Cordella et al., 2016). The pivotal point of our hand development is therefore
to endow prosthetic hands with intelligent grasping capabilities to support
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intuitiveness-of-use and to reduce the cognitive burden of the user. In this work,
we strive for intelligent hand mechatronics, that provide the sensor information
and capabilities to render intuitive, partially autonomous grasp control possible.
In the following, we discuss the key requirements that should be taken into
account in the context of the development of such prosthetic hands. These
concern the simplicity of mechanical design, the ability to perceive and interpret
the current scene, the computing system needed for sensor data processing and
control as well as requirements regarding size, weight and appearance of the
hand. Underactuated mechanical designs have shown how grasping behavior
can be achieved by intelligent hand and finger mechanisms that are able to
autonomously self-adapt the hand morphology to the object shape, see (Pfeifer
and Gómez, 2009) and (Carrozza et al., 2006). This allows the realization of basic
grasping by exploiting the interaction of the hand with the object while using
simple and often none precise control.

While such self-adaption of the hand reduces the control complexity for closing
the hand, it does not simplify other parts of a grasping action for the user. This
includes the selection of a grasp type, hand preshape and hand orientation,
which depend on the object to be grasped and on task-specific constraints. Thus,
an intuitive-to-use prosthetic hand should be able to autonomously determine
suitable grasps, hand preshapes and orientations based on the available object
information and the user intention. To keep the human in the loop, the exe-
cution of the different parts of a grasping action should always be supervised
by the user leading to semi-autonomous grasping behavior. Different semi-
autonomous control schemes have been proposed in literature and have proven
to reduce the cognitive burden for the user (Došen et al., 2010; Markovic et al.,
2015; Ghazaei et al., 2017).

To achieve such semi-autonomous grasping behavior, a multi-modal sensor
system is needed to perceive the scene, extract important object information
as well as to capture user’s state and intention. Visual perception plays a key
role for scene understanding, in particular for object detection that is needed to
generate suitable grasps. Thus, vision systems have been a central part of semi-
autonomous grasping setups, with cameras attached to the human body or the
environment to provide the necessary information. In our work, we integrate
a camera, an IMU and a distance sensor in the prosthesis to provide a fully
integrated system enabling semi-autonomous grasping. In addition, according
to Cordella et al. (2016), providing feedback to the user about the state of their
prosthetic hand is important and should be considered. For processing and
interpretation of multi-modal sensory data, appropriate computing resources
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are needed that should be integrated in the hand while taking into account
space limitations and energy consumption. In addition, resource-aware image
processing and machine learning methods are needed.

Finally, the hand needs to comply with the general design requirements for
prosthetic hands in terms of size, weight, grasp force, speed and appearance
(Cordella et al., 2016; Pylatiuk et al., 2007; Wijk and Carlsson, 2015; Schweitzer
et al., 2018). Thus, the design of the prosthetic hand should take into account the
scalability in size to fit a large portion of the population. To show the feasibility
of integrating the functions described above within the severe space limitations
of prostheses, we design a hand with the size of a 50th percentile female hand
according to the German standard specification (DIN 33402-2). According to the
literature, the weight of the prosthetic hand should not exceed 400 g to match
the weight of a human hand (Kaye and Konz, 1986). Further, the grasping force
and closing speed of the hand should be comparable to commercial hands, as
reported in (Belter and Dollar, 2013).

3.1.2. Design and Mechatronics

The female KIT Prosthetic Hand is an underactuated myoelectric prosthetic
hand driven by two DC motors and controlled via muscle signals extracted
by two Electromyography (EMG) electrodes. In this subsection, we present
the mechanical and electrical design of the female prosthesis offering mechani-
cal grasp support via underactuation and providing a platform for intelligent
and context-aware control algorithms. The advances in design are shown in
comparison to the male prosthesis described in (Weiner et al., 2018b).

Actuation and Adaptive Mechanism

The design of the prosthesis incorporates two DC motors (2224U012SR, Faul-
haber) that are equipped with relative encoders (IEH2-512, Faulhaber) and a
planetary gear (Series 20/1R, Faulhaber) with 23:1 transmission. The first motor
drives the thumb flexion. All four fingers are actuated together by the second
motor via an underactuated mechanism. Both versions of the mechanism in the
male and female hand are depicted in Figure 3.2.

For the male hand, we presented the mechanism in Figure 3.2 consisting of a
rocker that is centrally pulled by a tendon on pulley 3⃝ connected to the motor
at 4⃝. The tendons 6⃝ and 7⃝ connecting two fingers each are fixed on either
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A
B

Figure 3.2.: Underactuated force distributing mechanism for the fingers; the
mechanism in the male hand connects two fingers by a single tendon
and the pairs of fingers by a lever (A); the mechanism in the female
hand actuates pairs of fingers by free floating sliders interconnected
by the motor tendon B). Reprinted from (Weiner, Starke, Rader et al.,
2022) without changes (CC BY 4.0).

side of the lever bar and rotate around the floating pulleys 1⃝ and 2⃝. As long as
all of the fingers can close freely, all finger tendons are pulled equally causing
finger flexion. If one finger is blocked by an object, the tendon turns around its
pulley, thereby further closing the second finger connected to the same tendon.
If both fingers connected to a tendon cannot close any further, the lever of the
mechanism rotates and allows the other two fingers to continue closing. This
mechanism design provides the prosthesis with the ability to wrap around
arbitrarily shaped objects without the need of complex control input.

In the female hand, the mechanism is further improved regarding the required
input force, sizing and friction. The lever is replaced by two separate sliders 1⃝
and 2⃝ consisting of two connected pulleys. The sliders are free floating and
move along their individual guides. The tendon coming from the motor at 4⃝
is led around one pulley of slider 2⃝, a fixed guiding pulley 3⃝ and to slider 1⃝,
before it is fixed at the housing at 5⃝. The tendons 6⃝ and 7⃝ connecting two
fingers each are led around the second pulley of one slider each. By pulling
the motor tendon, the force is still equally distributed to all four fingers by
similarly actuating both sliders. The distribution between two fingers remains
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the same as in the first hand version while the lever is replaced by the two sliders
distributing force between the individual pairs of fingers.

Apart from the reduced dimensions of the mechanism, the additional redirection
of the tendon between both sliders results in a force transmission ratio of 2:1,
thereby doubling the finger force compared to the tendon force on the motor
pulley. Together with a decrease of the diameter of the motor pulley from
16 mm to 8 mm, which corresponds to an additional transmission ratio of 2:1,
this allows the reduction of the transmission gear of the motor by factor four
from 86:1 in the male hand to 23:1 in the female hand. Therefore, the gear needs
one reduction stage less, hence making the gear shorter and lighter while also
increasing transmission efficiency.

As the sliders are held in constant tension between motor and finger tendon,
they are free-floating and thereby cause no friction against the mechanism walls.
All pulleys are supported by ball bearings. This further reduces the friction
within the mechanism, thereby increasing the resulting finger force. The design
with individual sliders makes the mechanism suitable to be used with other
finger designs. This has been shown in the development of the KIT Finger-Vision
Soft Hand described by Hundhausen et al. (2020), in which three fingers are
driven with an adapted version of this mechanism.

Mechanical Design

The mechanism and motors are placed within the palm of the hand together
with the sensors and the embedded system, as shown in Figure 3.3. The male
and female prostheses have the size of a 50th percentile male and female hand,
respectively, according to the German standard specification (DIN 33402-2).
Individual finger segment lengths are based on the human hand length study
by Vergara et al. (2016). The dimensions of both prosthetic hands are listed in
Table 3.1.

Despite a reduction of the integration space by 30.9 % compared to the male
hand, all hardware components including the two motors, the underactuated
mechanism, sensors and the embedded system are integrated into the palm of
the female prosthesis. The fingers are designed based on a Computer Aided
Design (CAD) model, which allows scaling of the hand according to the size
of the user’s able hand. To support a lightweight design, the housing, finger
phalanges and mechanism sliders are 3D-printed using selective laser sintering
from polyamide, a robust, yet flexible plastic.
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Figure 3.3.: The female prosthesis with motors, mechanism and Printed Circuit
Board (PCB) integrated into the palm. Camera and distance sensor
are mounted below the mechanism. The mechanism in black is
mounted below the PCB. The display is fixed on top of the PCB
in the dorsal housing. The display is rendered semi-transparent to
make the components underneath visible. Reprinted from (Weiner,
Starke, Rader et al., 2022) without changes (CC BY 4.0).

The fingers are actuated by 0.4 mm Dyneema tendons. Each finger comprises
actuated flexion in the metacarpophalangeal (MCP) joint and the Proximal
Interphalangeal (PIP) joint. The PIP joint is fixed at an angle of 20°. The resulting
10 joints are equipped with ball bearings and the tendon is routed through Teflon
tubes (PTFE) to minimize friction. Torsion springs are included in the finger
joints and support the passive extension of the fingers. A higher pretension of
the springs in the PIP joints leads to a higher closing speed of the MCP joints
compared to the PIP joints. This results in a human-like spiral fingertip closing
trajectory, as shown by Kamper et al. (2003). The fingers are attached to the hand
by a mechanical interface, allowing the fingers to be exchanged for different
versions.

The fingertips are equipped with high friction finger pads to enhance the friction
with the grasped object and thereby lower the required force to perform a stable
grasp. The pads cover the palmar side of the medial and distal phalanges and
envelop the tip as well as radial and ulnar side of the distal phalanx. They are
cast from silicone and glued to the fingertip housing structure.
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Table 3.1.: Dimensions of the KIT prosthetic hands. Reprinted from (Weiner,
Starke, Rader et al., 2022) without changes (CC BY 4.0).

Hand Part Male (mm) Female (mm)

Palm Length 111 100
Width 87 77
Depth 30 26

Thumb Proximal Phalanx 37.0 32.7
Distal Phalanx 37.7 33.2

Index Finger Proximal Phalanx 29.9 27.0
Intermediate Phalanx 28.0 26.4
Distal Phalanx 27.1 25.5

Middle Finger Proximal Phalanx 33.6 30.3
Intermediate Phalanx 32.3 30.4
Distal Phalanx 28 26.3

Ring Finger Proximal Phalanx 30.1 26.9
Intermediate Phalanx 31.3 29.3
Distal Phalanx 28.6 26.8

Little Finger Proximal Phalanx 22.8 20.5
Intermediate Phalanx 23.9 22.6
Distal Phalanx 27.3 25.7

Embedded Sensor System and Electronics

Both male and female prosthetic hands contain a multi-modal sensor system, a
display and an embedded system to support intelligent sensor data processing
and control without the need for external devices such as smartphones. To
gain information about the proximate surroundings of the hand, the prostheses
embed a camera (OV2640, OmniVision) at the base of the thumb. The camera
module has a size of 8 mm×8 mm×6.3 mm and is connected to the processor’s
digital camera interface (DCMI) by a 24 pin flat-flex cable. The camera is con-
figured to provide a 176 × 144 pixel RGB image at 10 frames per second. In
the female prosthesis, a Time of Flight (ToF) distance sensor (VL53L1X, STMi-
croelectronics) placed close to the camera is used to measure the distance of a
target object to the hand. Relative motor encoders and, in the female version, an
IMU (BNO055, Bosch Sensortec) located on the embedded system’s PCB provide
proprioceptive information. In addition, the state of the users forearm can be
estimated using the IMU.
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An OLED display in the back of the hand provides feedback to the user about
the current status of the hand. This can be utilized in semi-autonomous control
schemes to show the proposed grasp type and the orientation for a recognized
object. All sensors, motors and the display are connected to an embedded
system in the palm of the hands. A detailed overview of the embedded system
inside of the female hand is given in subsection 3.4.1.

3.1.3. Evaluation

The female prosthetic hand is evaluated and compared to the male prosthetic
hand to assess the improvement of the design. The evaluation includes the
hand characteristics in terms of grasping force, closing speed and hand weight.
In addition, an assessment of grasping functionality using an adapted version
of the YCB Assessment Protocol Calli et al. (2015) is performed and a task-
oriented evaluation of object grasping and manipulation is conducted. The
context information provided by the multi-modal sensor system is evaluated in
a sensor-based grasping experiment.

Prosthesis Characteristics

Grasping Force: The grasp force of the prosthesis in case of a cylindrical
power grasp is assessed using a sensorized wooden cylinder of 49 mm diameter
that integrates a 6D force/torque sensor (Mini 40, ATI Industrial Automation) as
shown in Figure 3.4a. The cylinder is grasped by the prosthesis with the thumb
and the fingers touching on opposite sides of the sensor and held vertically. The
individual finger forces are measured by positioning the flat hand directly over
the force/torque sensor. By closing the hand, one finger is pressed onto the
sensor while the others close freely. This procedure is performed for every finger.
Both measurements are repeated 15 times each.

The cylindrical power grasp force amounts to a mean of 24.2 N with a standard
deviation of ±1.9 N for the male prosthesis and 40.5 N±8.1 N for the female hand.
The mean finger forces range between 6.2 N to 8.2 N and 9.0 N to 12.3 N for the
male and female hands respectively. The individual forces of the different fingers
are shown in Figure 3.4b. The thumb grasp force in an extended configuration
amounts to 53.1 N±1.4 N.

Speed The hand closing time is measured in an experimental setup, in which
we track the fingertip positions of index and thumb in image sequences. To
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Figure 3.5.: (a) Measurement setup for the measurement of cylindrical grasping
forces. (Weiner et al., 2018b) (b) Fingertip forces of the male and
female prosthesis. The orange line marks the median force, the box
boundaries denote the first and third quartile and the outer lines
depict the extrema of the respective fingertip force. Reprinted from
(Weiner, Starke, Rader et al., 2022) without changes (CC BY 4.0).

determine the time, we repeated the experiments five times. The hand was
placed in front of the camera lying on the back of the hand on a flat surface,
exposing thumb and index finger to the camera.This orientation of the hand
represents the worst case for fast closing, as gravity in this orientation extends
the fingers and is hindering fast acceleration of the fingers, whereas rotation of
the hand by 180° would result in gravity-assisted finger closing. The finger tips
were marked using red tape for color-based tracking. The tracking of one corner
of the red tape was performed using the video tracking software kinovea1.While
the male hand closes in 1.32 s±0.04 s, the female hand exhibits a closing speed
of 0.73 s±0.02 s. The nominal maximum motor speed is kept constant for both
versions.

Weight and Cost The female prosthesis weighs 377 g and requires material
costs of 896e, as shown in Figure 3.6. The male hand has a weight of 670 g
and material costs of 1008e. The weight reduction is achieved in large parts

1https://www.kinovea.org/
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Figure 3.6.: Distribution of weight and cost among the components of the male
and female KIT Prosthetic Hand. Reprinted from (Weiner, Starke,
Rader et al., 2022) without changes (CC BY 4.0).

by optimizing the structural 3D-printed parts for the palm. In contrast to
the mechanism in the male version, which was milled from aluminum, the
mechanism in the female hand is also 3D-printed, reducing the weight by 60 %.
Due to the additional transmission ratio of 2:1 in the mechanism and reduction
of the diameter of the motor tendon pulley, weight is saved as the motor requires
one reduction gear stage less.

Grasping Ability

We evaluated the grasping and manipulation abilities of the hands using 1)
the YCB Gripper Assessment Protocol as proposed by Calli et al. (2015) to assess
grasping abilities and 2) a second task-oriented protocol for assessing the hand
performance in activities of daily living (ADL).

Gripper Assasment Protocol The general grasping ability is assessed based
on the YCB Gripper Assessment Protocol. The procedure consists of grasping
each object from a table, holding it for 3 s and rotating it by 90°. In contrast to the
original protocol, we include all object categories from the YCB Object Set except
for the task items category. This category, containing e. g. a peg-in-hole board or
the assembly of an airplane toy, is excluded from the evaluation as we focus on
the assessment of the hand grasping abilities. Altogether, 60 objects were tested.
No position offsets are applied to the objects as these are compensated by the
user.

The procedure was applied to both the male and female prosthetic hand while
being manually controlled by a human operator. One point is scored if the
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object is successfully lifted and held. A second point is scored if the object does
not move or slide inside the hand, a third point is scored if the object remains
grasped after the rotation and the fourth point is scored if the object does not
move inside the hand after rotation. The maximum score that can be achieved
for each object is four. For articulated objects (table cloth, chain, rope, t-shirt),
the object is grasped and lifted three times and half a point is granted for each
successful attempt.

The scores were 193 and 203.5 of the possible 230 points for the male and female
hand respectively. In total 85.2 % of all objects could be grasped with the male
hand and 91.8 % with the female hand. Both hands encounter difficulties in
grasping thin and small objects like credit cards, nails and washers. Despite the
smaller size of the female hand, there are no notable shortcomings in grasping
large objects, like the wood block or the mini soccer ball from the YCB Object
Set. Both hands are able to lift all heavy objects from the YCB object with a
full score, for example the power drill, the table cloth and the wood block. The
skillet could be lifted at the handle, but moved inside the hand during hand
rotation due to the high torque on the handle.

Task-Oriented Protocol The female hand is additionally evaluated with a
task oriented protocol of common daily life activities. To this end, the prosthesis
was mounted on a shaft, which can be worn below the forearm of the able hand
and several activities of daily living were performed using the prosthesis. The
tasks are selected based on the objects and activities proposed by Matheus and
Dollar (2010). The list of the tasks is shown in Figure 3.7.

The execution of every task is repeated five times. The task execution quality
is assessed with a score between 0 and 3 points. The used scoring system is
designed as follows: one point is granted for achieving a stable grasp, a second
point is granted for successful accomplishment of the task goal and the third
point is granted when the task execution is done in a natural and comfortable
manner compared to its execution with two able human hands. As an example,
for the writing task, the first point is scored if the pen is stably held in the hand,
the second point for writing the requested sentence on a piece of paper in a
readable manner and the third point is granted only if the handwriting looks
natural, the task is executed in a comfortable manner and the writing time is
not disproportionally long. As defined in the Southampton Hand Assessment
Procedure (SHAP) proposed in Light et al. (2002), each task needs to be solved
within eight times the time needed by an able-bodied person to be not considered
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disproportionally long. If the task execution requires more time, it can only be
rated with two points at maximum.

Figure 3.7.: Tasks performed in the task-oriented protocol with the mean pros-
thesis scores, ranging between 0 for the hand being unable to grasp
the object to 3 for a comfortable task execution, the rate of failed task
executions over five trials and the mean execution times with the
prosthetic hand and an able human hand. Reprinted from (Weiner,
Starke, Rader et al., 2022) without changes (CC BY 4.0).

The scores and execution times achieved with the female prosthesis are shown
in Figure 3.7. In addition, the task failure rate over all five executions of each
task is given. Over all activities, the task was not fulfilled successfully in 6.7 %
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of all executions. The overall score of 88.6 % of achievable points indicates a
satisfying functionality of the hand in performing activities of daily life.

The prosthesis was especially successful in executing everyday household activ-
ities like food preparation, house keeping and laundry. Lower task evaluation
scores are mainly seen in office tasks as well as medicating and bathing tasks.
This is due to the fact, that these tasks require more complex grasping and
prehensile in-hand object manipulation. The only task that could not be accom-
plished by the prosthesis was gluing with a hot glue gun. While the gun could
be grasped, the trigger could not be pressed by the index finger. The task of
screwing a bolt into a nut was especially challenging, since the hand is not able
to turn the screw driver within the hand, but instead the full hand needs to
be rotated with the screwdriver. This results in unnatural and uncomfortable
whole-body compensatory movements. No task took more than eight times the
time of an execution with two able human hands. Strapping a shoe was the only
task that exceeded the defined time constraint because the task took 10.4 times
the time needed by a human with two able hands.

Sensor-Based Grasping

The merit of the multi-modal sensor system for grasp control is evaluated in
the context of sensor-based grasping (see Figure 3.8). All sensor readings are
recorded and evaluated during a grasping sequence of daily living activity. In
the sequence, a bottle of coke is grasped with the prosthesis, opened and the
coke is poured into a glass. After the bottle is placed back on the table, a lemon
is grasped and held firmly. A slice is cut off with a knife in the second hand and
the lemon is placed on the table. The lemon slice is inserted into the glass of
coke with the able hand. Before grasping, an image of the object is captured by
the hand’s integrated camera and the object recognition is run on the in-hand
integrated embedded system. Figure 3.8 shows the experimental procedure,
the sensor readings and results of the object recognition. The camera image for
object recognition is shown together with the recognition probabilities for all
13 trained objects in the bottom row. The correct object, being coke and lemon
respectively, is marked in orange in the bar chart diagrams. In both cases, the
object recognition returns the highest probability for the correct object, allowing
for object-specific grasp control.

The sensor readings for five executions of the task are shown in the middle
of Figure 3.8. The associated sensor readings are plotted in solid lines for an
exemplary execution and in transparent lines for the remaining four executions.
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Figure 3.8.: Sensor readings while pouring coke into a glass and adding a slice
cut off from a lemon. Graphs show an exemplary measurement
of the motor positions, hand orientation from the IMU and object
distance. Four additional experiments printed in the background
underline the reliability of the sensor data. Important events of the
grasping process are marked by dashed lines and corresponding
images of the scene are shown above the graphs. The triggering
of the object recognition is marked by dotted lines and an images
captured by the hand camera together with the object recognition
probabilities are shown below the graphs. The recognition probabil-
ity of the coke bottle and lemon respectively are marked in orange
in the bar chart, indicating the object was recognized correctly based
on visual information. Reprinted from (Weiner, Starke, Rader et al.,
2022) without changes (CC BY 4.0).
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All sensor readings have been normalized over the execution time, to show the
similarity of the acquired sensor data throughout several executions. Grasping
the bottle is finished after 5.2 s, which is clearly visible in the motor position data.
Similarly the bottle is placed on the table after 23.3 s, coincident with the motor
position moving back to the initial state. Grasping and releasing the lemon occur
at 29.9 s and 40.6 s respectively.

Approaching the object can also be inferred from the distance sensor in the
palm, which shows a decrease of the object distance from 379 mm to 15 mm
between 3.6 s and 5.1 s. The grasping action can therefore be controlled based
on the distance to the object provided by the distance sensor. As the ball of the
thumb does not touch the bottle, the distance sensor does not decrease to zero
throughout the grasp. The release of the object, which is also visible in the finger
motor positions, is consequently followed by an increase of the object distance
starting after 24.6 s.

The orientation data from the IMU provides additional information about the
grasp. Figure 3.8 shows the hand orientation in the hand coordinate system.
Several rotations of the prosthesis throughout the manipulation action can be
recognized. The recording starts with the hand in a horizontal position and
the palm facing towards the table. After 11.1 s, when the bottle is grasped and
opened, the prosthesis starts rotating with the bottle to pour coke into the glass.
This is visible in the roll angle of the IMU. Once the pouring action is finished
and the hand is rotated back, the placement of the bottle can be recognized
based on the distance sensor data. The disturbance induced by opening the
bottle and placing it back on the table can be seen in the hand’s pitch angle. To
grasp the lemon, the hand is again horizontally orientated, as visible in the roll
angle of the IMU.

The experiment exemplifies that information about the current phase of an object
grasping and manipulation task can be inferred from sensor data and can be
used for semi-autonomous grasp control.

3.1.4. Discussion

We present the KIT Prosthetic Hands as an example for intelligent prostheses
equipped with abilities needed for the realization of semi-autonomous grasping.
The hands are designed to support users in grasping objects to master daily
life activities. The intelligence of the hands is achieved by combining adaptive
underactuated mechanisms with a multi-modal sensor system and an embedded
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Table 3.2.: Key characteristics of the male and female KIT prosthetic hands.
Reprinted from (Weiner, Starke, Rader et al., 2022) without changes
(CC BY 4.0).

Prosthesis Percentile Weight Material
Cost

Embedded
Sensors

Grasping
Force

Closing
Speed

YCB GAP
Score

Male 50th
male

768g 1008€ Camera 24.2±1.9 N 1.32±0.04 s 193

Female 50th
female

377g 896€
Distance,
IMU,
Camera

40.5±8.1 N 0.73±0.02 s 203.5

system for onboard processing of sensory information and control. Thanks to
the underactuated mechanism, high grasp forces can be achieved. The on-board
processing of multimodal sensor information relevant to the current task allows
the implementation of semi-autonomous grasping behaviors.

The hand’s size and weight comply to the requirements for a hand prosthesis.
With its total weight of 377 g, the hand is lighter than any commercial myoelectric
prosthetic hand as presented in Table 2.1, and is comparable to the human hand
with approximately 400 g (Kaye and Konz, 1986). Compared to the male hand,
the female hand shows a reduction of 44 % in weight and 30 % in cost. As shown
in Figure 3.6, this is achieved by a significant improvement in lightweight design
of mechanism and structural hand parts as well as the 3D-printed design of
the mechanism without custom metal parts. Compared to the male hand, the
closing time of the female prosthesis is decreased by 0.59 s to an absolute closing
time of 0.73 s. This increase in speed is achieved by the improved mechanism
design and the shorter finger dimensions requiring a smaller tendon deflection.
The hand provides a cylindrical grasp force of 40.5 N and a mean fingertip force
of 10.3 N within the four fingers. Compared to the male hand, the increase
of the finger forces amounts on average to 35.2 %. This is within the range of
commercial and research prosthetic hands as e. g. the iLimb Pulse (Belter and
Dollar, 2013) or the SSSA-MyHand in (Controzzi et al., 2017). With 53.4 N, the
thumb is capable of providing a significantly higher force to counteract the four
fingers.

The evaluation of the prosthesis based on the YCB Gripper Assessment Protocol
shows a grasp functionality of 91.8 % in grasping everyday objects and the pros-
thesis achieves a score of 88.6 % in the execution of daily activity manipulation
tasks. This shows the potential of the hand to support users throughout their
daily life spanning food preparation, household and hygiene tasks, but also
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Figure 3.9.: The KIT Sensorized Soft Hand (left) and KIT Finger-Vision Soft Hand
(right) inspired by the prosthetic hand development. Reprinted from
(Weiner, Starke, Rader et al., 2022) without changes (CC BY 4.0).

including their professional life, exemplary shown in office and workshop activ-
ities. The improvements of the female prosthetic hand over the male version are
summarized in Table 3.2.

With these achievements, we provide important prerequisites for novel genera-
tion of prosthetic hands that integrate multi-modal sensing and computing for
the realization of semi-autonomous grasping and improving the way how users
can interact with their prosthetic hands in an easy and intuitive way. We be-
lieve that the hardware design of the KIT Prosthetic Hand as an intelligent and
functional hand prosthesis provides a powerful platform for the development
of intelligent, semi-autonomous control algorithms.

Important to mention is also the fact that the underactuated mechanisms used
in the KIT prosthetic hands served as the basis for the development of the
hands of the humanoid robot ARMAR-6 by Asfour et al. (2019). In addition, the
new version of prosthetic hand, the female version, served as a basis for the
development of several new soft humanoid robotic hands, the KIT Finger-Vision
Soft Hand, see Hundhausen et al. (2020), and the KIT Sensorized Soft Hand with
tactile sensing of the fingers, see section 3.3 and (Weiner et al., 2021). Both hands
are shown in Figure 3.9. The hands allow an individual actuation of the thumb
and the index finger. Both are driven by three motors and include an adapted
version of the underactuated mechanism described in subsection 3.1.2, that is
designed to drive only three fingers with the same motor.
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3.2. Scalable Sensorized Rigid Fingers

The development of fingers for anthropomorphic hands is driven by two main
requirements. First, the fingers should include a multimodal haptic sensor
system that is able to sense normal and shear forces, joint angles as well as
proximity. Second, the fingers should be freely scalable according to human
hand dimensions. This allows to manufacture fingers that reflect the different
sizing of index, middle, ring and little finger for a given hand size and allow to
build hands with different sizes, all from a single finger model. Scalability is
hence a key feature, which is addressed in the thesis. Not only the mechanical
model has to scale, the sensor system has to adapt to the different sized fingers
as well.

The mechanical model of the finger described in the following is designed such
that changing of a few high-level parameters adapts all dimensions of the model
automatically. The sensor system is divided into modules that can be freely
combined to cover the maximum space available for the scaled finger. These
fingers could be scaled to match both prosthetic as well as humanoid robotic
hands, as shown in Figure 3.10b. Individual sensor modalities are exchanged to
allow for higher sample rates of the system and additional sensor modalities like
an accelerometer and a distance sensor are added to the system. An overview of
the sensor system and cabling in the fingers is given in Figure 3.10a.

Due to the complexity of the problem, development of the finger model has been
conducted iteratively. For the first version of the fingers, described in (Weiner
et al., 2018a), a model was derived that included a multimodal sensor system
mounted on flexible Printed Circuit Boards (PCBs), but was not easily scalable.
The second version of the fingers, published in (Weiner et al., 2019), improves
upon the first version by introducing both a scalable mechanical model as well
as a strategy to scale the sensor system. Another aspect improved in this version
is assembly and availability of parts, since the flexible, non-scalable PCB in the
first prototype is replaced by standard rigid PCB and Flat Flex Cables (FFCs).
The use of small modules of standard PCBs to form a variable-sized and scalable
system as well as the use of readily available digital sensors has been inspired
by the robot skin presented in (Cheng et al., 2019).

The following sections up to the conclusion are reprinted from (Weiner et al.,
2019) with changes (CC BY 4.0).
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Figure 3.10.: (a) The four manufactured demonstrators derived from the scalable
model. (b) A comparison of the physical demonstrators with male
KIT Prosthetic Hand (left) and the robotic KIT ARMAR-6 Hand
(right). Reprinted from (Weiner et al., 2019) without changes (CC
BY 4.0).

3.2.1. Design of Scalable Anthropomorphic Fingers

Our approach to implementing a multi-modal sensor system into an anthropo-
morphic finger combines a completely parametrized Computer Aided Design
(CAD)-model with a modular electronic system consisting of commercially
available sensors and standard PCBs. For force sensing we combine and extend
methods described in (Tenzer et al., 2014) and (Tomo et al., 2016b). Additionally,
we incorporate distance, vibration and joint angle sensing into the system. Me-
chanical parts are realized using 3D-printing. In this section, we describe the
interplay of mechanical scalability and electrical modularity and how these two
central concepts are implemented in detail.

Scalable Model

For the mechanical structure of the fingers we created a single scalable CAD-
model of the finger. It is based on a skeleton that contains all important features
of the finger, as can be seen in Figure 3.11. Based on this skeleton, the three indi-
vidual parts for knuckle, proximal and distal phalanx are derived by referencing
the sketches in the skeleton model. The skeleton can be parametrized using
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proximall intermediatel distall

PIPw
PIPh

sh

sw

Figure 3.11.: Skeleton sketches used for the individual phalanges. The seven
high-level parameters are used in these sketches to derive all de-
pendent dimensions of the finger. Reprinted from (Weiner et al.,
2019) without changes (CC BY 4.0).

seven high-level parameters that can be set independently of each other. These
parameters define the width and height of the Proximal Interphalangeal (PIP)
joint (PIPw and PIPh) as well as the lengths of the proximal, intermediate and
distal phalanx (proximall, intermediatel and distall). Two additional parame-
ters sw and sh represent scaling factors that are used to determine the width
and height of the Distal Interphalangeal (DIP) and metacarpophalangeal (MCP)
joints as follows:

MCPw = PIPw · sw DIPw = PIPw · (1− (sw − 1))

MCPh = PIPh · sh DIPh = PIPh · (1− (sh − 1))

The scaling factors sw and sh are calculated as the average ratios of joint height
divided by joint width as measured in (Vergara et al., 2018). If desired, the
height/width of all joints can also be changed individually and independently
by replacing the above calculations for MCP and DIP in the root sketch with
independent scalar values.

The seven high-level parameters (PIPw, PIPh, proximall, intermediatel, distall,
sw, sh) define lengths and radii in a root sketch, together with basic definitions of
useful axes and planes. This root sketch is referenced by further sketches in the
model that define further features like loft guides or faces needed for extrusions.
The model makes use of splines, which allow for round and smooth shapes. To
keep the number of spline parameters small, we define the whole shape of the
finger with as few splines as possible and use a small number of control points
for each spline. Once the whole skeleton is defined as a set of sketches, the three
individual parts of the fingers are designed by deriving relevant sketches from
the skeleton and building the geometry based on these sketches. In addition
to the seven high-level parameters, the model contains 257 other parameters,
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Figure 3.12.: Section view of the little and middle finger with the model scaled to
the 50th percentile female dimensions. The section view of the little
finger shows the joints of the finger while the deeper cut into the
middle finger shows the paths for both the FFCs and the tendon.
Reprinted from (Weiner et al., 2019) without changes (CC BY 4.0).

which are either derived from the high-level parameters or are constant like
fittings, so that a change in high-level parameter values results in a change of
the dimensions of the entire finger.

The parameters can, for example, be set to match the measured dimensions
of the able hand of an amputee. We successfully tested the model using the
5th percentile female hand dimensions as well as the 95th percentile male hand
dimensions. Figure 3.12 shows two specimens of the developed CAD-model
scaled to the dimensions of the little and middle finger sized according to a
median female hand.

In addition to human sizing, special attention was given to the anthropomorphic
shape of the fingers, which is an important factor especially for the acceptance
in prosthetic applications (Cordella et al., 2016). In Figure 3.13, the profile of a
physical demonstrator is shown.

We consciously made the decision to fuse the distal and intermediate phalanx
into one part. Each finger hence has two joints, the MCP joint and the PIP joint.
Omitting the DIP joint reduces the complexity of the assembly and allows for
sufficient space in the distal part to house the sensor system. This is a common
design choice for both commercially available prostheses (Belter and Dollar,
2013) as well research prostheses and humanoid robotic hands (Piazza et al.,
2019).
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Figure 3.13.: Profile of the ring finger showing a curved design for the individual
phalanges. Reprinted from (Weiner et al., 2019) without changes
(CC BY 4.0).

The individual components for the fingers are 3D-printed from Nylon (PA
2200) using Selective Laser Sintering (SLS) to enable individualized sizing as
needed.

Joint Structure and Actuation

Each finger consists of three individual parts, the distal/intermediate phalanx,
the proximal phalanx and the knuckle, as well as two joints, the MCP joint
and the PIP joint, that connect the phalanges. Each joint is supported by two
miniature metal ball bearings to reduce friction to a minimum. The joints are
actuated in flexion direction by a tendon that is located on the palmar side of the
fingers. Actuation via tendons was chosen as it does not require levers inside of
the finger, hence leaving necessary space for the electronics and cables.

Each joint is extended by a stack of leaf springs, as opposed to the torsion
springs, that are used in the previous version of the KIT male prosthetic hand
(Weiner et al., 2018b), in order to free up space in the joints for sensors and
their cables. The leaf springs are installed completely inside each finger and
are not visible from the outside. The pockets for holding the leaf springs are
slightly curved to minimize friction and simultaneously create pretension in the
springs. One end of the leaf springs is glued into the phalanx, the other slides
in and out of the pocket. In order to decrease the friction between the finger
material and leaf springs, we created a hollow space inside the finger. Both the
distal/intermediate as well as the proximal phalanx are hollow for the most part
to allow the springs to extend without friction and in order to save weight. We
used spring steel with 0.1 mm thickness as the leaf spring material. Each joint is
equipped with a stack of three leaf springs to reach a sufficiently high torque.
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Embedded Sensor System Overview

As shown in Figure 3.10a and Figure 3.12, a customizable number of sensors can
be integrated into a finger, depending on the finger pad area available for the
integration of tactile sensors. The middle, and thus largest, finger used in this
work, shown in the bottom of Figure 3.12, contains a total number of ten sensors,
which include two joint angle encoders, a distance sensor, three normal force
sensors, three shear force sensors and one accelerometer. The sensor PCBs are
connected to the controller using FFCs via connectors on the joint angle encoder
and distance sensor PCBs (see Figure 3.12), while the tactile sensor PCBs are
connected through magnet wires (see Figure 3.15).

Sensor Placement Experiments

In order to find the optimal configuration and placement positions of the tactile
sensors in each finger, we conducted tests to determine which surfaces of each
finger are in contact when grasping different objects. These experiments were
carried out prior to the definition of the tactile sensor layout and their results
were used to define the area on the finger that should be covered with tactile
sensors. We used the KIT female prosthetic hand (see section 3.1), as well as five
objects (banana, baseball, bowl, drill, spam) from the YCB object set (Calli et al.,
2015) and two objects (cola, green cup) from the KIT object set (Kasper et al.,
2012), in order to have a variation of shapes and sizes. The outside surface of
each object was painted green, after which the object was immediately grasped
using either a top or a side grasp (approaching the object from the top or the
side, respectively). From the experiments it is evident that the finger area that is
in contact with most objects is the finger pad, especially that of the index finger.
Examples of the experiment results can be seen in Figure 3.14. Thus, contact
forces and slip can be measured most accurately by placing sensors in these
areas.

Sensor System Configuration

We use a combination of three types of sensors to acquire a wide range of tac-
tile information in the available finger pad area, shown in Figure 3.15. The
normal force sensors (NPA201, NovaSensor) are based on ideas presented in
(Tenzer et al., 2014). In contrast to the design by Tenzer et al. used, they are
constructed by leaving a small pressure chamber in the silicone above the baro-
metric pressure sensor by casting small pressure chambers out of silicone, which
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(a) cup side (b) spam top (c) bowl top (d) bottle side (e) drill side

Figure 3.14.: Finger contact surface experiment examples for different grasps.
Reprinted from (Weiner et al., 2019) without changes (CC BY 4.0).

flat flex cable

distance sensor pressure sensors

Hall effect sensors
holesmagnet wires

canals

Figure 3.15.: The individual tactile sensor PCBs, containing normal and shear
force sensors and an accelerometer, as well as the distance sensor
and design details are shown. Reprinted from (Weiner et al., 2019)
without changes (CC BY 4.0).

are placed on the sensor after curing.When a force is exerted on the silicone
in vicinity to the sensor, this force compresses the pressure chamber which in
turn is measured as an increase in pressure by the sensor. These sensors will
be called barometer-based sensors in the rest of this section. While estimating
forces only in one direction, they are very sensitive and offer a high resolution.
The shear force sensors (MLX90393, Melexis) are based on work presented in
(Tomo et al., 2016a) and (Tomo et al., 2016b). They can be used to estimate both
normal and shear forces and offer a larger measurement range than the normal
force sensors at the cost of reduced resolution and non-linearity. These sensors
will be called Hall effect-based sensors in the rest of this section. The normal
force estimation is hence performed using different measurement principles
for each sensor, enabling a more accurate overall measurement through sensor
fusion.
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An accelerometer (BMA456, Bosch Sensortec) with a sample rate of 1.6 kHz is
mounted at the back of the most distal sensor PCB. It can be used to detect slip
of grasped objects as it is, unlike the normal and shear force sensors, able to
achieve the necessary sampling rates for this task.

To gain additional information even before contact is made with an object, we
added a distance sensor into the finger, shown in Figure 3.15. The sensor is
a Time of Flight (ToF) device that is able to measure the distance of objects
independent of their reflectance (VL53L1X, STMicroelectronics). The distance
information acquired with this sensor can for example be used to control the
hand to automatically close the hand as soon as it is close enough to an object to
grasp.

All sensors are commercially available sensors that integrate all signal condition-
ing and digitalization circuits. All sensors also include a temperature sensing
element that can be sampled together with the main sensor signal. This way no
additional electronics are needed for signal processing. All sensors communicate
using the two-wire Inter-Integrated Circuit (I2C) communication bus. Together
with the supply voltage lines, only four wires are needed to operate and read
out all sensors. As there are no commercially available FFCs and connectors
with four terminals, the smallest available configuration with six terminals is
chosen to connect the sensor system to a central processor, typically inside of
the palm of the robotic hand.

Manufacturing Process

Assembly of the fingers starts by connecting the PCBs with the sensors with
short wires and gluing them into the mechanical parts. The mechanical structure
of the fingers contains special grooves where the cables are situated, protecting
them from any mechanical stess.

We then use the methodology described in our previous work (Weiner et al.,
2018a) to cast the normal and shear force sensors in silicone rubber, using the
shear force and placeholder magnets shown in Figure 3.16a. For the Hall effect-
based sensors a thin pad of silicone with Shore A (ShA) hardness 13 is glued to
the top of the sensor using silicone glue. A magnet is placed on the center above
the sensor and a drop of silicone is used to fix the magnet to the silicone pad.

For the barometer-based sensors a small mold is placed around the sensor. A
small magnet is placed directly above the opening in the casing of the barometric
pressure sensor and the mold is filled to the top of the magnet with silicone
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(a) (b) (c)

Figure 3.16.: (a) The molds for the silicone rubber casting process are placed
directly into the finger. (b) The individual sensors have been cast
in rubber. The next step is to cast the remaining finger pad area in
rubber. (c) The result of the casting process of the finger tip and one
half of the used mold is shown. A silicone canal is used to inject
silicone rubber into the molds. Reprinted from (Weiner et al., 2019)
without changes (CC BY 4.0).

(PCB 45). Since the housing of the pressure sensor is magnetic, the magnet is
tightly held in place. As soon as the silicone is hardened, the magnet is removed.
The resulting hole forms the walls of the pressure chamber above the sensor.
The hole is then covered with a thin sheet of silicone (ShA 22) and fixated by a
drop of silicone. Both molds for Hall effect-based and barometer-based sensors
and placeholder magnets are shown in Figure 3.16a. The 3D printed molds,
depicted in Figure 3.16b, can be placed directly onto the PCBs glued into the
finger. The individual sensors are cast in rubber as shown in Figure 3.16a, the
result of which can be seen in Figure 3.16b.

The entire area of the finger pad is then cast in an additional layer of silicone
rubber (ShA 13), shown in Figure 3.16c. In order to ensure sufficient stability of
the silicone layer, holes and canals with undercuts, as shown in Figure 3.15, are
integrated into the finger tip. This design allows for increased adhesion of the
silicone to the 3D printed material. Compared to the previous work, a larger part
of the fingertip is cast in silicone rubber to enable a configuration with a larger
number of sensors. This also contributes to an improved grasping behavior as
the silicone rubber is more elastic and has a higher friction coefficient compared
to the 3D printed material (Or et al., 2016).

Joint Angle Measurement

Additionally required for the forming of pre-grasps are joint angle encoders that
determine the rotation angle of each joint and can be used to control and adjust
the finger flexion. One possibility to measure joint rotation angles is to place a
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Figure 3.17.: Section view of the little finger, with the distal/intermediate pha-
lanx in blue, the proximal phalanx in orange and the knuckle in
green, showing the joint angle encoders and magnets used to de-
termine the joint rotational angles. Reprinted from (Weiner et al.,
2019) without changes (CC BY 4.0).

diametrically polarized magnet directly on the joint axis that rotates with the
joint. A Hall effect sensor that is placed directly above the magnet is then able
to measure the change in magnetic field strength induced by the rotation of the
magnet. As the Hall effect sensor outputs the magnetic field strength in x, y and
z direction, these values can be used to derive the rotation angle of each joint.

To calculate the rotation angle αz around the z axis, the following equation is
used, where xMag and yMag are the magnetic field strengths in x and y direction,
respectively:

αz = arctan 2(yMag, xMag) ∗
180°
π

(3.1)

In this work, however, we perform this measurement off-axis both for the
magnet and the sensor (MLX90393, Melexis), due to space constraints in the
joints, which is shown in Figure 3.17. The magnets are glued into the dis-
tal/intermediate phalanx (blue) and the knuckle (green), and rotate around their
respective joints when these are rotated. At 45 degrees rotation the magnets
are positioned directly above the sensors, so that they have the same distance
between each other at 0 and 90 degrees, which corresponds to the minimum
and maximum angle, respectively, of all joints. The above stated Equation 3.1
can nevertheless be used to provide an approximation of the joint rotation angle
using this off-axis measurement. However, when the placement of the magnet
above the sensor changes in x or y direction, the magnetic field strength and
therefore sensor output of the Hall effect sensor changes. Therefore, an experi-
ment is necessary to determine the correlation between the sensor output and
the actual rotation angle, which is described in subsection 3.2.2.
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Index Middle Ring Little

Finger Length 80.64 90.02 83.98 66.17
Proximal Phalanx Length 34.15 38.15 34.45 27.05
Distal Phalanx Length 46.49 51.87 49.53 39.12
Proximal Phalanx Height 17.28 17.28 17.28 17.28
Distal Phalanx Height 14.4 14.4 14.4 14.4
Proximal Phalanx Width 18.7 20.13 18.81 16.5
Distal Phalanx Width 17 18.3 17.1 15

Table 3.3.: Dimensions in [mm] of the finger demonstrators. Reprinted from
(Weiner et al., 2019) without changes (CC BY 4.0).

As the PCB for the joint angle encoders contains just two sensors and a connector,
it is fairly easy to adjust the distance between the two sensors for different finger
sizes directly in the PCB layout. We hence produced PCBs in three different
sizes for the little finger, the middle finger, and the other two fingers which can
accommodate the same PCB size due to their similar dimension.

Physical Demonstrators

The physical demonstrators developed in this work were sized according to
the 50th percentile female dimensions as described by the German standard
specification (DIN 33402-2) in finger length and additional dimensions as identi-
fied in (Vergara et al., 2018). The dimensions for all fingers and segments are
shown in Table 3.3. As the range for prosthetic and humanoid robotic hand sizes
varies greatly, we have chosen dimensions at the smaller end of the range to
ensure that the model and electronics can be used in even small hands and can
consequently also be easily modified and extended for larger hands.

Through the use of additive manufacturing for mechanical parts, commercially
available sensors and standard manufacturing techniques for the PCBs the price
for an individual finger can be kept below 70e.

3.2.2. Experimental Characterization

A series of characterizations were conducted on the physical demonstrators to
assess the performance of the sensors individually and as a whole system. For
the experiments regarding normal and shear forces, as well as an experiment
determining the spatial resolution of the sensor setup, a two-axis linear table is
used, shown in Figure 3.18. Each axis is a precision linear stage (PT4808, MM
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Stepper
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Linear
Stages

Force/
Torque
Sensor

Force/
Torque
Sensor

Probe

Finger and
Fixture

Figure 3.18.: Linear table for normal force, shear force characterization and spa-
tial mapping experiments. Reprinted from (Weiner et al., 2019)
without changes (CC BY 4.0).

Engineering GmbH) with 0.5 mm displacement per turn attached to a stepper
motor with 200 steps per turn. A force/torque sensor (Mini 40, ATI Industrial
Automation) is mounted on one axis and equipped with a cylindrical probe
with a diameter of 5.3 mm, which is small enough to allow applying loads
to individual sensors. A sensorized finger can be attached to the other axis,
enabling the probe to apply normal forces to different parts of the finger along
one axis, as well as shear forces when the finger is moved while normal forces
are applied.

The communication with the sensors during the experiments was implemented
on the embedded system also used in male the KIT prosthetic hand as described
in subsection 3.4.1.

In general, we incorporated sensors from different fingers into the experiments
to examine if they exhibited similar characteristics. The following experiments
for the tactile sensors were intended to determine that the methods described
in (Tomo et al., 2016a,b; Tenzer et al., 2014) and (Weiner et al., 2018a) could
be successfully adapted despite differences in design like smaller magnets
and the curved shape of the finger. A thorough characterization of the tactile
sensor technologies used in this work is conducted in the works above. The
experiments primarily give an overview of the quality, correlation and coherence
of the signals generated by the different sensor modalities.

To be able to identify the individual tactile sensors for the experiments we
adopted the following naming scheme: the sensor names started with the
beginning letter of the finger they were included in: I for index finger, M for
middle finger, R for ring finger, and L for little finger. The second letter denoted
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Li�le Finger

Middle Finger
Index Finger

Ring Finger

LPH
LPB

LDH
LDB

MPH
MPB

MIH
MIB

MDH
MDB

IDH
IDB

IIH
IIB

IPB

RDB
RDH

RIB
RIH

RPB

Figure 3.19.: Identifiers for all sensors on all physical demonstrators. The identi-
fiers are named after the first letter of the finger name, their position
inside the finger and the sensor type. Reprinted from (Weiner et al.,
2019) without changes (CC BY 4.0).

the position inside the finger: D for distal, I for intermediate and P for proximal.
Note that the little finger did not have intermediate sensors. The third letter
distinguishes the type of sensor—H for Hall effect-based sensors and B for
barometer-based sensors. The Hall effect-based sensor at the tip of the index
finger would hence be IDH. An overview over the positions of all tactile sensors
and their corresponding designators in all physical demonstrators can be seen
in Figure 3.19.

Normal Force Sensor Characterization

Two types of normal force sensors are integrated into the fingers. The barometer-
based normal force sensors are able to resolve small forces but also saturate
at comparatively low forces. The Hall effect-based sensors do not offer the
same level of resolution but are able to measure magnitudes higher forces
before saturation sets in. For the normal force characterization, we used the
aforementioned linear table (see Figure 3.18) to allow applying and measuring
well-defined forces. In Figure 3.20 two measurements for Hall effect-based
sensors ((a) and (b)) and two measurements for barometer-based sensors ((c) and
(g)) are presented in green. The ground truth measurement of the force/torque
sensor is plotted in orange (labelled Fn). These two measurements together
are combined in the hysteresis plots ((d)–(f) and (h)) corresponding to the four
sensor measurements (a)–(c) and (g).

To show the difference in resolution, we carried out an additional experiment,
where a small metal plate was placed on the adjacent sensors RIB and RIH on
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the ring finger. The plate distributes the load of any weight placed in its center
evenly on the two sensors. For the experiment, consecutive weights with an
increasing mass of 0.4 g, 0.85 g, 1.1 g, 2.2 g, 4.65 g and 10.75 g were placed on the
plate. The resulting sensor readings can be seen in Figure 3.20 (i).

Both types of sensors are able to track the applied normal forces. Differences are
visible in the hysteresis behavior as the barometer-based normal force sensors
RDB and RPB show a more linear correspondence between their signals and the
normal forces measured by the force/torque sensor. Furthermore, the hysteresis
was directed in different directions for both sensor types while unloading the
sensor. While the Hall effect-based sensors LDH and MIH show a notable
lag when returning to the unloaded state compared to the ground truth, the
barometer-based sensors overshot the unloaded state.

In terms of sensitivity, the barometer-based sensors have a clear advantage over
the Hall effect-based sensor as can be seen in Figure 3.20 (i). The barometer-
based sensor RIB show a discernible response even to the smallest weight of
0.4 g, whereas the noise in the signal of the Hall effect-based sensor RIH only
allows the detection of the fourth 2.2 g weight with sufficient confidence. The
barometer-based sensors saturate by design at 2.6 MPa which is only slightly
above the maximum sensor readings observed during the above characterization
at 2 N. The Hall effect-based sensors on the other hand show a clear signal at
forces up to 5 N.

Overall the barometer-based sensors offer a good performance for low forces
coupled with a comparatively low hysteresis. The Hall effect-based sensors offer
a far wider sensing range at the expense of a more nonlinear behavior and a
stronger hysteresis effect, which could arguably also be caused by the applied
forces being higher.

Shear Force Sensor Characterization

To reliably allow applying shear forces, the force sensor without a probe was
used to first apply a normal force of 5 N to the fingertip. The larger sensor surface
compared to the probe then allowed to evenly shear the soft silicone material
whereas a small probe would only cause a local and undefined distortion. As
soon as the normal force threshold was reached, an increasing shear force was
applied by the second axis of the linear table up to a limit of 2 N. After the limit
was reached the shear force was lowered again until it reached a value close to
zero. The direction of the exerted shear forces was chosen to correspond to one
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Figure 3.20.: (a) and (b) Normal force measurements for Hall effect-based sen-
sors. (d) and (e) Corresponding hysteresis plots. (c) and (g) Normal
force measurements for the barometer-based normal force sensors.
(f) and (h) Corresponding hysteresis plots for the barometer-based
sensors. (i) Weights distributed on a Hall effect- and barometer-
based sensor. Reprinted from (Weiner et al., 2019) without changes
(CC BY 4.0).
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Figure 3.21.: Exemplary shear force measurements for sensor signals RDHx (a),
MDHx (b) and LPHy (c) as well as the corresponding hysteresis
plots (d), (e), (f). Reprinted from (Weiner et al., 2019) without
changes (CC BY 4.0).

of the two measurement axes of the shear force sensors in the fingers. For the
characterization, shear force sensors in the ring finger (x-axis), middle finger
(x-axis) and little finger (y-axis) were chosen. The resulting measurements can be
seen in Figure 3.21. For each measurement, the shear force sensor signal as well
as force/torque sensor values are plotted in diagrams (a)–(c) and corresponding
hysteresis plots are provided in (d) and (e).

In general, the shear force sensors are able to correctly track the direction and
rate of change of the applied shear forces. The amplitude of the signal is similar
for all sensors, although not identical. Due to the anthropomorphic shape of
the finger, the silicone is not evenly distributed onto the sensors but follows
the curved shape of the human finger. Hence different sensors are covered
by silicone of different heights as shown in Figure 3.13 and the amount of
transduced pressure changes accordingly. In addition, the force/torque sensor
is in almost all cases not perfectly aligned with the sensor plane since the PCBs
for the sensors are mounted at a slight angle.

From the three hysteresis plots a significant hysteresis is noticeable for the
sensors RDHy and MDHx. This is also evident at the end of the plots (a) and
(b) as the signal of the shear force sensor remains notably higher than that of
the force/torque sensor. For the shear force sensor LPHy in the little finger, the
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hysteresis is much less noticeable. As the little finger is the smallest, the silicone
layer on top of the sensor, as well as the overall amount of silicone, is smaller
than for the middle and ring finger. Hence the effect of hysteresis should also
be reduced for this finger. During the characterization we found no sign of
crosstalk between the sensors, meaning the magnet on one Hall-effect-based
sensor did not affect the other Hall effect-based sensors. There was also no
noticeable crosstalk between the Hall effect-based tactile sensors and the joint
angle encoders.

It can be concluded from the above observations that the shear force sensor
signals are able to track direction and dynamic of shear forces well. The sensors
exhibit notable hysteresis for slow dynamic loads. The shape of the finger does
not seem to influence the sensor performance too much.

Joint Angle Sensor Characterization

Due to space constraints the measurement of the joint rotation angles is per-
formed off-axis (see subsection 3.2.1). Therefore, an experimental characteriza-
tion, shown in Figure 3.22a for the MCP joint of the index finger, was necessary
to determine the correlation between the calculated sensor output αz (using
Equation 3.1, based on the magnetic field strengths xMag and yMag in x and y

direction) and the actual rotation angle of the joint. To determine this correlation,
we moved each joint of each finger incrementally in steps of 5°, starting at 0° and
ending at 90°, which corresponds to the minimum and maximum rotation angle
of each joint, respectively. To ensure that only the correct joint was rotated, we
fixed the other joint during the measurements. At each step the sensor output
(αz) and rotation angle were recorded, after which the joint was rotated five
degrees further. The resulting correlation between rotation angle and sensor
output was then used to obtain a 3rd order polynomial approximation for each
joint, shown for the MCP joint of the index finger in Figure 3.22b. This approxi-
mation can be used for the real-time control of the finger to directly calculate the
rotation angle of each joint during the data processing step.

As the rotational orientation of the diametrically polarized magnet can not be
exactly controlled during assembly, this polynomial approximation needs to
be experimentally determined for each joint individually if accurate joint angle
measurements are needed. The position of the PCBs with the Hall effect-based
sensors inside the proximal phalanx can also vary slightly. Alternatively, the
curve can be linearly interpolated using the lowest and highest measured value
for increased calibration speed at the cost of angular resolution.
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Figure 3.22.: (a) The PIP joint is fixed and the MCP joint is incrementally rotated
by 5° while the sensor output data are acquired, to determine the
correlation between sensor output and actual rotation angle. (b)
The resulting data points and 3rd order polynomial approximation.
Reprinted from (Weiner et al., 2019) without changes (CC BY 4.0).

In addition to calibration, we investigated the influence of crosstalk between the
magnet of one joint and the Hall effect-based sensor of the other joint. For this
experiment, the distal joint was fixated and the proximal joint actuated across
the full range while recording the values of the distal sensor. For the little finger,
with a minimal distance of 16.7 mm between distal Hall sensor and proximal
magnet, we measured a maximum of 1.1° of crosstalk. The other fingers do not
show significant crosstalk as the distances between sensor and magnet are larger
(23.3 mm for index/ring finger and 27.3 mm for the middle finger).

Object Grasping and Slip Detection

To evaluate the performance of the multimodal sensor system, we devised
a grasping experiment where an object is grasped, held and released using
two sensorized fingers. During the holding phase slip is induced. For this
experiment the little and ring finger are fixed in direct opposition to each other,
meaning both sensor surfaces are roughly facing each other. The tendon of the
little finger can be actuated manually so that an object can be grasped in a pinch
grasp configuration (see Figure 3.23, top).

Using this setup, a wooden block of 4 cm × 4 cm × 20 cm and a mass of 215 g is
grasped firmly. The holding force is then lowered until slip occurs, after which
the grasp is quickly fastened again twice. Afterwards, the grasp is released. All
normal-force, shear-force, accelerometer and joint angle sensors for both fingers
are recorded simultaneously. The bottom part of Figure 3.23 shows the signals
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Figure 3.23.: Sensor signals recorded while grasping a block with two fingers
in a pinch grasp configuration, letting the object slide twice and
releasing the grasp. The top row images (1)–(4) show the static
states between the slip events a)–c). Reprinted from (Weiner et al.,
2019) without changes (CC BY 4.0).

of the different sensors throughout the experiment. For clarity only changing
sensor values are plotted. To make the characteristic frequencies generated by
incipient and gross slip visible, the accelerometer values are transformed using
a Short-Time Fourier Transform (STFT).
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At the beginning of the experiment the wooden block is grasped just above the
centre of mass, as can be seen in Figure 3.23 (1). The distal barometer-based
sensor of the little finger LDB and the distal Hall effect-based sensors LDHz

and RDHz are loaded. This means that the point of contact on the little finger
is located between the LDB and LDH sensors, whereas the contact point on
the ring finger is close to the RDH sensor. Both shear force components LDHx

and RDHx show a signal proportional to how near they are to the contact point,
according to their normal force component. Since the shear force sensor in the
ring finger is rotated by 180°, its values are negative, whereas the values of the
shear force sensor in the little finger are positive.

After around 5 seconds the first slip event occurs, marked by box a) of Figure 3.23.
Just prior to the event, grip strength is reduced as indicated by all sensors LDB,
LDHz and RDHz. The reduction of grip strength also results in a slight reduction
of the joint angle in the distal joint of the ring finger (fourth plot). The gross
slip is detected by the accelerometer y-axis, as can be seen in the STFT of the
signal at box a) (fifth plot). As soon as the slip occurs, the grip is manually
tightened again. During the slip event, the contact point of the block on the
fingers changes, as can be seen when comparing Figure 3.23 (1) and Figure 3.23
(2). On the ring finger the contact point moves between the sensors RDB and
RDH, whereas on the little finger it moves away from LDB towards LDH. Hence
the normal force sensor RDB gets loaded while RDHz gets partly released. The
opposite is true for the little finger. The slip event also induces a small pendulum
motion on the wooden block around the two contact points which can be seen
in the small waves in all loaded sensors after the first slip event.

The second slip event occurs at around seven seconds and is again induced by
reducing the grip force, as can be seen in the signals of LDHz, RDB and RDHz.
The joint angle also changes slightly as the grip is released. Again, the slip itself
is clearly visible in the signal of the accelerometer in the ring finger. After the
slip event the block is grasped near the top, as can be seen in Figure 3.23 (3).
At around 10 seconds the grip is released, causing a very short but intensive
slip event. The fingers are fully opened again, as can be seen in Figure 3.23
(4), and is also visible in the joint angle measurement. As can be seen in the
last two seconds of the plot, the shear force sensors LDH and RDH exhibit
hysteresis after unloading, whereas the normal force sensor RDB returns to zero
immediately. The same holds true for the normal force sensor LDB at the time it
is unloaded.

The experiment shows that distinct events during grasping, such as making or
breaking contact, as well as gross slip, can be detected by not only one single
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Figure 3.24.: Normal force signals for sensors of the ring finger while probed
with 2 N of normal force along the axis from the proximal end of
the fingertip to the distal end. The background image shows the
approximate position of the probe on the finger at the time of each
measurement. Reprinted from (Weiner et al., 2019) without changes
(CC BY 4.0).

sensor modality but multiple different modalities. This allows for the fusion of
sensor data from different modalities in order to gain more confidence for the
detection of events during grasping.

Spatial Resolution and Sensitivity

The following experiment determines how the different sensors and sensor
types in the fingertip, namely normal force and shear force sensors, respond to a
fixed normal force applied at varying locations along the fingertip. The linear
table, see Figure 3.18, is used to apply a normal force to the finger using the
probe on the force/torque sensor. As soon as 2 N of normal force is reached, a
measurement of the finger’s sensors is taken. The probe is then lifted again and
moved by 0.25 mm along the long axis of the fingertip. The probe is lowered
again to apply force and read the resulting sensor outputs. This process is
repeated incrementally, starting from the proximal end of the sensorized surface
of the fingertip and ending at the distal end. Measurements were taken at an
interval of 30 s to limit the influence of hysteresis on the experiment results. The
result for the ring finger can be seen in Figure 3.24.

As can be seen, even a small probe of 5.3 mm could be detected almost every-
where along the fingertip. Only between 16 mm and 18 mm the probe remained
hard to detect. Normally, the sensor response should be highest above the sensor
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itself, so in the case of the barometer-based sensors at the position of the blue
pad and in case of the Hall effect-based sensors around the golden magnet.
As can be seen in the plot this was not the case. The spatial shift in sensor
response can be explained by the uneven surface of the fingertip, which can be
seen in Figure 3.13. Since the surface was not even, not all parts of the probe
made contact with the finger at all positions. At the curved parts the contact
area where smaller and more to the edge of the probe. This in turn shifted the
positions of the signals perceived by the sensors.

Together with the observations from object grasping and slip detection experi-
ment, it can be concluded that the spatial resolution of the finger is sufficient
for use cases concerned with grasping and lifting objects of daily life, while for
fine-grained manipulation tasks a higher sensor density is desirable.

3.2.3. Discussion

In this section we introduced the concept and implementation of completely
scalable robotic fingers with a sophisticated multi-modal sensor system. The
fingers are modelled using a skeleton-based parametric model that allows adap-
tation of all relevant finger dimensions. The embedded electronics is based on
readily available sensors and rely on standard design and production techniques.
Different sensor modalities have been included in the finger, namely normal
and shear force sensors, a distance sensor, an accelerometer as well as joint
angle encoders. In addition, each sensor chip includes a temperature sensing
element. The sensor system is realized as a number of interchangeable modules
that reflect the scalability of the mechanical model and allow easy adaptation of
the sensor suit to different applications and finger sizes. All tactile sensors are
encased in soft silicone while cables and other sensors are encapsulated in the
finger itself to increase mechanical robustness. Conceptually, the sensor system
is not limited to the presented sensors but can be completely exchanged with
any sensor(s) that interface to an I2C bus.

We characterized the tactile sensors, allowing for an informed comparison of
two promising tactile sensing methods from literature and show how the detec-
tion of distinct events during grasping can benefit from a multi-modal sensor
setup. The characterization regarding normal and shear force measurements
(see subsection 3.2.2) for the tactile sensors have shown that these are susceptible
to hysteresis induced by the silicone. Evaluation of multiple sensors in different
fingers shows that this hysteresis, as well as the magnitude of response to forces,
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is similar for all sensors of each type, indicating that the influence of different
shapes of the fingers is minor. The large range of tested sensors also shows that
the production process is reliable, as well as repeatable. The density of sensors
in the finger is sufficient for the location of the point of contact with an object
without larger blind spots (see Figure 3.24). Detection of distinct events during
grasping and manipulation is not only dependent on tactile sensors but can be
realized through sensor fusion of all available sensor data from distance sensors,
accelerometers and joint angle encoders (see Figure 3.23). The accelerometers
have also proven to be a valuable tool for gross slip detection despite being
damped by soft material.

Integration of the fingers into an artificial hand will make it possible to evaluate
different sensor fusion approaches to extract semantic information from the
high dimensional sensor information of four fingers. The intention is to utilize
the generated information in a similar way to the human, where individual
events during grasping like making or breaking contact, lifting and slip seem to
define sub-goals during the grasping process (Johansson and Flanagan, 2009a).
Detection of such events allows breaking down and controlling the different
phases of a grasp.

3.3. Soft Scalable Sensorized Fingers

While the rigid finger design presented in section 3.2 provides high robustness
due to the strong plastic and rigid joints, only the distal phalanx is sensorized
and covered in silicone. The proximal phalanx could only be sensorized in
fingers with large dimensions, as the joints with their ball bearings take up most
of the space inside the phalanx. The silicone is important, since it aids grasping
since it conforms to the local geometry of the object and hence increases friction.
Both these points are addressed with the development of soft sensorized fingers.
Mechanically, these fingers are based on the design presented in (Hundhausen
et al., 2020), where a leaf spring is combined with bone segments cast into
silicone, to form a finger completely covered in soft material. Since the joints
take up less space, it then becomes possible to cover the proximal phalanx with
additional sensors. These fingers are used in chapter 5 for human-inspired
autonomous grasp control. This section has been reprinted from (Weiner et al.,
2021), “Detecting grasp phases and adaption of object-hand interaction forces of
a soft humanoid hand based on tactile feedback”, IROS 2021, ©2021 IEEE.
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3.3.1. Mechanical Design

The mechanical design of the soft fingers is based on the soft fingers with
integrated cameras from (Hundhausen et al., 2020). These fingers are comprised
of 3D-printed bones for the distal, intermediate and proximal phalanx, connected
by a leaf spring. The distal and intermediate phalanx are fused at an angle.
The whole finger is then encased in soft silicone and actuated using a tendon.
Compared to the hand by Hundhausen et al. (2020), in which each finger tip
is equipped with a high resolution camera, we have adapted the mechanical
structure of the finger to Printed Circuit Boards (PCBs) mounted on the distal
and proximal bones of the finger. The plastic leaf spring in the original design has
also been replaced by a steel leaf spring with 90 µm thickness, which also made
it possible to attach the spring to the bones using screws instead of glue. Two
Flat Flex Cables (FFCs) are taped to the spring, connecting the PCBs at the finger
bones. An overview of the design of the fingers is depicted in Figure 3.25.

After the concept was explored using a non-scalable Computer Aided Design
(CAD)-model, the model was extended to support scaling of the fingers in the
same manner as presented in subsection 3.2.1.

3.3.2. Embedded Sensor System

The sensor system used in the fingers is based on work presented in section 3.2
originally developed for rigid fingers. The sensor system includes normal and
shear force sensors, accelerometers, joint angle encoders and proximity sensing
in each finger. Our approach toward the realization of sensorized humanoid
hands relies on using commercially available off-the-shelf components and
fabrication techniques to allow a reproduceable design. Hence, we use digital
sensors on standard PCBs, which are connected to a central processing unit
by a digital bus (Inter-Integrated Circuit (I2C)). For the design of the sensor
system for this soft hand in this work, we adapted all but two sensing modalities
described in section 3.2. Unchanged are the accelerometers in the fingertip as
well as the 3D hall effect sensors used for shear force measurement.

We replaced the time-of-flight based distance sensor by a proximity sensor
as the sensor is covered by silicone and the silicone reflects some light and
hence interferes with the time-of-flight measurement. Inspired by the results
presented in (Yamaguchi et al., 2018), we integrated an infrared proximity sensor
(VCNL4040, Vishay Semiconductors) at the base of the distal phalanx. Since the
soft fingers have no clear axis of rotation in the joints and can also additionally
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(a)

(b)

Figure 3.25.: (a) Palmar side of the soft finger. (b) Section view through the
fingers silicone and distal bone exposing the internal structure
and sensors visible from this side. The PCB with sensors on the
intermediate phalanx covers both sides of the finger, as can be seen
in (a). Reprinted from (Weiner et al., 2021), “Detecting grasp phases
and adaption of object-hand interaction forces of a soft humanoid
hand based on tactile feedback”, IROS 2021, ©2021 IEEE.

twist, the joint angle measurement has also been adapted. Namely, we placed a
magnet at the distal and proximal phalanx facing the respective joint and two 3D
hall effect sensors at the intermediate phalanx facing these magnets. If the joint
is actuated, the magnet moves closer to the sensor. This results in a nonlinear
but monotonic signal that has been measured and fitted using a piecewise linear
function.

Lastly, we adapted the barometer-based sensitive normal force sensors. The
design we presented in section 3.2 uses barometers with a metal lid and a
miniature hole for air, which made it necessary to encase them with small casted
silicone covers. The cover ensured that an air pocket is formed above the sensor,
transducing the pressure through the miniature hole in the lid to the sensor.
Another work circumvented the problem by carefully removing the lid, drilling
the hole open and gluing the lid back onto the sensor (Koiva et al., 2020). For
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the soft fingers we now use barometers usually used for medical applications
(LPS27HHW, ST Microelectronics), which feature an exposed sensor covered by
soft gel. It is hence possible to directly cast the sensors into silicone without any
prior modifications or additional covers, which greatly eases production. The
barometer-based normal force sensors show a similar performance to the ones
described in our previous work.

Similar to the rigid scalable fingers (see subsection 3.2.1), scalability of the elec-
trical system is realized with small PCB modules that can be freely combined.

3.3.3. Discussion

In this section we described the design of a soft finger variant, that uses the
same methods for mechanical and electrical scalability as the rigid counterparts
(see section 3.2). In contrast to the rigid fingers, the soft fingers are completely
encased in silicone, which enhances friction and compliance. The leaf spring
in the joints provides stability and allows to fix the cables to the neutral phase
of rotation. The soft fingers show how the three two core concepts introduced
for rigid fingers – namely mechanical scalability based on a skeleton-based
CAD-model, the electrical scalability based on PCB modules and the use of
off-the-shelf digital sensors – can be transfered to different finger designs. As
the underlying sensor system is very similar to one utilized in the rigid fingers,
we evaluate these fingers directly as part of autonomous grasping described in
chapter 5.

Grasping experiments with these fingers also revealed several shortcomings of
the design. The metal leaf spring deforms plastically if bent below the minimum
bending radius. The bending radius is proportional to the thickness of the spring,
which puts a limit on the maximum thickness and hence the stability of the joint.
Therefore, the stability of the joint is limited by the leaf spring and consequently
the fingers exhibit a lower maximum load as their rigid counterparts. The leaf
spring to a degree also allows torsion of the joint, which makes tracking of the
joint position more difficult. As everything is covered in one piece of silicone,
the silicone cover needs to be removed for repair of the finger and afterwards
the finger needs to be cast into fresh silicone.
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3.4. Intelligent Embedded System

To make use of the multimodal data from the sensors in fingers and palm, the
data must be aggregated, fused and processed by a central system to enable
intelligent behavior and control. Embedding this processing system directly into
the hand has several advantages. Prostheses can remain as stand-alone devices,
without the need to connect external computing recourses like smartphones
or PCs to the hand. Robotic hands can implement a well-defined interface by
aggregating all sensor data on the embedded processing system and sending
the data via a bus interface. This strong modularization makes it possible to
easily change hands on the robot using a quick-change adapter.

Such an embedded system has to provide numerous interfaces to read all in-
dividual sensors in real-time. Each finger is connected through one or two
Inter-Integrated Circuit (I2C) busses, and these busses should be read in parallel
to ensure high sample rates for up to 150 sensors in the fingers. In addition, a
camera is connected to the embedded system which needs high data throughput
interfaces and requires both image processing capabilities and sufficient Ran-
dom Access Memory (RAM) for image storage. The embedded system further
needs to be as small as possible to leave room inside of the palm for actuation.

The following section presents two different approaches to the design of an
embedded system that meets the above requirements. The first is based on
a high-speed ARM microcontroller. The second embedded system is based
on a System on Chip (SoC) combining an Field Programmable Gate Array
(FPGA) with an ARM application processor. While the former is characterized
by a low space requirement and energy consumption, the latter allows for
truly parallel data readout and processing through the FPGA and application
processor coupled with dedicated RAM at the expence of space and energy
consumption.

3.4.1. Microcontroller-Based System

In recent years ARM-based microcontrollers with high clock frequencies as
well as comparatively large RAM and flash became available. Due to their
energy efficiency, ease of use, low price and feature-rich peripherals such a
controller has been chosen as a base for the embedded system in the female
prosthetic hand as described in subsection 3.1.1. The embedded system inside
of the female prosthetic hand needs to interface to an Inertial Measurement

94



Chapter 3. Anthropomorphic Hands with a Multimodal Sensor System

ARM Cortex M7 Microcontroller

CameraIMU

SPI I2C DCIM

RGB
OLED

Display

Motor

Driver (X3) Bluetooth

Module 
Motor +

Encoder 

UART PWM/IO A/B UART

Shaft
Interface

Distance
Sensor

I2C I2C

Fingers

(X5)

I2C

(a)

M
o
to
r

M
o
to
rs

Bluetooth

I2C-BussesI2C-Busses Supply

I/OProgramming

U
A
R
T

Display

IMUCamera

(b)

Figure 3.26.: a) Block diagram showing the functional units of the embedded
system inside the female prosthetic hand. Parts in green are directly
placed on the central Printed Circuit Board (PCB), the parts in
blue are separate components distributed throughout the hand. b)
Overview of the finished PCB

Unit (IMU), distance sensor and a camera, two motor relative encoders, two
Electromyography (EMG) electrodes and a display. In addition, two motor
controllers need to be included as well as an serial interface for communication
with electronics in the prosthesis shaft and a Bluetooth connection. Furthermore,
four I2C busses for sensors in fingers should be included for future use. The
microcontroller on the embedded system needs to be able to run a Convolutional
Neural Network (CNN) used for object recognition on the camera images in
less than 150 ms as this is estimated to be an acceptable delay in user interaction
(Farrell and Weir, 2007).

Based on these requirements an ARM Cortex-M7 core (STM32H7, STMicroelec-
tronics) with 2 MB flash, 1 MB of RAM and a clock frequency of 400 MHz is
chosen. At the time of writing, STMicroelectronics provides ARM microcon-
trollers with the highest clock frequencies coupled large amounts of RAM and
small housing footprints.

An overview of the complete embedded system is shown in Figure 3.26. The
PCB measures 52 mm×30 mm×9.7 mm. Figure 3.3 in Subsection 3.1.2 shows
the integration of the embedded system into the palm of the female prosthetic
hand. The female prosthetic hand and hence this embedded system is utilized
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for resource-aware image recognition in (Hundhausen et al., 2019) and semi-
autonomous control of prostheses (see chapter 4).

While the microcontroller-based embedded system is very small, energy-efficient
and has been successfully used in the female prosthesis, it exhibits several down-
sides. Scheduling of the readout of all sensors in the sensorized fingers via the
five I2C busses is time-consuming. Even though the controller possesses a capa-
ble Direct Memory Access (DMA) unit, only communications with individual
can be outsourced. Hence the processor needs to interrupts its normal program
execution for each new sensor on each bus to configure the DMA for the com-
munication and retrieve the results of the last communication. This results in
a considerable interrupt overhead considering the fingers include around 150
sensors. While in (Hundhausen et al., 2019) the feasability of implementing a
CNN on the embedded system in the thesis has been shown, the small amount
of RAM together with the amount of available processing power presents a chal-
lenge for resource-intensive tasks like CNN-based object recognition. This limits
the amount of recognizable objects and hence the benefit of semi-autonomous
control schemes which are dependent on visual information.

3.4.2. System-on-Chip-Based System

The limitations of the microcontroller-based embedded system discussed in sub-
section 3.4.1 arise mainly from the large amount of parallel tasks and operations.
We hence explore the use of an FPGA for parallel communication on all I2C
busses of the sensorized fingers and its ability for massively parallel integer
calculation. To keep the footprint small, we chose a SoC (Zynq 7020, Xilinx Inc.)
that integrates both an FPGA with 85000 logic cells, 4.9 MB Block RAM and 220
compute units (DSP slices) as well as a dual-core ARM A9 application processor.
In addition, 256 Gbit of dedicated DDR-3 RAM are installed to not be dependent
on the small build-in memory. An overview of the components is provided in
Figure 3.27a.

The physical system is depicted in Figure 3.27b. The embedded system is
assembled from two individual PCBs, one for the processor and communication
interfaces and one for power supply and motor controllers. Both PCBs are
connected through two miniature connectors with 20 signals each. The physical
separation of power and digital electronics aids signal integrity, especially for
high speed signals. All 45 signals running between the processor and the RAM
require impedance matching of the traces to 50 Ω, which made it necessary to
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Figure 3.27.: a) Block diagram showing the functional units of the SoC-based
embedded system. Parts in green are directly placed on the cen-
tral PCB, the parts in blue are separate components distributed
throughout the hand. b) Overview of the finished PCB

route the PCB on eight layers. To match the impedance, signal and plane layers
are furthermore separated by particularly thin dielectric layers with 110 µm,
which also reduces the thickness of the PCB to just over 1 mm. The embedded
system measures 64 mm×29 mm×9.93 mm.

3.4.3. Discussion

This section introduced two embedded systems suited for integration into pros-
theses and humanoid robotic hands. One is based on a microcontroller while
the other is based on a SoC comprising a dual-core application processor and a
FPGA. The microcontroller-based system has been successfully used for semi-
autonomous control (see chapter 4) and for resource-aware object recognition in
(Hundhausen et al., 2019). The SoC-based system is currently being integrated
into the third generation of prosthetic and humanoid robotic hands, which will
be used as the hands for the upcoming humanoid robot ARMAR-7. An early
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prototype of the SoC-based system is used to read the sensor-streams of the
soft sensorized fingersb utilized in the evaluation of the human-inspired grasp
phases controller (see chapter 5).

3.5. Summary and Review

This chapter introduced the hardware necessary to implement intelligent be-
havior for anthropomorphic hands and thereby provides an answer to the first
research question posed in this thesis:

How to perceive the environment as well as capture the prosthesis user state
and intention to implement helpful autonomous behavior?

First, the KIT humanoid hands are introduced as the basis for both the hardware
development and research into control strategies in this thesis. Second, rigid
and soft finger designs were presented that combine mechanical scalability of
the fingers with a multimodal haptic sensor system. Third, embedded systems
for prostheses are developed, capable of reading the numerous sensors and
computing Convolutional Neural Networks (CNNs) for object recognition. We
evaluated both the developed prosthetic hand and the multimodal sensor system
in the fingers functionally regarding key performance characteristics.

The KIT Humanoid Hands: The core idea of the KIT humanoid hands is to
build human-sized, human-weight hands with integrated intelligence. On the
one hand, an underactuated mechanism distributes the force of a single motor
to all four fingers adaptively, meaning even if individual joints are blocked, the
others can still close. This mechanical intelligence allows the hand to wrap its
fingers around arbitrarily shaped objects without the need for explicit control.
Sensors such as a camera, a distance sensor and an Inertial Measurement Unit
(IMU) provide information about the hand’s environment to an embedded
system for control and intelligent behavior. The hand is evaluated regarding
grasping forces and performance in Activity of Daily Livings (ADLs).

Rigid and Soft Scalable Sensorized Fingers: Two mechanical and electrical
designs for prosthetic and robotic fingers are proposed. One design is based
on soft silicone material enclosing an endoskeleton structure while the other is
made of 3D-printed rigid parts. The mechanical model of both finger designs is
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fully scalable according to a few high level parameters such as bone lengths and
joint dimensions. Both fingers include a multimodal sensing system, comprising
normal and shear force sensors, accelerometers, distance sensors, temperature
sensors and joint angle encoders. The complete sensor system can be scaled
with the fingers, such that larger fingers contain more sensors than smaller ones.
The sensor system is split into small modules to enable this scalability.

Intelligent Embedded System: An embedded system positioned directly
inside a prosthesis or humanoid robotic hand enables the execution of intelligent
behavior based on multimodal sensor data. Therefore, two versions of the
embedded system are developed, one with an microcontroller and one with
a System on Chip (SoC). The embedded systems are able to read all sensor
data from haptic sensors in the fingers and from environmental sensors like
distance sensor and camera in the palm. The microcontroller or SoC allows the
implementation of CNNs for object recognition and segmentation on images
of the connected camera. Processing of all this sensor data enables the semi-
autonomous pre-grasp behavior and human-inspired grasp phases controller
introduced in the next two chapters.
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4. Semi-Autonomous Grasping

Modern myoelectric prostheses provide a multitude of different grasping pat-
terns as well as gestures. Classical control schemes utilizing Electromyography
(EMG) signals for control reach their limit in these cases, as only a limited con-
trol signals can be distinguished. Switching between a large number of grasp
types and control modes induces a high cognitive load on the user, as every
command has to be issued consciously and control decision has to be made
manually. In addition, EMG is prone to changes in sensor position or changes in
conductance such as sweat. By automating parts of the grasping process such as
the selection of the right grasping pattern, the number of required EMG inputs
can be lowered.

The primary goal for the conception of the semi-autonomous controller is hence
to reduce the number of EMG commands issued by the user to a minimum,
thereby reducing the cognitive load required to operate the prosthesis. Two
aspects are relevant to this goal. First, the resulting control should be intuitive
to control, without reducing the grasping ability of the prosthesis available with
classical control. Second, the user still needs to feel in control, despite the fact he
is no longer directly controlling all parts of the grasping process. Not feeling
in control of the prosthesis could lead to a lack of embodiment, meaning that
the user does not perceive the prosthesis as part of the own body, which in turn
could lead to poor acceptance of the prosthesis.

The main requirement for the development of the semi-autonomous control
scheme is to only make use of the prosthesis-internal sensors and embedded
systems. No external devices should be necessary to use the semi-autonomous
control scheme in daily life. Hence, the control scheme can be used in any
environment and situation without prior installation of sensors in the room or
sensors attached to the user and without the need for external computational
devices.

This chapter presents a novel semi-autonomous control scheme that infers the
correct grasping pattern and approach direction using only two EMG signals.
This is made possible by evaluating information from the multimodal sensor
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Figure 4.1.: Steps of the semi-autonomous controller, beginning with the first
step on the left. User input is explicitly provided through an EMG
signal and an arm rotation in the first two steps. Prior object knowl-
edge in the object database is used for visual object recognition.
Prior grasping knowledge in the grasp database is used for intention
recognition and grasp selection. In the last two steps the grasp trajec-
tory is performed on the prosthesis. User intervention is possible at
any time. Reprinted from (Starke, Weiner et al., 2022) with changes
(CC BY 4.0).

system embedded in the KIT female prosthetic hand (described in chapter 3).
We first introduce the algorithm for the semi-autonomous control scheme in
section 4.1. Second, section 4.3 details the experimental setup followed by the
experimental results, presented in section 4.4. Lastly, the chapter is summarized
and the results are discussed in section 4.5. This chapter, except for the conclu-
sion, has been reprinted from (Starke, Weiner et al., 2022) with changes (CC
BY 4.0). The contribution of this thesis is the design and implementation of the
controller for semi-autonomous grasping that automatically selects and executes
grasps based on multimodal sensor data.

4.1. The Semi-Autonomous Grasping Controller

The semi-autonomous control scheme automates parts of the grasping process to
reduce the cognitive burden of the user. Simultaneously, the user can influence
or stop the grasping process at any time to keep in control of their prosthetic
hand. The control flow of the semi-autonomous control scheme, including
the usage of sensor information, object and grasp databases as well as user
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commands is depicted in Figure 4.1. An architectural diagram of the semi-
autonomous control scheme is also depicted in Figure 4.2 and the finite state
machine implementing the control scheme is shown in Figure 4.3. The user
triggers actions of the prosthesis via muscle activations measured by a single
EMG channel. Status information is presented to the user on the display at the
back of the hand. Once the object to be grasped is identified based on visual
information and object knowledge in the object database, the user’s intention
to grasp the object of interest is recognized and an appropriate grasp from the
grasp database is selected. The recognized object and selected grasp type (top
or side grasp) are suggested to the user on the hand display. Both the object and
the selected grasp can be changed by the user. The hand and wrist motion is
triggered by the user via an EMG signal to bring the hand in a suitable preshape
for the selected object and grasp. The wrist orientation with respect to the object
is actively maintained based on Inertial Measurement Unit (IMU) sensor data to
compensate for unwanted orientation changes due to the reaching motion. Once
the prosthesis is close enough to the object, it automatically closes the fingers
based on the distance sensor information to firmly grasp the object.

4.1.1. Visual Object Recognition for Prosthetic Hands

To endow prosthetic hands with the ability to autonomously perform parts of
grasping tasks, we utilize a vision-based approach to grasping. Given an object
of interest that can be recognized with computer vision methods and an object
database of daily objects, the prosthesis should be able to autonomously deter-
mine grasps and select the most appropriate one. A fundamental requirement
to successfully recognize objects, plan and select grasps is that all computations
should be performed in real-time on the in-hand integrated embedded system.

To achieve this ability, we use a resource-aware visual recognition system, which
is based on a Convolutional Neural Network (CNN) running on the in-hand
embedded system. This visual object recognition system used in this work is
developed and described in detail by Hundhausen et al. (2019). Here, we give a
very brief overview for completeness as the recognition of objects in the scene
is key and the first step of the semi-autonomous control scheme. Within the
presented controller, the object recognition is triggered by the user via a single
EMG signal. A camera image is captured and processed by the recognition
system to identify the object in the field of view of the prosthesis. The CNN
outputs the recognition probability of all 13 pre-trained objects from a household
environment and the object with the highest recognition probability is chosen.
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Figure 4.2.: Architectural diagram of the semi-autonomous control including the
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The focus of the visual object recognition as well as our semi-autonomous
control scheme is set on free-standing single objects. While the CNN is capable
of recognizing objects in front of varying multicolored backgrounds to some
extent, the grasping of objects in cluttered environments is out of the scope of
our work.

4.1.2. Grasp Database

In prosthetics, grasping is required to be stable, predictable and optically un-
obtrusive. Humans achieve these goals intuitively in their everyday grasping
activities. Human-like grasps of the prosthesis should align with human expec-
tations of hand behavior and therefore enhance the predictability of a prosthetic
hand. Hence, the grasp trajectories in our semi-autonomous grasp control are
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Figure 4.3.: Procedure of the semi-autonomous controller; throughout all grasp
phases two explicit user signals are required and enhanced by im-
plicit user input using the exteroceptive sensor information; the user
can interfere at any time. Reprinted from (Starke, Weiner et al., 2022)
with changes (CC BY 4.0).

learned from human demonstration. To this end, a grasp database with prede-
fined human grasps on 29 objects from a household and workshop environment
for the top and side grasps was created. While the grasp database is not part of
the thesis, it is briefly explained here as is a vital part of the control scheme.

The human grasp demonstrations are taken from the Whole Body Human Mo-
tion Database (Mandery et al., 2016)1. The grasping motions consider hand ori-
entation and finger joint angle trajectories of opposition grasps and are mapped
to the prosthesis kinematics. Design and implementation of the grasp database
are described by Starke (2022).

Each grasp in the database is denoted by three individual trajectories for thumb
and finger closing motion as well as wrist orientation. The important character-
istics of the grasps in the database is their continuous representation as they are

1https://motion-database.humanoids.kit.edu/
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not defined by a fixed wrist orientation, static preshaping aperture and grasp
pose, but instead, all degrees of freedom are controlled by continuous trajectories
describing the entire motion throughout both preshaping and grasp acquisition.
In contrast to a fixed hand closing with predefined preshape aperture, these
continuous trajectories allow for different timing and closing order as well as
interactions of the fingers and the thumb with varying, synchronized closing
velocities. The third degree of freedom, namely the wrist orientation, is also
described by a trajectory executed simultaneously to the finger and thumb clos-
ing motions. While the global reorientation of the hand according to the grasp
orientation is performed early in the preshaping phase, IMU-based position
control over all grasp phases enables further adjustment in orientation to ease
the final grasp acquisition.

4.1.3. User Intention Recognition and Grasp Selection

To start the grasping process, the user takes an image of the desired object by a
single muscle activation measured with the EMG electrodes, as shown in the
leftmost image of Figure 4.1. The in-hand object recognition is run on this image
which is recorded by the camera in the palm of the hand. Using the object
information provided by the object recognition module, the object database is
queried to retrieve detailed information about the given object including object
properties and associated grasps. For each object, the following object properties
are stored in the database: the three object dimensions, the weight of the object
and its fragility. Grasps associated with the objects are stored in the human
grasp database (see subsection 4.1.2). Here, a top and a side grasp are associated
with most objects except flat objects and spheres that only permit a top grasp.

Once the object is identified, the user is informed about the result of the recog-
nition by showing the object’s name on the display. Based on the relation of
the hand to the object, which is estimated based on IMU data, a top or side
grasp is automatically proposed by the hand controller. These grasp proposals
are continuously updated by the user by rotating the prosthesis. In the current
implementation, a top grasp is selected if the prosthesis is held horizontally,
and a side grasp is selected if the prosthesis is held at an angle of more than
± 15°. The proposed grasp and orientation are shown in different colors on the
display to ease the selection process for the user, as shown in Figure 4.1. The
user intention, i. e. the target object to be grasped and the way to grasp it (top or
side grasp), together with the object properties, is used to select, parametrize
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and execute the grasp using the corresponding trajectories from the human
grasp database.

It is important to emphasize that the user is able to interact with the hand during
the entire process by confirming or rejecting alternatives proposed by the control
scheme. If the user is satisfied with the proposed grasp, she/he can confirm and
trigger the execution using one single EMG channel, which is the same as used
for triggering the object recognition as described in subsection 4.1.1. Otherwise,
the user is able to change the grasp direction by re-positioning their arm relative
to the object.

In case of a wrong object classification, the user can reject the proposed grasp
by shaking the hand. Such movement is recognized using the IMU. In case
of rejection, the control scheme selects the object with the next highest recog-
nition probability. If the first three proposed grasps are rejected by the user,
the controller can be restarted by taking a new camera image for the object
recognition.

4.1.4. Preshape Motion and Grasp Execution

Once a grasp is confirmed by the user, both hand and wrist pregrasp trajectories
are selected from the human grasp database and executed as shown in Figure 4.3.
The pregrasp trajectory is executed while approaching the object to ensure
feasible hand orientation and finger aperture. The hand preshape motion and
wrist orientation are performed simultaneously. At the end of the pregrasp
trajectory, the wrist motion is nearly finished. The pregrasp and grasp poses are
pictured in Figure 4.1 on the right.

Once the pregrasp motion is finished, the wrist is controlled to maintain the
preshape orientation relative to the gravity vector using IMU sensor data, com-
pensating rotations caused by the user’s arm movements. Thereby, a correct
hand orientation is ensured regardless of arm reconfiguration which might be
required to reach the object, adjust grasping distance or avoid obstacles. This
way, compensatory motions of the shoulder should be prevented as the user
does not have to take the influence of their approach movement into account.

With the distance sensor in the palm of the prosthesis, the distance to the object
is continuously measured. As soon as the distance between prosthesis and
object falls below a predefined threshold and the prosthesis has reached the final
posture of the pregrasp, the grasp motion is triggered and the grasp trajectory is
executed. Finally, a closing force is applied. The amount of this force depends
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Figure 4.4.: A subject wearing the self experience shaft and prosthesis. Reprinted
from (Starke, Weiner et al., 2022) with changes (CC BY 4.0).

on the fragility and weight defined by the object’s properties stored for each
object in the object database. Once the final grasp is completed, the object can be
lifted.

At any time, the grasping process can be stopped and aborted by a shaking
movement of the prosthesis detected by the IMU as described in subsection 4.1.3.
The semi-autonomous control scheme focuses on the acquisition of a stable
grasp. After the grasp is completed, the user can lift, use the object as needed
and release the object when such action is triggered by another muscle activation
signal measured by the EMG electrodes.

4.2. The Prosthetic Hand and Self Experience Shaft

The semi-autonomous control scheme developed in this work is implemented
on the female KIT Prosthetic Hand presented in section 3.1 (Weiner, Starke,
Rader et al., 2022). To allow the inclusion of able-bodied subjects into the
experimental evaluation of the semi-autonomous control strategy developed
in this work, a self-experience shaft was designed. It is used to attach the
prosthesis below the arm at the palmar side of the human hand as depicted in
Figure 4.4. This setup allows the execution of grasping actions by able-bodied
subjects under conditions comparable to amputated users. The self-experience
shaft is connected to the prosthesis by a quick release fastener. The wrist is
actuated by a motor providing a pronation motion of 90° and a supination
motion of 180°. Thereby it is spanning the human range of motion of forearm
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Figure 4.5.: Components of the system. Underactuated hand with two motors
and ten Degree of Freedom (DoF); a sensor system consisting of
camera, distance sensor and IMU; a color display and an embedded
system for sensor data processing and control. In addition, the wrist
rotation unit and user interface are shown, which are integrated in
a self-experience shaft. Reprinted from (Starke, Weiner et al., 2022)
with changes (CC BY 4.0).

pronation and supination combined with passive shoulder rotation (Wagner,
1977; Soubeyrand et al., 2017). The wrist rotation is also directly controlled by
the on-board embedded system of the prosthesis. The shaft further contains
the battery, powering the hand-wrist system as well as the two EMG electrodes
(13E200, ottobock), which are used to measure the excitation of wrist flexor and
extensor muscles.

The system components of the prosthetic hand and shaft are shown in Fig-
ure 4.5.

The developed algorithms for sensor data processing and control are running
on an on-board embedded system integrated into the prosthesis as described
in subsection 3.4.1. This integration allows using the prosthesis in standalone
mode without the need for any external computing power, sensors or internet
connection.
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4.3. Experiment Design

To assess the functionality, intuitiveness and complexity of the proposed semi-
autonomous control, a user study is performed comparing it to a conventional
sequential control approach. A third control strategy with reduced autonomous
functionality is additionally included to assess the influence of increasing au-
tonomy of the hand on user experience and find the optimal trade-off between
supporting functionality and user control. Hence, we compare three control
strategies, which are all operated by the user via a standard two channel EMG
input.

• Conventional Sequential Control (CSC) This sequential control approach
allows either the wrist rotation or the opening and closing of thumb and
fingers simultaneously with a fixed coordination. The two available elec-
trode signals are thereby mapped to the two rotation directions or the
opening and closing of the hand respectively. To switch between wrist
rotation and hand control, both EMG electrodes have to be addressed
simultaneously by a co-contraction of both muscles. This control approach
is common in commercial hand prosthetics (see (Farina et al., 2014; Pu-
rushothaman, 2016; GmbH, 2014, 2016)) and represents the baseline for
the comparison of our method.

• Semi-Autonomous Control (SAC) The semi-autonomous control applies
our approach described in section 4.1, including object recognition based
on the visual information, predefined grasp trajectories learned from hu-
man demonstrations and automatic hand closing based on a distance
sensor located at the base of the thumb. All user commands, namely the
start of the object recognition and the confirmation of a grasp proposed by
the control scheme of the hand, can be generated by contracting either one
or both of the muscles to which EMG electrodes are attached. Therefore,
the user can issue control commands with the EMG signals that are easiest
to generate for them. Aborting the current action is always possible by a
fast and short shake of the prosthesis.

• Semi-Autonomous Preshape (SAP) Since the final hand closing is crucial
for grasp success, this third control strategy allows an individual timing
of the hand closing motion by the user. The preshape of the hand and the
preparing wrist orientation are executed similar to the SAC strategy. How-
ever, hand closing is not triggered automatically based on the hand-object
distance, but instead actively controlled by the user. While the first two
control inputs similar to the SAC strategy can be triggered by any muscle
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activation, hand closing is controlled by contracting the flexor muscles as
in the CSC strategy. During this process, the finger and thumb trajectories
are still derived from the human demonstrations and are therefore adapted
according to the chosen grasp.

4.3.1. Setup and Procedure

The user study is performed with 20 able-bodied subjects wearing the prosthesis
connected via the self-experience shaft on their right arm as depicted in Fig-
ure 4.4. From the nine female and eleven male subjects, ten had a background in
robotics, five had no technical background. None of the subjects had experience
with hand prosthetics or EMG control. The study was carried out in accordance
with the recommendations of the ethical committee of the Karlsruhe Institute
of Technology. The protocol was approved by this ethical committee and all
subjects gave written informed consent.

The EMG electrodes are positioned for each subject individually and the elec-
trode sensitivity is adjusted to maximize the signal quality. Electrode configura-
tions are then kept fixed over the entire study session. During the experiment,
the subject is positioned in a comfortable standing position in front of a table.
A subset of the objects contained in the human grasp database is used for this
user study. Ten different objects, chosen from a household environment, are
successively placed on the table in front of the subject in a randomized order.
The objects are depicted in Figure 4.6.

All three control strategies are evaluated consecutively in randomized order.
Each control strategy is explained to the subjects by the experimenters. Subjects
are given one minute prior to the evaluation to familiarize with the control and
practice with an eleventh object not included in the evaluation. To begin each
grasp, the prosthesis is positioned 13 cm to the front right of the object. An
example for this experimental setup is depicted in Figure 4.4. For each control
strategy the subject is asked to grasp all objects from the top first, then from the
side if the object allows a side grasp, resulting in 16 grasps in total. If a grasp fails
in the first grasp attempt, it can be repeated once. Each subject performs all three
control strategies. The study is conducted with a counterbalanced crossover
design of the control strategies. This means that the order of control strategies
in the experiments is randomized with a similar number of participants starting
with each control strategy. Additionally, the order of objects is randomized
in between subjects but kept constant for all three control strategies in one
subject.
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Figure 4.6.: The objects used in the user study. Reprinted from (Starke, Weiner
et al., 2022) with changes (CC BY 4.0).

4.3.2. Data Acquisition

To assess the performance of the semi-autonomous control scheme, several
metrics are acquired in the user study. The grasp execution time is applied as
metric for the grasp efficiency. Therefore, the time starting at the beginning
of the grasp until lifting the object is recorded. As the quality of the object
recognition is not a central part of the presented semi-autonomous control, the
time required to discard wrong object recognitions is assessed individually. To
quantify the required amount of physical effort, the EMG activation signal over
the duration of the grasping process is recorded as a quantitative metric.

To assess complexity, success and user impression of each control strategy, a
subjective questionnaire is collected. It provides the workload as measured by
the NASA task load index (NASA TLX) as described in (Hart and Staveland,
1988). In our evaluation we aim to compare the workload of the different control
schemes in each subject. Therefore, we apply the metric of the raw TLX and
directly calculate the unweighted average of the sub-scale ratings provided by
the subjects. Compared to the individual weighting of sub-scales this method
has been found to be more sensitive (Hendy et al., 1993). The questionnaire is
extended by several questions to quantify intuitiveness of the control, feeling
of control and perception of feedback in the same style as the questions of the
workload index. Furthermore, open questions on the subject’s impression and
preferences are asked.
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4.4. Evaluation

Of all participants, 65.2 % preferred the SAC control, 25 % SAP and 12.5 % CSC.
The results of the evaluating questionnaire and the recorded EMG signals are
depicted in Figure 4.7. The reported preference of the SAC control strategy is also
visible in the control intuitiveness as shown in Figure 4.7 a). All plots show the
shape of the kernel density function around the data points. The mean is marked
as a white dot, while the grey line denotes the range between the 25th and 75th

percentile of the data. The colored points denote the answers/measurements
of individual subjects. The horizontal distribution of data points is merely for
visualization purposes.

4.4.1. Workload and Control Intuitiveness

The workload index of both SAP and SAC is significantly lower than for CSC,
as depicted in Figure 4.7 b). The NASA Task Load Index (Hart and Staveland,
1988) ranges between 1 and 20 with higher numbers representing an increasing
overall task load. With 11.8, the workload index of CSC is almost twice as high
as for SAC with 6.5 and more than one third higher than for SAP with 8.5. In
the following all results except the NASA TLX from the subjective questionnaire
are converted from the scale between 0 and 20 to percent.

The high workload index of CSC is mainly caused by a high physical demand of
81.5 % and a high required effort of 74.4 %. A significant reduction (Friedman’s
Anova < 0.05) is achieved with the SAC for both the physical demand to 30.5 %
and the effort to 38.3 %. Also for SAP the physical demand is notably decreased
by 46.8 % compared to the common baseline of CSC. The amount of required
effort and physical demand is visualized in Figure 4.7 c) and d).

The observed physical demand is clearly reflected in the use of EMG control
signals. The EMG electrodes supply a filtered output voltage correlated to
the muscle activation signal. Figure 4.7 e) shows the average EMG activation
calculated by integrating the EMG voltage of both electrodes over the grasp
trial and normalizing it according to the grasp execution time. While grasping
with CSC requires an average electrode activation of 213.0 mV, in SAC only
83.5 mV is recorded. This clearly shows the lower muscle contraction due to the
introduced autonomous functionality. In CSC, an EMG electrode activation is
recognized three times more frequently than in SAC, proving that the reduction
of muscle contraction is mainly caused by reducing the number and length of
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Figure 4.7.: Outcomes of the user study: (a) intuitiveness of the control reported
by the subjects, (b) workload according to the NASA Task Load
Index (Hart and Staveland, 1988), (c) effort put into the grasp execu-
tion, (d) physical demand of the control strategy, (e) mean muscle
contraction signal over the entire recording and both EMG electrodes
and (f) feeling of control reported by the subjects; all graphs show
the data points together with the kernel density function, the mean is
marked by a white dot and the grey line marks the section between
the first and third quartile. Reprinted from (Starke, Weiner et al.,
2022) with changes (CC BY 4.0).
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Figure 4.8.: Time required to execute the grasps on all ten objects and the over-
all grasp execution time in the three evaluated control strategies.
Reprinted from (Starke, Weiner et al., 2022) with changes (CC BY
4.0).

necessary user inputs. As the reported intuitiveness shows, this input reduction
can be achieved without a loss of trust into the device. Besides, subjects did not
report any statistically significant difference in their feeling of control between
CSC with 63.3 % and SAC with 65.0 % as shown in Figure 4.7 f). As expected,
SAP has a higher average electrode activation than SAC. Nevertheless SAP still
results in a significantly lower muscle activity of 126.6 mV compared to CSC
with 213.0 mV.

The mean intuitiveness for SAC increased by 13.9 % compared to CSC. As shown
in Figure 4.7 a), all three control strategies have an intuitiveness average of more
than 50 %, with SAC being most intuitive with a mean of 74.3 %. In addition,
a quarter of participants reported the SAC to be very intuitive when asked to
describe their impression of the presented control in their own words in the
questionnaire.

4.4.2. Grasp Execution Time

The grasp execution time was measured as the time needed to reach the object,
grasp and lift it off the table surface. The average execution time over all
subjects and objects is 12.14 s for CSC, 12.39 s for SAP and 9.64 s for SAC. For
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the remainder of the evaluation, the time spent on wrong classifications by the
object recognition will not be considered as the quality of the object recognition
is not a central part of this work. Excluding this leads to a reduction of the
average execution time to 8.7 s for SAC and 10.94 s for SAP.

A significant difference in the overall time required for a grasp is only notable
between SAC and the other two control strategies SAP and CSC, respectively.
The grasp execution time in SAC is 29.3 % faster compared to CSC. A quarter of
the subjects specifically mentioned the SAC to be perceived as very fast. This
was mainly ascribed to the automatic hand closing which was perceived as very
helpful. The average grasp execution time for all individual grasps is depicted
in Figure 4.8. Large and bulky objects like the football, the bowl or the canned
meat are grasped from the top at a similar speed with all three control strategies.
The merit of the autonomous coordination of all degrees of freedom of the hand
becomes mainly apparent in objects which need a precise grasping strategy like
the top grasps on the pitcher and chips. This is also evident for grasps that
demand a large wrist rotation compared to the starting pose like the side grasps
on the fizzies and the canned meat.

Looking at the grasp success for the 16 different grasps reveals that subjects were
overall more effective in grasping objects with SAC and SAP. In total four of the
16 grasps in the conducted experiment could be executed successfully in the
first trial by all participants in CSC while there were five grasps without failure
in SAC and eight in SAP. Although SAP proves to be the most effective control
strategy on this basis, participants preferred SAC. In addition, half of them
commented on SAC being easy to control. A reason for this discrepancy might
be found in the difficulties of SAP for specific cases, especially the top grasp on
a package of fizzy tablets. As these have a small diameter, an accurate hand
positioning is important. Keeping the exact hand position while performing a
muscle contraction to close the hand was difficult for many subjects. Due to this
reason, this specific grasp failed statistically once per subject.

4.5. Summary and Review

In this chapter a semi-autonomous control scheme for hand prosthesis is detailed.
The scheme thereby provides an answer to the second research question posed
in Chapter 1 of the thesis:
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How to choose a hand preshape and wrist orientation prior to prehension?

The presented semi-autonomous control scheme exploits sensor information
directly acquired on the hand to deduce context and user intention and proposes
suitable grasps to the user. The control scheme is then evaluated in a user study,
collecting both quantitative data and subjective feedback.

Semi-Autonomous Control: Based on sensor information directly acquired
on the prosthetic hand, context and user intention are deduced and exploited
to propose suitable grasps to the user. With a single EMG channel, the user
is able to start the semi-autonomous grasping process and choose the desired
trajectory. Grasp trajectories and object properties from an object database
are selected by an image-based object recognition. The approach direction is
deduced from the user’s forearm orientation measured by an EMG within the
prosthetic hand. Once the user has started the grasping motion via a single EMG
command, a preshape is performed resulting in an appropriate hand orientation
and finger aperture to approach the object. The final grasp is triggered based
on a distance sensor as soon as it has reached the object. In contrast to existing
control schemes, in this thesis all sensors and computations are contained in the
prosthesis itself.

Evaluation: Compared to a conventional sequential EMG control, our semi-
autonomous control requires less than half the amount in average EMG activa-
tion and the physical demand is rated 62.7 % lower. Together with an increase of
the intuitiveness by 13.9 %, this causes a significant reduction of the workload
by 26.1 %. As a consequence, the prosthesis user has to concentrate less on the
performance of a stable grasp. In addition, this reduced workload allows for
faster grasping especially for thin and delicate objects. At the same time, the
feeling of control is comparable to the conventional sequential control as the
user is able to intervene at any moment.
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5. Human-Inspired Grasp Phases
Controller

Robust grasping of unknown objects is a challenging task both in the field of
hand prosthetics as well as humanoid robotics. In the case of prostheses, the
user usually gets only visual feedback on the force the prosthesis applies to the
object, so the user can only react after a observation of a slip event for heavy
objects or visible singns of damage for fragile objects. The same problem exists
for humanoid robot, but since robots are usually lacking an understanding of
the properties of grasped objects, visual clues can in a majority of cases not be
incorporated to adapt grasping forces. Both scenarios can heavily benefit from
the use of multimodal haptic information to estimate grasp state and control
grasping forces in a fully autonomous manner.

As neuroscientific studies have shown, humans employ a sophisticated control
strategy when grasping and lifting objects (Johansson and Flanagan, 2009b).
Employing this strategy in a robotic context allows to divide the difficult task
of reliably grasping unknown objects into individual action phases with clear
goals and transitions. This chapter, except for Section 5.1 and Section 5.4 has
been reprinted from (Weiner et al., 2021), “Detecting grasp phases and adap-
tion of object-hand interaction forces of a soft humanoid hand based on tactile
feedback”, IROS 2021, ©2021 IEEE. In the following the design, implementation
and evaluation of this human-inspired grasp controller is detailed. First, we
introduce neuroscientific findings on human grasp control in Section 5.1 as
the source of inspiration for the presented grasp phases controller, followed by
a detailed description of the controller itself in Section 5.2. Section 5.3 de-
scribes the evaluation and presents the experimental results. Lastly, Section 5.4
summarizes the chapter and discusses the results.
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Figure 5.1.: Grasp phases and their respective task subgoals as observed in hu-
man grasping. The schematic curves show normal and shear forces
acting between object and fingers as well as object height above a
support surface. As can be seen, the applied normal force closely
correlates with perceived shear forces and shows no disturbances or
corrective actions. Control of normal forces in humans relies heavily
on semantic knowledge of the lifted object as well as past lifting ex-
periences. (Adopted from Box 3 in (Johansson and Flanagan, 2009a))

5.1. Grasp Control in Humans

Understanding of human grasp control can greatly aid development of robotic
controllers. It offers a proven method that can be used as a guideline for a tech-
nical implementation. Humans are able to effortlessly grasp arbitrary objects
utilizing multimodal haptic feedback and sophisticated feedforward control
based on a rich body of past experiences. Roughly a decade of grasping experi-
ence is needed for children to perfect adult-like refined grasping force patterns
(Forssberg et al., 1991, 1992). Rich haptic feedback is similarly important for
successful grasping in humans. If the sense of touch is missing, otherwise trivial
manipulation tasks are difficult or impossible to achieve for adults despite visual
feedback (Johansson and Westling, 1984). Due to the high number of involved
sensor signals, muscles and joints, large parts of the brain are engaged during
both power and precision grasps (Ehrsson et al., 2000).

As detailed in (Johansson and Flanagan, 2009a), the human approach to grasping
is to subconsciously subdivide the grasping task into a sequence of action phases.
Each action phase has a specific subgoal and reaching this subgoal marks the
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end of the phase and the start of the next phase. The subgoals are character-
ized by distinct sensory signals that describe a contact event or transient event.
To reach this subgoal, in each action phase a specific action-phase controller is
executed. Most of the control is based on feedforward terms while simultane-
ously predicted sensory signals are continuously compared to the actual signals.
Any mismatch between expected and actual signals triggers corrective actions
that depend on the specific nature of the mismatch, the current action-phase
controller and the state of the environment. An schematic overview of the indi-
vidual action phases, control goals of the action-phase controllers and grasping
forces is given in Figure 5.1.

In the first phase, the reach phase, the fingers close around the object. The
subgoal of the corresponding action-phase controller is to bring the fingers of
the hand into contact with the object. In the sub-sequent load phase, its controller
is tasked with applying normal force to the object and lifting the objects until
contact with the support surface breaks. During the lift phase, the grasping
force is further adjusted. The phase ends when the goal height of the object is
reached. In the following hold phase, task specific manipulation of the object can
take place and the phase is ended with the intent to place the object back down.
The action-phase controller of the replace phase lowers the object down with the
goal to contact the support surface. As soon as contact with a support surface is
detected, the controller of the unload phase gradually lowers the normal force
applied by the fingers to the object. When all fingers are unloaded, the fingers
can open and the hand retracts.

The way that grasping is partitioned into individual phases with their own
subgoal and set of corrective actions allows to subdivide the complex problem
of grasping into much simpler individual control problems. (Johansson and
Flanagan, 2009a) note that “The context-dependent nature of corrective responses is
reminiscent of finite-state control systems that operate by implementing rules based on IF,
AND and THEN arguments”. This observation hints at a suitable implementation
strategy for such grasp controllers in technical systems, which, as the authors
note, has also already been successfully employed to model human walking.

5.2. Grasp-Phases Controller

Our goal is to realize a human-inspired grasping controller that is able to (i)
detect the different phases of a grasping and manipulation task, (ii) adapt inter-
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action forces with the manipulated object and (iii) balance the force distribution
in both precision and power grasps based on multimodal haptic feedback.

The grasp-phases controller should be able to stabilize unknown objects during
the whole grasping process, while minimizing the force exerted on the object
based on tactile feedback. Using this grasp-phases controller, the hand should be
able to grasp and lift fragile objects like a plastic cup or toast without crushing
it, while it also should be able to stabilize heavy objects such as water bot-
tles. Inspired by sensorimotor control in humans, grasping and manipulation
(see Section 5.1), we consider all phases of a grasping and manipulation task,
i. e. , closing the fingers to establish contact with the object, lifting, holding,
manipulating and placing the object.

5.2.1. Overview of the Controller

The proposed grasp-phases controller is designed to grasp and manipulate
unknown objects, without prior knowledge about object size, weight or shape
is available to the controller. Hence, the controller has to infer the necessary
grasping force purely based on sensor information at run-time and adapt forces
at contact points in a reactive way. Figure 5.2 depicts the structure of the grasp-
phases controller and employed control laws. The controller is implemented for
a Hand, depicted in Figure 5.4a with three motors and five finger prototypes of
the presented soft sensorized fingers (see Section 3.3)

Each of the three motors in the hand is controlled separately by its own motor
controller based on the sensors in the fingers associated with the motor. The
thumb motor is controlled based on the sensors inside the thumb, the index
motor based on the sensors in the index finger and the third motor based on the
signals from the remaining three fingers. As (Veiga et al., 2020) have shown, such
an approach can reduce control complexity while ensuring the overall grasp
stability based on the interaction between decentralized controllers through the
object. The three motor controllers are synchronized after each grasp phase so
that they start the new phase only if all fingers and motors are ready.

The code of the controller is publicly available1. The design of the grasp-phases
controller follows two main principles: a) taking inspiration from human grasp-
ing and b) minimizing the number of necessary control parameters.

1Code available Online at: https://gitlab.com/ArmarX/Armar6RT/-/tree/master/
source/armar6/rt/libraries/KITSensorizedSoftFingerHandV1NJointCont
rollers
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a) Human-inspired Phases of grasping and manipulation tasks The soft
humanoid hand with its human-like shape and sensing modalities is predestined
for the implementation of a human-inspired approach to grasping. Therefore,
we divided the grasp-phases controller following the concept presented in
(Johansson and Flanagan, 2009b) into the four grasping phases reach & close,
load-lift-hold-replace, unload and open & retreat. Transitions between these phases
are defined by contact events or sudden changes in interaction forces. Compared
to the grasping phases in (Johansson and Flanagan, 2009b), our grasp-phases
controller maps the four grasping phases load, lift, hold and replace to one
single phase (load-lift-hold-replace) with one single sub-controller. We consider
this assumption reasonable as, except the load phase, the lift, hold and replace
phases are mainly concerned with arm motion and share similar goals in terms of
object stabilization and force control. So, the goal of the grasp-phases controller,
with its four sub-controllers for the four phases in a grasping and manipulation
task, is to robustly grasp objects with different properties such as size, weight
and shape while ensuring the right amount of forces to avoid squashing the
object in the hand.

The grasp-phases controller generates Pulse Width Modulation (PWM) targets
for each motor based on only two external control signals: 1) The command
to start object grasping and 2) a signal indicating that the object will soon be
replaced. As the controller does not rely on additional external information, it is
easy to also use it in contexts such as grasping with as prosthetic hands, where
only information from hand sensors is available.

b) Design of the sub-controllers For the sub-controllers, the number of
control parameters can drastically influence the amount of time needed to tune
the controller. Hence, we aim – wherever possible – to reduce the number of
engineered control parameters. Furthermore, we selected parameters that are
intuitively explainable, either in the context of the human grasping process or
based on physical laws. Due to sensor offsets in the measurement of normal
and shear force that depends on several changing conditions such as room
temperature and atmospheric pressure, the controller automatically determines
such offsets by continuously averaging these sensor values when the controller
is inactive.

In the following we describe the different grasp phases and the implementation
of their sub-controllers.
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5.2.2. Reach & Close Sub-Controller

We assume a pre-defined grasping pose for the hand, as finding a suitable
grasping pose for unknown objects goes beyond the scope of this work. The
grasp-phases controller is started by an external signal at which the reach & close
sub-controller is started for each motor. As the grasp should be executed as fast
as possible, the fingers initially close with the maximum PWM PWMmax. To
avoid hitting the object at maximum speed, the finger velocity is then scaled
based on the sensor data of the proximity sensor. The values of proximity
sensor Proximity are normalized to the interval [0, 1] where 1 indicates that no
object is in the range of the sensor, i. e. , no reflected light is detected, and 0

indicates that the finger has contact with the object, i. e. , a maximum amount
of light is reflected. Hence, the maximum PWM is scaled by the proximity
sensor data Proximity · PWMmax to reduce the speed and gently establish
contact with the object (see Figure 5.2-A). Due to this normalization, the fingers
proportionally slow down as they reach a distance of around 2 to 3 cm. To make
sure that the fingers establish contact with the object, the maximum value of
Proximity ·PWMmax and PWMmin cl is used, where PWMmin cl is the minimum
PWM required to slowly close the fingers. Such slow closing of the fingers is
also important to prevent damage of the object.

Contact with the object is detected by the contact threshold ContactThresBaro

on signals from the sensitive barometer based normal force sensors. As soon as
any finger sensor detects contact, the motor switches to position control mode
to hold the position at which the contact occurred. When grasping an object
with protruding edges, the finger may make contact with the object that is not
detected by any normal force sensor because the sensors do not cover the entire
finger. As a fallback for this case, we use the relative motor encoder to detect
if the finger has stopped moving. This also covers the case where the finger
misses the object and closes completely. The contact position is then held until
the other two motors also bring their fingers into contact with the object or close
the corresponding finger(s) completely. When all three motors are either in
hold position mode or stopped moving, the sub-controllers of all three motors
trigger the next phase. As described in (Jentoft et al., 2014), this contact sensing
based closing behavior has advantages compared to closing the hand without
sensor feedback, even in the presence of adaptive underactuation and passive
compliance.
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5.2.3. Load-Lift-Hold-Replace Sub-Controller

As soon as all fingers have detected contact with the object or have stopped
moving, the motor controllers switch to force control mode for each motor and
directly output PWM targets. Each motor acts based on the maximum over all
barometer-based normal force sensor values F FingerMax

Baro measured in the fingers
actuated by the motor. Specifically, the barometers are placed at the left and
right of the proximal phalanx (BProxL, BProxR), at the distal phalanx next to the
joint (BDistJ ) and next to the tip (BDistT ).

F FingerMax
Baro = max{BProxL, BProxR, BDistJ , BDistT}

For the motor actuating little, ring and middle finger, the maximum over all
three fingers is taken.

The force controller consists of two feedforward terms as well as a PD-controller.
The first feedforward term FeedForwardPWM

Position(·) takes the relative motor en-
coder position and calculates the PWM necessary to hold it. This term hence
cancels the progressive spring force as a function of the motor relative encoder
value. The term is realized as piece-wise linear function obtained by slowly
increasing the PWM of the motor and recording the resulting finger position
CurMotorPos. The second feedforward term FeedForwardPWM

Force (·) takes the
target force FTarget as input and outputs a PWM value that produces this target.
The piece-wise linear function representing this term was obtained by letting the
index finger in a fully opened state press against a flat surface with increasing
PWM while recording F FingerMax

Baro . Lastly, a PD-controller reduces the error of
the feedforward terms. This term is clamped to a value of ±C, so that, if none of
the barometers is in contact with the object, the controller outputs reasonable
values based on the feedforward terms. The force controller can be expressed by
(see Figure 5.2-B):

E = FTarget − F FingerMax
Baro

PWM = clamp{KNorm
P · E +KNorm

D · dE(t)

dt
, ±C} +

FeedForwardPWM
Force (FTarget) +

FeedForwardPWM
Position(CurMotorPos)

The target FTarget is calculated by a P-controller acting on the normal to shear
force ratio, with an offset defined by a fixed term of Fmin. The fixed term ensures
that the force controller always retains a small contact force with the object.
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For the overlying friction control, we assume a fixed friction coefficient µ. The
shear and normal forces AvgShearForcesMag and AvgNormalForcesMag are
calculated over all fingers as an average over all active shear force sensors. A
sensor is deemed active if the barometer between these two sensors indicates
contact. The shear force controller is implemented as follows:

FShear = KShear
P · (1− µ · AvgNormalForcesMag

AvgShearForcesMag

)

The target forces are scaled by the factor ForceScaling for all fingers other than
the thumb so the four opposing fingers do not force the thumb open.

ForceScaling =

⎧⎨⎩1 if thumb
1
3

else.

We used the factor 1
3

instead of 1
4

for balancing the four fingers opposing the
thumb to compensate for friction in the mechanism and rope guides. Hence, the
target for the normal force controller is calculated given as:

FTarget = (FShear + Fmin) ∗ ForceScaling.

5.2.4. Unload and Open & Retract Sub-Controllers

The unload sub-controller is triggered by an external signal from the robot control
PC, indicating the intention to place the grasped object. This prevents triggering
object unloading in the case of accidental contact events with the environment
while performing a transfer motion. Once the external triggering signal is
received and contact with a supporting surface is detected, the controller starts
to reduce the forces applied to the object to replace it in a controlled manner.
Contact is detected if at least three of the accelerometers embedded in each finger
tip sense vibrations in the range of 400 to 800 Hz of the fast Fourier transform
of the accelerator signals in a window with the last 32 measurements and a
total energy over ReplaceThresFFT . This indicates the start of the unloading
phase. For each motor, the rate of change in pressure MaxForcemotor

pressuredt is
controlled by a P-controller with Kunload

p , setting a PWM target (see Figure 5.2-
C). The target rate of change is calculated at the beginning of the phase such
that unloading of the object is expected to finish within one second. As soon
as all fingers driven by the motor reach a value below a contact threshold
MaxForcemotor

Baro < ContactThresBaro, the motor switches to position control
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Table 5.1.: Parameters of the grasp phases controller. Reprinted from (Weiner
et al., 2021), “Detecting grasp phases and adaption of object-hand
interaction forces of a soft humanoid hand based on tactile feedback”,
IROS 2021, ©2021 IEEE.

Parameter Value Parameter Value

PWMmax 100% PWMmin cl 30%
ContactThresBaro 21 mBar C 11%
KNorm

P 1 KNorm
D 0.2

Fmin 120 mBar µ 0.4
KShear

P 5000 ForceScaling 1
3

L/R/M/I, 1 T
ReplaceThresFFT 40000 Kunload

P -15

mode and holds the current position until all motors finished unloading, i. e. ,
all fingers are no longer in contact with the object.

The unload phase is considered completed when all fingers have either lost
contact with the object or are completely opened. In the subsequent Retreat
phase, see Figure 5.2-D, the fingers open with maximum motor speed to the
maximum hand aperture.

5.3. Evaluation

The grasp-phases controller is evaluated experimentally by grasping everyday
objects and food items using the humanoid robot ARMAR-6 (Asfour et al., 2019)
and compared against the baseline approach of grasping with maximum force.
The parameters used in all evaluation experiments are listed in Table 5.1. In
our experiments, we use 31 different objects, see Figure 5.3. The objects include
three drinking vessels that are grasped with two different liquid level, resulting
in 31 grasps of objects with different properties. Object weight varies from 4.8 g
for the paper cup to 1133.8 g for the plastic cola bottle. For the heavy objects,
different materials are chosen (metal, plastic, glas) to assess the performance
of grasping and lifting objects with different friction coefficients. The object set
also contains rigid and soft objects like the elephant plushie, the capri sun bag
and the sponge. The execution on the robot is completely decoupled from the
grasp-phases controller since the controller only receives two commands from
the robot in each grasping trial: the command to trigger grasping and the signal
indicating that the object will soon be replaced.
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Figure 5.3.: Set of objects used in the experiments. From left to right and back to
front: chips, rectangular emptly bottle, cola glass, PET bottle, cola
plastic, sponge, metal bottle, mustard bottle, potato starch, empty
capri sun, empty can 333ml, empty can 500ml, full boxed juice, ele-
phant plushie, full capri sun, boxed juice empty, peppermint tea,
salt sticks apple, bell pepper, papercraft box, paper cup, plastic cup,
orange, toast slices, jelly cup, yeast dumpling, ice cone, bananas,
mie noodles. Reprinted from (Weiner et al., 2021), “Detecting grasp
phases and adaption of object-hand interaction forces of a soft hu-
manoid hand based on tactile feedback”, IROS 2021, ©2021 IEEE.

5.3.1. Underactuated Hand and Embedded System

The haptic sensor data utilized in this work is provided by prototypes of the
presented soft sensorized fingers (see Section 3.3).Five of these soft fingers are
mounted on an underactuaded anthropomorphic hand. The hand design is
based on a previous design presented in (Hundhausen et al., 2020) and described
here briefly for completeness. The hand includes three identical Direct Current
(DC) gear motors, where thumb and index fingers are driven by one motor
each and the remaining fingers are driven by the third motor via an underactu-
ated mechanism based on the mechanism presented in Subsection 3.1.2. This
mechanism allows each of the three fingers to close even if others are blocked,
hence the fingers can wrap around the object to conform to the object’s shape.
Through a block and tackle system, the force on the motor tendon is trippled
and distributed to the three fingers at the cost of three times the closing time.
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(a) (b)

Figure 5.4.: a) Soft humanoid hand with multimodal sensor system; b) Hand
attached to the humanoid robot ARMAR-6. Reprinted from (Weiner
et al., 2021), “Detecting grasp phases and adaption of object-hand
interaction forces of a soft humanoid hand based on tactile feedback”,
IROS 2021, ©2021 IEEE.

Hence, the force acting on little, ring and middle finger is roughly the same
as the force acting on the individually actuated index finger and thumb. This
greatly eases the development of force control algorithms, as all fingers behave
the same apart from closing speed. The completed hand with sensorized fingers
is shown in Figure 5.4.

The hybrid embedded system for sensor data processing and control consist-
ing of a microcontroller and FPGA integrated in the palm is the same as in
(Hundhausen et al., 2020), which lead to the development of the System on
Chip (SoC)-based system presented in Subsection 3.4.2. In this work, we use
the Field Programmable Gate Array (FPGA) to read the ten buses to all sensor
Printed Circuit Boards (PCBs) in the fingers in parallel with a sample rate of 140
to 160 Hz depending on processor timings. Multiple accelerometer values are
transmitted in each frame since the accelerometer samples at 1.6 kHz. The ag-
gregated sensor data is then passed to the microcontroller and from there to the
EtherCAT bus of the humanoid robot ARMAR-6 we use in our experiments.

5.3.2. Experiment Protocol

The experiments are carried out on our humanoid robot ARMAR-6 (Asfour
et al., 2019) with the hand attached to the right arm, see Figure 5.4. Each object
is placed on the table at a pre-defined position. Each grasp trail is carried as
follows:
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1. We use kinesthetic teaching to guide the robot arm in zero-torque mode to
a pre-grasp and grasp pose. We explicitly consider the reaching motion
trough pre-grasp and grasp pose as we are in general interested in the
whole grasping and manipulation task. The grasp pose is chosen so that
the grasp is aligned with the longest object axis.

2. Trigger the grasp-phases controller with the arm in fixed starting position.

3. The arm moves to the pre-defined pre-grasp and grasp pose and starts
closing the fingers (reach and close phase).

4. As soon as the controller has reached the load phase, the object is lifted
and moved to the right of the table.

5. The hand is rotated approximately 45° using wrist pronation/supplination
and flexion/extention to disturb the grasp.

6. The arm moves the object back to the pre-defined grasping position on the
table and informs the grasp-phases controller that the object can now be
replaced.

7. The hand moves down until the grasp-phases controller enters the unload
phase.

8. The arm moves back to the fixed initial position.

For the baseline approach, the same protocol is used with the difference that
the object is grasped with maximum force and lifted after a 3 s delay. Further,
the object placement is realized by detecting contact with the table using the
6D-force/torque sensor in the wrist of the arm. Example grasps are depicted in
Figure 5.5. For the evaluation, we consider several aspects that are important to
assess the quality of grasps in the conducted experiments:

1. The generated grasping force,

2. the number of dropped objects and

3. the number of damaged objects.

5.3.3. Average Grasping Force

The amount of grasping force is quantified in terms of motor effort, i. e. the time
of PWM modulation in percent. The baseline approach always utilizes 100 %
motor effort. For the grasp-phases controller, this value is calculated by taking
the average of the motor PWM at each time step during the execution, beginning
with the closing of the fingers in the reach phase and ending with opening
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Figure 5.5.: Example grasps using our approach (top row images) and the base-
line approach (bottom row images).
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Figure 5.6.: Motor effort averages calculated over the duration of the experi-
ments for the grasp-phases controller. While the baseline always
requires 100 %, the grasp-phases controller uses averaged over all
objects only 35.64 %. As a result, the grasp-phase controller trans-
mits less force to the object and thus avoids damaging fragile objects.
Reprinted from (Weiner et al., 2021), “Detecting grasp phases and
adaption of object-hand interaction forces of a soft humanoid hand
based on tactile feedback”, IROS 2021, ©2021 IEEE.

the fingers in the open & retreat phase. Since each motor receives different
targets, the values are calculated for each individual motor. Over all motors and
grasping trials, the average motor effort is 35.64 %. The results for each motor
and each grasping trial are shown in Figure 5.6. As can be seen, the grasp
phases controller generates higher motor efforts for heavy objects without a form
closure grasp as in the case of the metal bottle and the boxed juice. The controller
also generates higher targets for deformable objects like the empty capri sun
bag, the pet bottle and the toast. This is caused by high perceived shear forces,
which are most likely induced by the fingers deforming the object, causing the
fingers to drag along the surface. The jelly cup shows a clear anomaly, caused by
its geometry. While grasping the cup, contact occurred at the protruding edge at
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the top of the cup where the lid is glued to, resulting in excessive shear forces
and low normal forces, probably since the silicone of the finger was distorted
locally due to the sharp edge.

5.3.4. Dropped and Damaged Objects

The baseline approach was able to lift and hold all objects except the jelly cup in
all experiments while the grasp-phases controller was not able to lift the yeast
dumpling and the potato starch. In the case of the potato starch, the fingers
formed a pinch grasp such that the sensors on the inside of the fingertip had no
contact with the object. For the yeast dumpling, the shear force sensors were
in contact with the object but did slide along the surface without sticking, most
likely due to its crumbly surface. The baseline approach did lift the dumpling
but damaged it and failed to lift the jelly cup because the quickly moving index
and thumb pushed the object out of the hand.

During the 31 grasp attempts executed for each approach, the baseline approach
damaged nine objects (plastic and paper cup, both cans, boxed juice empty, toast,
bananas, empty open PET bottle, paper-craft cube). The grasp-phases controller
slightly pushed in the toast with the thumb, otherwise all objects where grasped
and replaced without noticeable damage.

5.3.5. Placing of Objects

When placing objects, the grasp-phases controller managed to replace 22 objects
in the same pose they were picked up, while the baseline managed to replace 23
objects correctly. The primary failure of the grasp phases controller was due to
missing the placing event especially for soft objects, while the baseline toppled
over tall objects or flung away light objects. It has to be noted, that the baseline
approach used an accurate force-torque sensor while the grasp-phases controller
only relied on less accurate sensors of the finger tips. When used as the hand
of a humanoid robot, the feedback of the force/torque sensor could of course
be integrated into the controller, in a hand prostheses setting the additional
information would not be available.
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5.4. Summary and Review

This chapter detailed the design, implementation and evaluation of a fully
autonomous, human-inspired grasp controller for unknown objects and thereby
provides an answer to the third research question posed in this thesis:

How to grasp safely with the right amount of force?

The proposed controller takes inspiration from grasping strategies observed
in humans to break down the difficult problem of grasp control into individ-
ual action-phases. Force targets are calculated based on sensors exclusively
mounted inside of the hand. The controller is explicitly designed to work with
incomplete sensor data caused by the non-sensorized palm contacting the object
or individual fingers completely missing the objects. The controller has been
evaluated in grasping trials with 31 objects regarding grasp success and damage
to grasped objects.

Human-inspired Grasp Phases Control: We present a human-inspired grasp-
phases controller that is able to detect different phases of a grasping and ma-
nipulation task and adapts object-hand interaction forces based on tactile feed-
back. The phases are motivated by neurophysiological findings in humans and
mapped into the robotic context. Each phase and transition carries semantic
meaning in the context of grasping. Like in the human role model, each finger
or in this case motor controls the applied normal force independent of the other
fingers (Edin et al., 1992). At the end of each phase, the controllers of all motors
are synchronized before transitioning to the next phase.

Robust Control with In-Hand Sensors: All sensor data used by the controller
stems from sensors directly embedded into the fingers of the used hand and
is processed in real-time. The controller is explicitly designed to work with
incomplete sensor data, for example if a finger misses the object completely,
allowing the whole hand to engage in the grasp, not just the sensorized surfaces.
While the current implementation of the controller is executed on a PC, all filters
and calculations can also directly carried out in real-time on the embedded
system due to the low computational complexity of the proposed controller.

Evaluation: We demonstrate the performance of the controller in several
experiments with 31 objects and evaluate the ability to balance forces at the
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contact points in precision and power grasps based on tactile feedback in the
different phases of the task. The experimental evaluations also demonstrate
the ability of the grasp-phases controller to adapt forces while grasping fragile
objects preventing their damage as well as to heavy objects.
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6. Conclusion

The goal of the thesis was to endow anthropomorphic hands such as prosthetic
and humanoid robotic hands with advanced grasping abilities based on multi-
modal sensor information. Towards this goal, the thesis first presents the design
of sensorized prosthetic hands and scalable fingers as well as embedded system
for in-situ processing and control. Second, a semi-autonomous control scheme
for the selection of grasp parameters and approach direction is proposed and
evaluated in a user study. Third, a human-inspired autonomous grasp phases
control for unknown objects is developed and evaluated in a grasping study
with household objects.

6.1. Scientific Contributions of the Thesis

The scientific contributions of the thesis are:

Robotic Hands with a Multimodal Sensor System Chapter 3 presents the
development of anthropomorphic hands. The hands include a novel design of
the underactuated mechanism that allows to reduce installation space for actua-
tion. Furthermore, in contrast to related work, the hand includes environmental
sensors in the palm and accommodates a capable embedded system. These
developments where published in (Weiner et al., 2018b) and (Weiner, Starke,
Rader et al., 2022).

The chapter next introduces the design of scalable sensorized robot fingers. To
the best of the authors knowledge, for the first time the problem of scaling these
fingers according to anthropomorphic dimensions is tackled. This problem is
furthermore solved in conjunction with a thorough concept for the sensorization
of the fingers. Each finger is endowed with an array of multimodal haptic
as well as distance or temperature sensors. Two variants of the fingers are
described, one rigid and robust variant made out of laser-sintered nylon and
one soft finger variant made out of an endoskeleton casted in silicone. This
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thesis further contributes a simple fabrication technique for barometer-based
normal force sensors. The fingers are described in (Weiner et al., 2019), and
(Weiner et al., 2021). the haptic sensor system developed in this work has further
been implemented in forcemyography sensors measuring muscle activity for
exoskeleton control in Marquardt et al. (2022).

Lastly, the design of embedded systems for prosthetic and humanoid robotic
hands is described. Two variants of the embedded systems are presented, one
based on a low-power microcontroller and one based on a System on Chip (SoC)
including an dual-core application processor and an Field Programmable Gate
Array (FPGA) for higher computational loads. In contrast to the state of the art
these systems are designed for in-situ processing of sensor data and real-time
control, allowing the stand-alone use the hand.

Semi-autonomous Grasping In Chapter 4, a semi-autonomous grasping
scheme for prosthetic hands is described. The control scheme allows the user to
choose both an appropriate grasp type as well as an approach direction by issu-
ing only Electromyography (EMG) control signals. While other control schemes
rely heavily on sensors attached either to the user or to the user’s environment,
this work utilizes only sensors directly embedded into the prosthetic hand itself.
In contrast to related work, all computations also take place on the embedded
system inside the prosthetic hand. This makes the use of the control scheme in
every-day scenarios viable.

The control scheme is employed on the embedded system of the KIT prosthetic
hand and evaluated in a user study. In comparison to classical myoelectric con-
trol, the control scheme allowed faster grasp execution while users reported to
experience less effort when using the presented scheme. The semi-autonomous
control scheme is described in (Starke, Weiner et al., 2022).

Human-Inspired Grasp Phases Control Chapter 5 presents the implementa-
tion of a grasp force controller for the complete grasping process for unknown
objects, starting from approaching and wrapping the fingers around an object to
lifting, holding, replacing and letting go of the object. The controller takes inspi-
ration from the grasping strategy employed by humans, effectively dividing the
grasping process into a sequence discrete action phases with individual control
goals, sequenced by distinct haptic events. Using the multimodal information
provided by the sensors of the soft sensorized fingers, the controller is able to
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detect the haptic events dividing the individual phases and control the finger
motion and the grasping force for each phase with dedicated sub-controllers.

While this human-inspired approach has been successfully employed parallel
grippers and a prosthesis by manually bringing individual fingers into contact
with the object, the grasp-phases controller in the thesis controls all fingers of
a five-fingered in all grasping phases fully autonomously. For each motor in
the hand, an independent controller instance is executed and all instances are
explicitly synchronized at the end of each phase.

Most grasping controllers presented in literature choose grasping patterns such
that only sensorized parts of the gripper or hand are in contact with the object,
so the controller has complete knowledge about the interaction forces. In this
work, the complete hand is engaged in grasping, including surfaces that are not
endowed with sensors. The controller is explicitly designed to be able to deal
with incomplete sensor information while maintaining a stable grasp on the
object. The grasp phases controller has been published in (Weiner et al., 2021).

6.2. Discussion and Future Work

The thesis described both hardware and algorithms to support grasp selection
and robust grasp execution using multimodal sensor information. The presented
algorithms have been successfully deployed in real-world scenarios both in user
trails and experimental robot evaluations. However, further improvements and
new applications for both the mechanical and sensor systems as well as the
presented algorithms can be envisioned. This section points out possible future
directions of research.

Feedback of Sensor Data to the User The thesis focuses on using the multi-
modal sensor system in the prosthetic hands to automate the grasping process
with prostheses to reduce effort and cognitive burden for the user. Studies on
providing tactile feedback from the prostheses to the user have shown great
potential in increasing the usability of prostheses and allowing for more fine-
grained manipulation. Tactile feedback is commonly provided by vibration
or electrostimulation at the interface between stump and shaft. The addition
of tactile feedback from the already available sensors inside the hand would
enable the user to supervise the grasping force selected by the semi-autonomous
grasping scheme and correct it if needed. Especially dynamic changes in object
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weight could then be adapted by the user based on tactile feedback. This also
opens up the possibility for the user to teach the grasping force for new objects
added to the database in an intuitive manner.

Tactile feedback can also be used in demonstrating contact-rich actions to a robot.
With the ability to provide tactile feedback to the operator in a tele-operating
scenario, the interaction forces between the robot’s fingers and an object could
be demonstrated directly by the human.

Sensor-Based Control of Bimanual Actions The semi-autonomous control
scheme and the grasp-phases controller in the thesis are concerned with grasping
and placing tasks involving a single anthropomorphic hand. Large objects may
be grasped with both hands, requiring different pre-shapes and grasp types as
well as effectively coupling both hands and inducing interaction forces between
both hands that need to be taken into account when calculating grasping forces.
Furthermore, grasping is often just the first stage of manipulating the object with
the second hand. The grasp-phases controller needs to take these interaction
forces into account while the object is manipulated with the second hand to
ensure stable grasping. Open research questions in this area include, among
others, how to recognize the intention of the user and how to recognize the
manipulation task that is carried out. Information about the manipulation task
could be partially inferred from the grasped object through affordances associ-
ated with the objects or particular regions of the object using visual information.
The intention recognition could be further informed by wearable devices like
smart watches on the other arm of the user.

Learning and Model-Predictive Control The grasp-phases controller in the
thesis utilizes classical control to compare sensor data to a desired goal signal.
As shown in (Johansson and Flanagan, 2009b), humans rely heavily on sensory
prediction for motor control during a manipulation task. A mismatch between
predicted and actual sensory signals triggers situation-specific corrective actions.
This predictive coding of sensory signals not only enables humans to learn
sophisticated manipulation capabilities, but also to execute them in unparalleled
speed due to the predictive nature of the learned model.

Transfer of these concepts to the control of anthropomorphic hands could like-
wise increase robustness and speed of humanoid robot and prosthetic grasping.
For sensory prediction a model could be learned that predicts future sensory sig-
nals given the current system state and adapts corresponding motor commands
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on top of the current classical controller. This would also enable prediction of
failures due to events like slippage, especially if the model is able to link multi-
ple sensor modalities to detect these incipient events. Open research questions
include how to construct such a predictive model and link predictions to motor
commands that maximize the likelihood of realizing these predictions.
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Appendix

A. From Human Hand Anatomy to Robotic Hands

The following describes human hand anatomy aspects relevant to this work
and the transfer of the kinematic structure as well as actuation to robotic hands.
The introduction to human hand anatomy is based on the book in (Jones and
Lederman, 2006), where a in-depth description of the topic can be found.

The human hand is a highly versatile system comprised of 27 bones, 29 mus-
cles and 21 active Degree of Freedoms (DoFs). Figure 1 shows an overview
of bones and joints of the human hand. Each finger has three joints: the Dis-
tal Interphalangeal (DIP) and Proximal Interphalangeal (PIP) joints are hinge
joint only capable of flexion/extension while the metacarpophalangeal (MCP)
joint is a condyloid joint additionally capable of adduction/abduction. In total
these are 16 DoFs. The thumb, while missing the intermediate phalanx, also
has three joints: the Interphalangeal (IP) and notably also the MCP joints are
hinge joints while the Carpometacarpal (CMC) joint is a saddle joint allowing
for flexion/extension, adduction/abduction and circumvention of the thumb.
The joints between the metacarpals and carpals of the other fingers also allow
for some motion, although this is very constraint and are depending on the
definition not considered a true DoF.

The combined range of motion of all three flexion joints in each finger is 260°
where the MCP joint contributes 85°, the PIP joint 110° and the DIP joint 65°.
Due to the relative low range of motion of the DIP joint and small length of
the distal phalanx, the DIP joint is often omitted in robotic hands to reduce the
mechanical complexity of the fingers. In this case the distal and intermediate
phalanx are fused together, usually at an angle.

The hand is actuated by 29 muscles, of which some divide into multiple parts
actuating multiple tendons totaling to 38 actuated tendons overall. While 17 of
these tendons are actuated by intrinsic muscles originating and inserting inside
the hand, the bulk of muscle mass for hand actuation is situated extrinsically
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Metacarpals

Carpals

Proximal Interphalangeal Joint (PIP)

Distal Interphalangeal Joint (DIP)

Metacarpophalangeal Joint (MCP)

Interphalangeal Joint (IP)

Carpometacarpal Joint (CMC)

Figure 1.: Human hand bone and finger joint nomenclature (based on a graphic
by Mariana Ruiz Villarreal)

in the forearm. This poses a huge challenge for artificial hand design as the
forearm is usually still present in the case of prosthesis users and oftentimes
completely occupied by actuation of forearm rotation and wrist actuation in
case of humanoid robots. Hence the actuators for artificial hands often need
to be placed inside of the hand, which – in a sense – poses an even harder
problem than that evolution had to solve. Roboticists often simplify the hand
kinematics to save on space otherwise needed for additional actuators, resulting
in a difficult tradeoff between dexterity and size/weight of the hand.

Since some muscle actuate multiple tendons, not every joint in the human hand
is actuated individually. These physiological couplings of joints already give
insight in possible simplifications for artificial hand actuation. As evidence
from Santello et al. (1998) suggests, there also exist patterns of higher level
coordination and covariation between joints that allow to describe a grasp using
low-dimensional representations called synergies.

The technical implementation of co-actuation of multiple joints is called under-
actuation and is usually realized by a mechanism that distributes the torque
or force of a single actuator to multiple joints and fingers. Consequent use of
such a mechanism leads to hands with few as one motor (e. g. Fukaya et al.,
2000; Bonilla et al., 2014). An underactuated mechanism is called adaptive if the
actuated joints are not rigidly coupled, meaning that blockage of one joint does
not hinder other joints from closing.

144



List of Figures

1.1. Overview of thesis contributions . . . . . . . . . . . . . . . . . . 3

2.1. Tactile sensory coding in humans . . . . . . . . . . . . . . . . . . 9
2.2. Schematic structure of magnetic shear force sensors . . . . . . . 12
2.3. Pressure sensors by Tenzer et al. . . . . . . . . . . . . . . . . . . 14
2.4. Examples of capacitive force sensors . . . . . . . . . . . . . . . . 16
2.5. Examples of resistive force sensors . . . . . . . . . . . . . . . . . 17
2.6. Examples of optical force sensors . . . . . . . . . . . . . . . . . . 18
2.7. Gelsight Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8. Gelsight Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.9. System architecture by Markovic et al. . . . . . . . . . . . . . . . 39

3.1. The KIT Prosthetic Hands . . . . . . . . . . . . . . . . . . . . . . 51
3.2. Mechanisms of the male and female KIT Prosthetic Hand . . . . 54
3.3. Rendering of the inside of the female KIT Prosthetic Hand . . . 56
3.5. Grasping forces of the male and female prosthesis . . . . . . . . 59
3.6. Weight and cost of the male and female prostheses . . . . . . . . 60
3.7. ADL task evaluation of the female prosthetic hand . . . . . . . . 62
3.8. Sensor recording of preparing coke with the female hand . . . . 64
3.9. The KIT Softhands . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.10. Overview of the second finger prototype . . . . . . . . . . . . . 69
3.11. Skeleton part of the second finger prototype . . . . . . . . . . . . 70
3.12. Cross section view of the second finger prototype . . . . . . . . 71
3.13. Anthropomorphic design of the second prototype . . . . . . . . 72
3.14. Finger contact surface experiment . . . . . . . . . . . . . . . . . 74
3.15. Sensor-PCBs in the fingertip of the second finger prototype . . . 74
3.16. Silicone casting of the finger prototype . . . . . . . . . . . . . . . 76
3.17. Joint angle encoders in the second finger prototype . . . . . . . 77
3.18. Linear stage for sensor characterization . . . . . . . . . . . . . . 79
3.19. Tactile sensors in the second finger prototype . . . . . . . . . . . 80
3.20. Normal force measurements in the second finger prototype . . . 82
3.21. Shear force measurements in the second finger prototype . . . . 83

145



List of Figures

3.22. Joint angle calibration of the second finger prototype . . . . . . 85
3.23. grasping experiment with the second finger prototypes . . . . . 86
3.24. Spatial mapping of the second finger prototype . . . . . . . . . . 88
3.25. Mechanical components of the soft fingers . . . . . . . . . . . . . 92
3.26. The embedded system in the female prosthetic hand . . . . . . . 95
3.27. The system-on-chip-based embedded system . . . . . . . . . . . 97

4.1. Execution of the semi-autonomous control scheme . . . . . . . . 102
4.2. Architecture of the semi-autonomous grasping scheme . . . . . 104
4.3. Finite state machine of the semi-autonomous grasping scheme . 105
4.4. Prosthesis mounted on self experience shaft . . . . . . . . . . . . 108
4.5. Components of prosthesis and self experience shaft . . . . . . . 109
4.6. Objects used in the prosthesis user study . . . . . . . . . . . . . 112
4.7. Evaluation of the user study . . . . . . . . . . . . . . . . . . . . . 114
4.8. Grasp execution time . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1. Grasp phases in human grasping . . . . . . . . . . . . . . . . . . 120
5.2. Grasp phases controller state machine . . . . . . . . . . . . . . . 123
5.3. Objects used in the grasp phases controller evaluation . . . . . . 129
5.4. Soft humanoid hand . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.5. Example grasps from the evaluation . . . . . . . . . . . . . . . . 132
5.6. Motor effort during grasping trials . . . . . . . . . . . . . . . . . 132

1. Human hand bones and finger joints . . . . . . . . . . . . . . . . 144

146



List of Tables

2.1. Overview of commercial and research prostheses . . . . . . . . . 35

3.1. Dimensions of the KIT prosthetic hands . . . . . . . . . . . . . . 57
3.2. Key characteristics of the male and female KIT prosthetic hands 66
3.3. Dimensions of the assembled second finger prototypes . . . . . 78

5.1. Parametes of the grasp phases controller . . . . . . . . . . . . . . 128

147





Acronyms

3D-MID Three-Dimensional Molded Interconnect Device

AC Alternating Current
ADC Analog to Digital Converter
ADL Activity of Daily Living

CAD Computer Aided Design
CDC Capacitance to Digital Converter
CMC Carpometacarpal
CNC Computer Numerical Control
CNN Convolutional Neural Network

DC Direct Current
DIP Distal Interphalangeal
DMA Direct Memory Access
DoF Degree of Freedom

EMG Electromyography

FFC Flat Flex Cable
FPGA Field Programmable Gate Array
FSR Force Sensing Resistor

I2C Inter-Integrated Circuit
IMU Inertial Measurement Unit
IP Interphalangeal

LED Light Emitting Diode

MCP metacarpophalangeal
MEMS Micro-ElectroMechanical Systems

PCB Printed Circuit Board
PIP Proximal Interphalangeal
PWM Pulse Width Modulation

149



Acronyms

RAM Random Access Memory

ShA Shore A
SLA Stereolithography
SLS Selective Laser Sintering
SoC System on Chip
SPI Serial Peripheral Interface
STFT Short-Time Fourier Transform

ToF Time of Flight

UV ultraviolet

150



Bibliography

Abad, A. C., Ormazabal, M., Reid, D., and Ranasinghe, A. (2021a). Pilot study:
A visuotactile haptic primary colors sensor. In 2021 IEEE Sensors, pages 1–4.
20

Abad, A. C. and Ranasinghe, A. (2020a). Low-cost GelSight with UV markings:
Feature extraction of objects using AlexNet and optical flow without 3D image
reconstruction. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 3680–3685. 20

Abad, A. C. and Ranasinghe, A. (2020b). Visuotactile sensors with emphasis on
GelSight sensor: A review. IEEE Sensors Journal, 20(14):7628–7638. 19

Abad, A. C., Reid, D., and Ranasinghe, A. (2021b). HaptiTemp: A next-
generation thermosensitive GelSight-like visuotactile sensor. IEEE Sensors
Journal, pages 1–1. 20

Ajoudani, A., Hocaoglu, E., Altobelli, A., Rossi, M., Battaglia, E., Tsagarakis,
N., and Bicchi, A. (2016). Reflex control of the Pisa/IIT softhand during
object slippage. In International Conference on Robotics and Automation, pages
1972–1979. 43, 48

Al-Mohammed, M., Ding, Z., Liu, P., and Behal, A. (2018). An adaptive control
based approach for gripping novel objects with minimal grasping force. In
International Conference on Control and Automation, pages 1040–1045. 44, 48

Alagi, H., Navarro, S. E., Mende, M., and Hein, B. (2016). A versatile and
modular capacitive tactile proximity sensor. In 2016 IEEE Haptics Symposium
(HAPTICS), pages 290–296. 15, 16

Amsuess, S., Goebel, P., Graimann, B., and Farina, D. (2014). Extending mode
switching to multiple degrees of freedom in hand prosthesis control is not
efficient. In International Conference of the IEEE Engineering in Medicine and
Biology Society, pages 658–661. 37

151



Bibliography

Asfour, T., Schill, J., Peters, H., Klas, C., Bücker, J., Sander, C., Schulz, S., Kargov,
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Göger, D., Alagi, H., and Wörn, H. (2013). Tactile proximity sensors for robotic
applications. In 2013 IEEE International Conference on Industrial Technology
(ICIT), pages 978–983. 15

Hahne, J. M., Bießmann, F., Jiang, N., Rehbaum, H., Farina, D., Meinecke, F. C.,
Müller, K. ., and Parra, L. C. (2014). Linear and nonlinear regression techniques
for simultaneous and proportional myoelectric control. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 22(2):269–279. 37

Hansen, T. C., Trout, M. A., Segil, J. L., Warren, D. J., and George, J. A. (2021). A
bionic hand for semi-autonomous fragile object manipulation via proximity
and pressure sensors. In International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 6465–6469. 40, 41

Hao, Y., Controzzi, M., Cipriani, C., Popović, D. B., Yang, X., Chen, W., Zheng, X.,
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