Automated Reverse Engineering of the
Technology-Induced Software System Structure

Yves R. Kirschner, Jan Keim, Nico Peter, and Anne Koziolek

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{yves.kirschner, jan.keim, anne.koziolekl}@kit.edu,
nico.peter@student.kit.edu

Abstract. Evolving system architectures can be complex and difficult
to understand, leading to problems such as poor maintainability. Auto-
mated reverse engineering of system structure models from source code
can mitigate these problems and facilitate architectural decisions. How-
ever, identifying components with their interfaces can be challenging be-
cause components are often implemented in different frameworks and
interconnected in complex ways. Our approach aims to create software
models using reusable concept descriptions for reverse engineering. We
use structural-level mapping rules to reconstruct the static system struc-
ture from source code, assuming that the technology used can determine
the components with their interfaces and deployment. We evaluate our
approach on four public reference systems. The analyses show that tech-
nology-specific rules already provide good results, but the addition of
project-specific rules further improves reverse engineering.

Keywords: Automated reverse engineering - Reusable concept descrip-
tions - Software architecture models - Structure-level mapping rules.

1 Introduction

Large software systems often become complex and difficult to understand dur-
ing development, leading to problems such as poor maintainability. To solve
these problems, software architects must have a clear understanding of the sys-
tem’s software architecture. Therefore, there is a growing need for automated
tools that can extract the static system structure from source code. Automated
reverse engineering of models offers benefits such as improved software main-
tainability and support for architectural decisions. However, reverse engineering
the static system structure is challenging due to difficulties in identifying compo-
nents and their interfaces [4]. Factors such as different programming languages
and frameworks used to implement components make it difficult to accurately
capture all possibilities. In addition, components may have complex intercon-
nections, making it unclear which interfaces they use to communicate. The goal
of our proposed approach is to support the creation and maintenance of models.
To reverse engineer models, we want to utilize reusable concept descriptions. To
achieve this goal, we formulate the following research questions: RQ1: To what

2 Yves R. Kirschner, Jan Keim, Nico Peter, and Anne Koziolek

extent do a selected framework impact the underlying software static system
structure? RQ2: How can this impact be implemented as a transformation for
reverse engineering? Our new approach aims to use mapping rules at the struc-
tural level to reconstruct the static aspects of the system from source code. We
assume that components with their interfaces and deployment can often be ex-
plicitly determined by the used technology, e. g., application frameworks. Since
we want to use knowledge about technologies to discover components, we ex-
pect our approach to generate models that are more consistent with the present
architecture. We also expect technology-specific rules to provide a better under-
standing of the relationships between a technology and its underlying concept
and the static system structure.

2 Foundation

Web services are a type of software component that provide a standardized
way for communication over the internet [13]. RESTful web services make re-
sources available through a uniform and predefined set of stateless operations,
typically HTTP methods [10]. Reverse engineering aims to identify structures
in the form of elements and relationships within the software system under in-
vestigation. This involves analyzing and understanding software systems that
may have evolved over time or may not be formally documented [9]. In this
way, patterns, relationships, and constraints in the system can be identified,
providing insight into the design, implementation, and maintenance of the soft-
ware. Manual reverse engineering a software architecture can be difficult and
time-consuming process, especially for large and complex systems. Automating
this process typically involves analyzing the system’s code to identify compo-
nents, interfaces, dependencies, and other architecture elements. This can be
accomplished through various techniques, e.g., static analyses, dynamic analy-
ses, or both [5]. Static analyses examine the source code or compiled binary of
the software system without running the system. They are fast but may miss
certain runtime-related aspects of the system’s behavior. Model-Driven Reverse
Engineering (MDRE) is the task that focuses on recovering models. Favre et al.
define MDRE as the creation of descriptive models from existing systems that
have been created in some way [6]. MDRE is about transforming heterogeneous
software development artifacts into homogeneous models.

3 Approach

Our goal is to automatically extract from existing software development artifacts
the structure that represents the static aspects of the system. This structure in-
cludes the way a software system is split up into components and shows the
dependencies among these components as well as the deployment of these com-
ponents to nodes. We consider artifacts written during the development of a
software system, e.g., source code or other configuration files like deployment
descriptors. The idea is to model the knowledge of used technologies in order to

Reverse Engineering of Technology-Induced System Structure

reverse engineer this static system structure from artifacts. This approach is an
implementation-based reconstruction of the source code based on implementa-
tion knowledge and grouping based on deployment. Rules capture how a certain
concept is implemented in a technology and how this concept affects the static
structure of a system. These rules are expressed as model-to-model transforma-
tions. The technology-specific rules are developed by analyzing the patterns of
each technology and mapping them to model elements. Rules can be formulated
to cover any aspect of a technology that can be identified through static analysis
of a software project’s artifacts. Although the approach is designed for reuse,
it also supports project-specific rules. These rules can be used, for example, to
model how components are implemented in a specific software project. To define
transformation rules, we use the transformation language Xtend [1]. Listing 1
depicts a simplified form of a extended Backus-Naur form (EBNF) that defines
the framework of our approach for such rules. However, the shown EBNF is a
simplified version and contains only a subset of the possible solutions. We only
include the most relevant production rules.

<RulesDocument > ::= {<Rule>}

<Rule> ::= [<Loop>] {<Condition>} {<Detection>}

<Loop> ::= "for" <HelperGet> ":"

<Condition> ::= "if" <HelperBool> ":"

<HelperGet> ::= "getClasses()" | "getMethods ()" |
<HelperBool> ::= "isAnnotatedWith ()" | "isExtending()" |
<Detection> ::= "detectComponent ()" | "detectRole()" |

Listing 1: Simplified EBNF as a conceptual framework for our rules. The
example represents non-terminals for helper methods with two methods each.

A RulesDocument is a collection of rules and a Rule consists of sev-
eral non-terminals. A rule can start with a loop that iterates over parts of the
code model instance. The objects to be iterated are defined in the non-terminal
HelperGet. The next part of a rule is the Condition that is defined as an
if-expression with a non-terminal HelperBool to select what to inspect. The
rule engine provides predefined aspects of what a user might be looking for, such
as specific annotations or names. The idea of these HelperGet and -Bool
methods is to discover elements. These methods define queries to the code mod-
els that return elements of interest. These query methods need to be defined only
once and can be reused without knowing the exact structure of the code models.
To associate a model element with the current object, the user performs a de-
tection that can identify, e. g., components, interfaces, and provided or required
roles. The methods for these identifications are provided by the rule engine.

The first step in our reverse engineering approach is to create a model from
existing artifacts that provides a unified view of the software system. In order for
these models to provide a unified view, they must conform to a suitable given
metamodel. The structure of these models is realized in MDRE by so-called

4 Yves R. Kirschner, Jan Keim, Nico Peter, and Anne Koziolek

discoverers that depend on the associated metamodel. The second step is the
main step of our reverse engineering approach. The previously created models
are used to effectively achieve the desired reverse engineering scenario. During
this step, these models are analyzed using rules represented by model-to-model
transformations. For this purpose, our approach includes a framework for MDRE
that allows for reusable acquisition of this knowledge. These two steps use the
proposed rules to identify and compose relevant model elements and their rela-
tionships from the collection of code model elements. The first sub-step is for the
inner component model and uses the results from model discovery. The defined
rules allow the identification of software system elements, e. g., components, in-
terfaces, and communication paths. The second sub-step is for the outer service
model. Here, rules for the deployment descriptor artifacts are used to compose
components into larger logical units. These composite components can represent
services or subsystems.

To generate the static system structure model instance, the first model un-
derstanding sub-step is to create the interfaces by extracting information from
the code model instances. To create a model, there need to be several individual
rules, each of which helps to identify at least one model element. The previ-
ously defined rules are used to identify relevant elements within specific code
structures. The rules formulate these structural patterns that define which code
artifacts map to relevant components and how to infer provided and required
roles. Extracting model information from the code model involves identifying the
interface name, signature name, return type, and parameters of each method.
The rules define which code artifacts are associated with relevant components
and how to derive provided and required roles.

The second sub-step is to compose components based on the information in
the deployment descriptor models into services. By associating each component
with a service, subsystem boundaries can be inferred, resulting in a more readable
and understandable view of the system. Delegation connectors link provided
and required interfaces with inner components, while assembly connectors link
inner components with each other. Assembly connectors are created for each
component that matches the required role of another component in the service.

In the third step, all the information determined by the rules of the previous
model understanding is merged into the final static system structure model. For
our approach, we use the Palladio Component Model (PCM) [12] as a compo-
nent-based architecture model, but the concepts are also applicable to others
Architectural description languages (ADLs). Our approach can be adapted in
this model generation step to use other notations for describing component-
based architecture models, e.g., UML component or deployment diagrams.

4 Evaluation

For the evaluation, we first create our own reference model for the software sys-
tem under study in order to compare it with our automated results. To do this,
we first analyze the source code and configuration files to identify the compo-

Reverse Engineering of Technology-Induced System Structure

nents and their roles. We then compare the constructed model with existing
documentation or diagrams available in the repository or linked to the software
system, and perform a refinement and validation of the constructed model us-
ing expert knowledge and domain-specific information. The extraction process
involves applying the technology-specific rule set to the system and comparing
the resulting model to the expected one. Success is measured using precision
(p), recall (r), and F'1, the harmonic mean of both. True positives are relevant
elements that should be found, false positives are falsely extracted elements, and
false negatives are missing elements in the extracted model relative to the ex-
pected elements. Recall alone does not guarantee correctness as misrecognized
elements may still be present. Precision is also necessary to indicate misrecogni-
tion. The extracted software architecture is analyzed for possible improvement
by adding new rules to the technology-specific rule set. The completeness of the
generated model and the effort required to define new rules is measured by the
number of newly defined rules and the total lines of code (LOC) required.

Spring Systems: The first two case studies are two open source systems im-
plemented primarily based on the Spring framework. PetClinic! is a Spring Boot
microservices application implemented with Java and Docker that simulates a
simple management system for veterinary clinics. Piggy Metrics? is a simple
financial advisory application developed to demonstrate the microservice archi-
tecture model using Spring Boot and Docker. The Spring PetClinic reference
system consists of 4 microservices. For these combined, 11 components, 11 in-
terfaces, 11 provider roles, and 9 required roles are evaluated, for a total of 42
elements. The model extracted by our approach with only the technology-specific
rules contains all intended components, interfaces, and provided roles. However,
2 required roles are missing, 5 data types are incorrect in the correctly identified
roles, and 3 data types are missing in the identified roles. The good results are
due to the fact that the system adheres closely to the Spring specifications, pro-
viding a solid foundation for defining the technology-specific rule set. The Piggy
Metrics reference system consists of four microservices. For these combined, 29
components, 28 interfaces, 28 provider roles, and 22 required roles are evaluated,
for a total of 107 elements. The model extracted by our approach with only the
technology-specific rules has a total of 116 correctly identified elements, 25 miss-
ing elements, and 12 incorrect elements. 23 components are correctly identified,
while 5 interfaces and 6 provided roles are missing. In addition, 4 interfaces and
6 provided roles are incorrectly identified. Four required roles are also missing.
New project-specific rules are derived to improve the extraction result by ana-
lyzing missing and incorrect elements. Two new rules are added, modifying the
existing rules with a total of 7 new LOC. These new rules correctly identify the
four missing components and their associated roles.

! https://github.com /spring-petclinic/spring-petclinic-microservices
2 https://github.com/sqshq/PiggyMetrics

https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/sqshq/PiggyMetrics

6 Yves R. Kirschner, Jan Keim, Nico Peter, and Anne Koziolek

JAX-RS Systems: Tea Store® is a microservice application implemented in
Java and Docker that emulates a simple web store for tea. Acme Air* is an
application implemented in Java for a fictional airline. The Tea Store reference
system consists of six microservices. For these combined, 79 components, 64 in-
terfaces, 79 provider roles, and 10 required roles are evaluated, for a total of
232 elements. The model extracted with only the technology-specific rules has
a total of 104 correctly identified elements, 128 missing elements, and no incor-
rect elements. The system was analyzed to identify missing elements, and new
project-specific rules were applied to improve the extraction. In total, four new
rules were created and implemented in 29 LOC. Using these new project-specific
rules, the new model extracted by our approach produced 15 false positives, 13
false negatives, and 219 true positives out of the expected 232 elements. The
Acme Air reference system consists of five services and one package service that
define common interfaces. For these, a total of 31 components, 33 interfaces, 31
provider roles, and 30 required roles are evaluated, for a total of 125 elements.
The model extracted with the technology-specific rules has a total of 78 correctly
identified elements, 47 missing elements, and 4 incorrect elements. With this new
project-specific rule set, 30 items are still missing, but no items are incorrect,
and 95 items are correct.

Table 1: Summary of results. Subscripts indicate the first run with technology-
specific rules and the second run with additional project-specific rules. The num-
ber of rules (NuR) and LOC are given for the project-specific rules.

Case Study P1 ri F1, P2 rs F1, NuR LOC

Spring PetClinic 93.2% 93.2% 93.2% - - - - -
Piggy Metrics 90.6% 82.3% 86.2% 91.2% 88.7% 89.9% 2 7
Tea Store 100.0% 44.8% 61.9% 93.6% 94.4% 94.0% 4 29
Acme Air 95.1% 62.4% 75.4% 100% 76.0% 86.4% 3 32

Results and Discussion: The summary of the evaluation results of the four
case studies for the technology-specific and project-specific rules is shown in ta-
ble 1. Precision values range from 90.6% to 100.0%, recall values from 44.8%
to 94.4%, and F1l-scores from 61.9% to 94.0%. For the Tea Store system, our
approach achieves the best overall F'1-score using the improved project-specific
rules. The Spring PetClinic system performs best on the first pass with the tech-
nology-specific with a F1-score of 93.2% because it strictly follows the Spring
framework patterns. The evaluation shows that general technology-specific rules
have a higher risk of falsely classifying elements as relevant. However, the results
generally improve when these rules are used together with other project-specific
rules. On average, a new rule improves results by less than 2.0%. Piggy Met-
rics improved by 3.7% with two rules, while Tea Store improved by 32.1% and
Acme Air improved by 11.0% with more rules. JAX-RS systems benefit more

3 https://github.com/DescartesResearch /TeaStore
4 https://github.com/acmeair /acmeair

https://github.com/DescartesResearch/TeaStore
https://github.com/acmeair/acmeair

Reverse Engineering of Technology-Induced System Structure

from new rules than Spring-based systems due to fewer technology-specific im-
plementation requirements and constraints. The results show that opinionated
frameworks like Spring provide a better foundation for technology-specific rule
sets than weaker frameworks. Comparing the LOC required for project-specific
rule sets reveals differences between Spring and JAX-RS systems. JAX-RS sys-
tems required more LOC than the Piggy Metrics system because a single rule
covers all discoverable elements. This highlights an area for future improvement
to simplify rule implementation. A poor result from the rule engine may indicate
a poorly designed system with missing patterns. To address this, architects can
implement new project-specific rules. In this way, the rule engine can act as a
warning system to check the quality of a relevant system when bad extraction
results are given.

5 Related Work

Garcia et al. conclude that clustering of software entities is the almost univer-
sally used method for automated architecture reconstruction [7]. In most cases,
a graph structure is generated based on dependencies in the source code, so
that components can be reconstructed using clustering or pattern matching. Al-
though each of these reverse engineering methods has a different principle, they
all divide source code entities into mutually exclusive clusters, each based on a
dominant principle such as cohesion and coupling or naming patterns. Garzoén
et al. propose an approach for reverse engineering object-oriented code into a
unified language for both object-oriented programming and modeling [8]. Using
an incremental and rule-based approach, UML class diagrams and state ma-
chines can be mixed with the associated source code. However, these rules cover
only the basic object-oriented constructs, not specific technologies. Starting from
the assumption that most well-designed systems follow strict architecture design
rules, Cai et al. propose a new perspective for architecture reconstruction [3].
Their so-called ArchDRH clustering family allows design rule-based clustering
to be combined with other clustering techniques to partition a large system
into subsystems. However, these design rules take the form of special program
constructs, like shared data structures or abstract interfaces, that are not used
by any of the submodules. In their literature review, Raibulet et al. compare
fifteen different model-driven reverse engineering approaches and find that the
approaches and their application areas are versatile. In this respect, MoDisco [2]
is the most related approach in a comprehensive scope [11]. Bruneliere et al.
developed the generic and extensible MoDisco approach, which provides sup-
port for Java, JEE, and XML technologies to generate model-based views of
the architecture. Although MoDisco is extensible with technologies, it does not
support direct reuse of a technology’s common concepts.

6 Conclusion

This paper presents a novel approach for building static system structure mod-
els in component-based software systems using reusable concept descriptions for

8 Yves R. Kirschner, Jan Keim, Nico Peter, and Anne Koziolek

reverse engineering. The approach uses structural mapping rules to reconstruct
models from source code, considering technology-specific relationships and con-
cepts. The contributions of the approach include formally defined rules created
by technology experts prior to the automatic extraction process, and a rule
engine that can apply these rules to produce consistent software models. Evalu-
ation of reference systems using Spring and JAX-RS technologies demonstrated
the effectiveness of the approach. The evaluation also showed the potential to
improve the rule system by integrating project-specific rules. The automatic
model generation enabled by this approach has the potential to improve soft-
ware maintainability and support architectural decisions in component-based
software systems. Future work includes investigating the application of the ap-
proach to different types of systems, evaluating its scalability and efficiency, and
developing a knowledge base of technology-specific rules to improve its reusabil-
ity in similar projects.

References

1. Bettini, L.: Implementing domain-specific languages with Xtext and Xtend. Packt
Publishing Ltd (2016)

2. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: Modisco: A generic and exten-
sible framework for model driven reverse engineering. In: Proceedings of the 25th
IEEE/ACM International Conference on Automated Software Engineering (2010)

3. Cai, Y., Wang, H., Wong, S., Wang, L.: Leveraging design rules to improve soft-
ware architecture recovery. In: Proceedings of the 9th International ACM Sigsoft
Conference on Quality of Software Architectures. QoSA 13, ACM (2013)

4. Canfora, G., Di Penta, M.: New frontiers of reverse engineering. In: 2007 Future
of Software Engineering. FOSE ’07, IEEE Computer Society (2007)

5. Canfora, G., Di Penta, M., Cerulo, L.: Achievements and challenges in software
reverse engineering. Commun. ACM (2011)

6. Favre, J.M.: Foundations of model (driven) (reverse) engineering. In: Language
Engineering for Model-Driven Software Development (2005)

7. Garcia, J., Ivkovic, 1., Medvidovic, N.: A comparative analysis of software archi-
tecture recovery techniques. In: ASE’13 (2013)

8. Garzon, M.A., Lethbridge, T.C., Aljamaan, H.I., Badreddin, O.: Reverse engi-
neering of object-oriented code into umple using an incremental and rule-based
approach. In: CASCON’14 (2014)

9. Kazman, R., Woods, S., Carriere, S.: Requirements for integrating software archi-
tecture and reengineering models: Corum ii. In: Proceedings Fifth Working Con-
ference on Reverse Engineering (Cat. No.98TB100261) (1998)

10. Pautasso, C., Wilde, E.: Restful web services: Principles, patterns, emerging tech-
nologies. In: Proceedings of the 19th International Conference on World Wide Web.
WWW ’10, ACM (2010)

11. Raibulet, C., Fontana, F.A., Zanoni, M.: Model-driven reverse engineering ap-
proaches: A systematic literature review. IEEE Access (2017)

12. Reussner, R.H., Becker, S., Happe, J., Koziolek, A., Koziolek, H.: Modeling and
Simulating Software Architectures — The Palladio Approach. MIT Press (2016)

13. Roy, J., Ramanujan, A.: Understanding web services. IT Prof. (2001)

	Automated Reverse Engineering of the Technology-Induced Software System Structure

