

Karlsruhe Institute of Technology

Institute of Technical Thermodynamics and Refrigeration (ITTK) Organizational Unit Refrigeration and Cryogenics

Cool-down studies of the low-frequency interferometer in the Einstein Telescope

L. Busch and S. Grohmann

Helium-fed suspension tube: CFD model geometry

System parameters and boundary conditions

			Key conditions
Parameter	Description	Expression / value	Marionette
$\dot{m}_{ m He}$	Helium mass flow	up to $> 1000 \frac{\text{mg}}{\text{s}}$	Material: stainless steel 314L
$T_{\rm He,in}(t)$	Helium supply temperature	$\overline{T}_{MAR}(t) - \Delta T(t)$	Mass: ca. 400 kg
$\overline{T}_{MAR}(t)$	Average marionette temperature	From transient	Suspension tube
		solution data	Material: Ti6Al4V
$\Delta T(t)$	Temperature difference	50…110 K	Wall thicknesses: 390 µm (outside), 50 µm (inside)
T _{He,in,min}	Lowest He-I supply temperature	3.0 K	Helium X. Koroveshi (2022
$p_{\mathrm{He,out}}$	Absolute pressure at helium outlet	3.04.0 bar(a)	EOS: Peng-Robinson-Twu / Ideal Gas
,			Turbulence model: k-ε (compressible fluid)

Current status and preliminary results

Exemplary velocity field ($t \approx 2$ d)

Exemplary MAR cool-down curve

Conclusions

KIT – The Research University in the Helmholtz Association

