KIT | KIT-Bibliothek | Impressum | Datenschutz

A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization

Eichfelder, Gabriele; Stein, Oliver ORCID iD icon 1; Warnow, Leo
1 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper proposes a general framework for solving multiobjective nonconvex optimization problems, i.e., optimization problems in which multiple objective functions have to be optimized simultaneously. Thereby, the nonconvexity might come from the objective or constraint functions, or from integrality conditions for some of the variables. In particular, multiobjective mixed-integer convex and nonconvex optimization problems are covered and form the motivation of our studies. The presented algorithm is based on a branch-and-bound method in the pre-image space, a technique which was already successfully applied for continuous nonconvex multiobjective optimization. However, extending this method to the mixed-integer setting is not straightforward, in particular with regard to convergence results. More precisely, new branching rules and lower bounding procedures are needed to obtain an algorithm that is practically applicable and convergent for multiobjective mixed-integer optimization problems. Corresponding results are a main contribution of this paper. What is more, for improving the performance of this new branch-and-bound method we enhance it with two types of cuts in the image space which are based on ideas from multiobjective mixed-integer convex optimization. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000162197
Veröffentlicht am 15.09.2023
Originalveröffentlichung
DOI: 10.1007/s10957-023-02285-2
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 0022-3239, 1573-2878
KITopen-ID: 1000162197
Erschienen in Journal of Optimization Theory and Applications
Verlag Springer
Vorab online veröffentlicht am 01.09.2023
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page