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Proposal for detecting the π-shifted Cooper quartet supercurrent
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The multiterminal Josephson effect aroused considerable interest recently, in connection with theoretical
and experimental evidence for correlations among Cooper pairs, that is, the so-called Cooper quartets. It was
further predicted that the spectrum of Andreev bound states in such devices could host Weyl-point singularities.
However, the relative phase between the Cooper pair and quartet supercurrents has not yet been addressed exper-
imentally. Here, we propose an experiment involving four-terminal Josephson junctions with two independent
orthogonal supercurrents, and calculate the critical current contours (CCCs) from a multiterminal Josephson
junction circuit theory. We predict a generically π -shifted contribution of both the local or nonlocal second-order
Josephson harmonics. Furthermore, we show that these lead to marked nonconvex shapes for the CCCs in
zero magnetic field where the dissipative state reenters into the superconducting one. Eventually, we discuss
distinctive features of the nonlocal Josephson processes in the CCCs. The experimental observation of the latter
could allow providing firm evidence of the π -shifted Cooper quartet current-phase relation.
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I. INTRODUCTION

Entanglement in electronic superconducting circuits is
central to quantum engineering, and prototypes of quantum
processors were recently realized, unveiling a variety of phys-
ical phenomena [1]. Entanglement engines were proposed in
the early 2000s, with normal metal-superconductor-normal
metal hybrids as sources of entangled Einstein-Podolsky-
Rosen pairs of electrons [2–12]. A series of experiments
addressed nonlocality in the DC current response [13–20] and
quantum noise [21] as evidence for entangled split Cooper
pairs [2–12]. On the other hand, the emerging field of all-
superconducting multiterminal Josephson junctions [22–25]
offers new perspectives, such as exotic transient quantum
correlations among Cooper pairs, known as Cooper quartets
[26–32]. Although a series of experiments reported clear sig-
natures of Cooper quartets [33–36], these features were not
observed by others [37–44], possibly due to delicate mate-
rial and device fabrication issues. In parallel, multiterminal
Josephson junctions also focused strong interest recently as a
test bed of Floquet theory [45–52], as well as a platform for
the emergence of energy level repulsion in Andreev molecules
[53–59], the production of Weyl-point singularities in the
Andreev spectrum [31,47,60–77], and the multiterminal su-
perconducting diode effect [78,79].

Despite intense experimental efforts for observing sig-
natures of the quartet state and its new physics beyond
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the standard resistively shunted Josephson junction model
[33–35], novel schemes are necessary for ascertaining the
Cooper quartets. When driving current between pairs of con-
tacts in a multiterminal Josephson junction with an even
number 2n of superconducting leads, n equations of current
conservation are imposed by the external circuit. Those n
constraints (for a total of 2n phase variables) allow for super-
current inside a region in phase space parametrized by 2n −
n ≡ n independent variables. With four terminals, a DC super-
current is, thus, established within a two-dimensional region
in the plane of the bias currents, separated from the resistive
state by a one-dimensional critical current contour (CCC). In a
recent work, Pankratova et al. [38] reported nonconvex shapes
in the CCCs of four-terminal semiconductor-superconductor
Josephson junctions. However, these nontrivial features ap-
peared only at rather high magnetic fields, corresponding to
about half a flux quantum threading the central part of the
device. The observation of nonconvex CCCs was interpreted
using random matrix theory, assuming time-reversal sym-
metry breaking, either due to an applied magnetic field or
preexisting in the normal state [38].

Here, we demonstrate that in the presence of, at least, one
contact with an intermediate transmission, another mecha-
nism for the emergence of nonconvex CCCs is possible, which
does not require a magnetic field. Namely, we find corre-
spondence between the quartet physics and the emergence of
nonconvex sharp-angled points in the CCCs at zero magnetic
field. This distinctive signature stems from the interference
between symmetric quartet channels, which are dephased by
a transverse supercurrent (see Fig. 1). In other words, we
demonstrate that macroscopic critical current measurements
can probe the microscopic internal structure of entangled split
Cooper pairs [2–9].

The article is organized as follows. The π -shifted quar-
tets are introduced in Sec. II. The device and the model are
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FIG. 1. Sketch of the superconducting four-terminal device with
either one current and one phase bias (a) or two orthogonal current
biases (b). The superconductors SL , SR, ST , and SB are connected
to the normal metallic region N0. The four N0-Si junctions consist
of tunable quantum point contacts where the transmission of the
N0-ST interface is reduced by a scaling factor τT . Panels [(c)–(e)]
represent the lowest-order Josephson processes occurring in a sim-
plified toy model. Panel (c) shows the two-terminal DC-Josephson
effect from SB to ST , which is insensitive to the horizontal contacts.
Panels (d) and (e) show the Cooper quartet processes, which take two
Cooper pairs from SB, exchange partners, and transmit the outgoing
pairs into (ST , SL ) and (ST , SR ), respectively. In the presence of a
horizontal phase drop, these two processes pick up opposite phases
as shown in panels (f) and (g). This leads to interfering quartet
supercurrent components within this simplified model, without and
with horizontal phase drop, respectively. Due to the π shift, the
critical current along the vertical direction in panel (f) is reduced by
the two quartet processes. In panel (g), a phase drop along the hori-
zontal direction dephases the negative contribution of both processes,
resulting in an increased critical current and, thus, a nonconvex CCC.

presented in Sec. III. The numerical results, analytical and
numerical, are presented and discussed in Sec. IV. Concluding
remarks are provided in Sec. V.

II. π-SHIFTED COOPER QUARTETS

In this section, we provide physical arguments supporting
the π -shifted Cooper quartet current-phase relation. The key
underlying concept can readily be understood starting from a
three-terminal configuration of Josephson junctions in the DC
superconducting state, connecting the leads S with respective
indices i, j, k [27,53] and biased with respective phases ϕ. The
corresponding spin-singlet wave function of a split Cooper

pair, for instance, between Si and S j takes the form

ψ = 1√
2

(c+
i,↑c+

j,↓ − c+
i,↓c+

j,↑), (1)

where c+
i,σ creates a spin-σ fermion in Si. The splitting event

in Eq. (1) can come along with a second one. The resulting
composite four-fermion transient state, i.e., a Cooper quartet
[27,33–36], ends up as two Cooper pairs transmitted into Si

and S j , respectively, and described by

〈ψ2〉 = −〈c+
i,↑c+

i,↓〉 〈c+
j,↑c+

j,↓〉, (2)

where 〈· · · 〉 is a quantum-mechanical expectation value (de-
tails can be found in Appendix A). By probing the internal
structure of (double) split Cooper pairs, we mean providing
experimental evidence for the negative sign in Eq. (2), which
is a direct consequence of both quantum-mechanical exchange
and the split Cooper pair structure of Eq. (1). Consequently,
the relation between the quartet supercurrent Iq and the quartet
phase ϕq is inverted

Iq(ϕq) = −|Ic,q| sin ϕq (3)

ϕq = ϕa + ϕb − 2ϕc, (4)

where ϕa, ϕb and ϕc are the superconducting phase variables
of the leads Sa, Sb and Sc respectively. Eq. (3) can be rewritten
as Iq(ϕq) = |Ic,q| sin(ϕq + π ) and this π shift is a macroscopic
signature for the specific internal structure of single split
Cooper pairs, see Eq. (1).

Another simple perspective on the π shift of the quar-
tets readily follows from considering a single two-terminal
superconducting weak link with normal-state transmission
α. Here, the energy-phase relation can be Fourier-expanded
as EJ (ϕ) = EJ

0 + EJ
2e cos ϕ + EJ

4e cos 2ϕ + · · · . The cos ϕ

term represents the Josephson Cooper-pair energy and is
dominant in the limit of small transparency, whereas, the
cos 2ϕ one describes correlated tunneling of two Cooper
pairs. We find EJ

4e/EJ
2e ≈ −α/16 in the small-α limit and more

generally EJ
4e/EJ

2e < 0 for all α < 1, see Appendix B. This
negative sign echoes the above current-phase relation of the
quartets. More generally, our work proposes a method to
directly reveal these π -shifted second-order Josephson har-
monics, using a multiterminal configuration.

III. THE DEVICE AND MULTITERMINAL
JOSEPHSON CIRCUIT THEORY

In this section, we present the two types of devices and
the approximations sustaining multiterminal Josephson circuit
theory. The proposed device consists of four BCS super-
conducting leads SL, SR, SB, and ST , with the respective
superconducting phase variables ϕL, ϕR, ϕB, and ϕT , and con-
nected via a square-shaped normal conductor N0 as shown
in Fig. 1. The external circuit imposes current in orthogonal
directions, that is, a vertical current Iv ≡ IT = −IB and a hori-
zontal one Ih ≡ IR = −IL. The absence of coupling between
Iv and Ih produces a square or rectangular CCC, whereas,
rounded CCCs are indicative of coupling.

Our main result is that assuming a single or two con-
tacts with transparency smaller than the others, nonconvex
CCCs emerge in the (Iv, Ih) plane already under zero applied
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magnetic field. We, thus, find reentrance of the dissipative
state into the superconducting region as a distinctive signa-
ture of the π -shifted contribution of second-order Josephson
harmonics. Furthermore, we show that the π -shifted Cooper
quartet supercurrent produces distinctive reentrant sharp-
angled points in the CCCs.

The four-terminal geometry is found by a straightforward
generalization of Josephson circuits where now the Iv and Ih

supercurrents result from an interference between multipair
processes involving the phases of more than two terminals
[27,30]. For instance, in a two-terminal Josephson junction,
the terms corresponding to Cooper pairs transmitted from Si

to S j couple to the difference δi, j = ϕi − ϕ j . Similarly, with
four terminals, the relevant phase variables are then given by
gauge-invariant combinations, such as δi, j + δk,l [30], which
reduces to Eq. (4) for three terminals [27].

In our multiterminal Josephson circuit model, we assume
tunable contacts with a few transmission modes connect-
ing the four superconductors to a central normal metal
island (see Fig. 1), as was recently demonstrated in bilayer
graphene-based two-terminal Josephson devices [80] and
in multiterminal semiconducting-superconducting quantum
point contacts [36]. Considering intermediate contact trans-
parencies, although the DC-Josephson effect is dominant, the
next-order Cooper quartets still yield a sizable contribution,
whereas, the even higher-order terms are smaller. This hier-
archy justifies the approach of the paper, considering within
a single four-terminal device all the Josephson processes in-
volving two, three, and then four terminals. The calculation
involves two steps: our starting points are the approximate
analytical expressions of the current-phase relations discussed
above with sign and amplitude as free parameters. This allows
comparing the CCCs with respectively positive or negative
Cooper quartet contributions. From this we will arrive to the
conclusion that nonconvex CCCs in zero field carry the unique
signature of the microscopic π -shifted Cooper quartet current-
phase relation and would be absent with a 0 shift.

We consider intermediate transparency interfaces, with
hopping amplitudes JL, JR, JB, and JT connecting, respec-
tively, the four superconducting leads SL, SR, SB, and ST to
a normal tight-binding lattice N0. The DC-Josephson super-
current of Cooper pairs from lead Si to lead S j is written as
IP = Ic,P

i, j sin δi, j . The nonlocal DC-Josephson supercurrent of
the Cooper quartets involves, at the lowest order in tunneling,
the following three terms:

Iq = Ic,q
i, j,(k) sin(δi,k + δ j,k ) + Ic,q

i,( j),k sin(δi, j + δk, j )

+Ic,q
(i), j,k sin(δ j,i + δk,i ). (5)

Here, Ic,q
i, j,(k) for instance represents the critical quartet cur-

rent of two pairs emitted by Sk and recombining into Si

and S j . We introduce the individual channel transmissions
τi such that all Ji = √

τiJ (0) with J (0) a constant smaller
than the bandwidth W . The critical currents scale as follows:
Ic,P
i, j = τiτ j I

c(0)
i, j for the Cooper pairs, and Ic,q

i, j,(k) = τiτ jτ
2
k Ic(0)

i, j,(k),

Ic,q
i,( j),k = τiτ

2
j τkIc(0)

i,( j),k , and Ic,q
(i), j,k = τ 2

i τ jτkIc(0)
(i), j,k for the Cooper

quartets where the Ic(0)s do not scale with the transmissions.

IV. RESULTS

A. Polarization with one current and one phase bias

In this subsection, we present analytical results for the
device polarized with one current and one phase bias, see
Fig. 1(a). An external source drives a supercurrent from SB

to ST and an external loop fixes the phase difference between
SL and SR. We additionally assume that the N0-ST link has
a tunneling amplitude JT small compared to JL = JR = JB ≡
J (0), i.e., τT � τL, τR, τB � 1. Then, we make a perturba-
tion expansion in tunneling of the Josephson circuit to the
dominant order τT , neglecting the processes of order τ 2

T (see
Appendix C). In absence of the quartets, we find two types
of processes: (i) The direct two-terminal DC-Josephson effect
of the Cooper pairs from SB to ST [see Fig. 1(e)], and (ii)
the two-terminal DC-Josephson processes of the Cooper pairs
involving the lateral superconductors SL and SR. Adding now
the quartets, we include all possible processes appearing on
the orders of τ 0

T and τT .
The cartoon shown in Fig. 1 illustrates the case where at the

order of τT , the critical current Ic
v from SB to ST results from

an interference between the amplitudes of the two-terminal
DC Josephson effect and both Cooper quartets [see Figs. 1(f)
and 1(g)]. Taking an opposite relative sign of the two- and
three-terminal contributions, respectively, leads to a reduction
of Ic

v upon including the Cooper quartets. Notably, because
each quartet process picks up an opposite phase ϕL = −ϕR ≡
−ϕ/2, their respective contributions are dephased and the
value of Ic

v is restored upon applying a supercurrent Ih (or
a phase gradient) in the transverse direction as shown in
Figs. 1(f) and 1(g).

Now, we evaluate the full set of microscopic two- and
three-terminal processes at the relevant orders (details in
Appendix C). Using the notations ϕL = −ϕR = −ϕ/2, we
demonstrate in Appendix C that, at small τT and quartet
Josephson energy Eq = (h̄/2e)Ic

q , the critical current Ic
v from

SB to ST can be approximated as

Ic
v 	 τT Ic

P

{
3 + 6

Ic
q

Ic
P

− ϕ2

4

[
1 + 14

Ic
q

Ic
P

]}
, (6)

where Ic
P and Ic

q are proportional to the critical currents of the
two- and three-terminal Cooper pair and Cooper quartet pro-
cesses, respectively. Eventually, Eq. (6) predicts nonconvex
CCCs if the condition,

Ic
q < − Ic

P

14
(7)

is fulfilled. In this case, the dissipative state reenters into
the superconducting one, as a result of the π -shifted Cooper
quartet current-phase relation coming from the spin-singlet
minus signs in Eqs. (1) and (2).

We rewrite Eq. (6) as Ic
v (ϕ) = τT Ic

PF (ϕ/2π ) with

F
( ϕ

2π

)
= 3 + 6

Ic
q

Ic
P

− π2
( ϕ

2π

)2
[

1 + 14
Ic
q

Ic
P

]
. (8)

The variations of F (ϕ/2π ) are shown in Fig. 2, confirming
emergence of nonconvex or convex CCC if Ic

q < −Ic
P/14 or

Ic
q > −Ic

P/14, respectively.
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FIG. 2. The figure shows the shape of the CCC, i.e., F (ϕ/2π )
as a function of ϕ/2π , where F (ϕ/2π ) is proportional to the critical
current, see Eq. (8). Polarization is with one current and one phase
bias, see Fig. 1(a). The notation ϕ stands for the phase difference be-
tween the N0 − SR and N0 − SL contacts. Two regimes are obtained if
Ic
q < −Ic

P/14 or Ic
q > −Ic

P/14, corresponding to nonconvex or convex
CCCs, respectively.

B. Polarization with two orthogonal current biases

In this subsection, we numerically solve a related model
where we impose current biases in both horizontal and vertical
directions such that Iv = IT = −IB and Ih = IR = −IL [see
Fig. 1(b)]. The four superconducting phase variables adjust
accordingly. The numerical calculations are based on eval-
uating convergence of the steepest descent algorithm for a
multiterminal Josephson junction. A dichotomic search was
implemented in order to locate the CCCs to high accuracy.
We use Ic

k,l ≡ Ic
P and Ic

k,l,(m) ≡ Ic
q for the critical currents

of the processes coupling to two and three superconducting
phase variables, respectively. Figure 3 shows the CCCs of a
four-terminal device with the transmission coefficient scal-
ing factors τB = τL = τR = 1 and different values of τT . For
positive values of Ic

q/Ic
P, the CCCs have the shape of nested

rounded rectangles. For sufficiently negative Ic
q/Ic

P however,
the CCCs evolve from diamondlike to a shape presenting non-
convex sharp-angled points when lowering τT . Notably, the
CCCs with nonconvex sharp-angled points are only obtained
for a sufficiently negative Cooper quartet critical current (here
Ic
q/Ic

P = −0.2), which is in agreement with the preceding
analytical solution.

In Fig. 4(a) we further implement two weak links with
τT , τL � 1, whereas, maintaining τB = τR = 1, and we use a
negative Cooper quartet critical current Ic

q/Ic
P = −0.2. Focus-

ing on the panels on the diagonal, i.e., τT = τL = 1/4, 1/2, 1,
we obtain an evolution from diamondike to squarelike CCCs
as τT = τL decreases. Since a rectangular CCC is indicative of
independent currents in orthogonal directions, this evolution
demonstrates a loss of quantum mechanical coupling between
Iv and Ih as the contact transmission coefficient scaling fac-
tor decreases. The intermediate value τT = τL = 1/2 yields
reentrance on both supercurrent axes, which originate from
the underlying diagonal mirror symmetry in the device. Con-
sidering now the off-diagonal panels in Fig. 4(a), we obtain

(a) Icq/IcP = - 0.2
Nonconvex cusp
originates from π-shifted
quartet current

I h
 (

ar
b.

 u
ni

ts
)

τT=1

(b) Icq/IcP = 0

Iv (arb. units)

τT=0.5

(c) Icq/IcP = 0.2

τT=0.25

FIG. 3. Critical current contours in the (Iv, Ih ) plane with Ic
q /Ic

P =
−0.2, 0, 0.2 (in panels [(a),(c)], respectively) and with a single
weak link. The contact transmission coefficients are such that τB =
τL = τR = 1 and τT = 1 (magenta), τT = 0.5 (green), and τT = 0.25
(blue). Each panel is rescaled to full size on the Iv and Ih axes.
Polarization is with two orthogonal current biases, see Fig. 1(b).
Temperature is set to zero.

shapes with nonconvex sharp-angled points on the Ic
v axis if

τT = 1/4, 1/2, and τL = 1, and the same on the Ic
h axis if

τT = 1 and τL = 1/4, 1/2. This is again in qualitative agree-
ment with the analytical model calculations presented in the
above Sec. IV A.

In Fig. 4(b), we introduce all possible higher-order two-
terminal I ′c

2T sin[2(ϕi − ϕ j )] coupling terms in addition to the
Cooper quartets. We observe the robustness of the reentrant
sharp-angled points with respect to addition of these. Qual-
itatively, this can be interpreted as due to the fact that a
smooth feature on top of a sharp cusp does not alter the
latter. Figures 4(c) and 4(d) comparatively show the CCCs
with vanishingly small quartet critical current but with finite
I ′c
2T taking negative or positive values. The nonconvex sharp-

angled points are absent in the corresponding CCCs if Ic
q = 0

and I ′c
2T �= 0. Those nonconvex sharp-angled points are, thus, a

unique signature of the nonlocally π -shifted Cooper quartets.
Eventually, we demonstrate robustness of the reentrant

pockets upon including the DC-Josephson effect depending
on all four superconducting phase variables [30]. At the low-
est order in tunneling, the corresponding Josephson critical
currents are denoted by I ′c

q , and they scale, such as τLτRτBτT .
Figure 5 provides the CCCs for variable combinations of Ic

q/Ic
P

and I ′c
q /Ic

P, and with τT � 1 and τB = τL = τR = 1. The data
with Ic

q � 0 reveal smooth nonreentrant variations, contrasting
with the sharper reentrantlike variations on the other pan-
els. We conclude that reentrant features in CCCs at negative
Cooper quartet critical current Ic

q are robust with respect to
including higher-order Josephson terms.

V. CONCLUSIONS

To conclude, it follows from basic theoretical argu-
ments that the quartet supercurrent contribution must be π

shifted with respect to the lowest-order Josephson Cooper
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FIG. 4. Critical current contours in the (Iv, Ih ) plane with τB = τR = 1 and with two weak links. The values (Ic
q /Ic

P, I ′c
2T /Ic

P ) = (−0.2, 0),
(−0.2, −0.2), (0,−0.2), and (0,0.2) are used in panels [(a)–(d)], respectively. The panels are organized as a table, and the values of τL , τT are
indicated. Each panel is rescaled to full size on the Iv and Ih axes. Polarization is with two orthogonal current biases, see Fig. 1(b). Temperature
is set to zero.

pair supercurrent. We demonstrated that the nonconvex
two-dimensional CCCs of a current-biased four-terminal
Josephson junction are generically due to a relative π shift
of the higher-order terms in the current-phase relation. These
can either originate simply from the two-terminal Joseph-
son current-phase relation or more interestingly from the
Cooper quartets. Finally, we demonstrated that nonconvex
sharp-angled points in the CCCs are a distinctive signature of
negative Cooper critical current contributions. However, we
note that too small negative quartet critical currents will re-
store convex CCC, which sets constraints on the transmissions
for the observation of the characteristic reentrance. A recent
experiment [38] reported the appearance of nonconvex CCCs
only under applied magnetic field. However, in contrast to our
assumptions, all contacts had large transparencies. Conclusive
evidence for the π -shifted quartet term could be realized with
bilayer graphene- or semiconducting-quantum point contacts
[36,80] with tunable contact transparencies.
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APPENDIX A: DETAILS ON PHENOMENOLOGICALLY
SQUARING THE SINGLE COOPER PAIR WAVE FUNCTION

In this Appendix, we detail how to deduce Eq. (2) from
Eq. (1). Namely, we square the wave function of a Cooper
pair split between Si and S j ,

ψ2 =
[

1√
2

(c+
i,↑c+

j,↓ − c+
i,↓c+

j,↑)

]2

(A1)

= 1

2
(c+

i,↑c+
j,↓ − c+

i,↓c+
j,↑)(c+

i,↑c+
j,↓ − c+

i,↓c+
j,↑) (A2)

= 1

2
[c+

i,↑c+
j,↓c+

i,↑c+
j,↓ − c+

i,↑c+
j,↓c+

i,↓c+
j,↑

−c+
i,↓c+

j,↑c+
i,↑c+

j,↓ + c+
i,↓c+

j,↑c+
i,↓c+

j,↑] (A3)
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I’ c
q 

=
 -

 0
.4

Icq = - 0.4

τT = 1

Icq = 0

τT = 0.5

Icq = 0.4

τT = 0.25

I h
 (

ar
b.

 u
ni

ts
)

I’ c
q 

=
 0

I’ c
q 

=
 0

.4

Iv (arb. units)

FIG. 5. Critical current contours on the (Iv, Ih ) plane, in the
presence of Josephson coupling to the four superconducting phase
variables and with a single weak link. The contact transmission
coefficients are such that τB = τL = τR = 1 and τT = 1 (magenta),
τT = 0.5 (green) and τT = 0.25 (blue). The different panels are
organized, such as a table, and the values of Ic

q and I ′c
q are indicated

on the figure, both of those being normalized to Ic
P = 1. Each panel

is rescaled to full size on the Iv and Ih axes. Polarization is with two
orthogonal current biases, see Fig. 1(b). Temperature is set to zero.

= 1

2
[−(c+

i,↑)2(c+
j,↓)2 − (c+

i,↑c+
i,↓)(c+

j,↑c+
j,↓)

−(c+
i,↑c+

i,↓)(c+
j,↑c+

j,↓) − (c+
i,↓)2(c+

j,↑)2]. (A4)

Evaluating quantum-mechanical expectation values in the fi-
nal state leads to

〈ψ2〉 = −〈c+
i,↑c+

i,↓〉〈c+
j,↑c+

j,↓〉, (A5)

where we used 〈(c+
i,↑)2〉 = 0 because of spin conservation.

The above Eq. (A5) matches the above Eq. (2).

APPENDIX B: DETAILS ON A SINGLE
SUPERCONDUCTING WEAK LINK

In this Appendix, we evaluate the first- and second-order
harmonics of the Josephson current-phase relation for a
single-channel superconducting weak link having hopping
amplitude J0, and connecting the left and right superconduct-
ing leads SL and SR with superconducting phases ϕL and ϕR,
respectively. The Andreev bound state (ABS) energies take
the following form:

E±(ϕR − ϕL, α) = ±	

√
1 − α sin2

(
ϕR − ϕL

2

)
, (B1)

where the dimensionless normal-state transmission coefficient
α between 0 and 1 is given by

α = 4(J0/W )2

[1 + (J0/W )2]2
. (B2)
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H
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α

)
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FIG. 6. The figure shows H2(α)/H1(α) as a function of the
normal-state contact transparency α (magenta datapoints), where
H1(α) and H2(α) are the first and second harmonics of the Josephson
energy, see Eqs. (B8) and (B9). The green line shows a comparison
to H2(α)/H1(α) = −α/16, see Eq. (B7).

The ABS energies are expressed as

E±(ϕR − ϕL, α) = ±	

√
1 − α

2
+ α

2
cos(ϕR − ϕL ) (B3)

= ±	

√
1 − α

2

√
1 + α

2 − α
cos(ϕR − ϕL ).

(B4)

Expanding to second order, we obtain

E±(ϕR − ϕL, α) = ±	

√
1 − α

2

{
1 + α

2(2 − α)
cos(ϕR − ϕL )

−1

8

(
α

2 − α

)2

cos2(ϕR − ϕL )

}
+ · · ·

(B5)

Using cos2(ϕR − ϕL ) = {1 + cos[2(ϕR − ϕL )]}/2, we ob-
tain

E±(ϕR − ϕL, α) = ±[EJ
0 + EJ

2e cos(ϕR − ϕL )

+EJ
4e cos[(ϕR − ϕL )] + · · · ], (B6)

with

EJ
4e

EJ
2e

= − α

16
, (B7)

in the small-α limit, where EJ
2e > 0 is positive and EJ

4e < 0 is
negative.

Now, we present supplemental numerical calculations for
the amplitudes H1(α) and H2(α) of the first and second
Josephson harmonics as a function of the dimensionless
normal-state transmission coefficient α,

H1(α) =
∫ 2π

0

dϕ

2π
E+(ϕ, α) cos ϕ, (B8)

H2(α) =
∫ 2π

0

dϕ

2π
E+(ϕ, α) cos(2ϕ). (B9)
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FIG. 7. The figure shows the six two-terminal processes transfer-
ring Cooper pairs between the superconducting leads.

Figure 6 shows that H2(α)/H1(α) < 0 is negative for all val-
ues of α < 1. The limiting behavior H2(α)/H1(α) = −α/16
is obtained at small α, in agreement with the above Eq. (B7).

APPENDIX C: DETAILS ON THE DEVICE CONTROLLED
WITH ONE CURRENT AND ONE PHASE BIAS

In this Appendix, we consider the multiterminal Josephson
circuit shown in the above Fig. 1(a), consisting of the four su-
perconducting leads SL, SR, SB, and ST with the phases ϕL, ϕR,
ϕB, and ϕT . The phase difference ϕR − ϕL = 
 is controlled
by the flux 
 in the loop, and supercurrent Iv = IB = −IT is
forced to flow from the bottom to the top superconducting
leads. We use the notation ϕT = ψ . Given those constraints,
the supercurrent transmitted into ST is parametrized by a
single phase variable, for instance, by the phase variable ψ ,
and the critical current from bottom to top is obtained by
maximizing the supercurrent Iv (ψ ) over ψ .

The superconductor ST is assumed to be connected to the
normal conductor N0 by hopping amplitude that is weaker
than the others. A reduction factor τT is applied to each
Cooper pair crossing the N0 − ST interface.

First considering vanishing small quartet Josephson energy
Ic
q = 0, we obtain the following expression of the four-

terminal Josephson junction energy E (0):

E (0) = EPτT {cos(ϕT − ϕL ) + cos(ϕT − ϕB)

+ cos(ϕT − ϕR)}
+EP{cos(ϕB − ϕL ) + cos(ϕB − ϕR)

+ cos(ϕR − ϕL )}, (C1)

where EP is the Josephson energy associated to transferring
Cooper pairs between the leads. Each term entering Eq. (C1)
is schematically shown in Fig. 7. Using ϕL = −ϕR = −ϕ/2
and ϕT = ψ , we obtain

E (0) = EPτT

{
cos

(
ψ + ϕ

2

)
+ cos (ψ − ϕB) + cos

(
ψ − ϕ

2

)}
+EP

{
cos

(
ϕB + ϕ

2

)
+ cos

(
ϕB − ϕ

2

)
+ cos ϕ

}
. (C2)

Then,

IT = −2e

h̄

∂E (0)

∂ψ
(C3)

= 2eEPτT

h̄

{
sin

(
ψ + ϕ

2

)
+ sin(ψ − ϕB)

+ sin
(
ψ − ϕ

2

)}
(C4)

IB = −2e

h̄

∂E (0)

∂ϕB
(C5)

= 2eEPτT

h̄
sin(ϕB − ψ )

+2EP

h̄

{
sin

(
ϕB + ϕ

2

)
+ sin

(
ϕB − ϕ

2

)}
. (C6)

The current source imposes

IT + IB = −(2e/h̄)[∂E (0)/∂ψ + ∂E (0)/∂ϕB] = 0, (C7)

which leads to the self-consistent ϕB = ϕ∗
B with

sin ϕ∗
B = −τT sin ψ, (C8)

showing that ϕ∗
B is on the order of τT . Then, at the order of τT ,

we obtain

IT = −2e

h̄

∂E (0)

∂ψ
	 2eEPτT

h̄

[
1 + 2 cos

(ϕ

2

)]
sin ψ. (C9)

Taking the maximum over ψ and expanding in small ϕ leads
to following expansion of the critical current flowing from
bottom to top at small ϕ, at the order of τT :

Ic 	 2eEPτT

h̄

[
3 − ϕ2

4

]
, (C10)

leading to convex CCC in the absence of the quartets. Equa-
tion (C10) is rewritten as

Ic 	 τT Ic
P

[
3 − ϕ2

4

]
, (C11)

where Ic
P = 2eEP/h̄ is related to the Cooper pair critical

current.
Now, we include finite but small quartet Josephson energy

Eq. Those processes are shown in Fig. 8, and, at the order of
τT , they yield the following correction δE (0) to the energy E (0)

in Eq. (C1):

δE (0) = Eq{τT cos(ϕL + ϕT − 2ϕB) + τT cos(ϕR + ϕT − 2ϕB)

+ cos(ϕR + ϕL − 2ϕB) + τT cos(ϕT + ϕR − 2ϕL )

+τT cos(ϕT + ϕB − 2ϕL ) + cos(ϕR + ϕB − 2ϕL )

+τT cos(ϕT + ϕL − 2ϕR) + τT cos(ϕT + ϕB − 2ϕR)

+ cos(ϕL + ϕB − 2ϕR)}. (C12)

Then, we find

−∂δE (0)

∂ϕT
= τT Eq{sin(ϕL + ϕT − 2ϕB)

+ sin(ϕR + ϕT − 2ϕB) + sin(ϕT + ϕR − 2ϕL )
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FIG. 8. The figure shows the nine three-terminal processes trans-
ferring Cooper quartets between the superconducting leads, at the
orders (τT )0 and τT . The three higher-order processes of order (τT )2

are not shown in the figure.

+ sin(ϕT + ϕB − 2ϕL ) + sin(ϕT + ϕL − 2ϕR)

+ sin(ϕT + ϕB − 2ϕR)} (C13)

= τT Eq

{
sin

(
−ϕ

2
+ ψ − 2ϕB

)
+ sin

(ϕ

2
+ ψ − 2ϕB

)

+ sin

(
ψ + 3ϕ

2

)
+ sin (ψ + ϕB + ϕ)

+ sin

(
ψ − 3ϕ

2

)
+ sin(ψ + ϕB − ϕ)

}
. (C14)

Since ϕB is on the order of τT [see the above Eq. (C8)], we
replace ϕB by ϕB = 0 in the above Eqs. (C13) and (C14) to
obtain the order-τT contribution to −∂δE (0)/∂ϕT ,

−∂δE (0)

∂ϕT
	 τT Eq

{
sin

(
−ϕ

2
+ ψ

)
+ sin

(ϕ

2
+ ψ

)

+ sin

(
ψ + 3ϕ

2

)
+ sin (ψ + ϕ)

+ sin

(
ψ − 3ϕ

2

)
+ sin(ψ − ϕ)

}
(C15)

= 2τT Eq

{
cos

(ϕ

2

)
+ cos ϕ + cos

(
3ϕ

2

)}
sin ψ.

(C16)

Considering now −∂δE (0)/∂ϕB, we find

−∂δE (0)

∂ϕB
= Eq{2τT sin (2ϕB − ϕL − ϕT )

+ 2τT sin(2ϕB − ϕR − ϕT )

+ 2 sin (2ϕB − ϕR − ϕL )

+ τT sin(ϕT + ϕB − 2ϕL )
+ sin(ϕR + ϕB − 2ϕL )

+ τT sin(ϕT + ϕB − 2ϕR)

+ sin(ϕL + ϕB − 2ϕR)} (C17)

= Eq

{
2τT sin

(
2ϕB + ϕ

2
− ψ

)

+ 2τT sin
(

2ϕB − ϕ

2
− ψ

)
+ 2 sin(2ϕB) + τT sin (ψ + ϕB + ϕ)

+ sin

(
ϕB + 3ϕ

2

)
+ τT sin(ψ + ϕB − ϕ)

+ sin

(
ϕB − 3ϕ

2

)}
. (C18)

The phase variable ϕB turns out to be linear in τT at Eq = 0
[see the above Eq. (C8)]. At small Eq, both −∂δE (0)/∂ϕT and
−∂δE (0)/∂ϕB are on the order of EqτT . Then, ϕ∗

B is linear in
τT in the presence of small Eq as was the case for Eq = 0.

The supercurrent transmitted into the superconducting lead
ST is then given by the sum of Eqs. (C9) and (C16),

IT = −2e

h̄

∂ (E (0) + δE (0) )

∂ψ
(C19)

	 2eτT EP

h̄

{
3 + 6

Eq

EP
− ϕ2

4

[
1 + 14

Eq

EP

]}
sin ψ. (C20)

Taking the maximum over ψ leads to the following expression
of the critical current:

Ic
v = −2e

h̄

∂ (E (0) + δE (0) )

∂ψ
(C21)

	 2eτT EP

h̄

{
3 + 6

Eq

EP
− ϕ2

4

[
1 + 14

Eq

EP

]}
. (C22)

Equation (C21) is rewritten as

Ic
v = τT Ic

P

{
3 + 6

Ic
q

Ic
P

− ϕ2

4

[
1 + 14

Ic
q

Ic
P

]}
, (C23)

where Ic
P = 2eEP/h̄ and Ic

q = 2eEq/h̄ are related to the Cooper
pair and Cooper quartet critical currents. This concludes the
demonstration of the above Eq. (6). Equation (C23) goes to
Eq. (C11) in the Ic

q → 0 limit of vanishingly small quartet
energy. As a consequence of Eq. (C23), the CCC is nonconvex
if

Ic
q < − Ic

P

14
, (C24)

thus, necessarily being negative.
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