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Strichartz estimates for Maxwell equations in media:
the structured case in two dimensions

Robert Schippa and Roland Schnaubelt

Abstract. We prove Strichartz estimates for the two dimensional Maxwell
equations with diagonal Lipschitz permittivity of special structure. The
estimates have no loss in regularity that occurs in general for C1-coefficients.
In the charge-free case, we recover Strichartz estimates local-in-time for
Euclidean wave equations in two dimensions up to endpoints.
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1. Introduction and main result. The Maxwell equations are the foundation
of electromagnetic theory. Despite its importance, dispersive properties of the
linear Maxwell system in media have only recently been studied systematically
on the full space, see [5,7–10] and also [1] for the domain case, as well as [2,4]
for earlier contributions. For the two dimensional situation (1.1), in [9], we
have obtained Strichartz estimates comparable to the case of the scalar wave
equation, cf. [13,14]. Such estimates are crucial for the wellposedness theory
of related non-linear problems, as discussed in e.g. [1,8–10,13,14]. It is known
that for Lipschitz coefficients, one has a loss of derivatives in these Strichartz
estimates compared to C2-coefficients, in general, see [11] for the wave and [9]
for the 2D Maxwell case. However, in the recent work [3], it was discovered
that this loss does not appear for the wave equation under certain structural
assumptions on the coefficients, see (1.6). In this note, we show an analogous
result for the 2D Maxwell system for structured Lipschitz coefficients.

We investigate the two-dimensional Maxwell system
{

∂tD = ∇⊥H − J , (t, x) ∈ R × R
2,

∂tB = −∇ × E ,
(1.1)
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for the electric fields D, E : R×R
2 → R

2, the magnetic fields B,H : R×R
2 → R,

and the current density J : R × R
2 → R

2. Here we set ∇⊥ = (∂2,−∂1)� and
∇ × v = ∂1v2 − ∂2v1. These equations are equipped with the instantaneous
linear material laws

D = ε(x)E , B = μ(x)H,

for the permittivity ε : R × R
2 → R

2×2 and the permeability μ : R × R
2 → R.

It is assumed that ε is symmetric and strictly positive definite. To focus on the
main difficulties, we let μ = 1 for simplicity, which is also a usual assumption
in optics (after normalizing the vacuum permittivity ε0 to 1), see [6]. However,
our results easily generalize to strictly positive functions μ having the same
regularity as ε in Theorem 1.1.

The system (1.1) arises as a restriction of the usual three dimensional
Maxwell system (with μ = 1) if the initial values D0 and B0 = H0 only depend
on (x, y) ∈ R

2 and if their components E03, B01, B02, as well as J3 vanish.
Moreover, in the 3D permittivity tensor, the components ε3j = εj3 have to be
zero for j ∈ {1, 2}. These restrictions on the fields are then conserved by the
evolution equations.

In our recent paper [9], we have shown Strichartz estimates for permittiv-
ities ε ∈ Cs(R3,R2×2) with 0 ≤ s ≤ 2, which were proved to be sharp for
1 ≤ s ≤ 2. To formulate them, we let u = (D,B) be the state, denote the
(electric) charges by ρe = ∇ · D = ∂1D1 + ∂2D2, and write

P =

⎛
⎝ ∂t 0 −∂2

0 ∂t ∂1

∂1(ε21·) − ∂2(ε11·) ∂1(ε22·) − ∂2(ε12·) ∂t

⎞
⎠ , (1.2)

where (εij) is the inverse matrix of ε = (εij). (Here we change notation com-
pared to [9].) We call exponents (wave) admissible Strichartz pairs in spatial
dimension d if

2
p

+
d − 1

q
≤ d − 1

2
, 2 ≤ p, q ≤ ∞, ρ =

d

2
− d

q
− 1

p
, (1.3)

where q < ∞ if d = 3. If the first inequality is an equality, (p, q) is called a
sharp Strichartz pair. (Note that ρ ≥ 0 and ρ = 0 for the pair (p, q) = (∞, 2)
corresponding to the energy estimate (1.11).) For admissible pairs with d = 2,
Cs-coefficients, and the loss parameter σ = 2−s

2+s , we have established

‖|D|−ρ− σ
2 u‖LpLq � ‖u‖L2 + ‖|D|− 1

2 Pu‖L2 + ‖|D|− 1
2 − σ

2 ρe‖L2 (1.4)

in [9, Theorem 1.2]. (If q = ∞, one has to replace L∞ by a Besov space
and analogously in (1.7) below.) Here we let LpLq = Lp(R, Lq(R2)), Lp =
Lp

x = LpLp, and |D|α = F−1|ξ|αF for the space-time Fourier transform. We
also write Lp

T Lq = Lp
T Lq

x′ = Lp(0, T ;Lq(R2)) for T > 0. Throughout, x =
(t, x′) ∈ R × R

2 are the space-time variables and ξ = (τ, ξ′) ∈ R × R
2 the

Fourier variables. Accordingly, spatial fractional derivatives are denoted by
|D′|α = F−1

x′ |ξ′|αFx′ .
In (1.4), the regularity loss σ

2 compared to C2-coefficients is sharp in gen-
eral, as we have seen by a counter-example in [9] inspired by [11]. Except for



Structured 2D Maxwell equations

the charge term, the estimate (1.4) corresponds to the results for the wave
equation in Tataru’s paper [13], which also have the loss σ

2 for Cs-coefficients
(being sharp in general, see [11]). The charge term in (1.4) compensates the
degeneracy of the main symbol of P, which is a fundamental difference between
the Maxwell and wave case, tied to the system character of (1.1).

However, recently in [3], the first author and Frey proved Strichartz esti-
mates without loss for wave equations with Lipschitz coefficients under certain
structural assumptions. We state the results of [3] for the 2D case only. There
coefficients a1, a2 ∈ C0,1(R) were considered under the ellipticity assumption

∃κ > 0 : ∀x ∈ R : κ ≤ ai(x) ≤ κ−1. (1.5)

For the wave operator

Q = ∂tt − (∂1(a1(x1)∂1) + ∂2(a2(x2)∂2)
)

(1.6)

and sharp admissible pairs (p, q), the Strichartz estimates without loss

‖|D′|1−ρv‖Lp
T Lq �T ‖∇u‖L∞

T L2 + ‖Qu‖L1
T L2 (1.7)

were proven in [3, Corollary 4.5]. Hence, for the wave operator (1.6) with
C0,1-coefficients, we have the same Strichartz estimate (1.7) as for the wave
equation with general (elliptic) C2-coefficients, see e.g. [13].

In this note, we revisit our approach from [9] and show a loss-less Strichartz
estimate for solutions to (1.1) after frequency localization, for permittivities
satisfying the structural conditions

ε(x) = diag(ε1(x2), ε2(x1)), where εi ∈ C0,1(R) satisfy (1.5). (1.8)

Theorem 1.1. Assume that (p, q, ρ) satisfy (1.3) for d = 2 and ε fulfills (1.8).
Let P be given by (1.2), u = (D,B), ρe = ∇ · D, and T ≥ 1. We then obtain
the Strichartz estimates

sup
λ∈2N0∪{0}

(1+λ)−ρ‖S′
λu‖Lp

T Lq

x′ �T ‖u(0)‖L2
x′ + ‖Pu‖L1

T L2
x′ + ‖|D′|− 1

2 ρe(0)‖L2
x′

+ ‖|D′|− 1
2 ∂tρe‖L1

T L2
x′ . (1.9)

Let also ε ∈ B1
∞,2(R

2). Then we have

‖|D′|−ρu‖Lp
T Lq

x′ �T ‖u(0)‖L2
x′ + ‖Pu‖L1

T L2
x′ + ‖|D′|− 1

2 ρe(0)‖L2
x′

+ ‖|D′|− 1
2 ∂tρe‖L1

T L2
x′ (1.10)

for q < ∞. If q = ∞, one has to replace the left-hand side by ‖u‖Lp
T Ḃ−ρ

∞,2
.

The theorem is proved in the next section. Here we first discuss the result
and its proof a bit. Above we use a spatial Littlewood–Paley decomposition
(S′

λ)λ∈2N0 , see (2.1), where 2N0 = {2k | k ∈ N0}. For (1.10), the slightly im-
proved first-order regularity of ε is needed to sum the Littlewood–Paley pieces
in a commutator argument, see (2.11). We note that (1.8) excludes the counter-
examples to (1.10) from [9, Section 7].
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We next explain the differences between the right-hand side of (1.4) with
σ = 0 and those of (1.9) and (1.10). Differentiating the energy 1

2

∫
R2(εE(t) ·

E(t) + |H(t)|2) dx′ in time, one obtains

‖u(T )‖L2
x′ �κ ‖u(0)‖L2

x′ + ‖Pu‖L1
T
L2

x′ . (1.11)

(For time-varying coefficients, one would need here ∂tε ∈ L1
T L∞.) Hence it is

enough to show (1.9) and (1.10) with ‖u‖L2 instead of ‖u(0)‖L2
x′ on the right-

hand side. In step (1) of the proof, we also see how one can pass from ‖Pu‖L2

to ‖Pu‖L1
T L2

x′ by means of Duhamel’s formula, though with a T -depending
constant. This argument also modifies the charge term.

We state the above result with spatial regularity only. But, as seen in the
proof, the low frequency part of u and the frequency ranges |τ | � |ξ′| can be
handled directly (without involving ρe) so that one could replace |D′| by |D|.
Observe that Sobolev’s embedding already gives

‖|D|−ρu‖LpLq � ‖|D| 1
2 u‖L2 ,

so that we have to gain half a derivative to derive (1.10). In particular, if we
only know ‖|D′|−1/2ρe‖L2 ∼ ‖|D′| 1

2 D‖L2 for the charge, then (1.10) would not
improve on Sobolev’s embedding. On the other hand, (1.1) implies

ρe(t) = ∇ · D(0) −
t∫
0

∇ · J (s) ds (1.12)

so that the charge is given by the data. Moreover, we have ρe(0) = ∇ · D(0)
and ∂tρe = −∇ · J in (1.9) and (1.10).

We also remark that we can shift the regularity in (1.10) to the right hand-
side in the sense that

‖u‖Lp
T Lq

x′ �T ‖u‖L∞
T Hρ + ‖P̃ u‖L1

T Hρ + ‖〈D′〉ρ− 1
2 ρe(0)‖L2

x′

+ ‖〈D′〉ρ|D′|− 1
2 ∂tρe‖L1

T L2
x′ , (1.13)

which requires to replace P by its non-divergence form version

P̃ =

⎛
⎝ ∂t 0 −∂2

0 ∂t ∂1

−ε11∂2 ε22∂1 ∂t

⎞
⎠ .

This argument relies on a commutator argument, which is detailed in [1, Ap-
pendix B]; see also [1, Lemma B.2].

In three spatial dimensions, dispersive estimates for the Maxwell system
depend very much on the behavior of the eigenvalues of ε(x) and μ(x) since
these heavily influence the characteristic surface S of the problem (the null
set of the principal symbol of P ), see our recent contributions [5,8,10], and
the references therein. Only in the isotropic case of scalar ε and μ, Strichartz
estimates with admissible exponents (1.3) for d = 3 as for the wave equation are
known so far, see [8] (and also [1] for the domain case). For smooth coefficients
and vanishing charges, this was already shown in [2], which is the only other
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reference on Strichartz estimates for the Maxwell system with non-constant
coefficients we are aware of.

Already for constant diagonal coefficients ε = diag(ε1, ε2, ε3) and μ =
diag(μ1, μ2, μ3) in the fully anisotropic case εi/μi �= εj/μj for i �= j, the admis-
sible range of exponents for the Strichartz estimate is reduced to 2

p + 1
q ≤ 1

2 as
in 2D instead of 1

p + 1
q ≤ 1

2 as in 3D for the wave equations. This is caused by a
loss of curvature for S in this case, compared to ∂ttw = Δw where S becomes
the light cone {τ = ±|ξ′|}. Moreover, the slices Sτ of S for fixed τ �= 0 have
four conical singularities in the above fully anisotropic case. See [4,5,8,10] for
a detailed discussion. So it is worthwhile to study the influence of structured
coefficients to dispersive properties of the Maxwell system first in the 2D case.

In our proof, we follow the general strategy from [9]. However, there we used
C2-coefficients in most of the relevant arguments, so that we have to argue
differently at various points below. (In [9] or [13], one treated Cs-coefficients
by means of additional frequency cut-offs of the coefficients, leading to the
loss of regularity in (1.4).) As in [13], we first reduce to functions u which
are localized in the space-time unit cube [0, 1]3 and in Fourier space near a
large dyadic frequency λ ∈ 2N0 . The frequency localization is more demanding
in the present situation since the relevant commutator [P, S′

λ]u is uniformly
bounded in L2, but not square summable for Lipschitz coefficients. (There is
no problem if they belong to Cs for s > 1.) In (2.11), we manage to sum
in λ using the assumption ε ∈ B1

∞,2, which is only needed here. Then the
coefficients are truncated to frequencies less or equal λ. We next diagonalize
the principal symbol p as in [9]. Using also the FBI transform and results
from [12], we can treat the frequency range |τ | � |ξ′| by an elliptic estimate
and the degenerate range |ξ′| � |τ | employing the charge. The remaining part
|τ | ∼ |ξ′| near the light cone is handled by means of the wave estimate (1.7)
from [3], after passing to a second-order formulation of the Maxwell system.
Only here we use the special structure of ε from (1.8).

2. Proof of Theorem 1.1. As noted above, we use some arguments from [9].
In the sequel, we focus on the differences to [9]. We proceed in five steps using
the following dyadic frequency decomposition. Let χ ∈ C∞

c (R;R≥0) radially
decrease with χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. We set

S′
λ = F−1

x′ (χ(|ξ′|/λ) − χ(|ξ′|/2λ))Fx′

for dyadic numbers λ ∈ 2N0 . Moreover, we write

S′
0 = I −

∑
λ∈2N0

S′
λ, S′

≥λ =
∑
μ≥λ

S′
μ, S̃′

λ =
8λ∑

μ=λ/8

S′
μ. (2.1)

Here and below we sum over dyadic numbers. We write Sτ
λ etc. for the corre-

sponding operators in 1D (giving a decomposition for the time frequencies),
and Sλ for the full 3D version in ξ. The Besov space Bs

p,q(R
d) for s ∈ R,
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1 ≤ p ≤ ∞, and 1 ≤ q < ∞ contains those f ∈ S ′(Rd) with finite norm

‖f‖Bs
p,q(Rd) =

( ∑
λ∈2N0∪{0}

(1 + λ)qs‖S′
λf‖q

Lp(Rd)

)1/q

,

Bs
p,∞(Rd) is defined via the usual modification. Note that it is enough to prove

Theorem 1.1 for sharp pairs with 2
p + 1

q = 1
2 by Sobolev’s embedding.

(1) Reduction to L2 on the right. To establish (1.9), it suffices to show

sup
λ∈2N0∪{0}

(1+λ)−ρ‖S′
λu‖Lp

T Lq

x′

�T ‖u(0)‖L2
x′ + ‖u‖L2

x
+ ‖Pu‖L2

x
+ ‖|D′|− 1

2 ρe‖L2
x
. (2.2)

Similarly, (1.10) follows from

‖|D′|−ρu‖Lp
T Lq �T ‖u(0)‖L2

x′ + ‖u‖L2
x

+ ‖Pu‖L2
x

+ ‖|D′|− 1
2 ρe‖L2

x
. (2.3)

We check this only for (2.2), as (2.3) is treated in the same way.
Once (2.2) is proved, we can derive (1.9) by localization in time and the

energy estimate (1.11). To this end, we extend u by reflection and cut-off to a
map ũ with supp(ũ) ⊆ (−T, 2T ). An application of (2.2) to ũ yields

sup
λ∈2N0∪{0}

(1 + λ)−ρ‖S′
λu‖Lp

T Lq

x′ = sup
λ∈2N0∪{0}

(1 + λ)−ρ‖S′
λũ‖Lp

T Lq

x′

� ‖u(0)‖L2
x′ + ‖ũ‖L2 + ‖P ũ‖L2 + ‖|D′|− 1

2 ρ̃e‖L2

� ‖u(0)‖L2
x′ + ‖u‖L2

T L2 + ‖Pu‖L2
T L2 + ‖|D′|− 1

2 ρe‖L2

�T ‖u(0)‖L2
x′ + ‖Pu‖L1

T L2 + ‖Pu‖L2
T L2 + ‖|D′|− 1

2 ρe‖L2 . (2.4)

At this point, we use Duhamel’s formula

u(t) = U(t)u(0) +

t∫
0

U(t − s)Pu(s) ds

for the C0-group U(·) solving (1.1), and the estimate (2.4) for the homoge-
neous problem with initial values u(0), respectively Pu(s). Taking into account
ρe(0) = ∇ · D(0) and ∂tρe = −∇ · J from (1.12), we deduce (1.9).

(2) Localization and frequency truncation. We carry out a dyadic frequency
localization and frequency-truncate the coefficients accordingly.

In the first step, we observe that Bernstein’s inequality, (1.11), and Hölder’s
inequality yield

‖|D′|−ρS′
0u‖Lp

T Lq � ‖|D′| 1
p S′

0u‖Lp
T L2 �T ‖u(0)‖L2

x′ + ‖Pu‖L2 .

In particular, we can replace |D′|−ρ by 〈D′〉−ρ = F−1
x′ 〈ξ′〉−ρFx′ with 〈ξ′〉2 =

1+ |ξ′|2. As in [9, Section 3.2], we restrict to u that are supported in [0, 1]3 by
means of a partition of unity.
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Define maps with frequency truncation at λ
8 , near λ, and above cλ by

a�λ =
∑

0≤μ<λ/8

S′
μa, a∼λ = S̃′

λa, a�λ =
∑

μ≥cλ

S′
μa,

respectively, where a stands for (components of) ε and ε−1. Here c > 0 is a
constant which is adapted below finitely often. To lighten notation, we do not
keep track of it. Since ‖S′

μa‖ � μ−1‖a‖C0,1 by [15, (A.1.2)], we have

‖ε�λ‖L∞ � ‖ε‖C0,1

∑
μ≥cλ

μ−1 � λ−1‖ε‖C0,1 . (2.5)

We can thus fix λ0 ≥ 1 such that the lower bound (1.8) is true for ε�λ if
λ ≥ λ0. We write λ � 1 for this relation. This restriction is assumed below,
frequencies λ < λ0 can be treated as in the previous paragraph. We further
define Pλ by replacing in the definition of P in (1.2) the coefficients εij by
(εij)�λ. The operators P∼λ and P�λ are defined analogously. Note that ε−1

satisfies the same assumptions as ε. (Use the characterization of B1
∞,2(R

2) by
differences in [16, Theorem 2.5.12] and ellipticity.)

We next deduce (2.2) from the frequency localized bound

λ−ρ‖S′
λu‖Lp

T Lq �T ‖S′
λu(0)‖L2

x′ + ‖S′
λu‖L2 + ‖PλS′

λu‖L2 + λ− 1
2 ‖S′

λρe‖L2

(2.6)

for λ � 1. To pass from (2.6) to (2.2), we bound ‖PλS′
λu‖L2 by ‖S′

λPu‖L2 plus
terms like ‖S̃′

λu‖L2 . We use fixed-time commutator arguments to this end. We
note that

‖PλS′
λu‖L2 = ‖S̃′

λPλS′
λu‖L2 ≤ ‖S̃′

λPS′
λu‖L2 + ‖S̃′

λP∼λS′
λu‖L2

≤ ‖S′
λPu‖L2 + ‖S̃′

λ[P, S′
λ]u‖L2 + ‖S̃′

λP∼λS′
λu‖L2 . (2.7)

Write [P, S′
λ] = [P, S′

λ]S̃′
λ + S′

λP (1 − S̃′
λ). In the second term, we can replace

the coefficients ε−1 of P with (ε−1)�λ as the low frequencies of ε−1 do not
appear in the frequency interaction:

S′
λP (1 − S̃′

λ)u = S′
λP�λ(1 − S̃′

λ)u. (2.8)

Since P is in divergence form, the commutator estimate from [15, Proposition
4.1.A] and (2.5) yield

‖S̃′
λ[P, S′

λ]u‖L2 � λ‖S̃′
λ[ε−1, S′

λ]S̃′
λu‖L2 + λ‖(ε−1)�λ‖L∞‖(1 − S̃λ)u‖L2

� ‖S̃λu‖L2 + ‖ε‖C0,1‖u‖L2 , (2.9)

‖S̃′
λP∼λS′

λu‖L2 � λ‖(ε−1)∼λS′
λu‖L2 � ‖ε‖C0,1‖S′

λu‖L2 . (2.10)

Hence, (2.2) follows from (2.6).
To reduce (2.3) to (2.6), we use the square function estimate in Lq(R2) for

2 ≤ q < ∞ and Minkowski’s inequality (note that p, q ≥ 2), obtaining

‖|D′|−ρS′
�1u‖Lp

T Lq �
( ∑

λ�1

λ−2ρ‖S′
λu‖2

Lp
T Lq

)1/2

.
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If q = ∞, we employ the definition of Besov spaces instead of the Littlewood–
Paley theorem. Invoking (2.6), we need to show that

( ∑
λ�1

‖PλS′
λu‖2

L2

)1/2

� ‖u‖L2 + ‖Pu‖L2 .

In (2.7), the first and third term can be summed in L2(R2) due to (2.10),
already for Lipschitz coefficients. It remains to verify∑

λ�1

‖S̃′
λ[P, S′

λ]u‖2
L2 � ‖u‖2

L2 .

The second term in (2.9) is not square summable. To use the extra Besov
regularity of ε, we go back to (2.8) and write

‖S′
λP (1−S̃′

λ)u‖L2
x′ � λ‖(ε−1)∼λS′

�λu‖L2
x′ + λ‖S̃′

λ(ε−1)�λS′
�λu‖L2

x′

� λ‖(ε−1)∼λ‖L∞
x′ ‖u‖L2

x′ + λ
∑
μ�λ

‖(ε−1)∼μ‖L∞
x′ ‖S′

μu‖L2
x′ .

Square summing the first term in the last line yields∑
λ�1

λ2‖(ε−1)∼λ‖2
L∞

x′ ‖u‖2
L2

x′
� ‖ε‖2

B1
∞,2

‖u‖2
L2

x′
.

Here we use that ‖ε−1‖B1
∞,2

� ‖ε‖B1
∞,2

, as noted above.
By means of Hölder’s inequality and Fubini’s theorem, we estimate the

square sum of the second term by
∑
λ�1

λ2
( ∑

μ�λ

‖(ε−1)∼μ‖L∞
x′ ‖S′

μu‖L2
x′

)2

�
∑
λ≥1

λ2
∑
μ�λ

‖(ε−1)∼μ‖2
L∞

x′

∑
μ�λ

‖S′
μu‖2

L2
x′

�
∑
μ≥1

‖(ε−1)∼μ‖2
L∞

x′

∑
λ�μ

λ2 ‖u‖2
L2

x′

�
∑
μ≥1

μ2‖(ε−1)∼μ‖2
L∞

x′ ‖u‖2
L2

x′
� ‖ε‖2

B1∞,2
‖u‖2

L2
x′

. (2.11)

As a result, (2.6) also implies (2.3) if ε ∈ B1
∞,2.

(3) Diagonalization. We diagonalize the main symbol of P as in [9, Section 3.1],
obtaining

p(x, ξ) = i

⎛
⎝ τ 0 −ξ2

0 τ ξ1

−ξ2ε
11 ξ1ε

22 τ

⎞
⎠ = m(x, ξ)d(x, ξ)m(x, ξ)−1

=

⎛
⎝−ξ∗

1ε22(x) ξ∗
2 −ξ∗

2

−ξ∗
2ε11(x) −ξ∗

1 ξ∗
1

0 1 1

⎞
⎠

⎛
⎝iτ 0 0

0 i(τ − |ξ′|ε̃) 0
0 0 i(τ + |ξ′|ε̃)

⎞
⎠

·
⎛
⎝ −ξ∗

1 −ξ∗
2 0

1
2ξ∗

2ε11(x) − 1
2ξ∗

1ε22(x) 1
2− 1

2ξ∗
2ε11(x) 1

2ξ∗
1ε22(x) 1

2

⎞
⎠
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with |ξ′|2ε̃ = 〈ξ′, ε̃(x)ξ′〉, ε̃(x) = adj(ε−1(x)) = diag(ε22(x), ε11(x)), and ξ∗
i =

ξi/|ξ′|ε̃ for i = 1, 2. See also [7]. Here we use that ε is diagonal in our case,
though this is not needed in this and the next step.

Strictly speaking, the symbols in the diagonalization depend on λ, but we
suppress the dependence in the following to lighten the notation.

(4) Estimate away from the light cone. We use the diagonalization to localize
also the temporal frequencies μ of u to the spatial frequency λ in the next
step. In the present step, we first treat μ that differ much from λ.

(a) Let μ � λ; i.e., μ ≥ cλ for constant c > 1 implicitly fixed below. Here
the operator Pλ is elliptic and gains one derivative. More precisely, Bernstein’s
inequality yields

λ−ρ‖Sτ
μS′

λu‖LpLq � λ−ρλ1− 2
q μ

1
2 − 1

p ‖Sτ
μS′

λu‖L2 = μ
1
2 ‖Sτ

μS′
λu‖L2 .

Now we use the FBI transform

Tμf(z) = Cμ
9
4

∫
R3

e− μ
2 (z−y)2f(y) dy, z = x − iξ ∈ T ∗

R
3 � R

6,

see [12], and set vμ = TμSτ
μS′

λu. We recall that Tμ : L2(R3) → L2
Φ(R6) is

an isometry, where the range space has the weight Φ(z) = e−μξ2
. Using [13,

(15)], one can check that vμ is essentially supported in B(0, 2)×{ξ ∈ R
3 | |τ | ∼

1, |ξ′| � |τ |} =: U and ‖vμ‖L2(Uc) �N μ−N‖Sτ
μS′

λu‖L2 . So it remains to
estimate ‖vμ‖L2(U).

Since p is strictly positive on U, [12, Theorem 1] implies

‖vμ‖L2(U) � ‖p(x, ξ)vμ‖L2(U) � ‖p(x, ξ)vμ‖L2
Φ

� μ−1‖P (x,D)Sτ
μS′

λu‖L2 + μ− 1
2 ‖Sτ

μS′
λu‖L2 . (2.12)

We note that the pseudodifferential operator P (x,D) with symbol p(x, ξ) is
equal to Pλ plus an L2-bounded perturbation. This suffices for summation over
μ � λ, and we have thus shown

λ−ρ‖Sτ
�λS′

λu‖Lp
T Lq �T ‖S′

λu‖L2 + ‖PλS′
λu‖L2 . (2.13)

(b) Let μ � λ. Here we see that the non-degenerate components of d(x, ξ)
are elliptic and the degenerate first component is estimated by the charges. As
above, Bernstein’s inequality yields

λ−ρ‖Sτ
μS′

λu‖LpLq � λ
1
p μ

1
2 − 1

p ‖Sτ
μS′

λu‖L2 .

We let TλSτ
μS′

λu = vλ, which is supported in {ξ ∈ R
3 | |ξ′| ∼ 1, |τ | � |ξ′|} up

to rapidly decreasing errors, and obtain

‖vλ‖L2
Φ

= ‖m(x, ξ)m−1(x, ξ)vλ‖L2
Φ

� ‖m−1(x, ξ)vλ‖L2
Φ
.

Using [12, Theorem 1], the component [m−1(x, ξ)vλ]1 is estimated by

‖[m(x, ξ)−1vλ]1‖L2
Φ

� λ−1‖∇ · S′
λD‖L2

x
+ λ− 1

2 ‖S′
λD‖L2

x
.
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By the essential support property, the components d2 and d3 are strictly
positive. For i = 2, 3, we thus obtain

‖[m(x, ξ)−1vλ]i‖L2
Φ

� ‖[d(x, ξ)m(x, ξ)−1vλ]i‖L2
Φ

� ‖m(x, ξ)d(x, ξ)m(x, ξ)−1vλ‖L2
Φ

= ‖p(x, ξ)vλ‖L2
Φ
.

This fact allows to gain derivatives as in (2.12) and leads to

λ−ρ‖Sτ
μS′

λu‖LpLq � μ
1
2 − 1

p λ
1
p − 1

2 ‖|D′|− 1
2 ∇ · S′

λD‖L2
x

+μ
1
2 − 1

p λ
1
p − 1

2 ‖S′
λu‖L2 + μ

1
2 − 1

p λ
1
p −1‖PλS′

λu‖L2 .

Summing over μ � λ, we derive

λ−ρ‖Sτ
λS′

λu‖Lp
T Lq �T ‖S′

λu‖L2 + ‖PλS′
λu‖L2 + ‖|D′|− 1

2 S′
λρe‖L2

x
. (2.14)

(5) Estimate near the light cone. In view of (2.13) and (2.14), for (2.6), it
remains to treat the frequency region cλ ≤ μ ≤ c′λ for some fixed constants.
Set (Dλ,Hλ) = Sτ

∼λS′
λu and Jλ = PλSτ

∼λS′
λu = Sτ

∼λPλS′
λu. To estimate

(Dλ,Hλ), we pass to the second order equation starting from⎧⎨
⎩

∂tD1λ = ∂2Hλ + J1λ,
∂tD2λ = −∂1Hλ + J2λ,
∂tHλ = ∂2(ε−1

1λ D1λ) − ∂1(ε−1
2λ D2λ) + J3λ.

(2.15)

Taking another time derivative in the third equation, we find

∂2
t Hλ = ∂2(ε−1

1λ ∂2Hλ) + ∂1(ε−1
2λ ∂1Hλ) + ∂2(ε−1

1λ J1λ) − ∂1(ε−1
2λ J2λ) + ∂tJ3λ.

Setting f = ∂2(ε−1
1λ J1λ) − ∂1(ε−1

2λ J2λ) + ∂tJ3λ, the standard energy estimate
and (2.15) imply

‖∇xHλ(t)‖L2
x′ � ‖∇xHλ(0)‖L2

x′ + ‖f‖L1
T L2 �T λ‖S′

λu(0)‖L2
x′ + λ‖Jλ‖L2 .

We now use (1.7) taken from [3] and obtain

λ1−ρ‖Hλ‖Lp
T Lq �T ‖∇Hλ‖L∞

T L2 +‖f‖L1
T L2 �T λ‖S′

λu(0)‖L2
x′ +λ‖Jλ‖L2 .

(2.16)

Furthermore, the first and second equation in (2.15) give

λ−ρ‖Diλ‖Lp
T Lq � λ−ρ−1‖∂tDiλ‖Lp

T Lq � λ−ρ‖Hλ‖Lp
T Lq + λ−ρ−1‖Jiλ‖Lp

T Lq

with j �= i in {1, 2}. The first term has been bounded by ‖S′
λu(0)‖L2

x′ +‖Jλ‖L2

in (2.16). Due to Sobolev’s embedding, the second term can be estimated by

λ−ρλ−1‖Jλ‖LpLq � λ− 1
2 ‖Jλ‖L2 .

Hence, (2.6) is shown and the proof of Theorem 1.1 is complete. �

Acknowledgements. We thank the referee for comments improving the presen-
tation of the paper. Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation)—Project-ID 258734477—SFB 1173.

Funding Open Access funding enabled and organized by Projekt DEAL.



Structured 2D Maxwell equations

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Burq, N., Schippa, R.: Strichartz estimates for Maxwell equations on domains

with perfectly conducting boundary conditions. arXiv:2304.13368 (2023)

[2] Dumas, E., Sueur, F.: Cauchy problem and quasi-stationary limit for the

Maxwell–Landau–Lifschitz and Maxwell–Bloch equations. Ann. Sc. Norm. Su-

per. Pisa Cl. Sci. (5) 11(3), 503–543 (2012)

[3] Frey, D., Schippa, R.: Strichartz estimates for equations with structured Lip-

schitz coefficients. J. Evol. Equ. 23(3), Paper No. 45, 34 pp. (2023)

[4] Liess, O.: Decay estimates for the solutions of the system of crystal optics.

Asymptot. Anal. 4(1), 61–95 (1991)

[5] Mandel, R., Schippa, R.: Time-harmonic solutions for Maxwell’s equations in

anisotropic media and Bochner–Riesz estimates with negative index for non-

elliptic surfaces. Ann. Henri Poincaré 23(5), 1831–1882 (2022)
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