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Abstract:
Noise is an important issue for radiographic and tomographic imaging techniques. It becomes

particularly critical in applications where additional constraints force a strong reduction of the
Signal-to-Noise Ratio (SNR) per image. These constraints may result from limitations on the
maximum available flux or permissible dose and the associated restriction on exposure time.
Often, a high SNR per image is traded for the ability to distribute a given total exposure capacity
per pixel over multiple channels, thus obtaining additional information about the object by the
same total exposure time. These can be energy channels in the case of spectroscopic imaging or
time channels in the case of time-resolved imaging. Conventional image denoising methods work
on a per-image basis and rely on certain assumptions concerning image properties. Consequently,
they perform well when the assumptions are met and fail otherwise. At the same time, tremendous
progress in machine learning demonstrated that data-driven methods are much more flexible in
accommodating various image characteristics.
In this paper, we report on a method for improving the quality of noisy multi-channel (time

or energy-resolved) imaging datasets. The method relies on the recent Noise2Noise (N2N) [1]
self-supervised denoising approach that learns to predict a noise-free signal without access to
noise-free data. N2N in turn requires drawing pairs of samples from a data distribution sharing
identical signals while being exposed to different samples of random noise. The method is
applicable if adjacent channels share enough information to provide images with similar enough
information but independent noise. We demonstrate several representative case studies, namely
spectroscopic (k-edge) X-ray tomography, in vivo X-ray cine-radiography, and energy-dispersive
(Bragg edge) neutron tomography. In all cases, the N2N method shows dramatic improvement
and outperforms conventional denoising methods. For such imaging techniques, the method can
therefore significantly improve image quality, or maintain image quality with further reduced
exposure time per image.

© 2023 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement

1. Introduction

Many imaging modalities rely on the penetration ability of radiation to make the interior of
an object visible. Physical interactions of radiation and matter, such as absorption, scattering,
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or phase shifts, can be used to obtain contrast inside the object of interest. Commonly, either
radiography (single view projection) or tomography (multiple views with subsequent volumetric
image reconstruction) are acquired. As particle or photon emission and detection are stochastic
processes, and often source flux and detector efficiency are limited, longer exposure time improves
image quality. However, there are many scenarios where sufficient exposure can not be achieved.
An obvious example is in vivo imaging, where the radiation dose ultimately limits the amount
of information acquired [2]. Another example is spectroscopic imaging with a polychromatic
beam, where the detected intensity or particle counts are distributed across multiple energy
bins. This leads to a significant noise per energy channel or requires a dramatic increase of
exposure times, hence, limiting the experiment throughput [3]. Both imaging modes can be
generalized as multi-channel images. The paper addresses a number of cases when the channels
of multi-channel images share a sufficient amount of common structural information but are
affected by independent noise samples.
Given the aforementioned physical constraints, we often need to rely on image processing

techniques to improve image quality and extract valuable data. A group of methods for improving
image quality that is affected by noise is called denoising. Similar to other domains, methods
based onMachine Learning (ML) have revolutionized denoising [4]. In this paper, we demonstrate
an ML approach to improve the quality of underexposed images in challenging applications such
as spectroscopic k-edge X-ray tomography, in vivo X-ray radiography, and energy-dispersive
Bragg-edge neutron tomography. The method is based on the recent Noise2Noise (N2N)
self-supervised denoising approach [1]. The main assumption enabling the N2N method is
formulated as follows: Consider two images 𝐼1 and 𝐼2 that share the same structural information
𝑆 but are affected by independent and identically distributed (iid) instances of noise 𝜎1 and 𝜎2.
If the model is trained to predict 𝐼1, given 𝐼2 as input, the best prediction possible is 𝑆, because
𝜎2 is conditionally independent of 𝜎1, given 𝑆.
This paper is organized as follows. First, we outline the related work to put our work in context.

Then, the N2N method is described, followed by three rigorous case studies. Finally, a discussion
of our findings in the context of multi-channel imaging is provided.

2. Related Work

Artifacts are inherent to digitally acquired images, as an acquisition function is subject to many
uncertainties and in general, is not accurately known. The acquisition function includes source
or detector heterogeneity, optical distortion by optical elements or diffraction during wave-field
propagation, and inherent noise driven by the stochastic nature of particle emission, detection,
and interactions. As optical distortion is a misplacement of information, a distortion map can be
estimated and applied to compensate for it. For a number of cases, simple flat and dark field
corrections are applicable. Flat and dark fields refer to the measurement of detector response
with and without source illumination, respectively. Finally, denoising is used to compensate
for the inherent stochastic noise. Hence, the denoising problem is to restore the (deterministic)
signal 𝑆 from a noisy observation 𝐼 [5]:

𝐼 = 𝑆 + 𝜎(𝑆) (1)

where 𝜎(𝑆) is the inherent noise of the imaging device. This noise depends not only on the
stochasticity of the particles (neutrons, photons, etc.) and the electronics but additionally on
the distortions, and also on the transformation applied to correct the image. All this makes a
closed-form distribution estimation problematic.
The existing image denoising approaches can be roughly categorized into two large groups:

classical image processing and ML approaches. Typically, classical image processing approaches
work in a single-image manner and incorporate expert beliefs about the nature of noise. ML



approaches, on the other hand, employ the idea of fitting a data-driven model entirely without or
with minimal expert knowledge about the nature of the data.

2.1. Classical Image Processing

The basic spatial filtering methods are mean, median, or Gaussian kernel filters [5]. For each
pixel, these filters select a new value, based on the weighted values of the neighboring pixels.
These filters are fast, robust, well-understood, and work fairly well in many situations. The main
drawback of these classical filters is their tendency to blur sharp edges.
More advanced spatial filtering approaches, e.g., non-local means (NLM), usemore information

from the whole image [6]. Instead of taking an average of the direct neighbourhood of the pixel,
NLM takes an average of the large region, weighted by the similarity between the “donor” and
the “recipient” pixel. The process of revisiting multiple locations in the image, comparing their
surroundings, and computing the average can take minutes for one image. In return, this method
is capable of producing sharper denoised images [7].
Alternatively, denoising can be formulated as an optimization problem and regularization can

be used to incorporate some prior knowledge about the image properties [8]. These methods are
very powerful but require deep mathematical knowledge and handcrafted regularizers in many
cases, making their application for experimental data challenging. One of the most successful
regularizers is Total Variation (TV) which encourages piece-wise constant image regions with
sharp boundaries [9]. In summary, classical methods require fine tuning of parameters by an
expert to balance smoothing and denoising. Hence there is a significant risk of information loss
if applied incorrectly. A more comprehensive overview of classical denoising methods can be
found elsewhere [7].

2.2. Machine Learning Approaches

The evolution of classical methods may be seen as a series of steps taken to increase the amount
of information used to correct a single pixel value. In this respect, ML-based approaches appear
as a natural further step: a model, trained to correct the noise, implicitly incorporates knowledge
about the whole dataset.
Early ML-based image denoising approaches worked in a supervised manner, i.e. a model

was trained on a set of noisy images to predict a noise-free image (target). Recently, authors of
the N2N method demonstrated that there is no need for a noise-free target: if one uses a pair of
noisy images (affected by iid instances of the noise) as an input and as a target for the training,
the model will predict the noise-free image [1]. The underlying intuition is that independent
instances of noise are uncorrelated and cannot be predicted, hence the model is forced to extract
features. Even though N2N does not explicitly require a set of noise-free images, the authors of
[1] synthetically formed noisy pairs by adding noise to noise-free images.
There have been several attempts to extend the N2N method for denoising problems where

pairs of images are not naturally available. Noise2Self [10] and Noise2Void [11] generate the
required pair of images by taking random pixels in the noisy image and disturbing them with
yet another noise distribution. In this way, multiple training pairs can be constructed from a
single noisy image. Noise2Stack [12] was designed for three-dimensional tomographic data and
is based on an assumption that tomographic data is typically smooth. Therefore, slice-to-slice
changes are assumed to be significantly smaller than the slice-wise variability caused by noise,
hence, neighbouring slices can be used for training.
Alternatively, constrained autoencoders can be used to denoise images [13]. During the

training, autoencoders use the same image both as input and target and attempt to compress
(encode) the input image into its lower-dimensional representation. The denoising properties
of this approach rely on the assumption that the noise, due to its stochastic nature, is harder to
encode, than the signal. To additionally limit the capacity of the model to store information about



the noise, it can be restricted by limiting the computational capacity of the model, lowering the
dimensionality of the learned representation, or introducing synthetic noise into it [13]. However,
the autoencoders are inefficient if the noise is spatially correlated and can be easily memorized
by the model. The Hierarchical DivNoising (HDN) method addresses this issue by training a
variational autoencoder with a noise model imposed over output [14]. The authors proposed
a way to find particular components of the model that encode information about the noise so
that they can remove those components. Even though the proposed methods provide a valuable
alternative to the N2N approach, the authors highlight that the N2N approach is a hard-to-beat
baseline [14].

3. Model Training

The N2N method assumes that a pair of images contains the same signal and iid noise. Our
adaptation of the method to multi-channel image data takes its inspiration from the denoising of
Synthetic Aperture Radar (SAR) images [15]. In SAR imaging, both the phase and amplitude of
received microwaves are measured in each pixel; commonly the phase information is ignored.
However, the authors demonstrated that the amplitude and the phase contain complementary
information and can be used as a basis for N2N denoising. We hypothesize that in multi-channel
imaging, adjacent time frames or energy levels indeed share sufficiently similar signals, and have
noise samples close to being iid. Therefore, we generate the required pair images based on this
hypothesis. To help the model catch complex spatial structures of the signal, we also feed it with
multiple adjacent energies or time frames as input whenever it does not result in oversmoothing.
Following [1, 10, 11], we use the fully-convolutional neural networks as a model architecture.

We employ U-Net with ResNet-50 (as implemented in [16]) as the backbone and rely on the Adam
optimizer with a 3 × 10−4 learning rate, without scheduling. Referring to the model, we will
use 𝑓𝜃 and model interchangeably, where 𝜃 denotes trainable parameters of the neural network.
The training, therefore, is the process of minimization of the proposed loss function (defined for
specific experiments) by changing the parameters 𝜃. We augment each image pair with random
crops, shifts, scale, rotations, distortions, and different types of blur. We acknowledge that there
is room for quality improvement via larger models, modern architectures, better optimization
procedures, or more aggressive augmentations. The sensitivity study of training parameters is a
topic of future investigation.

4. Experiments

4.1. Simulated spectral X-ray tomography

As a first case study we discuss the applicability of N2N to energy-dispersive X-ray tomography,
which is of interest for biomedical imaging [3]. The polychromatic emission of laboratory X-ray
tube sources is suitable to provide sufficient photon flux. However, the broadband spectrum
also leads to disadvantages in quantitative analysis. In the conventional absorption mode, each
detector pixel integrates all photons irrespective of their energy. Since attenuation is a function of
photon energy, conventional tomographic reconstruction might exhibit so-called beam-hardening
artifacts [17]. However, acquisition with an energy-dispersive X-ray detector allows segmenting
materials that can be inseparable in polychromatic absorption contrast. These are materials
with similar mean polychromatic absorption, but with spectrum showing sharp discontinuities at
energies equal to the binding energies of the core-electron states, so-called absorption-edges
(K, L, M) edges. Thie energy spectrum in each reconstructed voxel can be used to identify
the corresponding material. Highly energy-dispersive (so-called hyperspectral) X-ray detectors
have yet a limited total pixel number but an energy resolution of about 1 keV [18], allowing to
distinguish even neighboring chemical elements. However, a high spectral energy resolution
entails long exposure times since the acquired counts are distributed over multiple bins. Therefore,



a state-of-the-art reliable denoising approach might help to improve the experimental throughput.
In this study, to ensure strictly controlled conditions, we simulated the tomographic acquisition.

4.1.1. Data

We generated a volumetric phantom by combining several three-dimensional point clouds:
two Swiss rolls, two moon crescents, and an s-curve. All point clouds were generated by the
Scikit-Learn library [19]; to convert 2D point clouds to 3D, the third axis was added by randomly
sampling from the Uniform distribution. To convert the point clouds to a raster volume, we
selected the size (in voxels) of each point. To resolve the ambiguous cases (when several materials
appeared in the same voxel), we selected the priority order and always assigned the material
with the highest order to fill the ambiguous voxel. The spatial size of the phantom was set to
512 × 512 × 512. In a rough structure, all slices of the dataset are the same. However, the surface
texture varied because of the random nature of the point clouds. A single slice is shown in Figure
2a (left).
We assigned the simulated objects with energy-dependent mass attenuation coefficient (MAC)

of Europium (63Eu, k-edge = 48.5 keV), Gadolinium (64Gd, k-edge = 50.2 keV), Ytterbium
(70Yb, k-edge = 61.3 keV), Lutetium (71Lu, k-edge = 63.3 keV), and Uranium (92U, k-edge =
115.6 keV). The background was assigned with MAC of air. This particular choice of materials
was inspired by the study of the separability of k-edge nanoparticles presented in [20]. Two
pairs of materials have neighbouring atomic numbers, hence very close k-edges, and are barely
distinguishable in a noisy image; Uranium was added to have a k-edge in the noisiest part of the
spectrum, to check the ability of the method to locate the k-edge in extreme noise conditions.
We used the MATLAB package PhotonAttenuation to generate the energy-dependent

MAC of the selected materials [21]. A spectrum profile of a Boone/Fewell source with the
tube potential 150 kV (no kV Ripple and filters) was generated using the MATLAB package
spektr 3.0 [22]. The obtained source spectrum was normalized and scaled to have a maximum
value of 175 × 103 photons / mm2 to imitate short exposure acquisition. MAC of selected
materials and the source spectrum are shown in Figure 1.
We generated 135 energy bins between 15 and 150 keV with a 1 keV step. For each bin, we

simulated 120 equally-spaced parallel-beamCT projections over 180°. The spectral characteristics
of the material and the source are shown in Figure 1. We used the conventional FBP algorithm
to reconstruct tomographic data (implemented in in [23]). Examples of reconstructed slices
for 40 keV (high flux) and 140 keV (low flux) are shown in Figure 2b (right). As expected, at
140 keV the reconstructed slice is uninterpretable.

4.1.2. Training and Processing

The model 𝑓𝜃 was trained by optimizing

E𝑖, 𝑗 ‖ 𝑓𝜃 (𝑥𝑖, 𝑗−1, 𝑥𝑖, 𝑗+1) − 𝑥𝑖, 𝑗 ‖1 −→
𝜃
min, (2)

where 𝑥𝑖, 𝑗 is a projection acquired at the transmission angle 𝑖 and in the energy bin 𝑗 . We
randomly split the whole set of projection angles into a training set and a validation set with a
ratio of 80/20. We do not select a test set, since in our experiments, we do want to overfit for the
exact dataset and do not require generalization. Note that the energy level 𝑗 , which is required
to be predicted by a model, should not be fed into the model to avoid the trivial solution. Only
adjacent 𝑗 − 1, 𝑗 + 1 levels should be used. This forms a gap of one energy level in the inputs.
During the inference, we feed the model with the adjacent energy bins without the gap used in

training, to avoid blur in the spectral domain:

𝑥𝑖, 𝑗−0.5 = 𝑓𝜃 (𝑥𝑖, 𝑗−1, 𝑥𝑖, 𝑗 ). (3)
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Fig. 1. The materials and source characteristics used to simulate spectral X-ray
tomography. For materials, energy-dependent mass attenuation coefficients (MAC) are
presented, and for the simulated Boone/Fewell source, we present the source profile.
We selected two pairs of materials with close k-edges that are hard to resolve and one
material with the k-edge in the low-flux zone of the source.

However, since the model predicts the energy level which is averaged between two input levels,
it will inevitably predict an energy level between two adjacent ones used as input. It is important
yet easy to compensate for this.
As before, the denoised tomographic datasets were reconstructed with the conventional FBP

algorithm. Here, each energy bin was reconstructed separately resulting in 135 volumes. To
obtain the spatial distribution of individual materials in the sample, we performed material
decomposition as described in [24]. The employed decomposition relies on the assumption that
each voxel is a unit volume and each material occupies a volume fraction in this unit volume (the
fraction can be 0). Under this assumption, a voxel-wise sum of all material maps is equal to 1 in
each voxel.

4.1.3. Results

Figures 2a and 2b show two-dimensional slices for selected (individual) energy bins. N2N
demonstrates the drastic quality improvement of the reconstruction. For 40 keV (high source flux,
Figure 2a) the reconstructed slice appears to be almost noise-free; the slice shows sharply defined
objects where all original structures become clearly visualized. Although no signal seems to be
visible in the 140 keV slice (Figure 2b) prior to denoising, N2N is able to partially recover the
structures in the slice.
Single noisy energy spectra are used for one voxel per material component and denoised

spectra are reconstructed for the voxels and plotted in Figure 2c along with the theoretical MAC.
The voxel positions within the materials were chosen arbitrarily. Noise reduction results in
sharp and accurately positioned k-edges, aiding further material decomposition. Even the slight
uranium k-edge is visible in the denoised spectrum.
To quantitatively evaluate denoising results, we perform the material decomposition. Since the

sum of volume fractions corresponding to eachmaterial, obtained throughmaterial decomposition,



(a) Noisy and denoised slices at 40 keV (near peak source
flux)

(b) Noisy and denoised slices at 140 keV (low source flux)

Gd
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Enegry, keV
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(c) Spectral profiles

Fig. 2. Qualitative examination of the denoising of the simulated energy-resolved X-ray
CT of a specially devised phantom. On the left, present a noisy (left) and denoised
(right) transverse slice both near peak (top) and low (bottom) flux. On the right, we
present a comparison of theoretical, noisy, and denoised spectra for different materials.
For each material, we selected one representative pixel. Note how denoising is able to
recover information even in extremely noisy cases both spatially (b) and spectrally (see
the slight k-edge of the Uranium on the (c) plot).

is bound to 1 in each voxel, we can treat the estimated volume fractions as probabilities. Hence,
the task of material decomposition can be considered a classification problem and the related
quality assessment metrics can be applied to quantitatively assess the results. The comparison
results are shown in the Figures 3a and 3b. In the top row we show the binarized material
decomposition error (black corresponds to erroneous material prediction). The confusion
matrices between the predicted and true materials for each pixel are presented in the bottom
row (perfect classification results in the identity confusion matrix). A high level of noise in the
simulated data causes misclassifications between close materials (e.g., Lutetium and Ytterbium).
Also, as it is visible on the top row, these errors are distributed evenly throughout the sample.
Hypothetically, this can be compensated by enforcing an assumption of material homogeneity.
However, this assumption might cause severe errors close to material interfaces. The errors in
the denoised volume are mostly concentrated around the borders (see the top row), and mainly
correspond to misclassification for air due to slight blur (see the bottom row). But overall, the
confusion matrix for the denoised dataset is considerably closer to the identity matrix.
We also present the Area Under Precision-Recall Curve (AUPRC), measured for each

material Table 1. AUPRC for ideal classification is 1. AUPRC results additionally highlight
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Fig. 3. Quantitative examination of the denoising of the simulated energy-resolved
X-ray CT of a specially devised phantom. We study the quality of denoising through
the lens of further material decomposition. On the top row, we present the binarized
material decomposition error. Pixels that are black were assigned the wrong material.
On the bottom row, we present the confusion matrix of the material decomposition for
different materials, where ideal decomposition should yield the identity matrix. We
note that materials with close k-edges are frequently confused before the denoising,
and after the denoising, the confusion mainly comes from spatial smoothing.

improvement after denoising: N2N provides a boost of more than 10% of mean AUPRC for
the downstream material decomposition. To assess quality loss caused by reconstruction itself
(without any effect of denoising), we generated another set of projections with very high flux
(all other parameters remained constant). Material decomposition for this volume shows a
mean AUPRC of 0.999, with the lowest precision of 0.996 for the air. We conclude that the
reconstruction losses are negligible in this experiment.



Air Eu Gd Yb Lu U mean

AU
PR
C noisy 0.999 0.917 0.873 0.787 0.645 0.998 0.870

denoised 0.999 0.998 0.998 0.996 0.995 0.999 0.998

Table 1. Quantitative examination of the denoising of the simulated energy-resolved
X-ray CT of a specially devised phantom. We numerically compare the material
decomposition quality before and after denoising. The denoising provides a prominent
quality boost for material decomposition.

4.2. Neutron imaging

As a second case study we discuss the applicability of N2N to energy-dispersive Bragg edge
neutron tomography. Neutron imaging provides a complementary contrast to conventional X-ray
imaging. Neutrons mainly interact with atomic nuclei, in this way a neutron beam passing
through an object can capture information about the internal material structure. The energy
spectrum of the neutron transmission of a polychromatic thermalized neutron beam passing a
predominantly polycrystalline material contains sudden and sharp edges at wavelengths equal
twice the interplanar distance between scattering planes in dependence of the crystalline properties
of the sample material [25]. Energy dispersive images can efficiently be acquired by combining a
pulsed neutron spallation source and a suitable time-sensitive detector by using the time-of-flight
(ToF) method, which employs the energy-dependent neutron velocity for spectral information (the
more energetic neutrons, by having higher velocities, reach the detector earlier than less energetic
(slower) neutrons). Measuring the time of arrival of the neutrons at the detector and knowing the
flight path length, their energies, and the corresponding wavelengths can be determined. For
TOF methods, high energy resolution requires long flight distances and many time bins in the
detector. Hence, only a few pulses per second can be measured, and acquired counts are shared
between multiple bins [26]. More details on this acquisition mode can be found elsewhere, for
both the measurement setup [27] and applications [28, 29]. Neutron facilities are expensive
and demand for neutron beamtime exceeds the supply capacity [30]. Therefore, there is a high
interest in efficient image denoising techniques to reduce exposure time and subsequently increase
experiment throughput.

4.2.1. Data

In this study, we employ the dataset [31] acquired at the Imaging and Materials Science &
Engineering (IMAT) beamline operating at the ISIS spallation neutron source (Rutherford
Appleton Laboratory, U.K.) [32, 33]. More details on acquisition parameters and preprocessing
can be found elsewhere [24]; here we only briefly summarize details relevant to this study.
A sample contains 6 aluminium tubes: five filled with metallic powder (copper (Cu), aluminium

(Al), zinc (Zn), iron (Fe), and nickel (Ni)), and one empty. The neutron detector has 512 × 512
pixels, 0.055 mm pixel size. A set of spectral projections were acquired at 120 equally-spaced
angular positions over 180° rotation with 15 min exposure. Additionally, 8 flat field images (4
before and 4 after the acquisition) were acquired with the same exposure.
A typical problem of spectral measurements is that noise statistics vary quite drastically across

the spectrum. The beam spectrum at the IMAT beamline has a crude bell shape with a peak
around 3 Å [32]. Additionally, the time-sensitive detector suffers from dead time meaning counts
loss, hence, additional signal distortions [34]. To alleviate the count loss problem, the time
(wavelength) domain is split in several independent measurement intervals (4 in this case) and a
special correction technique is applied to the measured data [34]. Each interval has an individual
bin width; for this study the following bin width was used: 0.7184 · 10−3 Å, 1.4368 · 10−3 Å,



·10−3 Å and 2.8737 · 10−3 Å. To benchmark N2N, we generated three additional datasets by
rebinning the dataset in the original resolution (2840 energy bins split into 4 measurement
intervals with (1141, 814, 424, 464) bins in each). The rebinning was performed individually
in each interval by summing every (4, 2, 2, 1), (8, 4, 4, 2), and (16, 8, 8, 4) bins, resulting in
datasets with 1366, 681 and 339 wavelength bins, respectively.
As a proxy to demonstrate the noisiness of the data, as a function of frequency, we plot the

standard deviation of pixel values for one projection angle but different wavelengths along the
spectrum in Figure 4. Vertical dashed lines separate independent intervals. Note, that standard
deviation increases drastically with the increase of flux (the effect of counts loss becomes more
apparent).
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Fig. 4. Limitations of time-sensitive detectors require splitting the whole wavelength
domain into several measurement intervals (4 in our case, brackets depicted with dashed
lines). Each interval has an individual wavelength bin width. In this plot, we show how
standard deviation (as a proxy characteristic of noisiness) changes with the change in
wavelength. Additionally, to benchmark the method, we generated three additional
datasets by rebinning the spectral dimension of the original dataset.

4.2.2. Training and Analysis Details

In this experiment, we compare the effect of noise reduction applied to the projections (N2N(P))
before reconstruction with that of applying it to the already reconstructed slices (N2N(S)). In
both cases, we trained a model 𝑓𝜃 by performing essentially the same loss optimization procedure
as in the previous case study

E𝑖, 𝑗 ‖ 𝑓𝜃 (𝑥𝑖, 𝑗−1, 𝑥𝑖, 𝑗+1) − 𝑥𝑖, 𝑗 ‖1 −→
𝜃
min, (4)

where now 𝑥𝑖, 𝑗 can represent either the projection for an angle 𝑖 and an energy channel 𝑗 , or a
reconstructed slice number 𝑖 and an energy channel 𝑗 . We used 𝑖 to randomly split the dataset
into the training and validation subsets in the 80/20 ratio.
The combination of the N2N denoising approach and the conventional FBP reconstruction

was compared with the advanced iterative reconstruction routine proposed in [24]. The latter
relies on expert expectations on how the reconstructed image should look like. Which becomes
increasingly complex with increasing complications of the sample under investigation. As in
this case the reconstructed samples are expected to appear as solids, i.e. homogeneous regions,
the authors assumed a piece-wise constant signal in the spatial domain. This prior knowledge is
enforced through TV regularization [35, 36]. The signal in the spectral domain is expected to be
piece-wise smooth based on theoretical predictions for the materials employed in this study [37].



In this case, regularization is achieved through Total Generalized Variation (TGV) prior [38].
Hence, we refer to the iterative reconstruction method as TV-TGV. As before, the reconstruction
was implemented in CIL [39]. Code to reproduce results is available from [40].

4.2.3. Results Discussion

We begin with a visual comparison of different denoising approaches in the spectral domain
(Figure 5). We perform the comparison for the 339 channels image as the same binning was used
for the case study in [24]. The theoretical predictions provide the ground truth for the comparison.
As in the previous case study, without denoising the conventional FBP reconstruction results are
uninterpretable. The N2N performance is comparable to a TV-TGV reconstruction. TV-TGV
provides smoother spectra at a cost of spectral and spatial resolution loss. In contrast, N2N
results appear sharper spatially but noisier spectrally for low-attenuative materials. Hence, we
conclude that there is a certain threshold noise level N2N can handle efficiently.
Figure 6a shows a comparison of the slices reconstructed from the white beam data (sum

of all energies) and from data for a selected single energy channel for TV-TGV, N2N(S), and
N2N(P), through direct comparisons of reconstructed slices in the transverse plane. While for Fe
and Ni, both N2N(P) and N2N(S) perform comparably, for Cu and Al their performance differs.
The attenuation of Al is drastically lower than other materials, which could lead to inconsistent
predictions of the model for the projections when another material occludes the Al cylinder.
This problem is not relevant for N2N(S). The Cu powder has a larger mean particle size than
other powders (the mean particle size is comparable to the voxel size), hence, stronger spatial
structures are visible in the cross-section. The structure changes randomly along the sample
height. Therefore the N2N(S) model has less information about the structure and might fail to
recover it correctly.
As a reference revealing structures, we use an FBP slice averaged across all energy levels,

sacrificing spectral information for spatial. We also report the structural similarity index (SSIM)
between the single-energy slices and the reference slice [41]. Both N2N approaches provide
a sharper, more detailed image than TV-TGV. Interestingly, while N2N(S) provides a visually
better, sharper image, this image has lower SSIM, compared to the N2N(P). We hypothesize, that
this is caused by the unintentional reduction of the streak artifacts (highlighted in the top left
callout in the N2N(P) slice). Streak artifacts are very common in tomographic imaging and are
caused by insufficient angular sampling [42].
We next explore denoising quality in the spatial (Figure 6c) and the spectral domain (Figure 6b)

given the increase of noise levels in the input data. We control noise levels by changing binning:
the smaller is the binning step–the lower is SNR. We use the white beam slice reconstructed with
FBP and the theoretical predictions for SSIM calculations in the spatial and spectral domains,
respectively. While iterative reconstruction provides the best results for the spectral domain,
it provides the worst result for the spatial domain. Excellent TV-TGV performance heavily
capitalizes on the fact that the cylinders are homogeneous inside. In terms of SSIM, N2N(P)
outperforms N2N(S) because N2N(S) additionally minimizes streak artifacts due to the angular
undersampling, hence, the discrepancy between the reference image and the denoised one grows.
Another important observation is that N2N can be computed for the higher number of channels.

The training time of the model stays almost the same, around 20 hours on average for the
full volume, calculated on a 4 × 𝐴5000 machine. After the training, the model is capable of
inferencing one projection/slice at the rate of 20-30 energy channels per second. While TV-TGV
reconstruction for one slice with 339 channels takes several hours to complete and reconstruction
time increases with the increase in the number of channels or the number of slices.
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Fig. 5. Qualitative comparison of denoising techniques in the spectral domain for the
neutron imaging dataset. For each material, we selected one representative voxel, and
present the theoretical and empirical spectra. Left: results of TV-TGV, N2N done on
slices, and N2N done on projections are presented; right: the spectra before denoising
are presented. All results are presented for the datatset with 339 energy bins. We note,
that N2N provides sharper edges, but noisier predictions.
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(c) Averaged SSIM between denoised slices and white beam
slice reconstructed with FBP.

Fig. 6. Qualitative (top) and quantitative (bottom) comparisons of the denoising
methods for the neuron imaging are presented. For the quantitative comparison, we
plot the dependency between the structural similarity index (separately in spectral
and spatial domains) and the number of energy channels used. Since the change in
the number of channels was done through the binning, the lower amount of channels
corresponds to the lower amount of noise in the initial image. We note, that spatially
Noise2Noise provides superior denoising.



4.3. In Vivo Cine-Radiography

The third case study considers a N2N application to cine-radiography. Cine-radiography or
digital real-time radioscopy alias fluoroscopy are different realizations of time-resolved X-ray
imaging techniques relying on X-ray projection imaging to study morphological evolution during
technological or biological processes. In particular, for in vivo or other dose-sensitive applications,
the applicable dose and the detection efficiency of the imaging system limits acquisition times,
constraining the total observation time or achievable SNR.
For this case study, we employed propagations-based phase contrast imaging (PB-PCI),

which is particularly well suited for X-ray imaging of very weakly absorbing soft tissue in
biological specimens in the sub-micron up to a few µm resolution range [43]. The X-ray
wavefield experiences a locally varying phase shift when traversing the specimen, which turns
into measurable intensity contrast as a result of free-space wavefield propagation. The object
information can be reconstructed from the detected image interference pattern by algorithmic
treatments (so-called phase retrieval or PR for short [44]). Here, we applied a convolution
with a dedicated low-pass filter in the spatial domain. This so-called Paganin filter [45] heavily
affects the noise distribution. On one hand, it significantly reduces high-frequency noise, hence,
increases the Peak Signal-to-Noise Ratio (PSNR). On the other hand, low-frequency noise
becomes more prominent causing so-called “cloudy” artifacts [46]. For a single image, the effect
of low-frequency noise might be less disturbing. However, in a time-resolved cine-radiographic
sequence, this effect leads to a highly disturbing flickering, since the position of these “clouds”
changes randomly from frame to frame, which affects the interpretability of the images by experts.

4.3.1. Data

In this case study, we used a batch of in vivo cine-radiographic data from a behavioral study
visualizing the morphodynamics of parasitoid chalcid wasps emerging from their host eggs [47].
The full dataset contained 138 videos, imaged with 15 fps (0.066 s exposure time per frame) with
lengths between 81 and 7142 frames per image series. The total number of frames is 263, 875.
We identified a sequence of 100 frames, where the wasp was completely still. From this, we

calculated an average frame and used it as a low-noise reference image. This averaged image was
used for qualitative results calculations. The average PSNR value before phase retrieval is 25.2
with a standard deviation of 0.02. After the Paganin phase retrieval, the PSNR increases to 35.9
with a standard deviation of 1.2.

4.3.2. Training and Analysis Details

Because of the high dynamics in the sample’s motions, we cannot use more than one frame as
model input at one pass. We train the model 𝑓𝜃 by optimizing the loss

E𝑖, 𝑗 ‖ 𝑓𝜃 (𝑥𝑖, 𝑗−1) − 𝑥𝑖, 𝑗 ‖1 −→
𝜃
min, (5)

where 𝑥𝑖, 𝑗 stands for the frame number 𝑗 from the image sequence number 𝑖. We randomly
divided all frames into training and validation sets in the 80/20 ratio according to the index
𝑖. In addition, we noticed that in some cases the temporal resolution was not high enough to
smoothly capture fast movements because the structure positions changed significantly between
adjacent frames. We introduced additional filtering to alleviate potential blur caused by the large
morphodynamical changes between neighboring frames. During the training, we discard the
image pairs whose SSIM was below a manually optimized threshold.

4.3.3. Results

We applied the N2N denoising once before and once after phase retrieval. Table 2 summarizes
PSNR and SSIM for both cases (the average of 100 frames without motion was used as a reference



for metrics calculation). Applying denoising before the phase retrieval results in significant
improvement in PSNR and SSIM. The benefits are maintained even after phase retrieval.
To qualitatively assess the benefits of denoising done before the phase retrieval, we show

exemplary frames in Figure 7. Note that after the denoising and before phase retrieval the
complex structures of the insect leg and interference fringes become more visible (Figure 7b).
We also visually compare how the noise changes between consequent frames without (Figure 7c)
and with (Figure 7d) denoising. We note that the noise not only becomes less sharp without
blurring the sample (Figure 7a) but also produces less sudden changes in consequent frames.
This makes it easier to evaluate the morphodynamics or, reversely, would allow reducing the
dose even further. While denoising made the images smoother, there is no drastic blur, and even
relatively small details (e.g., legs or antennae) are preserved.

measured before PR measured after PR

PSNR SSIM PSNR SSIM

no denoising 25.2 ± 4 × 10−3 0.41 ± 1 × 10−4 36.0 ± 0.2 0.97 ± 2 × 10−3

denoising before PR 33.1 ± 13 × 10−3 0.49 ± 3 × 10−4 37.3 ± 0.3 0.98 ± 1 × 10−3

denoising after PR - - 36.0 ± 0.3 0.97 ± 1 × 10−3

Table 2. Quantitative comparison of the denoising done before and after phase retrieval
for the chalcid wasp cine-radiography. We averaged 100 motion-free frames to use
as the reference (noise-free) image for these calculations. We report mean values
and 95% confidence intervals. The denoising before phase retrieval provides a slight
improvement in measures both before and after phase retrieval.

5. Discussion

In this paper, we proposed and tested a way to relax the data constraints of the N2N method. We
traded the degree of similarity required from signals of individual image pairs for the number
with structurally close image pairs. That is, instead of taking one pair with an identical signal,
application to multi-channel imaging allows us to benefit from drawing tens or hundreds of
pairs with close but not identical signals. Through our experiments with different imaging
modalities, we demonstrated the method’s capability to significantly enhance image quality
without over-smoothing along the energy or time domain. We also highlighted the vulnerability
of the method to significantly dissimilar training image pairs (Section 4.3). We suggested an
approach to overcoming this issue by discarding images based on some image similarity metrics.
In general, the method does not compensate for systematic artifacts present in all channels

(energy bins or time frames), hence relevant corrections (such as centre-of-rotation compensation
in CT) remain essential. On the other hand, we noticed that N2N applied to reconstructed slices
significantly reduced the appearance of the ring artifacts (Figure 2b) and the undersampling
artifacts (Figure 6a). The magnitude and the limits of this secondary effect are in the scope of
future research.
We yet observed superficial “cloudy” artifacts present in homogeneous image regions (such

as the background) after denoising. These artifacts do not have any significant effect on CT
data as they have lower contrast than actual image features. However, in cine-radiographic time
series, they affect the overall image perception as their location changes randomly from frame to
frame introducing strongly disturbing flickering without denoising. The reduced flickering after
denoising improves image interpretability as it has very low contrast compared to image features
and becomes more of a cosmetic effect as the human eye is still sensitive to it. A way around
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Fig. 7. Qualitative examination of the denoising performed for the chalcid wasp
cine-radiography. We show the same cropped slice before and after the denoising. We
also compare results before and after the phase retrieval. Denoising is done only before
phase retrieval. In (b) we demonstrate an enlarged view of the wasp’s leg before PR (a
callout from the red rectangle in (a)). In (c) and (d) we show consequent frames of
the noise without the sample, before and after denoising. All four frames are plotted
with the same value range. This demonstrates that not only the noise becomes less
prominent, but also the evolution of the cloudy noise becomes less drastic after the
denoising.



this is to generate a few images for each frame by adding some Gaussian noise, i.e. to increase
the noise level, and take a median value of the resulting denoised images. However, increasing
the number of used denoised images or the variance of the noise leads to blurring. We set these
parameters, guided by the expert judgment on the resulting image.
N2N assumes that the image pairs have equal signal values and independent noise drawn from

the same distribution. Strictly speaking, both assumptions might be violated in spectral and time-
resolved imaging where values in each individual channel are either energy or time-dependent,
and noise distribution might be partially correlated (see data discussion in 4.2.1 for details). The
application of the method to such data is based on the assumption that the variability of noise
between the twin images is larger than the variability of the signal.
In spectral CT, N2N can be applied to both projection images and to tomographic slices

after reconstruction. Any corrections in the projection domain are challenging as they might
cause or exaggerate existing inconsistency between projections (a consistent sinogram has strong
restrictions expressed as Helgason–Ludwig consistency condition [48]). However, our empirical
studies did not show any noticeable artifacts due to this inconsistency.

6. Conclusion

In this paper, we explored the applicability of the N2N method to the denoising of time or
energy-resolved radiographic image sequences and related 4D tomographic reconstructions. N2N
is a distribution-agnostic method, it does not explicitly assume any particular noise or signal
properties. The only requirement originally proposed was the ability to sample pairs of images
that share a common signal but have independent and identically distributed noise. In this paper,
we have demonstrated that this requirement, while not exactly met by the multichannel data, can
be relaxed to successfully apply the method.
The presented case studies showed that this method offers a robust and efficient alternative

to conventional denoising methods and regularized iterative reconstruction methods. The N2N
method does not require fine-tuning of parameters or handcrafted regularization terms for any
new dataset. Therefore, its application can be heavily automated. Finally, the N2N method
relies on a rather intuitive assumption, hence it can be easily explained to non-experts in the ML
domain and smoothly introduced into their measurement practice.
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