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ABSTRACT

With computational models becoming more expensive and complex, surrogate models have gained
increasing attention in many scientific disciplines and are often necessary to conduct sensitivity
studies, parameter optimization etc. In the scientific discipline of uncertainty quantification (UQ),
model input quantities are often described by probability distributions. For the construction of
surrogate models, space-filling designs are generated in the input space to define training points, and
evaluations of the computational model at these points are then conducted. The physical parameter
space is often transformed into an i. i. d. uniform input space in order to apply space-filling training
procedures in a sensible way. Due to this transformation surrogate modeling techniques tend to suffer
with regard to their prediction accuracy. Therefore, a new method is proposed in this paper where
input parameter transformations are applied to basis functions for universal kriging. To speed up
hyperparameter optimization for universal kriging, suitable expressions for efficient gradient-based
optimization are developed. Several benchmark functions are investigated and the proposed method
is compared with conventional methods.
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1 Introduction

Surrogate modeling methods are widely used in various scientific disciplines, such as engineering, meteorology or
physics. Simulation runs for complex computational models are often computationally expensive. Surrogate modeling
techniques provide the opportunity to construct a surrogate model with relatively few evaluations of the computational
model.

For instance, in meteorology, the German Meteorological Service (DWD) currently uses a global grid with a
mesh size of 13 km to achieve sufficiently accurate weather predictions. Even at these high resolutions, many
atmospheric processes occur on a sub-grid scale and still need to be parameterized, since they cannot be explicitly
resolved. Consequently, these models are computationally expensive to run which makes further studies, such as
parameter identification or sensitivity studies, infeasible.

By using surrogate models, a relationship between model inputs and outputs can be determined with rela-
tively low computational cost. Model parameters of the computational model are often considered as input parameters
of the surrogate model in the context of uncertainty quantification (UQ). Epistemic uncertainties can arise from a lack of
knowledge of these parameters. These uncertainties are often described by probability distributions that are determined
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based on measurements, expert knowledge or parameter identification studies. Before applying surrogate modeling
techniques, input parameters are often transformed to independent and identically distributed (i. i. d.) uniform variables.
In this unit hypercube, space-filling designs, such as Latin hypercube sampling, can be applied in a meaningful way.
However, prediction accuracy of surrogate models may suffer from such transformations as will be shown in this paper.
The aim of this work is to develop a strategy to overcome such prediction accuracy losses as a result of input space
transformations.

Although the exact relationship between input and output quantities is not known in advance, it may be pos-
sible to assume certain underlying trends in order to improve prediction accuracy. Such trends can be incorporated
as basis functions by various surrogate modeling techniques, e. g. universal kriging. Usually, simple basis functions
(often low order polynomials) are used for the sake of simplicity and to encounter the risk of overfitting. In a high
dimensional input space, higher order multivariate polynomials up to a certain polynomial degree would lead to an
excessive increase in the number of polynomials, commonly known as the "curse of dimensionality". To overcome this
problem, methods for polynomial basis selection can be applied, such as least-angle regression. Kersaudy et al. [1]
proposed the method LARS-Kriging-PC modeling where explicit multivariate basis functions for universal kriging are
obtained by least-angle regression based on polynomial chaos expansions. The purpose of the method is to select
polynomials that bring the most relevant information to the kriging model. The results show that the benefits of both
Gaussian process regression and polynomial chaos expansion are combined. The concept is similar to blind kriging
where the underlying trend is identified from data using a Bayesian variable selection technique (Joseph et al. [2]). As
with the case of LARS-Kriging-PC modeling, a set of candidate basis functions has to be defined beforehand. In both
methods, the choice of polynomials is not based on prior knowledge of the problem, but on the regression technique
itself. However, Oakley [3] emphasizes that the choice of basis functions should be chosen to incorporate any beliefs
regarding the problem, e. g. the physical evolution of the output variable with respect to the input parameters (see e. g.
Kersaudy et al. [1]).

None of the above mentioned methods consider the input parameter transformations to the i. i. d. uniform
input space which is performed in this study. However, the transformation may highly impact the shape of the model
function. Although it is straightforward to define simple polynomial basis functions in the i. i. d. uniform input space,
i. e. the space in which the surrogate model is built, this is not the most meaningful choice. More precisely, defining
basis functions in the original, physical parameter space is considered more sensible. In this paper, a method for
defining basis functions for universal kriging is proposed that takes input parameter transformations into account. In
particular, isoprobabilistic transformation is applied to the construction of basis functions.

In this study it will be assumed that stationarity holds in the i. i. d. uniform space in reference to the uni-
form density of training points in this space. This can generally be considered to be a reasonable first approach if
nothing is known about the physical problem. Accordingly, this corresponds to non-stationary basis functions in the
physical input space. The idea of finding transformations between spaces so that stationarity and isotropy holds in
the deformed space was already used by Sampson and Guttorp [4] where thin-plate splines were applied to achieve
such a mapping. Schmidt and O’Hagan [5] enhanced this method by using a Bayesian approach where the mapping is
described by a function with a Gaussian process prior. Both methods have been developed for a setting with only two
input dimensions in the context of geostatistics.

A related approach of incorporating non-stationary kernel functions has been proposed by Gibbs [6] and a
simplified version has been demonstrated by Xiong et al. [7], where a density function is constructed that aims at
describing the smoothness of function value changes with respect to input parameters. The density function is then used
to describe a non-linear mapping to an input space where uniform smoothness and therefore a stationary kernel function
can be assumed. Using this mapping, non-stationary kernel functions can be defined in the original input space. The
difference compared to this paper is that in the approach by Gibbs [6] the transformation is based on the estimated
smoothness of function values, whereas here it is based on the joint PDF of input parameters and thus the density of
training points.

The core of Gaussian process regression methods lies in the estimation of hyperparameters. These are gener-
ally determined by likelihood maximization. With a high number of training points and input dimensions, the estimation
of hyperparameters may be computationally expensive. Therefore, gradient-based hyperparameter estimation for
Gaussian process regression is frequently applied to speed up hyperparameter optimization. The derivative of the log
marginal likelihood with respect to the hyperparameters is determined for universal kriging in this work.

The remainder of this paper is organized as follows. In Section 2 applied methods are depicted. First, the
applied training procedure and fundamentals of Gaussian process regression are presented. Then, a technique for
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the construction of basis functions for transformed input parameter spaces is proposed. Suitable expressions for
gradient-based hyperparameter optimization for universal kriging are developed. Model validation measures are
specified. In Section 3 the model setup and the set of benchmark problems for investigation of proposed methods are
presented. Validation results are shown in Section 4 an discussed in Section 5. Finally, Section 6 concludes this work.

2 Universal kriging with basis functions for transformed input parameter spaces

In this section, the applied training procedure, simple kriging and universal kriging are briefly presented. A new way
of defining basis functions for transformed input parameter spaces is then proposed. Equations for gradient-based
hyperparameter optimization for universal kriging are developed. Finally, the applied model validation strategy is
described.

2.1 Training procedure

In this study, problems with non-uniform input parameter distributions are considered. In terms of training strategies, it
is reasonable to generate a space-filling design that takes the PDFs of input parameters into account, i.e. to generate
more training points in regions associated with higher probability and vice versa. This generally yields higher overall
prediction accuracy, because the resulting surrogate model is then more accurate in regions associated with higher
probabilities. In particular, lower validation errors are obtained, if the model is validated by Monte Carlo sampling with
respect to parameter PDFs. Lu et al. [8] described a procedure to find such space-filling designs. However, surrogate
modeling methods, such as Gaussian process regression, may struggle with inhomogeneous density of training points in
the input space, because optimal covariance parameters are usually strongly dependent on the density of training points.
However, if specific problems are considered where a higher accuracy is desired in certain regions of the input space, as
it is the case in reliability analysis (see e. g. Bourinet [9]), adjusted methods are preferred that assign a higher training
point density to such regions.

Therefore, the focus of this study is the case where input parameter spaces are transformed to i. i. d. uniform
parameter spaces. Isoprobabilistic transformation, in particular Rosenblatt transformation [10], is applied to transform
the physical input vector x = (x1, x2 . . . xp)

⊤ to the i. i. d. uniform input vector u = (u1, u2 . . . up)
⊤ with input space

dimension p. This makes the application of space-filling designs more sensible, because a homogeneous space-filling
design can then be obtained in the uniform input space. Thus, the training point density induces a model accuracy
which corresponds to the probability of parameter values. Furthermore, in the case of highly different scales between
the input parameters, surrogate modeling methods may suffer without such a transformation. Let x̂ = (x̂1, x̂2 . . . x̂p)

⊤

be a random vector in the physical input space with joint cumulative distribution function Fx̂(x). The Rosenblatt
transformation u = Tros(x) is then given by

u1 = P {x̂1 ≤ x1} = Fx̂1
(x1)

u2 = P {x̂2 ≤ x2 | x̂1 = x1} = Fx̂2|x̂1
(x2 | x1)

...
up = P {x̂p ≤ xp | x̂p−1 = xp−1 . . . x̂1 = x1} = Fx̂p|x̂p−1...x̂1

(xp | xp−1 . . . x1) ,

where F□() denote respective conditional cumulative distribution functions. It can be shown that transformed random
vector û = (û1, û2 . . . ûp)

⊤ = Tros(x̂) is then i. i. d. uniformly distributed on the p-dimensional unit hypercube. F□()
can be determined from the joint PDF fx̂(x) which is assumed to be known in this study (see e. g. Melchers and Beck
[11]).

Maximin Latin hypercube sampling (Morris and Mitchell [12]) for generating a set of n training points in
the i. i. d. uniform parameter space U = {ui, i = 1 . . . n} is applied, where U corresponds to the set of
training points in the physical parameter space X = {xi, i = 1 . . . n} such that {ui = Tros(xi), i = 1 . . . n}.
Evaluations of the computational model f(xi) are conducted for all training points resulting in the output vector
y = {yi = f(xi), i = 1 . . . n}.

The aim of kriging is to build a surrogate model M for a scalar model output y, i. e. a quantity of interest
(QoI), based on the experimental design and model evaluations {U, y}. Note that all equations in the context of
kriging are represented with respect to i. i. d. uniform variables u instead of physical variables x, because surrogate
models are built in the i. i. d. uniform parameter space in this study. Prediction mean and prediction variance at a set of
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input points U⋆ = {u⋆ i, i = 1 . . . l} are to be determined.

2.2 Simple kriging

For simple kriging, a zero-mean Gaussian process

gSK(u) ∼ GP(0, k(u,u′)) (1)

with covariance function k(u,u′), also known as kernel function, is assumed as prior. The kernel function describes
the dependence structure between values of the stochastic process at different points, usually depending on their distance.

Here, the anisotropic form of the radial-basis function

k(u,u′) = θ0 exp

(
−

p∑
i=1

(
|ui − u′

i|
θi

)2
)

(2)

with respect to hyperparameters θ = {θi, i = 0 . . . p} is used to allow for different smoothness between input
dimensions. Furthermore, i. i. d. Gaussian noise with variance σ2

n is added to allow for aleatoric uncertainties in the
simulations of the computational model.

Let

K = {Kij = k(ui,uj), i = 1 . . . n, j = 1 . . . n} ,
k = {kij = k(ui , u⋆ j), i = 1 . . . n, j = 1 . . . l} and

σ2
0 ={σ2

0j = k(u⋆ j ,u⋆ j), j = 1 . . . l}

be the vectors and matrices of kernel function evaluations at training points U and prediction points U⋆, respectively.

The best linear unbiased predictor (BLUP) and its prediction variance for the set of prediction points U⋆

under the assumptions of simple kriging, as shown by Rasmussen and Williams [13], are then

M(U⋆) = k⊤K−1
y y

σ2(U⋆) = σ2
0 − k⊤K−1

y k

with Ky = K+σ2
n1. The hyperparameters θ and noise parameter σn are determined by maximum likelihood estimation.

2.3 Universal kriging

The theory of universal kriging was introduced by Matheron [14] in the field of geostatistics. A prior

gUK(u) = gSK(u) + h(u)⊤β (3)

is used, with zero-mean Gaussian process gSK(u) (Eq. 1), vectors of known basis functions h(u) = {hj(u), j = 1 . . . q}
and coefficients β = {βj , j = 1 . . . q}. Coefficients β are unknown, but not required to be specified for the computation
(see Rasmussen and Williams [13]).

Let

H = {Hij = hi(uj), i = 1 . . . q, j = 1 . . . n} and (4)
H⋆ ={H⋆ ij = hi(u⋆ j), i = 1 . . . q, j = 1 . . . l} (5)

be the matrices of basis function evaluations at training points U and prediction points U⋆, respectively.

The best linear unbiased predictor (BLUP) and its prediction variance for the set of prediction points U⋆

under the assumptions of universal kriging, as shown by Rasmussen and Williams [13], are then

M(U⋆) = H⊤
⋆ µ+ k⊤K−1

y (y −H⊤µ) (6)

σ2(U⋆) = σ2
0 − k⊤K−1

y k+R⊤(HK−1
y H⊤)−1R (7)

4
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with µ = (HK−1
y H⊤)−1HK−1

y y and R = H⋆ −HK−1
y k .

In the case of a constant scalar basis function h(u) = 1, Eq. 6 and Eq. 7 become

M(U⋆) = µ I+ k⊤K−1
y (y − µ I)

σ2(U⋆) = σ2
0 − k⊤K−1

y k+R⊤(HK−1
y H⊤)−1R

where µ =
I⊤K−1

y y

I⊤K−1
y I

. This case is known as ordinary kriging, i. e. kriging with unknown constant mean.

2.4 Basis functions for transformed input parameter spaces

In many cases, a zero or constant mean function for the Gaussian process is sufficient which corresponds to scalar basis
functions h(u) = 0 or h(u) = 1 in Eq. 3, respectively. However, incorporation of more sophisticated basis functions
may significantly improve prediction accuracy. Kersaudy et al. [1] proposed the method LARS-Kriging-PC modeling
where explicit basis functions for universal kriging are obtained by least-angle regression based on polynomial chaos
expansions. A sparse polynomial basis is generated to tackle the curse of dimensionality. Similarly, for blind kriging,
the underlying trend is identified from data using a Bayesian variable selection technique (Joseph et al. [2]). In both
cases, basis functions are selected from a set of candidate functions based on the surrogate modeling technique itself
rather than physical knowledge about the problem.

In particular, the selection of basis functions becomes more important when using transformed input parame-
ter spaces. In this study, transformation of the physical input space to an i. i. d. uniform input space is carried
out as described in Section 2.1. Kriging techniques are then applied in the i. i. d. uniform input space. Although
it is then straightforward to define simple polynomial basis functions in the i. i. d. uniform input space, this is
not the most meaningful choice. Defining basis functions in the original, physical parameter space is considered
to be more sensible. This is because physical relationships that are attempted to be captured by trend functions
are assumed to be related more directly to physical input parameters than to transformed i. i. d. uniform input
parameters. Therefore, it is proposed to define polynomial basis functions f(x) in the original, physical input space
x and express them as functions h(u) = f(T −1

ros (u)) in the i. i. d. uniform input space u by means of the inverse
Rosenblatt transformation T −1

ros (see Section 2.1). In the one-dimensional case, the transformation becomes the quantile
function or percent-point-function x = PPF(u) (inverse cumulative distribution function) of the input parameter. The
transformed basis function is then h(u) = f(PPF(u)). In case of the particular linear basis function f(x) = x, the
transformed basis function results in the quantile function h(u) = PPF(u). If there is no correlation between the
input parameters, i.e. {ρx̂i,x̂j = 0 ∀i, j ∈ {1, . . . , p}, i ̸= j}, the transformation reduces to independent functions
{h(ui) = f(PPF(ui)), i = 1 . . . p} in all input parameters.

Fig. 1 illustrates the transformation of basis functions. Transformed basis functions h(u) = {hj(u), j = 1 . . . q} can
then be used as basis functions in the universal kriging method (Eq. 3), i. e. for computing H and H⋆ (Eq. 4 and Eq. 5).

2.5 Link to non-stationary kernel functions

In this paper, the procedure of building surrogate models is carried out in the i. i. d. uniform parameter space. However,
by using the Rosenblatt transformation, uniform input variables can be transformed into the physical parameter space as
described in Section 2.1. All equations from Section 2.2 and Section 2.3 can thus be expressed with respect to physical
parameters x. In the case of universal kriging, the original non-transformed definition of trend functions in the physical
parameter space are used instead of the transformed basis functions in the i. i. d. uniform parameter space according to
Section 2.4.

In particular, the description of equations results in non-stationary kernel functions, because the kernel func-
tions are defined as stationary with respect to i. i. d. uniform variables. The anisotropic formulation of the radial-basis
function kernel (Eq. 2) thus results in

k(x,x′) = θ0 exp

(
−

p∑
i=1

(
|Tros(x)i − Tros(x

′)i|
θi

)2
)
.

It is emphasized that the definition of stationary kernel functions in the i. i. d. uniform parameter space is meaningful
instead of using stationary kernel functions in the physical parameter space to account for the non-homogeneous density
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general 1D 

quadratic trend

1D linear trend

i.i.d. uniform input spacephysical input space

general 

multivariate

trend

Figure 1: Visualization of model functions (top) and selected trend functions (three rows below) in the physical (left)
and i. i. d. uniform (right) parameter space. The Rosenblatt transformation Tros (quantile functions PPF in case of
independent variables) defines the relationship between both parameter spaces.
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of training points. According to Section 2.1, the density of training points in the physical parameter space corresponds
to the joint PDF of input parameters. Training points are sparse in the tails of the PDF and a larger length scale of the
kernel function in these regions is desirable, whereas in regions with a higher density of training points, i. e. closer to
the mean value, a smaller length scale is sensible.

2.6 Gradient-based hyperparameter estimation for universal kriging

Hyperparameter optimization for universal kriging can be computationally intensive, particularly with many input
dimensions and a large number of training points. Optimization of the hyperparameters is most commonly conducted
by maximizing the marginal likelihood which is a measure for the model evidence. However, other methods exist, such
as maximization of the pseudo-likelihood which is obtained by cross-validation (see Rasmussen and Williams [13] for
further discussion), which are not considered in this work. Preferably, gradient-based hyperparameter optimization with
incorporation of gradient information is conducted to reduce computation time. Therefore, the gradient of the log
marginal likelihood with respect to the hyperparameters θ has to be determined.

The log marginal likelihood for simple kriging is given as

log p(y|U,θ) = −1

2
y⊤K−1

y y − 1

2
log |Ky| −

p

2
log 2π. (8)

Since only Ky depends on θ, an expression for the gradient of the log marginal likelihood is aimed that only depends
on ∂Ky

∂θ . If the gradient of Ky is available, as it is the case for widely used kernel functions, the gradient of the log
marginal likelihood can be determined.

For simple kriging, the gradient of the log marginal likelihood by the use of matrix identities in A becomes

∂

∂θl
log p(y|U,θ) =

1

2
y⊤K−1

y

∂Ky

∂θl
K−1

y y − 1

2
tr

(
K−1

y

∂Ky

∂θl

)
=

1

2
tr

((
αα⊤ −K−1

y

) ∂Ky

∂θl

)
with α = K−1

y y = L−⊤
K (L−1

K y) and LK = cholesky(Ky).

Using the Einstein summation convention, the derivative of the log marginal likelihood given α can be ex-
pressed as

∂

∂θl
log p(y|U,θ) =

1

2

((
αi αj − δim

[
K−1

y

]
mj

) ∂Ky ji

∂θl

)
(9)

with Kronecker delta δim.

In the following, the derivation of the gradient of the log marginal likelihood for universal kriging is carried
out, where suitable abbreviations for efficient computation are introduced.

The log marginal likelihood for universal kriging, as shown by Rasmussen and Williams [13], is

log p(y|U,θ) = −1

2
y⊤K−1

y y +
1

2
y⊤Cy − 1

2
log |Ky| −

1

2
log |A| − p−m

2
log 2π, (10)

where A = HK−1
y H⊤, C = K−1

y H⊤A−1HK−1
y and m = rank(H⊤).

Inserting A and C in Eq. 10 results in

log p(y|U,θ) =− 1

2
y⊤K−1

y y +
1

2
y⊤ (K−1

y H⊤(HK−1
y H⊤)−1HK−1

y

)
y

− 1

2
log |Ky| −

1

2
log |HK−1

y H⊤| − n−m

2
log 2π

=− 1

2
y⊤α+

1

2
y⊤γηα

− 1

2
log |Ky| −

1

2
log |Hγ| − n−m

2
log 2π,

7
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where α, γ and η are defined as

α = K−1
y y = L−⊤

K (L−1
K y), (11)

γ = K−1
y H⊤ = L−⊤

K (L−1
K H⊤) and (12)

η = (HK−1
y H⊤)−1H = L−⊤

η (L−1
η H) (13)

with LK = cholesky(Ky) and Lη = cholesky(HK−1
y H⊤). Cholesky decomposition is applied in order to efficiently

determine the inverse.

Taking the derivative with respect to θ by the use of matrix identities in A results in

∂

∂θl
log p(y|U,θ)

=
1

2
y⊤K−1

y

∂Ky

∂θl
K−1

y y

− 1

2
y⊤
(
K−1

y

∂Ky

∂θl
K−1

y H⊤(HK−1
y H⊤)−1HK−1

y

)
y

+
1

2
y⊤
(
K−1

y H⊤(HK−1
y H⊤)−1HK−1

y

∂Ky

∂θl
K−1

y H⊤(HK−1
y H⊤)−1HK−1

y

)
y

− 1

2
y⊤
(
K−1

y H⊤(HK−1
y H⊤)−1HK−1

y

∂Ky

∂θl
K−1

y

)
y

− 1

2
tr
(
K−1

y

∂Ky

∂θl

)
− 1

2
tr
(
−(HK−1

y H⊤)−1HK−1
y

∂Ky

∂θl
K−1

y H⊤
)
.

In the next step, symmetry and positive definiteness of Ky (by definition) and therefore symmetry of K−1
y are taken

into account. Furthermore, the matrix identity in Eq. 18 is used to simplify the result. With α,η and γ, it follows

∂

∂θl
log p(y|U,θ)

=
1

2
α⊤ ∂Ky

∂θl
α− 1

2
α⊤ ∂Ky

∂θl
γηα+

1

2
α⊤η⊤γ⊤ ∂Ky

∂θl
γηα

− 1

2
α⊤η⊤γ⊤ ∂Ky

∂θl
α− 1

2
tr
(
K−1

y

∂Ky

∂θl

)
+

1

2
tr
(
γηK−1

y

∂Ky

∂θl

)
=

1

2
tr
(
α⊤ ∂Ky

∂θl
α−α⊤ ∂Ky

∂θl
γηα

+α⊤η⊤γ⊤ ∂Ky

∂θl
γηα−α⊤η⊤γ⊤ ∂Ky

∂θl
α

)
− 1

2
tr
(
K−1

y

∂Ky

∂θl

)
+

1

2
tr
(
γηK−1

y

∂Ky

∂θl

)
=

1

2
tr
((

αα⊤ − γηαα⊤ + γηαα⊤η⊤γ⊤

−αα⊤η⊤γ⊤ −K−1
y + γηK−1

y

)
∂Ky

∂θl

)
.

The abbreviations ρ = αα⊤, ε = γη and ξ = ερ are introduced. It follows

∂

∂θl
log p(y|U,θ) =

1

2
tr
((

ρ− ξ − ξ⊤ + ξε⊤ + (ε− 1)K−1
y

) ∂Ky

∂θl

)
.

8
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Using the Einstein summation convention, the following calculation steps are required to determine the derivative of the
log marginal likelihood given α, γ and η from Eq. 11, Eq. 12 and Eq. 13:

ρij = αi αj ,

εij = γik ηkj ,

ξil = εij ρjl,

∂

∂θl
log p(y|U,θ)

=
1

2

((
ρij − ξij − ξji + ξimεjm + (εim − δim)

[
K−1

y

]
mj

) ∂Ky ji

∂θl

)
(14)

with Kronecker delta δim.

The complexity of the computation of the gradient of the log marginal likelihood (Eq. 9 and Eq. 14) is dom-
inated by the inverse of matrix Ky which is of the computational complexity O(n3). Once the inverse is determined,
it can be used for the computation of all hyperparameters θl. In contrast, computation of the gradient of the log
marginal likelihood based on Eq. 8 and Eq. 10, i. e. without using the gradient of matrix Ky, is of the computational
complexity O(p · n3), because the inverse of Ky has to be determined towards all input dimensions p. Gradient-based
hyperparameter optimization with incorporation of gradient information is therefore more beneficial.

2.7 Model validation

When surrogate models are constructed, it is essential to assess their quality based on model validation measures.
Therefore, the generalization error

SE = E
[
(f(x̂)−M(x̂))2

]
is considered, where E[ · ] is the mathematical expectation operator. It describes the squared difference between original
physical model f and surrogate model prediction M and is therefore denoted as SE (squared error). It can be expressed
as

SE =

∫
Dx̂

(f(x)−M(x))2 fx̂(x)dx

=

∫
Dû

(f(u)−M(u))2 fû(u)du =

∫
Dû

(f(u)−M(u))2 du (15)

where fx̂ (resp. Dx̂) is the PDF (resp. the support) of the random input vector x̂ and fû (resp. Dû) is the PDF (resp. the
support) of the random input vector û. The PDF of the i. i. d. uniform random input vector û is fû(u) = 1.

The SE value (Eq. 15) is generally not known analytically, since the model function M is assumed to be
known only at certain points as is the case for complex computer models. Therefore, the generalization error is
estimated by using a validation set {(uval,i, yval,i), i = 1 . . . nval} with nval validation points obtained from evaluations
of the computer model. The validation points are obtained by Monte-Carlo sampling with respect to the parameter
PDFs. The normalized mean squared error results in

NMSE =
ŜE
σ̂2
y

=
1

σ2
yval

1

nval

nval∑
i=1

(yval,i −M(uval,i))
2.

Here,

y =
1

nval

nval∑
i=1

yval,i and

σ2
yval

=
1

nval − 1

nval∑
i=1

(yval,i − y)
2

are the mean and the variance of evaluations yval,i as estimates for the output variable y, respectively.
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Model accuracy is considered to be high if NMSE values are close to 0 and low if NMSE values are close
to 1. By definition, values are non-negative and should not exceed 1 as the covariance between the surrogate model and
data would then be higher than the variance of the data. The NMSE error is used since normalization allows comparison
between different problems, i. e. different scales. Compared to the Q2 error (Q2 = 1 − NMSE, see e. g. Kersaudy
et al. [1]), the NMSE is more sensible to visualize graphically on a logarithmic scale which is reasonable for small values.

In the case of expensive computational models, cross-validation techniques such as leave-one-out cross-validation can
be applied instead of using a separate validation data set. If the cross-validation error is costly to compute, analytical
expressions can be used to reduce computational cost arising by obtaining many separate leave-one-out surrogate
models (see e. g. Dubrule [15]). Since computationally inexpensive test cases are used in this study to investigate the
proposed method, separate validation data sets are used to ensure accurate validation results.

3 Test cases

The proposed method is applied to several benchmark problems that are shown in Table 1. Probability density functions
are assigned to input parameters. All investigated functions contain a non-uniform distribution for at least one input
dimension because otherwise the Rosenblatt transformation would not affect the trend function and the proposed
method would not differ from the conventional methods.

Table 1: Benchmark functions including labels, mathematical expressions, number of input dimensions, probability
density functions (PDF) and parameter correlations.

# equation dim. input parameter PDFs⋆ fx̂i

and pairwise Pearson
correlation coefficients ρx̂i,x̂j

(ρx̂i,x̂j = 0 if not stated)

1 Oakley & O’Hagan [16]
f(x) = 5 + x+ cos(x)

1 x̂ ∼ N (0, 4)

2 Lognormal Ratio [17]
f(x) = x1

x2

2 x̂1,2 ∼ LN (1, 0.5)
ρx̂1,x̂2

= 0.3

3 Webster et al. [18]
f(x) = x2

1 + x3
2

2 x̂1 ∼ U(1, 10)
x̂2 ∼ N (2, 1)

4 Short Column [17]

f(x) = 1− 4
1125

x2

x1
− 1

5625

(
x3

x1

)2 3 x̂1 ∼ LN (5, 0.5)
x̂2 ∼ N (2000, 400)
x̂3 ∼ N (500, 100)
ρx̂2,x̂3

= 0.5

5 Cantilever Beam [17]

f(x) = 5·105
x1

√(
x2

16

)2
+
(
x3

4

)2 3 x̂1 ∼ N (2.9e7, 1.45e6)
x̂2 ∼ N (1000, 100)
x̂3 ∼ N (500, 100)

6 Borehole [19, 20]
f(x) = 2πx3(x4−x6)

ln
(

x2
x1

)(
1+

2x7x3
ln(x2/x1)x2

1x8
+

x3
x5

) 8 x̂1 ∼ N (0.1, 0.0162)
x̂2 ∼ LN (3700, 4890)
x̂3 ∼ U(63 070, 115 600)
x̂4 ∼ U(990, 1110)
x̂5 ∼ U(63.1, 116)
x̂6 ∼ U(700, 820)
x̂7 ∼ U(1120, 1680)
x̂8 ∼ U(9 855, 12 045)

10
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7 Steel Column [21]
f(x) = x1 − P

2x5x6
− x8PEb

x5x6x7(Eb−P ) ,
P = x2 + x3 + x4,

Eb =
8π2

9·108x5x6x
2
7x9

9 x̂1 ∼ LN (400, 35)
x̂2 ∼ N (5e5, 5e4)
x̂3,4 ∼ G(6e5, 9e4)
x̂5 ∼ LN (300, 3),
x̂6 ∼ LN (20, 2)
x̂7 ∼ LN (300, 5)
x̂8 ∼ N (30, 10)
x̂9 ∼ W(2.1e5, 4200)

8 Sulfur Model [22]
f(x) = −5.488 · 10−9

· x2
1x2x

2
3x4x5x6x7x8x9

9 x̂1 ∼ LN (0.76, 0.152)
x̂2 ∼ LN (0.39, 0.039)
x̂3 ∼ LN (0.85, 0.085)
x̂4 ∼ LN (0.3, 0.09)
x̂5 ∼ LN (5.0, 2.0),
x̂6 ∼ LN (1.7, 0.34)
x̂7 ∼ LN (71.0, 10.65)
x̂8 ∼ LN (0.5, 0.25)
x̂9 ∼ LN (5.5, 2.75)

9 Oakley & O’Hagan [23]
f(x) = aT1x+ aT2 sin(x)

+ aT3 cos(x) + xTMx,
ai,M according to [23]

15 x̂i ∼ N (0, 1), i = 1 . . . 15

⋆PDF parameters correspond to mean µ and standard deviation σ for normal N ,
log-normal LN , Weibull W and Gumbel G distributions and to lower and upper
limit for uniform U distributions.

For each problem with number of input dimensions p, a number of n = 10 p training points xi is generated by maximin
Latin hypercube sampling. This number is chosen based on the recommendation by Loeppky et al. [24] for conducting
initial experiments. Evaluations of model functions yi = f(xi) are conducted. Surrogate models are built based on
described methods in Section 2. The following Gaussian process regression methods are compared: simple kriging,
ordinary kriging, universal kriging with linear trend, universal kriging with quadratic trend, universal kriging with
transformed linear trend and universal kriging with transformed quadratic trend. A linear trend indicates that linear
terms w. r. t. all input parameters are included. A quadratic trend indicates that polynomial terms up to the order of 2
w. r. t. all input parameters are included. A transformed trend indicates that inverse Rosenblatt transformation is applied
to the corresponding trend function as demonstrated in Section 2.4. Transformations are only applied to linear and
quadratic trends because transformation of a zero (simple kriging) or constant (ordinary kriging) trend would not result
in any change.

For all combinations between each surrogate method and each benchmark problem, the demonstrated meth-
ods for constructing a surrogate model are applied 10 times for better statistical validity. As there may be multiple
optima or unsuited initial values in the hyperparameter optimization, each optimization run is repeated 20 times with
randomized initial hyperparameters and the hyperparameter set which yields the lowest validation error is selected.
Computation time for one experiment therefore includes all 20 hyperparameter optimization runs. Mean value and
standard deviation are determined for the validation errors in all cases.

The surrogate models are validated according to the validation measures in Section 2.7. In this study, a set
of nval = 1000 validation points is used for each validation.

Furthermore, all experiments are conducted for the case where the gradient of the log marginal likelihood is
not included and where it is included according to Eq. 9 and Eq. 14 for comparison of computation time. For
optimization, the L-BFGS-B method is used. In the case without gradient information, the gradient is estimated by
2-point finite difference estimation.
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4 Results

The validation errors for all combinations between benchmark functions and surrogate methods, each consisting of
the 10 experiments, are illustrated in Fig. 2, including their mean values and standard deviations. The mean values
are shown in B. The simple kriging model shows the highest validation errors on average. The ordinary kriging
models yield significantly lower validation errors compared to the simple kriging models. The universal kriging models
yield even higher prediction accuracy than simple kriging and ordinary kriging. Depending on the problem, linear or
quadratic basis functions are superior with regard to the validation error. However, for most cases a quadratic trend
leads to smaller errors. The incorporation of transformed basis functions significantly reduces the validation errors
compared to the non-transformed case for both linear and quadratic trends in most cases.

In Fig. 3 the effect of incorporating transformed basis functions on the surrogate model is illustrated for the
short column function (benchmark problem #4). For the purpose of illustration, only cuts through the hypersurface are
shown where only one input parameter is changed at a time and the output quantity with respect to each input parameter
is shown. The values of the function that is to be predicted as well as the surrogate model are shown in the physical
input space and the i. i. d. uniform input space, respectively.

In Fig. 4 the computation time for all combinations between benchmark functions and surrogate methods are
shown including all 10 experiments with mean values and standard deviations. The computation time is shown for the
cases without and with incorporation of the gradient of the log marginal likelihood for hyperparameter estimation. In
all cases, the computation time with incorporation of gradient information can be reduced significantly.

5 Discussion

On average, prediction accuracy increases from simple kriging, to ordinary kriging, to universal kriging, because
the surrogate models become more flexible and can better adapt to the problem. The effectiveness of applying
certain types of basis functions highly depends on the problem itself. Depending on the relationship between
input and output quantities in a model, linear or quadratic basis functions in universal kriging, or both, may
lead to an improvement of prediction accuracy. In general, quadratic basis functions offer a more flexible
way for the surrogate model to adapt to the data which yields an improvement compared to linear functions.
However, polynomials of higher degrees combined with a high number of input dimensions result in a very high num-
ber of basis functions, known as the curse of dimensionality, which may lead to overfitting and high generalization errors.

The linear and quadratic basis functions that have been transformed by the Rosenblatt transformation lead to
a significant improvement compared to linear and quadratic basis functions without transformation in most cases.
This is due to the polynomial basis functions being defined in the physical input parameter space rather than in the
transformed input parameter space.

The validation errors are very different between the considered benchmark functions (from RMSE= 0.01 to
0.4 for simple kriging) due to different numbers of dimensions and training points and due to incomparable
nonlinearities of the problems. For example, model function values of benchmark function #2 become extremely high
for small input parameter x2 which is not unlikely according to the PDF. Surrogate models may strongly struggle to
capture such relationships as can be seen from large validation errors with wide spread, as shown in Fig. 2.

From Fig. 3 it becomes clear that linear or quadratic basis functions without proposed transformation yield a
linear or quadratic trend in the i. i. d. uniform input space, respectively. On the other hand, transformed basis functions
yield a linear or quadratic trend in the physical input space. As it is generally more natural to assume linear or quadratic
trends in the physical parameter space, rather than in the transformed i. i. d. uniform parameter space, the surrogate
models with transformed basis functions are generally more accurate approximations of the model function. This can
be further emphasized by the fact that the input parameter transformation generally increases the nonlinearities of the
problem. Surrogate models with non-transformed basis functions generally tend to systematically deviate from the
model function. In particular, the shape of such surrogate models tends to flatten in regions with lower PDF values
(close to the margins) and to steepen in region with high PDF values (close to the mean). This artefact does not occur if
transformed basis functions are used that account for the input space transformation.

The high validation errors for benchmark problem #9 in the case of universal kriging with a quadratic trend
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simple 

kriging

ordinary

kriging

universal

kriging

linear basis 

universal

kriging

quadratic basis 

universal

kriging

transformed

linear basis 

universal

kriging

transformed

quadratic basis 

i.i.d. uniform input spacephysical input space

marginal PDFs

Figure 3: Visualization of benchmark problem #4 (short column function): True function (dashed line) and kriging
prediction mean (solid line) and variance (grey shaded area) for investigated kriging methods (rows) and input parameters
(columns), in the physical (left) and i. i. d. uniform (right) input space. Only cuts through the hypersurface are shown
where one input parameter is changed whereas all other input parameters stay fixed at their mean value (shown in PDF
on the bottom).
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indicate the effect of overfitting. Using quadratic multivariate basis functions for a p-dimensional problem leads to
p(p+ 1)/2 quadratic, p linear and 1 constant basis functions in a general case. Here, for p = 15 and given n = 10p,
this means including 136 basis functions for a problem with 150 training points. In the context of polynomial chaos
expansion, Sudret [25] argues that for polynomial fitting the number of training points should be at least 2-3 times as
high as the number of basis functions in order to avoid overfitting. If this is not the case, a sparse set of basis functions
could be determined, e. g. by means of least-angle regression (e. g. Kersaudy et al. [1]).

Incorporating the gradient of the log marginal likelihood for hyperparameter optimization leads to a signifi-
cant computational speedup. The demonstrated equations in Section 2.6 have therefore been shown to be valid and
useful in all cases.

6 Conclusion

An approach has been proposed where input parameter transformations are taken into account for the construction of
basis functions for universal kriging. Since surrogate modeling methods are applied in the i. i. d. uniform input space to
incorporate space-filling designs in a more meaningful way, basis functions in the universal kriging method also have to
be defined in this space. It turned out to be more sensible to define basis functions in the physical input space. The
inverse Rosenblatt transformation is applied to transform basis functions from the physical input space into the i. i. d.
uniform input space which are then used for universal kriging. The transformed basis functions lead to a significant
improvement in prediction accuracy compared to the case of non-transformed basis functions in most cases. Among the
benchmark problems, the NMSE is in some cases lower by up to a factor of 103 with transformed basis functions.
The authors of this paper highly recommend to consider proposed transformations to basis functions for universal
kriging whenever non-uniform input parameter distributions are used and the surrogate model is constructed in the i. i. d.
uniform parameter space. If the input parameters are uncorrelated, the inverse Rosenblatt transformation reduces to
quantile functions of the input parameters which simplifies the transformation significantly. To speed up computation,
demonstrated equations for gradient-based hyperparameter optimization can be applied.

The proposed method can be applied to other surrogate modeling methods that incorporate explicit basis
functions where the input space is transformed to an i. i. d. uniform input space, e. g. to polynomial regression. In
the latter case, the polynomial basis functions are transformed by the inverse Rosenblatt transformation before fitting
the regression model to determine the regression coefficients. Eventually, the regression technique is no longer a
polynomial regression, because transformations have been applied to the polynomials.

A Matrix identities

Derivatives of the elements of an inverse matrix:

∂

∂x
M(x)−1 = −M(x)−1 ∂M(x)

∂x
M(x)−1 (16)

Derivative of the log determinant of a positive definite symmetric matrix:

∂

∂x
log(|M(x)|) = tr

(
M(x)−1 ∂M(x)

∂x

)
(17)

Cyclic permutation of matrices in the argument of a trace:

tr(M1 M2 M3) = tr(M2 M3 M1) = tr(M3 M1 M2) (18)

B Validation errors
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