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Abstract
The balanced graph partitioning problem is to partition the nodes of a graph into

k disjoint blocks of bounded weight, while simultaneously minimizing an objective
function defined on the edges (e.g., the number of edges connecting two blocks).
The graph partitioning problem is NP-hard and there also exists no constant factor
approximation. The partitioning community has long focused on instances with a
regular structure, e.g., mesh graphs or instances from circuit design. However, it
becomes more and more important to find high-quality solutions for instances with
an irregular structure, such as those derived from social networks. Surprisingly,
we found a subclass of these instances where current state-of-the-art partitioning
algorithms compute solutions that are far from optimal. The identified instances
– referred to as star instances – are characterized by a core of highly-connected
nodes (core nodes) with only sparse connections to the remaining nodes (peripheral
nodes).

In this work, we consider the graph partitioning problem restricted to star in-
stances. Our main theoretical result is an (R + 1)-approximation that is achieved
by solving a min-knapsack problem for each block of the partition, where R is the
ratio of an approximation algorithm for the min-knapsack problem.

On the practical side, we identify shortcomings of existing partitioning algorithms
for star instances. These algorithms are all based on the multilevel scheme, which
consists of three phases: In the coarsening phase, edge contractions are used to
reduce the size of the input graph until it is small enough. Afterwards, an initial
partition is computed which is thereafter refined while reversing the contractions.
We then integrate our theoretical findings into the shared-memory multilevel al-
gorithm Mt-KaHyPar to find high quality partitions for star instances. The main
components of our new solution are (i) several strategies to identify peripheral
nodes, (ii) a two-hop clustering scheme to efficiently reduce the number of periph-
eral nodes in the coarsening phase, and (iii) the integration of our approximation
algorithm into initial partitioning to find high-quality solutions.

Compared to the state-of-the-art, our resulting configuration improves the quality
by 50% (up to a factor of ten) on 60% of the identified star instances. However,
the improvement on star instances comes at the cost of reduced quality on general
graphs. We therefore propose to use our new techniques within an portfolio of
algorithms and use effectiveness tests to show that it provides high quality solutions
on a diverse set of benchmark instances.



Zusammenfassung
Das Problem der balancierten Graphpartitionierung besteht darin, einen Graph

in k disjunkte Blöcke mit beschränktem Gewicht zu unterteilen, wobei eine Ziel-
funktion auf den Kanten minimiert wird (z.B. die Anzahl der Kanten zwischen den
Blöcken). Das Graphpartitionierungs-Problem ist NP-schwer und es existiert auch
keine Approximation mit einem konstanten Faktor. Die Partitionierungs-Community
hat sich lange auf Instanzen mit regulärer Struktur konzentriert, beispielsweise
Gittergraphen oder Instanzen aus dem Schaltkreisentwurf. Jedoch wird es immer
wichtiger, auch für Instanzen mit irregulärer Struktur hochqualitative Lösungen
zu finden, beispielsweise Graphen von sozialen Netzwerken. Zu unserem Erstau-
nen fanden wir eine Teilklasse von Instanzen, auf denen die Lösungen, die von
Partitionierungs-Algorithmen auf dem Stand der Technik berechnet werden, weit
vom Optimum entfernt sind. Diese Instanzen – bezeichnet als Stern-Instanzen –
sind durch einen Kern von hochgradig verbundenen Knoten (Kernknoten) mit nur
wenigen Kanten zu den übrigen Knoten (periphere Knoten) gekennzeichnet.

Diese Arbeit befasst sich mit dem Graphpartitionierungs-Problem eingeschränkt
auf Stern-Instanzen. Unser wichtigstes theoretisches Ergebnis ist eine (R + 1)-
Approximation, welche wir durch das Lösen eines Min-Knapsack-Problems für jeden
Block der Partition erreichen. Dabei ist R der Approximationsfaktor eines Appro-
ximationsalgorithmus für das Min-Knapsack-Problem.

In praktischer Hinsicht identifizieren wir Probleme existierender Partitionierungs-
Algorithmen mit Stern-Instanzen. Diese Algorithmen basieren auf dem Multilevel-
Paradigma, welches aus drei Phasen besteht: Während dem Coarsening wird der
Graph durch Kantenkontraktionen verkleinert. Sobal eine ausreichend geringe Größe
erreicht ist, wird eine initiale Lösung berechnet. Diese wird im Anschluss verfei-
nert, während die Kontraktionen in umgekehrter Reihenfolge rückgängig gemacht
werden. Anschließend integrieren wir unsere theoretischen Ergebnisse in den par-
allelen Multilevel-Algorithmus Mt-KaHyPar, um hochwertige Lösungen auf Stern-
Instanzen zu finden. Die Haupbestandteile unserer neuen Lösung sind (i) mehre-
re Strategien zur Erkennung peripherer Knoten, (ii) eine Technik zur Two-Hop-
Clusterbildung, die während dem Coarsening effizient die Anzahl peripherer Kno-
ten reduziert, und (iii) der Einsatz unseres Approximationsalgorithmus, um eine
hochwertige initiale Lösung zu berechnen.

Im Vergleich zum Stand der Technik erreicht unsere Konfiguration eine Verbes-
serung um 50% (bis zu einem Faktor von zehn) auf 60% der Stern-Instanzen. Aller-
dings ist zugleich die Qualität auf einigen der anderen Instanzen schlechter. Um dies
zu lösen, integrieren wir unsere Techniken in ein Algorithmen-Portfolio und zeigen
mit angepassten Effektivitäts-Tests, dass damit hochqualitative Lösungen auf einer
diversen Menge von Benchmark-Instanzen erreicht werden.



Acknowledgments
I want to thank my supervisor Tobias Heuer for our intensive and productive collaboration. We
work together on graph- and hypergraph partitioning since my bachelor thesis and I learned
a lot from him. While we had different opinions on some occasions, the resulting discussion
always lead to an improvement or new insight. Clearly, this thesis would not have been possible
without such a mentor, who is as important for staying motivated as he is for further improving
the content of the work. Also, I would like to thank Prof. Peter Sanders for the directions and
new ideas he brought into our meetings.
Finally, I want to thank my family and my friends for their love, patience and support. Although
this is easy to forget, it is something to be grateful for.



Contents

Contents
1. Introduction 7

1.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Preliminaries 11
2.1. Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2. Graph Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3. Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4. Hypergraph Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5. Knapsack Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6. Weighted Bipartite Matching Problem . . . . . . . . . . . . . . . . . . . . . . . 13
2.7. Partition Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. Related Work 14
3.1. Multilevel Graph Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2. The Mt-KaHyPar Partitioning Framework . . . . . . . . . . . . . . . . . . . . . 15
3.3. Knapsack Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4. Weighted Bipartite Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4. The Star Partitioning Optimization Problem 19
4.1. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2. Star Partitioning with Degree One Nodes . . . . . . . . . . . . . . . . . . . . . . 22
4.3. Star Partitioning with Arbitrary Degree . . . . . . . . . . . . . . . . . . . . . . 26
4.4. Possible Approaches for Better Approximations . . . . . . . . . . . . . . . . . . 29

5. Engineering a Multilevel Star Partitioner 35
5.1. Detection of Peripheral Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2. Coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3. Initial Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4. An Efficient Data Structure for Separated Nodes . . . . . . . . . . . . . . . . . . 46
5.5. Generalization to Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6. Experimental Results 49
6.1. Setup and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2. Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3. Evaluation of Final Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4. Evaluation of Algorithm Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . 64

7. Conclusion 68
7.1. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

References 70

A. Visualization of a Star-like Graph 75

B. Detailed Composition of Benchmark Sets 78

6



1 Introduction

1. Introduction
There are many application areas where graphs need to be partitioned such that the blocks
are of roughly equal weight and the edges between different blocks are minimized. It is an
important preprocessing step for parallel computations that can be modeled as a graph, which
arise, e.g., in scientific computing [6, 69]. Here, the task is to compute a distribution of the work
to processors such that the load is balanced and the communication overhead is minimized,
which is accurately modeled by the objective function used for graph partitioning. Further
applications include route planning where partitioning the road network into cells allows for
significant speedups [20]. In VLSI design, partitioning the circuit into smaller clusters allows
to reduce the complexity while minimizing the length of connecting wires [37, 42].
In this work, we consider the balanced graph partitioning problem where the weight of each
block is bounded by 1 + ε times the average block weight. As graph partitioning is NP-
hard [10], heuristic algorithms are used in practice. The most successful heuristic that is used
by state-of-the-art partitioners is the multilevel paradigm [30, 60]. Here, a hierarchy of graphs
with decreasing size is built by repeatedly finding a matching or clustering of highly-connected
nodes and subsequently contracting them. When the graph is small enough, an initial partition
is computed. Afterwards, the partition is refined while undoing the contractions, allowing for
both coarse- and fine-grained improvements on the respective levels of the hierarchy.
In recent years, partitioning algorithms for solving the graph partitioning problem have turned
into complex systems using a variety of different techniques such as flow-based refinement or
evolutionary techniques [14]. In addition, parallel partitioning algorithms have been developed
that produce partitions competitive with the highest-quality sequential algorithms using only
a fraction of the time [2, 52]. Moreover, both the size of the benchmark sets on which these
systems are evaluated as well as the size of the included instances has increased, allowing for
more resilient experimental results [2, 30].
Although such large benchmarks sets are used for evaluating current partitioning algorithms,
we found a specific set of instances where all existing multilevel algorithms produce solutions
significantly worse compared to an astonishingly simple and unorthodox approach: To calculate
a bipartition (k = 2), we sort the nodes by degree and place the first half in one block and the
second half in the other block.1

On a benchmark set that consists of 172 graphs [26, 30], we found eight instances where the
degree-based partitioning technique significantly outperforms all existing graph partitioning
algorithms. Table 1 shows the edge cuts produced by the tested algorithms relative to the
degree-based partitioning approach.2 One of the identified instances is the Twitter graph with
over one billion edges. Here, the degree-based partitioning approach achieves an improvement
by a factor of 1.66 over the best multilevel algorithm. This is very surprising: It is not intuitive
why sorting the nodes by degree should yield a good partition.
The explanation is in the very specific structure of the graphs (referred to as star graphs):
Instances such as those derived from social networks exhibit a highly skewed distribution of
node degrees, e.g. in many cases the node degrees adhere to a power law distribution. However,
in addition to their node degree distribution, star graphs contain both a dense core of high
degree nodes and a large number of peripheral nodes with low degree, with only few edges
between peripheral nodes (see Figure 1 for a visualization).

1In addition, we perform one V-cycle [67] on the partition as a refinement step. This means that we apply a
coarsening round where contractions are restricted to the computed partition and project the partition to the
coarse graph. This then allows to use traditional multilevel refinement techniques during the uncontraction.

2We use parameters k = 2 and ε = 0.03 and report for each partitioner the best result out of 10 repetitions.
For more details on the used configurations we refer to Ref. [30].
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wiki-Vote 7115 101K 5342 2.93 2.92 2.51 2.93 2.93 2.93 2.93 3.05
soc-Epinions1 76K 406K 31K 1.50 1.51 1.61 2.06 1.83 2.08 1.58 1.93
soc-Slashdot0811 77K 469K 43K 2.21 2.30 2.08 2.58 2.59 2.61 1.97 3.04
soc-Slashdot0902 82K 504K 46K 2.14 2.17 1.89 2.50 2.52 2.52 1.91 2.74
rmat_n16_m22 65K 4194K 660K 1.25 1.27 1.07 2.98 2.77 1.87 1.19 1.71
rmat_n16_m23 65K 8389K 1315K 1.17 1.15 0.97 3.04 2.77 1.59 1.12 1.48
rmat_n16_m24 66K 17M 2742K 1.09 1.09 0.98 2.97 2.72 1.52 1.05 1.40
kron_g500-logn20 1049K 45M 505K 5.80 5.78 - 31.10 19.97 6.11 4.48 9.14
twitter-2010 42M 1203M 94M 1.66 - - - - 2.56 1.73 1.67

Table 1: Comparison of the degree-based partitioning technique to the state-of-the-art multi-
level partitioners Mt-KaHyPar [30], KaFFPa [61], Metis [38], ParMetis [41], KaM-
inPar [26], Mt-KaHIP [2] and ParHIP [52]. For each instance, the table contains
the number of nodes, the number of edges and the number of cut edges produced
by the degree-based partitioning technique for k = 2. The remaining columns show
the number of cut edges produced by the other evaluated algorithms relative to the
degree-based cut.

As the importance of social network graphs in applications is increasing, developing solutions
to efficiently handle such instances is of outmost interest. In this work, we thus consider
the star partitioning problem, i.e., graph partitioning restricted to star graphs. This includes
both a theoretical analysis of star instances as well as the construction of algorithms for star
partitioning.

1.1. Problem Statement

In this thesis we explore possibilities to augment graph partitioning algorithms such that they
achieve better results on star graphs. The first task is to investigate whether a theoretical model
of such instances allows to develop approximation algorithms with better guarantees than for
general graph partitioning.

Then, it should be analyzed why current state-of-the-art partitioning algorithms compute
solutions far from optimal on star graphs. For this, the phases of the multilevel paradigm
should be revisited and possibilities for adapting them to star graphs should be explored. The
work should be integrated into the graph and hypergraph partitioning framework Mt-KaHyPar
(Multi-threaded Karlsruhe Hypergraph Partitioning). The goal is to achieve significantly im-
proved quality on star instances without decreasing the quality on other instances more than
necessary.

8



1.2 Contribution

Figure 1: Visualization of the wiki-Vote instance.

1.2. Contribution

We develop a formal definition of star instances and provide a reduction of star partitioning to
the fixed core partitioning problem. We show that several variants of this problem are NP-hard.
However, our main contribution is an (R + 1)-approximation for fixed core partitioning, where
R is the approximation ratio of an algorithm for the min-knapsack problem.

One of the main shortcomings of existing multilevel algorithms is that peripheral nodes are
contracted onto core nodes in the coarsening phase. Due to the increased node weight, this
forces initial partitioning to separate the core in multiple blocks and thus induce a large cut. In
our practical implementation, we therefore develop several strategies to detect peripheral nodes
and then apply different coarsening strategies to core and peripheral nodes. For the latter, we
develop specialized two-hop coarsening techniques where contraction partners are not required
to be adjacent. Further, we show that on star-like instances the quality of the initial partitions
can be significantly improved using our algorithm for fixed core partitioning.

To evaluate these techniques, we integrate our algorithms into the shared-memory (hyper-)graph
partitioning framework Mt-KaHyPar. We compare our new star partitioning approach to
Mt-KaHyPar on a large and diverse benchmark set. The results show that we can improve
the quality on star-like instances significantly compared to the state-of-the-art. On 40% of the
star instances, we achieve an improvement of more than a factor of two, and up to a factor
of ten for some of the instances. Since these techniques provide worse results for some of the
other instances, we additionally develop an algorithm portfolio and use effectiveness tests to
show that the portfolio achieves high quality.

9



1 Introduction

1.3. Outline

We introduce the required notation and basic definitions in Section 2. In Section 3 we give a
summary of related work in the area. We analyze approximation algorithms for star instances
within a theoretical framework that is developed in Section 4. Then, we describe different
possible strategies for the detection of peripheral nodes and the integration into the multilevel
paradigm in Section 5. We present the experimental evaluation in Section 6 and summarize
the most important findings and directions for future work in Section 7.

10



2 Preliminaries

2. Preliminaries

2.1. Graphs
Definition 2.1 (Graph). An undirected weighted graph G = (V, E, c, ω) consists of a set of
nodes V with a weight function c : V → R≥0 and a set of edges E with a weight function
ω : E → R>0. Each edge e ∈ E is a subset of the nodes with size 2.

Given two nodes u and v ∈ V , we define ω(u, v) := ω({u, v}) if {u, v} ∈ E and ω(u, v) := 0 if
{u, v} /∈ E. A node v is incident to an edge e if v ∈ e and V ′ ⊆ V is incident to e if e∩V ′ 6= ∅.
I(v) denotes the set of all incident edges of v and d(v) := |I(v)| the degree of v. Two nodes u
and v are adjacent if there is an edge e = {u, v}.
For subsets V ′ ⊆ V and E ′ ⊆ E we define

c(V ′) :=
∑

v∈V ′
c(v)

ω(E ′) :=
∑

e∈E′
ω(e)

2.2. Graph Partitioning
Definition 2.2 (k-way partition). A k-way partition of a graph G is a partition of its nodes
into k disjoint blocks Π = {V1, . . . , Vk} such that ⋃k

i=1 Vi = V and Vi 6= ∅ for i = 1, . . . , k.

Note that a 2-way partition is also called a bipartition. A k-way partition Π = {V1, . . . , Vk} is
ε-balanced if every block Vi ∈ Π satisfies the balance constraint c(Vi) ≤ Lmax := (1 + ε)

⌈
c(V )

k

⌉
for some parameter ε. An edge e is cut if there are two different blocks Vi, Vj that are both
incident to e. The set of all cut edges is denoted by E(Π). We define the cut of a partition as
cut(Π) := ∑

e∈E(Π) ω(e).

Definition 2.3 (Graph Partitioning Problem). The k-way graph partitioning problem is to find
an ε-balanced k-way partition Π of a graph G with minimal cut.

Sometimes, it is useful to consider partitions of a subset of nodes. We call a k-way partition Ψ =
{P1, . . . , Pk} of a subset P ⊆ V a prepacking. Further, for a given partition Π = {V1, . . . , Vk}
we denote by Π[P ] := {V1 ∩ P, . . . , Vk ∩ P} the restriction of Π to P .

2.3. Hypergraphs
Hypergraphs are a generalization of graphs where an edge can consist of more than two nodes.

Definition 2.4 (Hypergraph). An undirected weighted hypergraph H = (V, E, c, ω) consists of
a set of hypernodes V with a weight function c : V → R≥0 and a set of hyperedges E with a
weight function ω : E → R>0. Each hyperedge e ∈ E is a non-empty subset of the hypernodes.

A hypernode contained in a hyperedge is called a pin of the hyperedge. The size of a hyperedge
e is its cardinality |e|. Incidence and adjacency are defined analogous to graphs. For subsets
V ′ ⊆ V and E ′ ⊆ E we define

c(V ′) :=
∑

v∈V ′
c(v)

ω(E ′) :=
∑

e∈E′
ω(e)

11



2 Preliminaries

2.4. Hypergraph Partitioning

Definition 2.5 (k-way partition). A k-way partition of a hypergraph H is a partition of its
hypernode set into k disjoint blocks Π = {V1, . . . , Vk} such that ⋃k

i=1 Vi = V and Vi 6= ∅ for
i = 1, . . . , k.

The connectivity set of a hyperedge e is denoted by Λ(e, Π) := {Vi ∈ Π | e ∩ Vi 6= ∅} and the
connectivity by λ(e, Π) := |Λ(e, Π)|. e is cut if λ(e, Π) > 1. The set of all cut hyperedges is
denoted by E(Π) := {e ∈ E | λ(e, Π) > 1}.
Using this, the hypergraph partitioning problem is defined analogous to the graph partitioning
problem. However, different objective functions are used in hypergraph partitioning. The
cut-net metric is defined as

cut(Π) :=
∑

e∈E(Π)
ω(e)

Another important objective function is the (λ - 1)-metric or connectivity metric:

(λ− 1)(Π) :=
∑
e∈E

(λ(e, Π)− 1)ω(e)

2.5. Knapsack Problems

Many different types of knapsack problems can be found in literature. Classical variants consist
of a set J of elements together with a weight function c : J → R≥0, a gain function ω : J → R≥0.
For a subset J ′ ⊆ J we denote the weight of J ′ by c(J ′) := ∑

u∈J ′ c(u) and the gain of J ′ by
ω(J ′) := ∑

u∈J ′ ω(u).

Definition 2.6 (0-1 Knapsack Problem). For a set of elements J and a given maximum weight
cmax, the 0-1 (max-)knapsack problem is to find a subset S ⊆ J such that c(S) ≤ cmax and the
gain ω(S) is maximized.

Definition 2.7 (0-1 Min-Knapsack Problem). For a set of elements J and a given minimum
weight cmin, the 0-1 min-knapsack problem is to find a subset S ⊆ J such that c(S) ≥ cmin and
the gain ω(S) is minimized.

The max and the min variant of the knapsack problem are closely related: For a given instance
of the max-knapsack problem, there is a complementary instance of the min-knapsack problem
with cmin := c(J) − cmax. If S ⊆ J is a solution of the former, then J \ S is a solution of the
latter. Informally, the max-knapsack problem maximizes the gain of elements placed within a
bin, while the complementary min-knapsack problem minimizes the gain of the elements outside
of the bin. Clearly, for both variants the decision problem, which is known to be NP-complete,
is equivalent. However, the effectiveness of approximation algorithms is generally different for
both variants.
For a given algorithm A and instance J , we denote by A(J) the value of the solution calculated
byA for this instance and by OPT (J) the optimal value. Then we can define the approximation
ratio of A as

Rmax := sup
J

{
OPT (J)
A(J)

}
(1) Rmin := sup

J

{
A(J)

OPT (J)

}
(2)

where the ratio is given by (1) for the maximization variant and by (2) for the minimization
variant.

12



2.6 Weighted Bipartite Matching Problem

2.6. Weighted Bipartite Matching Problem

A matching in a graph G is a subset of edges M ⊆ E such that each node is incident to at most
one edge in M . We say that G is a bipartite graph with parts T and U if {T, U} is a bipartition
of G such that every edge e ∈ E is incident to both T and U . G is a complete bipartite graph
if every node in T is adjacent to every node in U . A matching M in G is called perfect if
|M | = |T | = |U |. The weighted bipartite matching problem is about finding a matching in a
bipartite graph with (depending on the variant) minimal or maximal weight.

Definition 2.8 (Minimum Weighted Bipartite Matching). Given a bipartite graph G with parts
T , U of equal size and edge weights ω, the minimum weighted bipartite matching problem is to
find a perfect matching M in G that minimizes ω(M).

Definition 2.9 (Maximum Weighted Bipartite Matching). Given a bipartite graph G with edge
weights ω, the maximum weighted bipartite matching problem is to find a matching M in G
that maximizes ω(M).

Note that in literature, the weighted bipartite matching problem is also called the assignment
problem.

2.7. Partition Problem

Definition 2.10 (Partition Problem). Given a set of natural numbers S with total sum t :=∑
a∈S a, the partition problem is to find a subset T ⊆ S such that ∑a∈T a = t

2 .

The partition problem is NP-complete. As it is very simple to describe, it is useful for proving
that new problems are NP-hard. Note that there is also an optimization variant where the
objective function is to minimize the difference of the total sums of T and S\T . Unsurprisingly,
there are efficient heuristics as well as pseudo-polynomial-time algorithms for the partition
problem [45].

13



3 Related Work

3. Related Work

Graph partitioning is NP-hard [23] and it is even NP-hard to find constant factor approxima-
tions [10]. Therefore, heuristics are used in practice for large instances. We give a summary
of the most successful approaches in this section. The results of this thesis are implemented
within the graph and hypergraph partitioning framework Mt-KaHyPar. For this reason, we
provide an overview of the implementation of Mt-KaHyPar in Section 3.2. In addition, we
summarize existing literature on the knapsack and weighted bipartite matching problems since
we use these problems in this thesis. Note that some of the following descriptions are copied
verbatim from the author’s bachelor thesis [50].

3.1. Multilevel Graph Partitioning

The most successful approach for solving the graph partitioning problem is the multilevel
paradigm [30, 61, 62]. There are two main variants of the paradigm: In direct k-way parti-
tioning, the algorithm has three phases (see Figure 2). First, the graph is coarsened, i.e. a
matching or clustering algorithm is used to compute node sets that are contracted. This pro-
cess is repeated until the graph has a predefined size, while still reflecting the basic structure of
the input graph. The coarsening thereby constructs a hierarchy of multiple levels correspond-
ing to graphs with decreasing size. Then, an initial partitioning algorithm calculates a k-way
partition of the coarsest graph. Due to the smaller size, the use of expensive algorithms for
the partitioning is possible. During the refinement phase, the partition is projected back to
the original graph in reverse order of the contractions. At every level, refinement heuristics
are used to further improve the quality of the solution. The most common technique is the
Fiduccia-Mattheyses (FM) algorithm [19] which is based on local search.
In the recursive bipartitioning variant of the paradigm, the algorithm calculates a bipartition
of the original graph within the same three phases. Then, the algorithm is recursively applied
to each of the two blocks to obtain the final k-way partition.
Main advantages of the multilevel paradigm are that it allows for expensive initial partitioning
algorithms that operate globally while preserving near-linear computation time through the
coarsening of the graph, and that the refinement algorithms can escape local minima at the
coarser levels while also improving the solution in detail at the finer levels.

Coarsening Algorithms. We provide more details on existing work regarding the coarsening
phase, which is of particular importance for this thesis (see also Ref. [30]). Early multilevel
algorithms primarily used matching-based coarsening schemes [40], contracting pairs of nodes
in every coarsening step. These algorithms work well for graphs with a regular structure, e.g.,
finite element meshes. However, graphs with a power-law node degree distribution are difficult
to coarsen with matching-based approaches: Since many low-degree nodes are adjacent to few
high-degree nodes, matchings tend to be small [1]. Therefore, many recent partitioning algo-
rithms use clustering-based coarsening schemes instead [30], grouping sets of densely connected
nodes and subsequently contracting them into a single node. Here, high-degree nodes are likely
to become heavy nodes in the coarsest graph, which can make it difficult to find a feasible
initial partition [53]. Thus, it is common to enforce a constraint on the weight of the heaviest
cluster [53, 63] or penalize the contraction of heavy nodes [12, 60].
As an alternative to clustering-based methods, LaSalle et al. proposed to complement tradi-
tional matching algorithms with a second two-hop matching pass [47]. Here, the constraint that
matched vertices must be connected via an edge is relaxed. Instead, vertices can be matched
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Figure 2: Graph partitioning with the multilevel paradigm

if they have a common neighbor. The authors propose to first aggregate degree one nodes
and in a second step nodes with identical neighbor lists. Only if the resulting matching is not
sufficiently large, any nodes with a common neighbor are matched [47].

3.2. The Mt-KaHyPar Partitioning Framework

Mt-KaHyPar is a scalable multilevel graph and hypergraph partitioner that supports multiple
configurations with different trade-offs between quality and running time [27, 28, 30]: Tradi-
tional multilevel partitioning as well as a fine grained n-level approach that removes only one
node for every level of the coarsening hierarchy. Further, there are configurations that are
specialized to provide better running time for graph partitioning than the more generalized hy-
pergraph partitioning algorithm. Mt-KaHyPar is capable of finding high quality solutions with
better running time than most competitors and high scalability [30]. Our work is integrated
into the direct k-way mode of the multilevel graph partitioner, which we thus describe in more
detail. Note that the following algorithms are implemented in a highly scalable way, for details
on this we refer to [27, 30].
Mt-KaHyPar adds an initial preprocessing phase to the three phases of the multilevel paradigm.
Here, a community detection algorithm is applied [8, 27, 32]. This allows to use information
about the global structure in the coarsening phase by restricting contractions to the detected
communities. Contraction pairs are chosen using the heavy-edge rating function r(u, v) :=∑

e∈I(u)∩I(v)
ω(e)
|e|−1 . The coarsening algorithm works in passes, choosing per pass a contraction

partner for each node according to the heavy-edge rating function. The passes are repeated
until only t = 160k nodes remain. To avoid imbalanced inputs to the initial partitioning phase,
vertices that reach a certain weight threshold are not contracted further [27].
Even in direct k-way mode, the initial partitioning phase uses a recursive bipartitioning algo-
rithm internally, as this produced better results compared to flat approaches [27, 63]. In every
recursive step, a bipartition of the current subgraph is calculated in the following way: The
graph is coarsened further until it reaches a size of 320 nodes. Then, a bipartition is calculated
using a portfolio of different partitioning algorithms and selecting a balanced result with the
best objective function [27]. The resulting partition is uncoarsened using a label propagation
algorithm and a 2-way FM local search algorithm.
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To ensure that the resulting partition is balanced Mt-KaHyPar uses an adaptive imbalance
parameter for the bipartitioning steps which is defined as follows: Let GVi

be the current
subgraph for which a k′-way partition should be calculated. Then

ε′ :=
(

(1 + ε)c(V )
k
· k′

c(Vi)

) 1⌈
log2(k′)

⌉
− 1 (3)

is used as an imbalance parameter for the bipartition of Vi [30].
In the refinement phase, the resulting k-way partition is uncoarsened while optimizing the ob-
jective function via a label propagation algorithm and a k-way local search. The FM local
search algorithm maintains a thread-local priority queue for each block of the partition accord-
ing to the gain of a node and updates the gains of all nodes adjacent to a move with a delta-gain
update strategy. To improve the running time a sophisticated gain cache is used that prevents
expensive recalculations and an adaptive stopping rule which terminates the local search when
a further improvement becomes unlikely [3, 27]. In addition, Mt-KaHyPar allows to add a
flow-based refinement algorithm which is based on the FlowCutter algorithm [25, 29]. It works
on block pairs and can improve them in a more global manner than local search algorithms [30].

3.3. Knapsack Problems

A large number of variants of the knapsack problem can be found in literature, ranging from
the basic 0-1 knapsack problem to variants with constraints on the choice of elements [64] or
multiple dimensions that can be used for assigning elements [4, 58]. However, in this thesis we
only directly use the basic maximization and minimization variants.

Max-Knapsack. Having many practical applications [68], the 0-1 max-knapsack problem is
well researched. While it is known to be NP-complete, there are multiple ways to find efficient
approximations. Dantzig proposed a simple greedy algorithm [16]: It sorts the elements in
decreasing order of their gain per weight ratio, ignoring any element that already exceeds the
maximum weight. Then, two solutions S1, S2 are considered, returning the better one: S1 is
constructed by greedily packing the first elements until no new element fits, S2 contains only
the first element that is not part of S1. It can be shown that this achieves an approximation
ratio of 2.
Furthermore, the 0-1 knapsack problem can be solved in pseudo-polynomial time using dynamic
programming [56]. For an arbitrary order of the elements, let f(i, c) be the maximum possible
gain using only the first i elements with weight at most c. Let u be the element at position
i + 1. Then, we can use the relation f(i + 1, c) = max{f(i, c), f(i, c− c(u)) + ω(u)} to build a
tabular that results in the optimal solution, requiring a running time of O(ncmax) where cmax

is the maximum allowed weight. A very similar approach can be applied to build a tabular
based on the gain instead of the weight of the elements (a tabular entry then contains the
minimum possible weight for the given gain). This gives a running time of O(nP ) where P is
the maximum possible gain.
The dynamic programming approach outlined previously can also be used to construct an
FPTAS [56]. The idea is to round all involved gains to an integer value bound by a polynomial
(more precisely, each gain is divided by εωmax

n
, where 1 + ε is the approximation factor and

ωmax the maximum gain of an element). The transformed instance can be solved in polynomial
time with the described dynamic programming algorithm. It can be shown that this results in
the stated approximation factor with a running time of O(1

ε
n3).
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It should be noted that the approaches based on dynamic programming are not always practical
due to the high memory requirements. A possible alternative is to use branch-and-bound
algorithms. Although they often have an exponential worst-case running time, they can be
faster in practice on many instances. An example of a branch-and-bound algorithm that works
well in practice is proposed by Horowitz and Sahni [34]. Specifically, it selects the next branch
greedily in order to explore the most promising solution candidates first. A general survey of
knapsack problems that includes multiple generalized variants and discusses different solution
approaches is given by Wilbaut, Hanafi and Salhi [68].

Min-Knapsack. Although the min-knapsack problem is closely related to the classical max-
knapsack problem, it is curiously underrepresented in literature: To the best of our knowledge,
there are only two existing publications that are focused specifically on this subject, Ref. [15]
and Ref. [35]. However, it seems that the min-knapsack problems can be solved with techniques
that are generally similar to the ones used for the maximization variant. Csirik et al. present an
approximation algorithm called GR with approximation factor 2 that runs in linear time after
sorting the elements [15]. As we will use this algorithm later on, we provide a more detailed
description in the following: Consider a sequence J = {e1, . . . , en} of the elements sorted in
increasing order of the gain per weight ratio ω(ei)

c(ei) and a given minimal weight cmin. We build a
set M ⊆ J with c(M) < cmin by iterating over all elements, adding the current element if this
does not exceed cmin. Let N := J \M . For each ei ∈ N , we consider the candidate solution
Si := (M ∩ {e1, . . . , ei}) ∪ {ei} (note that c(Si) ≥ cmin by construction of M) and choose the
solution with minimal gain. Clearly, if the elements are already sorted the algorithm can be
implemented in linear time by tracking the current gain of S and storing only the index of the
current minimal solution in addition to S.
While the authors give a proof for the approximation factor [15], we want to remark that the
proof is rather hard to follow. We therefore provide a simplified version in the following.

Lemma 3.1. The GR algorithm achieves an approximation ratio of 2.

Proof. Consider an optimal solution L ⊆ J . Let t be the smallest index with et ∈ L ∩ N
(exists as c(M) < cmin implies L * M) and let St = (M ∩ {e1, . . . , et})∪ {et} be the according
candidate solution. We define L := L \ {et} and St := St \ {et}. Because t is chosen minimal,
for each element ei ∈ L it holds that either i > t or ei ∈ St. Therefore, we can use the order of
the elements to retrieve the inequalities

ω(St \ L)
c(St \ L)

≤ ω(L \ St)
c(L \ St)

(4) ω(St \ L)
c(St \ L)

≤ ω(et)
c(et)

(5)

Further, c(St) < cmin ≤ c(L) = c(L) + c(et). By subtracting c(St ∩ L) this implies c(St \ L) ≤
c(L \ St) + c(et). We can conclude

ω(St) = ω(St ∩ L) + ω(St \ L) ≤ ω(St ∩ L) + ω(St \ L)
c(St \ L)

(
c(L \ St) + c(et)

)
≤(4),(5) ω(St ∩ L) + ω(L \ St) + ω(et) = ω(L)

and thus ω(St) = ω(St) + ω(et) ≤ ω(L) + ω(et) ≤ 2ω(L).

In addition, the authors construct another approximation algorithm GR∗ with running time
O(n2) and approximation ratio 3/2 that is based on the GR algorithm [15]. GR∗ works by
constructing a new knapsack (sub-)instance for each ei ∈ N and applying GR to it, adding ei
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to the calculated solution. Effectively, this means that ei is a fixed part of that solution. Again,
the final result is the best of all considered solutions.
In his master thesis, Islam showed that an FPTAS for min-knapsack can be constructed using a
very similar approach to the FPTAS for max-knapsack [35]. However, in this case it is necessary
to calculate a separate solution for n subproblems, resulting in a total running time of O(1

ε
n4)

for an approximation ratio of 1 + ε. Further, he showed that dynamic programming is also
applicable to a multi-dimensional variant of the problem.

3.4. Weighted Bipartite Matching

We have defined the weighted bipartite matching problem as finding a minimum weight perfect
matching in a bipartite graph G (see Section 2.6). However, it was originally formulated in
terms of a quadratic cost matrix, where an entry aij represents the costs of assigning row i
to column j. This is mostly equivalent, except that the graph formulation allows for missing
edges. The probably best-known algorithm for finding a weighted bipartite matching is the
so-called Hungarian method, which was first published by Kuhn [46], using the aforementioned
matrix formulation.
The Hungarian method assigns to each node u a potential p(u) with the property that p(u) +
p(v) ≤ ω({u, v}) for every edge {u, v}. Let us call an edge with p(u) + p(v) = ω({u, v}) tight.
The maximum possible value of a potential p is equal to the minimum weight of a perfect
matching (and induces such a matching as a subset of all tight edges). On a high level, the
Hungarian method works by updating the potential until this equality is achieved.
In terms of linear programming, every perfect matching is a primal solution that provides an
upper bound for the minimum weight, while the potential is a dual solution that provides a
lower bound. The Hungarian method is therefore a primal-dual method.
An outline of the calculations that are actually required looks as follows: We first need an
initial value for p which is achieved by using the minimum incident edge weight for each node
(subtracting the potential of the second incident node, if it is already assigned). In each step, we
consider the subgraph Gp that contains only tight edges. To correctly update the potential, we
calculate a minimum vertex cover C of Gp, which can be derived from a maximum cardinality
matching in Gp. The potential is updated by the value δ := min{u,v} not incident to C ω({u, v}). In
the first part of G, we add δ to the potential of all nodes that are not in C, in the second part
of G we subtract δ from all nodes that are contained in C. Due to the definition of δ, this will
increase the size of Gp (at least one edge that is not covered by C is added).
It is possible to implement the Hungarian method with a running time ofO(n3) by maintaining a
tree that consists of tight and non-tight edges in alternating order, allowing to efficiently update
the matching via augmenting paths. We refer to [11] for a more detailed explanation.
An alternative, but similar approach to finding a minimum weighted bipartite matching is using
shortest augmenting paths [11]. Here, the same node potential p is used, but the update for
each step is calculated via a shortest path algorithm. Using e.g. Dijkstra with Fibonacci heaps,
this approach also achieves a running time of O(n3).
Note that as currently described, these approaches can only solve the minimization variant
of the weighted bipartite matching problem where both parts of G need to be of equal size.
However, the maximization variant can be reduced to the minimization variant by first adding
dummy vertices to the smaller part with incident edges of weight zero and then reversing the
edge weights, i.e. using ω′(e) := ωmax − ω(e) where ωmax is the maximum edge weight in G.
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Figure 3: Example of splitting the core of a graph. The core C is a clique of size 6. Dividing
the core in two halves results in a cut with value 9, while separating the peripheral
nodes from the core yields a better cut with value 6.

4. The Star Partitioning Optimization Problem

Finding a constant factor approximation for the graph partitioning problem is an NP-hard
problem [10]. Since real world instances are too large for exact solvers, we need to use heuristic
approaches in practice. Specifically, this means that for most instances, we do not know how
large the difference between an existing solution and the optimal solution is. To find possibilities
for improvement for a given algorithm, we thus need to rely on experimental evaluation, e.g.,
by comparison to other algorithms. However, it can also happen that for a specific instance, a
better solution is discovered through alternative means.
This is the case for a set of instances which we describe in the experimental evaluation – which
is the primary motivation for this thesis. On these instances, we found that an astonishingly
simple and unorthhodox approach can find substantially better partitions than the currently
best partitioning algorithms. For example, we can find a bipartition on the Twitter graph – a
graph with over 1 billion edges - that cuts only half as many edges as any multilevel algorithm.
This works as follows: We sort all nodes by degree. Then, we assign the half of the nodes
that has higher degree to the first block and the remaining nodes to the second block. Clearly,
this behavior is very surprising, as this approach does not optimize the objective function in
the general case. Thus, there needs to be a very specific structure which causes the observed
behavior.
The Twitter graph is a social network with a highly skewed node degree distribution, similar to
the degree distribution of other instances with the same behavior. Also, we visualized some of
the smaller instances (see Appendix A). The visualization leads us to the conclusion that the
single most distinguishing feature of these instances is the following: We can group the nodes
into two categories, which both include a significant portion of the total number of nodes: a
dense core that consists of highly interconnected nodes with relatively high node degrees and
peripheral nodes with low node degrees that are mostly connected to the nodes in the core.
Bipartitioning the nodes based on their degree then has the effect that the core is placed in one
block, while (most of) the peripheral nodes are in the second block. Potentially, this results in
a much smaller cut than dividing the core itself, which is done by most multilevel algorithms
(see next paragraph). We can demonstrate this with a small example, as depicted in Figure 3:
Let us consider a graph which consists of a clique C with size s – the core – and s peripheral
nodes with degree one, such that each peripheral node is adjacent to exactly one node in C.
Then, the partition {C, V \ C} has cut s. On the other hand, a partition where both blocks
contain half of C has cut ( s

2)2 = 1
4s2. While this example is rather idealized, it demonstrates
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that separating the core and the peripheral nodes might be a good idea to achieve a small cut
– which also holds for larger k, although to a somewhat lesser degree.

Problems with Multilevel Partitioning. The root cause for the poor results of multilevel
algorithms for these instances can be found in the coarsening phase: Commonly used coarsening
algorithms use heuristics that select adjacent nodes as contraction partners [13, 27, 61]. Because
peripheral nodes are typically only adjacent to core nodes, it is very likely that most of the
peripheral nodes are contracted onto the core. As there are more peripheral nodes than core
nodes in graphs with highly skewed degree distribution, this increases the weight of the core
substantially until the balance constraint forces the partitioning algorithm to cut the core.
Considering this, it is not surprising anymore that sorting the nodes by degree leads to better
partitioning results for these instances.
Note that these properties are of global nature – it is not possible to decide whether separating
core and peripheral nodes is beneficial for an analysis that considers only the local neighborhood
of a node. This is because it depends on the density of the core as a whole whether it makes
sense to partition the core or not. Consequently, we will see that it is challenging to construct
a partitioner that efficiently exploits such structure in practice. We present several heuristics
for detecting this structure in Section 5.1.
To improve on the current state, the obvious first step is to avoid this pitfall, i.e., peripheral
nodes should not be contracted onto the core. In contrary, contractions within the core itself
are unproblematic, as they do not destroy the global structure of the graph. If we apply this
idea directly to the coarsening phase by excluding peripheral nodes from contractions, it results
in a graph where only the core is contracted, i.e., there are very few nodes with a large node
weight and high degree in the core as well as a large number of peripheral nodes that have
small weight and low degree. Although this seems counterintuitive to the idea of multilevel
graph partitioning which assumes that the coarsened graph is of small size, it is actually a
useful model that allows to tackle the problem from a more theoretical point of view. In the
remainder of this section, we will formally define such instances and present several theoretical
results on solving such instances optimally. These results lay some of the groundwork for
designing practically applicable heuristics that can be integrated into the multilevel paradigm,
which we do in Section 5.

4.1. Problem Definition
In the following, we define the star partitioning problem as a special case of the graph partition-
ing problem. In essence, it describes a constraint on the structure of the considered instances.
Note that the following two definitions also apply to weighted graphs, but for simplicity we
focus on unweighted graphs.

Definition 4.1 (Peripheral and Core Nodes). Let G = (V, E) be an undirected graph. We call
a subset of nodes P ⊆ V peripheral if the subgraph induced by P contains no edges (i.e., if it is
an independent set in G). We call C := V \ P the core of G for a given set of peripheral nodes
P .

The instances we want to consider are defined by a relatively large set of peripheral nodes, i.e.,
there is a large subset of nodes without any internal edges. Formally, we require the core of
the graph to have a much smaller size than the total number of nodes.

Definition 4.2 (α-Star Graph). We call a graph G = (V, E) with peripheral nodes P an α-star
graph if |C| ≤ α for the core C.
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C P

Figure 4: Illustration of the structure of a star graph. The left side depicts the original instance
with the peripheral nodes P in green and the core C in orange. The right side depicts
the result of contracting the core, resulting in a star.

Because we assume that α is small, we additionally use the term star graph to denote an α-star
graph with small α. Intuitively, we can visualize a star graph as a dense core of highly connected
nodes that is surrounded by peripheral nodes, as depicted in Figure 4 (note that in general the
core could contain multiple components). From a high level perspective, the topology of the
graph is star-like. More precisely, if we contract the core into a single node, the resulting graph
is actually a star – hence the name star partitioning.
Recall, the graph partitioning problem is to find an ε-balanced k-way partition of G with
minimal cut (see Definition 2.2). Star partitioning simply means solving the graph partitioning
problem on star graphs. As we will see, for star graphs we can construct algorithms that have
strong approximation guarantees with polynomial running time – which is not possible in the
general case [10].

Fixed Parameter Tractability. To make use of the properties of an α-star graph, we formally
allow the considered algorithms to have a running time that is fixed-parameter tractable with
regards to α, i.e., a running time in O(f(α)(|V | + |E|)O(1)) for a computable function f , and
we require that the number of blocks k is at most α. With this, we can use a simple general
strategy: We consider every possible k-way partition of C in a brute-force way. As there are
αk ∈ O(αα) possibilities, this yields an FPT algorithm if we have an efficient procedure for
assigning the peripheral nodes. For such a partition C1, . . . , Ck, we then use a specialized
algorithm to partition P into P1, . . . , Pk, yielding a partition Π = {C1 ∪ P1, . . . , Ck ∪ Pk} of
G. Out of all considered partitions, we choose the partition Π with minimal cut as result.
Therefore, we can reduce the problem to finding a partition of P where the partition of C
is already fixed (we present a proof after the formal definition). This strategy of testing all
possibilities is applicable for all following results, thus we define it once so that we do not need
to repeat it for every algorithm.

Definition 4.3 (Fixed Core Partitioning, preliminary). Given a set of peripheral nodes P of a
weighted graph G := (V, E, c, ω) and a k-way partition ΠC := {C1, . . . , Ck} of its core C = V \P .
The fixed core partitioning problem is to find a k-way partition ΠP := {P1, . . . , Pk} of P such
that c(Cj ∪ Pj) ≤ Lmax for all 1 ≤ j ≤ k and δ(ΠP ) := ∑k

j=1 ω(P \ Pj, Cj) is minimized.

The definition of the fixed core partitioning problem reveals that some of the structure of G
is actually irrelevant for solving the problem. First, the total cut is defined by the incident
edge weights between the blocks of ΠC and the peripheral nodes – for a block Cj only the
total incident edge weight is important and not the number of edges. This means that for a
given node u ∈ V , we are only interested in ω(u, Cj) for j ≤ k. Second, since ΠC is fixed,
edges within the core C are not relevant for the objective function of the fixed core partitioning
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problem. Thus, we can remove them from the graph. Third, the remaining weight available
in each block is determined by ΠC and ε, i.e., c(Pj) ≤ Lmax − c(Cj). We can further simplify
and simultaneously generalize the definition by directly stating the allowed maximum block
weights instead of using the core nodes and ε. Taking all of this together, we can provide
an adjusted definition containing only the information that is actually relevant. Note that we
use similar notation to the graph partitioning formulation to indicate that these concepts are
directly derived from the previous definitions, albeit being formally different.

Definition 4.4 (k-way Fixed Core Partition). Given a set of elements P with associated weights
c : P → R≥0, a k-way fixed core partition is a partition ΠP = {P1, . . . , Pk} of P such that
c(Pj) := ∑

u∈Pj
c(u) ≤ cj for maximum allowed block weights c1, . . . , ck ∈ N and j ≤ k.

Definition 4.5 (Fixed Core Partitioning). Given k blocks with maximum allowed weights
c1, . . . , ck and a set of elements P with associated weight functions c : P → R≥0 and ω : P×[k]→
R≥0, the fixed core partitioning problem is to find a k-way fixed core partition ΠP = {P1, . . . , Pk}
that minimizes δ(ΠP ) := ∑k

j=1 ω(P \ Pj, j) (with ω(U, j) := ∑
u∈U ω(u, j) for U ⊆ P ).

With regards to terminology, we refer to the elements of P as nodes with a node and edge
weight function c and ω (even though it is not a graph). We say that u ∈ P has degree d if
ω(u, j) 6= 0 for d different blocks j ∈ {1, . . . , k}.
Note that for the decision problem, it is equivalent to maximize the incident weights per block∑k

j=1 ω(Pj, j). However, the two variants behave quite differently with regards to the possible
approximation guarantees. We focus on the minimization variant as this corresponds to the
optimization objective of graph partitioning.
It is clear that a star graph G with a set of peripheral nodes P and a partition ΠC = {C1, . . . , Ck}
of its core can be transformed into a fixed core partitioning instance: The instance with the
same nodes P and associated weight functions c and ω as already defined for the partitioning
instance and block weights cj := Lmax − c(Cj). A solution ΠP = {P1, . . . , Pk} for this instance
corresponds to a partition Π = {C1 ∪ P1, . . . , Ck ∪ Pk} of G and vice versa. Further, ω(Π) =
ω(ΠC) + δ(ΠP ). This is useful as the simplified structure of this problem variant also simplifies
its analysis.
If we have an approximation algorithm A for fixed core partitioning with approximation ratio
R and running time g(|P |, k), we can use the approach outlined above to construct an ap-
proximation algorithm A′ for star partitioning with approximation ratio R and running time
O(αkg(|P |, k)). We just solve the fixed core partitioning problem for every possible partition of
C. To see that the resulting approximation ratio is R, we consider an optimal solution ΠOP T .
Let ΠC := ΠOP T [C] be the according partition of C and let ΠA′ be the partition of G that is
calculated by A′ using the fixed core partitioning instance derived from ΠC . Then

ω(ΠA′) = ω(ΠC) + δ(ΠA′ [P ]) ≤ ω(ΠC) + R · δ(ΠOP T [P ]) ≤ R · ω(ΠOP T )

Having established this, in the following we will use star partitioning and fixed core partitioning
mostly interchangeable. Specifically, we implicitly describe approximation algorithms for star
partitioning by describing the fixed core partitioning algorithm.

4.2. Star Partitioning with Degree One Nodes
As a first step, let us consider some special cases that are relatively straightforward to analyze.
In the following, we assume that all peripheral nodes have degree one. Further, we say that an
instance has unit node weights if all nodes in P have weight one. We use this terminology in
the same way for star partitioning and fixed core partitioning.
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Lemma 4.6 (Degree One and Unit Node Weights). Given a fixed core partitioning instance
with maximum block weights c1, . . . , ck and nodes P with weight functions c : P → R≥0 and
ω : P × [k]→ R≥0 where all nodes have weight one (i.e., c ≡ 1) and at most degree one, we can
compute an optimal solution in O(|P | log |P |) time.

Proof. We first calculate for each block j the set Kj of nodes with non-zero edge weight to this
block in linear time. Note that because the degree is bounded by one, each node is contained
in at most one of the sets. Then we sort Kj with regards to ω and assign the cj nodes with
maximum edge weight to j. Remaining nodes are assigned to any block with free capacity
(assuming c(P ) ≤ ∑k

j=1 cj, otherwise the instance is infeasible).
Let Π := {P1, . . . , Pk} be the computed solution and Π′ = {P ′

1, . . . , P ′
k} any other solution.

Because we sorted by edge weight ω(Pj, j) ≥ ω(P ′
j , j) for all j and consequently δ(Π) ≤ δ(Π′).

While this version of fixed core partitioning is rather trivial to solve, it can still provide us
with some insights. Both restrictions strongly simplify the problem in different ways: The
restricted degree means that for each node there is only one block we need to consider as target
for the assignment. Thus each block can be optimized individually, without considering any
interactions between different blocks. On the other hand, the unit node weights allow us to
easily find the optimum for each block by sorting.
Note that using the same technique, we can solve a different version of the problem with unit
edge weights but arbitrary node weights. Instead of sorting the nodes of each block by their edge
weights, we sort in increasing order of node weights and assign the nodes greedily. However,
in contrast to the previous formulation, finding a feasible solution (that does not exceed the
maximum block weights) is hard in itself, thus rendering our algorithm insufficient. As shown
in the following, the reason is that finding a feasible solution amounts to solving a packing
problem.

Theorem 4.7. The fixed core partitioning problem (with arbitrary node weights and unit edge
weights) where all nodes have at most degree one is NP-hard. Moreover, it is NP-hard to decide
whether a feasible solution even exists.

Proof. We provide a reduction of the partition problem that asks for a partition of a set S of
natural numbers into two subsets S1 and S2 such that ∑a∈S1 a = ∑

b∈S2 b. Let S = {a1, . . . , an}
be an instance of the partition problem and let t = ∑

a∈S a be the sum of the elements (w.l.o.g.
is t even). We construct a fixed core partitioning instance with k = 2, block weights c1 = c2 = t

2
and nodes P = {p1, . . . , pn} with c(pi) := ai. Edges can be chosen arbitrarily.
As c(P ) = t, any feasible solution of this instance must assign a weight of t

2 to both blocks.
Therefore, a feasible solution {P1, P2} corresponds to a solution {ai | pi ∈ P1} of S and vice
versa.

Clearly, since it is NP-hard to determine whether a feasible solution exists, it is also impossible
to provide an approximation algorithm with any guarantee regarding the solution quality. How-
ever, apart from being not very interesting, this case is also not representative of applications
of the problem. The graph partitioning problem and hence the star partitioning problem in-
cludes the imbalance parameter ε that provides freedom to move nodes between blocks without
ensuring perfect balance. In addition, it is possible to find a good approximation of minimal
block weights, as this is equivalent to the job scheduling problem (which asks to distribute jobs
to a set of identical machines such that the maximum processing time is minimized) – each
block corresponds to a machine and each peripheral node corresponds to a job [31, 50].
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Figure 5: Example of reducing the partition problem to relaxed fixed core partitioning with
degree one. The left side depicts the instance of the partition problem, which is
reduced to the core partitioning instance in the center (note that for an optimal
solution, p̃ can only be assigned to block 1). The right side depicts a solution of the
core partitioning instance.

Therefore, we consider a simplified version of the problem where we can always find a balanced
solution. This is achieved by relaxing the maximum allowed block weights, as defined in the
following.

Definition 4.8 (Relaxed Star Partitioning). Let (G, P, k, ε′) be an instance of the star par-
titioning problem and let cmax = max{c(u) | u ∈ P} be the maximum weight of a peripheral
node. We call the instance relaxed, if ε′

⌈
c(V )

k

⌉
≥ cmax. Similarly, an instance of the fixed core

partitioning problem is relaxed if cj −
⌈

c(P )
k

⌉
≥ cmax for every block j.

Informally, it means that the maximum block weight maxj cj exceeds the average block weight
at least by cmax. Given any partition of the peripheral nodes, there is at least one block with
weight below

⌈
c(P )

k

⌉
to which the heaviest node can be assigned.

The relaxed problem with unit edge weights but arbitrary node weights can be solved optimally
with the greedy algorithm as described above. Nevertheless, the relaxed problem is still a hard
problem if we also allow arbitrary edge weights.

Theorem 4.9. The relaxed fixed core partitioning problem (with arbitrary node and edge
weights) where all nodes have at most degree one is NP-hard.

Proof. We use an approach similar to the reduction given in Theorem 4.7: Let S = {a1, . . . , an}
be an instance of the partition problem and let t = ∑

a∈S a. Note that we can w.l.o.g. assume
that the maximum weight of an element is at most t

2 (otherwise, the problem reduces to a trivial
no-instance). We define P = {p1, . . . , pn} with c(pi) := ai. Unlike before, we assign for each
node a single edge to the first block with weight equal to the node weight, i.e., ω(pi, 1) := ai.
Further, we add a dummy element p̃ with c(p̃) := t

2 and one edge ω(p̃, 1) := t. We use k = 3
and for each block we set the maximum weight to t. The instance is considered a yes-instance
exactly if there is a partition ΠP with δ(ΠP ) ≤ t

2 . An illustration of the reduction is given in
Figure 5.
Note that with c(P ) = 3t

2 , the instance is relaxed since cj −
⌈

c(P )
k

⌉
= t− t

2 = t
2 = cmax for every

j. To prove correctness, let us first consider a yes-instance of the fixed core partition problem
with a solution ΠP = {P1, P2, P3}. It holds that p̃ ∈ P1, as otherwise δ(ΠP ) ≥ t. Further,
c1 = t and c(P ) = 3t

2 implies that c(P \ P1) ≥ c(P ) − c1 = t
2 . On the other hand, because of

c(pi) = ω(pi, 1) we have c(P \ P1) = ω(P \ P1, 1) = δ(ΠP ) ≤ t
2 . Thus c(P \ P1) = t

2 , which
means that P \ P1 implies a solution of the partition problem instance.
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4.2 Star Partitioning with Degree One Nodes

For the reverse direction, let S1 ⊆ S be a solution of the partition problem instance. We can
choose P1 := {p̃}∪{pi | ai ∈ S1} and observe that because the sum of S1 is t

2 , we have c(P1) = t
and ω(P \ P1, 1) = t

2 , i.e., P1 induces a partition of P with value t
2 .

Note that we need a dummy element for the reduction because the highest number in S could
have value t

2 . In this case, we would need to choose a maximum block weight larger than t
2 for

each block which would not allow to enforce a partition with block weight equal to t
2 .

If we compare Theorem 4.7 and Theorem 4.9, it is important to notice that while both state-
ments show that the problems are NP-hard, the structure of the proofs reveals one major
difference: In the former, the difficulty is in finding a feasible solution. In the relaxed case, a
feasible solution is trivial to find, but it is hard to find an optimal solution. More precisely,
the difficulty is to select for each block a subset of nodes where the edge weights connected
to this block are maximized. This is basically a knapsack problem – and as we show in the
following, solving the relaxed problem variant with degree one is mostly equivalent to solving
this knapsack problem.
But first, let us observe one more useful property of the relaxed problem variant: If ΠP =
{P1, . . . , Pk} is a partial partition respecting the maximum block weights, we can calculate a
feasible partition Π′

P = {P ′
1, . . . , P ′

k} of P with Pj ⊆ P ′
j for all j by iteratively assigning each

node in P \ ⋃k
j=1 Pj to a block with sufficient allowed weight. Therefore, it is valid to specify

an approximation algorithm without precisely defining how to handle unassigned nodes. This
allows us to focus the description of an algorithm on the essential part.

Theorem 4.10. Let A be an approximation algorithm for the min-knapsack problem with ap-
proximation ratio R and running time g(n). Then, we can construct an approximation algorithm
A′ for relaxed fixed core partitioning where all nodes have at most degree one with approxima-
tion ratio R and a running time of O(k ·g(|P |)+ |P |). If g is convex, the running time is bound
by O(g(|P |)).

Proof. First, we calculate for each block j the set Kj := {u ∈ P | ω(u, j) > 0} of candidates
that might be assigned to block j in linear time. Note that the Kj are disjoint as the node
degrees are bound by one. For each j we consider the min-knapsack instance with elements Kj,
where the weight of an element u is c(u) and the gain is ω(u, j). The minimum required weight
for the instance is wj := c(Kj)− cj. Let A(Kj, wj) be the solution calculated by A. We define
Pj := Kj \ A(Kj, wj) and output ΠP := {P1, . . . , Pk}. Nodes not assigned by ΠP are assigned
to blocks with sufficient allowed weight (as explained above).
A(Kj, wj) ≥ wj implies c(Pj) ≤ c(Kj) − wj = cj by definition of wj, thus ΠP is a feasible
solution. Consider an optimal solution ΠOP T = {P ′

1, . . . , P ′
k}. Then, δ(ΠOP T ) = ∑k

j=1 ω(Kj \
P ′

j , j). Note that Kj \ P ′
j is a solution of the min-knapsack instance for block j. Using the

approximation ratio of A, we therefore get

δ(ΠP ) =
k∑

j=1
ω(Kj \ Pj, j) =

k∑
j=1

ω(A(Kj, wj), j) ≤
k∑

j=1
R · ω(Kj \ P ′

j , j) = R · δ(ΠOP T )

If g is convex, due to the Kj being disjoint the running time is O(|P |) + ∑k
j=1 g(|Kj|) ≤

O(|P |) + g(∑k
j=1 |Kj|) = O(|P |) + g(|P |) ∈ O(g(|P |)).

To provide some concrete examples using Theorem 4.10: We can achieve an approximation ratio
R = 2 with a running time of O(|P | log |P |) when using the GR algorithm or an approximation
ratio R = 3

2 with a running time of O(|P |2) when using the GR∗ algorithm.
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4 The Star Partitioning Optimization Problem

It is important to emphasize that the knapsack problem considered here is the inverted version
of the standard knapsack problem, which asks for a subset of elements that maximizes the gain
for a given maximum allowed weight. Instead, the 0-1 min-knapsack problem is the standard 0-1
knapsack problem with inverted optimization objective. The reason we need to use this variant
is that it matches the optimization objective for fixed core partitioning, which is formulated
in terms of minimizing the cut edges. If instead we consider fixed core partitioning with the
inverted objective (i.e., maximizing the block-internal edges) we can achieve a similar result to
Theorem 4.10 by using the standard knapsack problem.
We could also ask whether this is the best we can do, i.e., whether it is possible to achieve
a better approximation using an approach that does not rely on solving the min-knapsack
problem. At least for fixed core partitioning, the answer is no: Both problems are effectively
equivalent. We do not provide a detailed proof, as it is rather technical and not particularly
insightful. But the idea is to construct a reduction that works similar to the one described in
Lemma 4.6, which leads to a statement that is the inversion of Theorem 4.10: Any algorithm
that solves relaxed fixed core partitioning with degree one with approximation ratio R leads
to an algorithm that solves the min-knapsack problem with the same approximation ratio and
only constant running time overhead, provided the original algorithm has polynomial running
time.

4.3. Star Partitioning with Arbitrary Degree

In the following, we lift the degree-restriction used in the previous section and allow arbitrary
node degrees for peripheral nodes. As we will see, this makes it harder to provide good ap-
proximation guarantees for k ≥ 3. A good first step is to choose for a node u the block j that
maximizes ω(u, j), but it is obvious that this is not optimal.
In general, the structure of the problem resembles a matching problem (although with weights).
At first, let us consider the case with unit node weights and arbitrary edge weights – which
effectively is a maximum weighted bipartite matching problem.

Theorem 4.11. Given a fixed core partitioning instance with maximum block weights c1, . . . , ck

and nodes P with weight functions c : P → R≥0 and ω : P × [k] → R≥0 where all nodes have
weight one, we can compute an optimal solution in O(k3|P |3) time.

Proof. We construct an equivalent instance of the maximum weighted bipartite matching prob-
lem (see Definition 2.8): We define the considered graph as the complete bipartite graph
G = (L ∪ R, E) with parts L := ⋃k

j=1 Bj and R := P . Each Bj is a set of min{cj, |P |}
nodes (the size of Bj is the equivalent of the maximum block weight for the matching), such
that the Bj are pairwise disjoint. For each pair u ∈ P , bj ∈ Bj, the edge weight is defined as
ω({u, bj}) := ω(u, j).
Let ΠP = {P1, . . . , Pk} be a solution of the fixed core partitioning instance. We define a
matching M as M := ⋃k

j=1 Mj, where Mj is an arbitrary matching between Bj and Pj with size
|Pj| (exists because |Pj| = c(Pj) ≤ cj ≤ |Bj|). Note that ω(Mj) = ω(Pj, j). Consequently, due
to the Pj and Bj being disjoint, M is a matching with value ω(M) = ∑k

j=1 ω(Pj, j).
Considering the other direction, it is easy to see that a given matching M similarly induces a
solution {P1, . . . , Pj} with ω(M) = ∑k

j=1 ω(Pj, j). In summary, a maximum weighted matching
in G induces a feasible partition ΠP = {P1, . . . , Pj} that maximizes ∑k

j=1 ω(Pj, j) and is thus
optimal.
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4.3 Star Partitioning with Arbitrary Degree

With regards to the running time, the maximum weighted bipartite matching problem can be
solved with the Hungarian method in O(|L ∪R|3) time [21]. Due to |L| ≤ k|P | and |R| = |P |,
the total running time is in O(k3|P |3).

It should be noted that the constructed matching instance has some specific properties: All
nodes in a block Bj have the same neighbors with identical edge weights. It might be possible
to use an optimized maximum weight matching algorithm that makes use of this to achieve a
better running time.
Before considering the most general (relaxed) case, there is one more simplified variant that is
interesting to consider: The case with k = 2, which we call the star bipartitioning problem. We
can observe that for a given node u, either ω(u, 1) or ω(u, 2) is necessarily included in the cut.
Thus we can effectively ignore whether a node is connected to both blocks – only the difference
between the edge weights is actually important. We formalize this by defining for a given node
u ∈ P the minimum adjacent weight ωmin(u) := minj≤k ω(u, j). The definition extends to sets
using ωmin(U) := ∑

u∈U ωmin(u).

Lemma 4.12. Let (P, c, ω) be an instance of the fixed core partitioning problem. Then there is
an equivalent instance (P, c, ω′) with the same block weights, where δω(ΠP ) = (k− 1)ωmin(P ) +
δω′(ΠP ) for each solution ΠP . If k = 2, the nodes of the new instance have at most degree one.

Proof. We define ω′(u, j) := ω(u, j) − ωmin(u) for u ∈ P , j ≤ k. Consequently, if k = 2 then
either ω′(u, 1) = 0 or ω′(u, 2) = 0 for each node u. Thus, u has at most degree one. Consider
a solution ΠP = {P1, . . . , Pk}. For u ∈ P we define the assigned block as b(u) := i with u ∈ Pi.

δ(ΠP ) =
k∑

j=1
ω(P \ Pj, j) =

∑
u∈P

∑
j 6=b(u)

ω(u, j) =
∑
u∈P

(k − 1)ωmin(u) +
∑

j 6=b(u)
ω(u, j)− ωmin(u)


= (k − 1)ωmin(P ) +

∑
u∈P

∑
j 6=b(u)

ω′(u, j) = (k − 1)ωmin(P ) + δω′(ΠP )

For k = 2, the problem can be reduced to the case where nodes have at most degree one as
described in Section 4.2 and solved as described in Theorem 4.10. Effectively, in the relaxed
case with k = 2 we solve a knapsack problem for the block that has higher load, placing all
remaining nodes in the second block.
The bipartitioning variant is not only of theoretical interest, but might also be important in
practice: Most multilevel partitioners apply recursive bipartitioning either directly on the input
graph or as part of the initial partitioning phase [13, 39, 61, 63].
We now turn to the general case with k ≥ 2 for which we can construct an approximation
algorithm with a straightforward approach.

Theorem 4.13. Let A be an approximation algorithm for the min-knapsack problem with
approximation ratio R and running time g(n). Then, we can construct an approximation algo-
rithm A′ for relaxed fixed core partitioning with approximation ratio R + 1 and a running time
of O(k · g(|P |) + |P |) (or O(g(|P |)) if g is convex).

Proof. We use the same construction as in Theorem 4.10, except that we adjust the definition
of the candidate set Kj of a block. We choose Kj such that it contains the u ∈ P where ω(u, j)
is maximal for j ≤ k. If there are multiple blocks with maximal adjacent weight to u, we pick
one at random (such that the Kj are still a partition of P ). In summary, we solve for each
block a knapsack problem containing the nodes with the strongest connection to this block.
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4 The Star Partitioning Optimization Problem

To prove the approximation ratio, we first define for a node u ∈ Kj the internal weight int(u) :=
ω(u, j) and the external weight ext(u) := ∑

i 6=j ω(u, i), extending the definition to sets as usual.
For a given solution ΠP = {P1, . . . , Pk} calculated by A′, it holds that Pj ⊆ Kj (remember, we
allow ΠP to be only a partial partition) and thus

δ(ΠP ) =
k∑

j=1
ω(Kj \ Pj, j) + ext(Kj) = int(

⋃
j

Kj \ Pj) + ext(P ) (6)

Let ΠOP T = {P ′
1, . . . , P ′

k} be an optimal solution. Reformulating the approximation guarantee
of the knapsack algorithm A in these terms, we get int(Kj \ Pj) ≤ R · int(Kj \ P ′

j) for each
block. If ext(P ) ≤ 1

R
int(⋃j Kj \ Pj), then

δ(ΠP ) ≤(6) (1 + 1
R

)int(
⋃
j

Kj \ Pj) ≤ (R + 1)int(
⋃
j

Kj \ P ′
j) ≤ (R + 1)δ(ΠOP T )

If ext(P ) > 1
R

int(⋃j Kj \ Pj), then int(⋃j Kj \ Pj) ≤ R · ext(P ) and thus

δ(ΠP ) ≤(6) (R + 1)ext(P ) ≤ (R + 1)δ(ΠOP T )

To summarize the approach, we achieve a somewhat reasonable approximation ratio by simply
ignoring that nodes are connected to more than one block. Instead we try to assign each node
to the block it is most strongly connected to. This result is quite remarkable, as there exists
no constant factor approximations for the general graph partitioning problem [10].

Algorithm 1: Fixed Core Partitioning
1 Function fixedCorePartitioning(P, c, ω, {c1, . . . , ck})

Input: Nodes P , weight functions c and ω, maximum allowed block weights c1, . . . , ck

2 ω′ ← subtractMinIncidentWeight(ω) // as in Lemma 4.12
3 P1, . . . , Pk ← ∅, . . . , ∅
4 U ← ∅ // unassigned nodes
5 foreach j ≤ k do
6 Kj ← {p ∈ P | j = argmaxi≤k ω′(p, i)} // random tie breaking if max is ambiguous
7 Lj ← minKnapsack(Kj, c, ω′, cj)
8 Pj ← Kj \ Lj

9 U ← U ∪ Lj

10 sortDescendingByWeightRatio(U, c, ω′) // sort by maxj ω′(p, j) · c(p)−1

11 foreach p ∈ U do
12 I ← {j ≤ k | c(p) ≤ cj − c(Pj)} // blocks where p can still be assigned
13 j ← argmaxi∈I ω′(p, i)
14 Pj ← Pj ∪ {p} // assign greedily

Output: ΠP = {P1, . . . , Pk}

In practice, this approach should be combined with a greedy algorithm to move nodes that
were not assigned by the knapsack algorithm to other blocks. This is illustrated in Algorithm 1
which is a high-level description of our implementation (note that the actual implementation
is parallel). We use the GR algorithm for the min knapsack problem and thus achieve an
approximation ratio of 3 with a running time of O(|P | log |P |).
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4.4 Possible Approaches for Better Approximations

Block 1 Block 2 Block 3 Block 1 Block 2 Block 3

L

J \ L K2

J \ A(J)
K2

A(J) \ L

L

Block 1 Block 2 Block 3

J \ L

K2

L

Figure 6: Illustration that the bound given in Theorem 4.13 is tight. The left side depicts the
structure of the constructed instance. The edges to the different blocks are represented
by arrows. The center shows the approximate solution and the right side the optimal
solution. Edges that are cut by the respective solution are marked in red.

While we already argued that the approximation ratio R of the min-knapsack algorithm is a
lower bound on the achievable approximation ratio in Section 4.2, there is still a lot of room
for improvement between R + 1 and R.
Before we discuss other approaches, let us examine whether the bound of R+1 for the presented
approach is tight. To do this, we need an example input that achieves this ratio depending on
the min-knapsack algorithm A. For simplicity, we assume that there is a (family of) knapsack
instance(s) J with an optimal solution L such thatA(J) ⊇ L and ω(A(J)) = (R−ε)ω(L) for the
solution calculated by A, with arbitrary small ε. We define a core partitioning instance where
the first block is basically equivalent to this knapsack instance, i.e., has the same maximum
weight, candidate set K1 = J , and the incident edge weights are equal to the gains of the
knapsack instance. Let every node in J \ L be incident to block 1, while nodes u ∈ L are also
incident to the second block with ω(u, 2) := ω(u, 1) − 1. Further, let K2 be large enough to
completely fill block 2, but with very low internal edge weight. As illustrated in Figure 6, the
calculated solution ΠA will assign A(J) neither to block 1 nor to block 2, while the optimal
solution ΠOP T assigns J \ L to block 1 and L to block 2. Therefore δ(ΠOP T ) = ω(L, 1) + τ ,
where τ is the incident weight of the nodes that δ(ΠOP T ) removes from block 2. Thus

δ(ΠA) = ω(A(J), 1) + ω(A(J), 2) = (R− ε)ω(L, 1) + ω(L, 2)
= (R + 1− ε)ω(L, 1)− |L| = (R + 1− ε)(δ(ΠOP T )− τ)− |L|

We can scale the involved weights such that τ and |L| are negligible and hence δ(ΠA)
δ(ΠOP T ) → R+1.

4.4. Possible Approaches for Better Approximations

So far, we have seen that solving the general fixed core partitioning problem involves two
distinct kinds of decisions to be made: First, we need to select for each node a block it should
preferably be assigned to and subsequently, calculate an actual packing of the nodes into the
block using a knapsack algorithm. The former decision resembles a matching problem (compare
Theorem 4.11), while the latter is a min-knapsack problem. Through this point of view, we can
attribute the approximation ratio of R + 1 achieved in Theorem 4.13 as follows: We achieve a
2-approximation with regards to the matching problem and an R-approximation with regards
to the knapsack problem, summing to a total approximation ratio of R + 1.
It might be helpful to formalize this idea: We already know (more or less) how to handle the
knapsack problem. Thus we want to focus on the matching part of the problem. Of course we
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4 The Star Partitioning Optimization Problem

need to be aware that for achieving the best possible result, it might not work to solve both
problems in isolation, as both decisions potentially influence each other. However, an isolated
analysis might be quite helpful with regards to the best achievable approximation ratio. If we
can not solve both parts of the problem independently, it seems very unlikely that we can find
a better solution for the fixed core partitioning problem itself.
We can achieve this by relaxing the knapsack problem as follows: Given an instance of the
fixed core partitioning problem with nodes P and a block j with candidate set Kj ⊆ P and
maximum weight cj, we define a relaxed packing of Kj (in the sense of an LP-relaxation) as a
function f : Kj → [0, 1] with ∑u∈Kj

c(u)f(u) ≤ cj. The gain of f is ∆(f) := ∑
u∈Kj

ω(u, j)f(u).
Using this, we define the gain of Kj as ∆(Kj) := supf ∆(f), i.e., the gain of an optimal packing.
Fortunately, a relaxed optimal packing is simple to calculate.

Lemma 4.14. We use ω(u) := ω(u, j) for convenience. Let (u1, . . . , um) be an ordering of Kj

such that ω(ui)
c(ui) ≥

ω(uj)
c(uj) for i ≤ j. Let i0 be maximal such that ∑i0

i=1 c(ui) ≤ cj and let g be
defined as

g(ui) :=


1, if i < i0

1
c(ui)(cj −

∑i0
i=1 c(ui)), if i = i0

0, if i > i0

Then, g is a relaxed packing that maximizes ∆(g), i.e., ∆(Kj) = ∆(g).

Proof. Note that ∑u∈Kj
c(u)g(u) ≤ cj. Basically, we solve some linear inequalities. Let i, j be

fixed with i < j ≤ m and let f be a relaxed packing retrieved from g with f(u) = g(u) for
u ∈ Kj \ {ui, uj}. By the definition of g and f being a relaxed packing, f(ui) ≤ g(ui) and
c(ui)f(ui) + c(uj)f(uj) ≤ c(ui)g(ui) + c(uj)g(uj)⇒ f(uj)− g(uj) ≤ c(ui)

c(uj)(g(ui)− f(ui)), thus

∆(f)−∆(g) =ω(ui) (f(ui)− g(ui)) + ω(uj) (f(uj)− g(uj)) ≤ ω(ui) (f(ui)− g(ui))

+ ω(uj)
c(ui)
c(uj)

(g(ui)− f(ui)) =
(

ω(ui)− ω(uj)
c(ui)
c(uj)

)
(f(ui)− g(ui)) ≤ 0

due to ω(ui)− ω(uj) c(ui)
c(uj) ≥ 0 and f(ui)− g(ui) ≤ 0. The statement follows by induction.

Informally, we retrieve the optimal relaxed packing through sorting the nodes by their gain per
weight ratio, greedily adding nodes to the packing and splitting the first node that does not
completely fit in the packing.

Definition 4.15 (Fixed Core Partitioning with Over-Committing). Given nodes P and block
weights cj, the fixed core partitioning problem with over-committing is to find a partition Π =
{K1, . . . , Kk} that minimizes the relaxed cut ∆(Π) := ∑k

j=1 ω(P, j)−∆(Kj).

As intended, we can observe that this provides a lower bound for the non-relaxed problem, i.e.,
minΠ ∆(Π) ≤ minΠ δ(Π). Essentially, it allows us to pretend we can solve the knapsack problem
optimally, instead focusing on the matching part of the problem. Note that is not necessary
anymore to relax the maximum block weights, as finding a valid solution is trivial – any partition
is a valid solution. Now, we can formally analyze the approach given in Theorem 4.13 with
regards to the variant with over-committing. We will see that the definition of over-committing
corresponds well to the intuition that we have given for the approximation ratio.
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Lemma 4.16. Assigning each node u to a block that maximizes ω(u, j) yields a 2-approximation
for fixed core partitioning with over-committing.

Proof. Analogous to Theorem 4.13 with R = 1.

While there is still some resemblance to a matching problem (i.e., choosing which node should
be assigned to which block), the main difference compared to the case with unit node weights
we have seen in Theorem 4.11 is exactly the arbitrary possible weights: The change applied to
a matching can be modeled as a so-called alternating path that moves one node per step. This
is not possible with arbitrary weight, as moving one node to another block might necessitate
removing multiple other nodes to make space for the new node. This means that calculating
the best possibility for assigning a node can involve an arbitrarily complex tree of moves, which
seems unlikely to be possible in polynomial time. Considering this, it is not surprising that the
problem is still NP-hard.

Theorem 4.17. The fixed core partitioning problem with over-committing is NP-hard, even if
it is restricted to unit edge weights.

Proof. Once more, we provide a reduction to the partition problem. Let S = {a1, . . . , an} be an
instance of the partition problem with total sum t, where t is w.l.o.g. even. We construct a fixed
core partitioning instance with k = 2, block weights c1 = c2 = t

2 and nodes P = {p1, . . . , pn}.
The node weights are c(pi) = ai and the edge weights are ω(pi, 1) = ω(pi, 2) = 1. We consider
the instance a yes-instance exactly if there is a partition Π with ∆(Π) ≤ n.
Note that ∑k

j=1 ω(P, j) = 2n. Hence, given a yes-instance of the fixed core partitioning problem
with {K1, K2} as solution, ∆(Π) ≤ n implies ∆(K1) + ∆(K2) ≥ n. Further, ∆(Kj) = |Kj|
holds if and only if c(Kj) ≤ cj = t

2 (otherwise, ∆(Kj) < |Kj|). Consequently, |K1| + |K2| =
n = ∆(K1) + ∆(K2) and thus c(K1) = c(K2) = t

2 , which means that K1 is a solution of the
partition problem instance. In the reverse direction, a solution S1 ⊆ S of the partition problem
instance corresponds to a solution Π = {S1, P \S1} of the fixed core partitioning instance with
∆(Π) = n.

Considering the structure of the provided reduction, it seems that although the variant with
over-committing allows using an optimal local packing for each block, we still need to solve
something similar to a packing problem in order to decide how to assign the nodes to the
blocks. While Theorem 4.17 does not necessarily exclude good approximations (approximating
the partition problem works quite well [44]), it is not clear how to find one either.

Improving the Approximation. In the following, we propose an approach for fixed core par-
titioning with over-committing that could provide better results than Lemma 4.16. Consider
an instance with nodes P and block weights c1, . . . , ck. For a given node u ∈ P , let b1, . . . , bk

be an order of the blocks such that ω(u, b1) ≥ ω(u, b2) ≥ · · · ≥ ω(u, bk). We define βj(u) := bj

for j ≤ k, i.e., β1(u) is the block maximizing ω(u, β1(u)), β2(u) the block where the incident
edge weight has the second largest value, and so on.
We propose to use Algorithm 2 for fixed core partitioning with over-committing. The idea is
to consider both β1(u) and β2(u) as possible assignment for u, i.e., we consider two slots for
each node – hence we call it the two-slot algorithm. The algorithm maintains for each block j
a candidate set Kj of nodes that might be assigned to block j. Kj is represented as a balanced
binary tree where each node has an assigned key. We initialize the candidate sets by inserting
each node u to Kβ1(u) using the key β1(u)

c(u) −
β2(u)
2c(u) . As long as there is at least one block j

where the node with minimum key u in Kj exceeds the maximum allowed block weight (i.e., an
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Algorithm 2: Two-Slot Algorithm
1 Function twoSlotPartitioning(P, c, ω, {c1, . . . , ck})

Input: Nodes P , weight functions c and ω, maximum allowed block weights c1, . . . , ck

2 K1, . . . , Kk ← ∅, . . . , ∅ // intialize candiate sets as binary trees
3 U ← ∅ // unassigned nodes
4 foreach u ∈ P do
5 Kβ1(u).insert(u, β1(u)

c(u) −
β2(u)
2c(u) ) // assign u to β1(u) with key β1(u)

c(u) −
β2(u)
2c(u)

6 while there is a Kj with c(Kj)− c(Kj.min()) ≥ cj do
7 u← Kj.min()
8 Kj.remove(u)
9 if j = β1(u) then

10 Kβ2(u).insert(u, β2(u)
c(u) ) // assign u to β2(u) with key β2(u)

c(u)
11 else if j = β2(u) then
12 U ← U ∪ {u} // unassign u

13 greedily assign the nodes in U
Output: Π = {K1, . . . , Kk}

optimal relaxed packing of Kj does not contain u), we update the assignment as follows: We
remove u from Kj. If j is equal to β1(u), we move u to the second “slot” by assigning u to β2(u)
using the key β2(u)

c(u) . If u was already assigned to β2(u), we unassign u instead. Afterwards,
remaining unassigned nodes are assigned in a greedy fashion (note that this step does not affect
any approximation guarantees). Clearly, the running time of Algorithm 2 is in O(|P | log |P |):
Each operation on a binary tree requires logarithmic time and the algorithm uses a constant
number of operations per node.
In its current form, the algorithm does not provide an improvement for the general case. How-
ever, we can prove an approximation guarantee for the special case where all nodes have weight
one. Note that fixed core partitioning and fixed core partitioning with over-committing are
effectively equivalent in the case with weight one nodes, as it is never necessary to “split” a
node that does not fit in the block.

Theorem 4.18. Given a fixed core partitioning instance with maximum block weight c1, . . . , ck

and nodes P with weight functions c : P → R≥0 and ω : P × [k] → R≥0 where all nodes have
weight one, Algorithm 2 computes a solution where the cut is within a factor of 3

2 of the optimal
solution.

Proof. Let ΠA = {K1, . . . , Kk} be the solution computed by Algorithm 2 and let ΠOP T =
{P1, . . . , Pk} be an optimal solution. Note that ΠA is a feasible partition because the loop
condition (Line 6) and c ≡ 1 imply that c(Kj) ≤ cj for all j. In the following, we only consider
the nodes that are assigned differently in ΠA and ΠOP T . For this, let Kj := Kj \ Pj be the
differently assigned nodes in block j and let K := ⋃

j≤k Kj. We will prove that δ(ΠA[K]) ≤
3
2δ(ΠOP T [K]) by constructing a directed graph G = (K, E) and showing that the inequality
holds for each component of G.
To categorize the nodes, let S1 := {u ∈ K | u ∈ Kβ1(u)} be the nodes assigned to their
first slot, let S2 := {u ∈ K | u ∈ Kβ2(u)} be the nodes assigned to their second slot and let
S3 := K \ (S1 ∪ S2) be the remaining nodes. To define the edges of G, we construct for a given
node u the outwards edges as follows: If u ∈ S2 ∪ S3 and u ∈ Pβ1(u) (i.e., ΠOP T provides a
better assignment for u) than we add an outwards edge from u to a node in Kβ1(u). Similarly,
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if u ∈ S3 and u ∈ Pβ2(u) we add an outwards edge from u to a node in Kβ2(u). Otherwise, u has
no outwards edge. Consider a j such that Kj has at least one inwards edge. Then, |Kj| = cj as
otherwise Algorithm 2 would have assigned at least one source node of an inwards edge to Kj.
Further, the total inwards degree of Kj is bound by |Pj \Kj| by construction (we add at most
one edge per node in Pj \Kj). This means the inwards degree is at most |Kj|. This property
allows us to choose the edges such that each node has inwards degree at most one.
Since both the inwards and the outwards degree of every node is bound by one, each component
of the graph is either a single node, a path or a cycle (with each edge oriented in the same
direction). Further, nodes in S1 have outwards degree zero while nodes in S3 have inwards
degree zero – otherwise, the source node of the inwards edge would have been assigned to
the block of the target node. To analyze the added cut per component, we use the notation
ωA(u) := ω(u, j) with u ∈ Kj for the weight of the edge where the algorithm assigned u
and ωOP T (u) := ω(u, j) with u ∈ Pj for the weight of the edge where the optimal solution
assigned u. Similarly, δA(u) := ∑

j≤k ω(u, j) − ωA(u) denotes the value u adds to δ(ΠA) and
δOP T (u) := ∑

j≤k ω(u, j) − ωOP T (u) denotes the value u adds to δ(ΠOP T ). We extend the
definitions to sets of nodes by summing the values.
Consider a component of G consisting of a single node u and assume u ∈ Pj (i.e., ΠOP T assigns
u to j). If u ∈ S1 ∪ S2 then dout(u) = 0 implies that j 6= β1(u) and thus δA(u) ≤ δOP T (u). If
u ∈ S3 then dout(u) = 0 implies that j /∈ {β1(u), β2(u)}. Therefore, ω(u, j) ≤ 1

3
∑

i≤k ω(u, i)
which implies δOP T (u) ≥ 2

3
∑

i≤k ω(u, i) and thus δA(u) ≤ ∑i≤k ω(u, i) ≤ 3
2δOP T (u).

Consider a component C = (VC , EC) that is a cycle. Each node of the cycle is in S2 since it
has both an inwards and an outwards edge. Let (u, v) be an edge in EC . Since u was not
assigned to β1(u), the inequality ω(v, β2(v)) ≥ ω(u, β1(u))− 1

2ω(u, β2(u)) holds. Summing this
over all nodes and rearranging the equation we get 3

2
∑

u∈VC
ω(u, β2(u)) ≥ ∑

u∈VC
ω(u, β1(u)).

From this, we can conclude δOP T (VC) ≥ 2
3
∑

u∈VC
ω(u, β1(u)) and

δA(VC)− δOP T (VC) =
∑

u∈VC

ω(u, β1(u))−
∑

u∈VC

ω(u, β2(u)) ≤ 1
3
∑

u∈VC

ω(u, β1(u))

Thus δA(VC)− δOP T (VC) ≤ 1
2δOP T (VC) which means δA(VC) ≤ 3

2δOP T (VC).
Consider a component C = (VC , EC) that is a path [u = v1, v2, . . . , w = vl], with edges oriented
towards w. Then u ∈ S2 ∪ S3, v2, . . . , vl−1 ∈ S2 and w ∈ S1 ∪ S2. First, we consider the
case w ∈ S2. From the assignments of the nodes, we get the following inequalities: First,
ωOP T (w) ≤ ω(w, β2(w)) and δOP T (w) ≥ ω(w, β1(w)) + ω(w, β2(w)). For i ∈ {2, . . . , l − 1} we
have ω(vi+1, β2(vi+1)) ≥ ω(vi, β1(vi)) − 1

2ω(vi, β2(vi)) = ωOP T (vi) − 1
2ω(vi, β2(vi)). For i = 1,

the outwards edge of v1 can lead to block β1(v1) or to block β2(v1). In the first case, we also
get ω(v2, β2(v2)) ≥ ωOP T (v1)− 1

2ω(vi, β2(v1)). Otherwise, we get ω(v2, β2(v2)) ≥ ω(v1, β2(v1)) =
ωOP T (v1) ≥ ωOP T (v1)− 1

2ω(v1, β2(v1)). Thus

δA(VC)− δOP T (VC) =
l∑

i=1
ωOP T (vi)− ωA(u)−

l∑
i=2

ω(vi, β2(vi))

≤
l∑

i=1
ωOP T (vi)−

l−1∑
i=1

(
ωOP T (vi)−

1
2ω(vi, β2(vi))

)
= ωOP T (w) + 1

2

l−1∑
i=1

ω(vi, β2(vi))

≤ 1
2

(
ω(w, β1(w)) + ω(w, β2(w)) +

l−1∑
i=1

ω(vi, β2(vi))
)
≤ 1

2δOP T (VC)

which implies δA(VC) ≤ 3
2δOP T (VC).

In case of w ∈ S1, we get different inequalities: ωOP T (w) ≤ ω(w, β2(w)) with δOP T (w) ≥
ω(w, β1(w)). If we handle the two cases for the outwards edge of v1 similar to before, we get
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ω(w, β1(w))−1
2ω(w, β2(w)) ≥ ωOP T (vl−1)−1

2ω(vl−1, β2(vl−1)) and ω(vi+1, β2(vi+1)) ≥ ωOP T (vi)−
1
2ω(vi, β2(vi)) for i ∈ {1, . . . , l − 2}. Therefore

δA(VC)− δOP T (VC) =
l∑

i=1
ωOP T (vi)− ωA(u)−

l−1∑
i=2

ωA(vi)− ω(w, β1(w))

≤
l∑

i=1
ωOP T (vi)−

l−2∑
i=1

(
ωOP T (vi)−

1
2ω(vi, β2(vi))

)
− ω(w, β1(w))

≤
l∑

i=1
ωOP T (vi)−

l−1∑
i=1

(
ωOP T (vi)−

1
2ω(vi, β2(vi))

)
− 1

2ω(w, β2(w))

= ωOP T (w)− 1
2ω(w, β2(w)) + 1

2

l−1∑
i=1

ω(vi, β2(vi)) ≤
1
2

l∑
i=1

ω(vi, β2(vi)) ≤
1
2δOP T (VC)

and we can conclude δA(VC) ≤ 3
2δOP T (VC).

Regarding the case with arbitrary weights, the proof for Theorem 4.18 uses that every node has
weight one to construct a graph on the nodes. However, it could be possible to adapt the proof
to arbitrary weights by splitting the nodes such that the (sub-)nodes in a single component
have equal weight. Instead, the reason that Algorithm 2 does not achieve a 3

2 approximation
for the general case is that it does not handle the last node of a block well: For every block
there might be one node where only a fraction of its weight is assigned by the according relaxed
packing. This can be used to construct an instance where moving such a node to another block
yields a factor two improvement.
While the current version of the algorithm does not achieve the same approximation guarantee
for arbitrary weights, it indicates that it might be possible to use the two-slot technique for con-
structing a generalized approximation algorithm. Specifically, this approach could be combined
with a knapsack algorithm to solve the fixed core partitioning problem with arbitrary weights.
For this, there are at least two possible approaches: We could apply the two-slot algorithm to
compute an initial assignment and then apply the knapsack algorithm to each block in isolation.
Second, we could replace the use of binary trees with the knapsack algorithm, i.e., we adjust
Algorithm 1 such that in each step the knapsack algorithm is applied to one of the blocks and
the nodes that are not included in the result are moved to their second slot (or unassigned).
This would likely require quadratic running time but might provide better results.
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5. Engineering a Multilevel Star Partitioner
In the following, we discuss the practical aspects of building a partitioning algorithm that
can exploit the properties of star graphs. The ultimate goal is to develop an approach that
yields significant improvements for such instances and works also good for all other graphs. We
discuss different strategies for adapting the phases of the multilevel paradigm from a theoretical
perspective and from that we derive a practical implementation. This includes the detection
of peripheral nodes and all phases of the multilevel scheme: a coarsening scheme handling
core and peripheral nodes differently, the integration of a fixed core partitioning algorithm into
initial partitioning and the handling of peripheral nodes during refinement.
While developing a formal model for star graphs and discussing the partitioning problem on
such graphs from a a theoretical perspective in Section 4, we already noted that this model
does not directly map to most real-world instances. Instead, we will use the more informal
term star-like to refer to instances with a significant amount of nodes that can be considered
peripheral. Specifically, we are interested in instances where we can achieve improvements over
traditional multilevel partitioning by handling peripheral nodes differently. Note that these
real-world instances are different from the definition of star graphs in at least two aspects:
First, there can be edges connecting peripheral nodes, which is not the case in our theoretical
model. We can assume that these edges are sparse enough to not be relevant for the overall
structure of the graph, but they can still affect the resulting cut of the partition. Second, the
core of real-world instances tends to be of comparable size to the peripheral nodes. This means
that the proposed star partitioning algorithms are not directly applicable, as their running
time is exponential in the size of the core. However, we will see that they are still useful as a
component within the initial partitioning.

Traditional Multilevel Partitioning. As a first step, we explain how a traditional multilevel
algorithm behaves on star-like instances. In the coarsening phase, we apply a series of edge
contractions to the graph until the graph is small enough for initial partitioning. Although
there are many different coarsening approaches (see Ref. [14] for an overview), most have in
common that they iterate over all nodes and then try to find a contraction partner for each
node according to a rating function. Since there are many peripheral nodes and they are
mostly adjacent to core nodes, this results in the peripheral nodes being contracted onto the
core nodes. Consequently, the core nodes become heavy nodes in the smallest graph, destroying
the star-like structure in the process (see Appendix A for a visualized example). Moreover, the
weight of the heaviest node in the smallest graph is often restricted by an upper weight limit
to make it easier for initial partitioning to find a feasible solution. Since peripheral nodes are
contracted onto core nodes, we might not be able to effectively reduce the size of the graph due
to the weight constraint.3

Clearly, this makes it impossible for the initial partitioning to exploit the structure of the star
graph. For a good solution, the core often needs to be placed in one block of the partition (see
Section 4). But this is prohibited by the weight of the contracted nodes – even if a part of the
peripheral nodes remains uncontracted, the contracted nodes still increase the weight of the
core such that it can not be assigned to a single block anymore. Because the global structure of
the partition is determined by the initial partitioning, it is also unlikely that the refinement can
improve it significantly. Most refinement algorithms search for local improvements by moving
nodes greedily to other blocks [14]. As core nodes are heavy nodes in the smallest graph, placing

3This is particularly likely to occur for coarsening algorithms that use a global contraction order and apply
contractions between core nodes first. Afterwards, all remaining contraction partners for peripheral nodes
have already reached the weight limit.
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them in one block would involve a large number of moves, which is unlikely to occur in practice.
Considering this, it is not surprising that we can achieve large improvements over traditional
multilevel algorithms on star-like instances, as we already demonstrated in the introduction
and later in our experimental evaluation in more detail.

Algorithm 3: Multilevel Partitioning for Star-like Graphs
1 Function partition(G, ε, k)

Input: Graph G = (V, E, c, ω), imbalance parameter ε, number of blocks k
2 if peripheral nodes detection as preprocessing then
3 P ← detectPeripheralNodes(G)
4 CH ← coarsen(G[V \ P ], ε, k) // contraction hierarchy of core
5 else
6 CH , P ← coarsenAndDetectPeripheralNodes(G, ε, k)
7 PH ← twoHopCoarsen(P, CH , ε, k) // contraction hierarchy of peripheral nodes
8 ΠC ← initialPartition(CH .coarsest, PH .coarsest, ε, k)
9 ΠP ← partitionFixedCore(ΠC , PH , ε, k) // using Algorithm 1

10 Π← refine(ΠC + ΠP , CH + PH , ε, k) // refinement on complete graph
Output: k-way partition Π

Algorithm Overview. In the following, we develop a star partitioning algorithm, i.e., a variant
of the multilevel scheme that makes effective use of the properties of star-like graphs. A high-
level overview of our approach is given in Algorithm 3. In order to exploit the properties of
star-like graphs, it is necessary that the overall structure of the graph is preserved until initial
partitioning – which is the most important feature of a star partitioning algorithm. To achieve
this, we can either avoid contractions of peripheral nodes onto the core or undo problematic
contractions before initial partitioning. Considering the second option, it is unclear which
contraction we should revert and whether or not this has any advantage compared to forbidding
the contraction. Therefore, we will focus on the first approach, i.e., avoiding contractions of
peripheral nodes. Thus, the first step of the algorithm is to detect peripheral nodes and separate
them from the core of the graph. Then, the regular coarsening is only applied to core nodes
– which preserves the structure of the graph and also ensures that the separated nodes do
not cause additional running time overhead. The separation of the peripheral nodes can be
done as a preprocessing step (see Line 3), or alternatively by identifying nodes that should be
separated during coarsening (see Line 6). In both cases we need to rely on heuristics, as there
is no unambiguous way for detecting such nodes. We discuss this in detail in Section 5.1.
Once the coarsening of the core is done, the graph actually resembles the definition of a star
graph, which means that we might be able to apply the techniques we developed in Section 4.
However, the size of the coarsened graph would still be too large to directly apply a parametrized
approach (which is exponential in the size of the core). For this reason, we instead develop
approaches that modify existing techniques for initial partitioning such that they also consider
peripheral nodes in Section 5.3. To handle the peripheral nodes efficiently, we apply a two-hop
coarsening algorithm (compare Ref. [47]), contracting the separated nodes to a similar size as
the core. This is discussed in Section 5.2. The initial partitioning then uses the coarsest level of
the contraction hierarchy of both the core and the peripheral nodes. Afterwards, we apply our
proposed fixed core partitioning algorithm to optimize the assignment of the peripheral nodes.
During the uncontraction of the graph, we use traditional refinement algorithms on both the
core of the graph and the peripheral nodes.
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5.1. Detection of Peripheral Nodes

We already noted that we relaxed the definition of peripheral nodes for real-world instances,
allowing them to be adjacent to each other now. This provides us with some leeway in the
design of our peripheral node detection algorithm. Our basic idea for differentiating them from
the core of the graph is the following: Because the effect of peripheral nodes on the cut is
small, they can be moved to make room for nodes of higher degree. Consequently, the most
distinctive feature of peripheral nodes is their low incident edge weight. In the following, we
will present several techniques based on the incident edge weight of a node. This includes a
local approach by comparing adjacent nodes as well as using statistical properties of the graph
or a community detection algorithm.

Dynamic Detection in the Coarsening Phase. Our first approach is to directly compare the
incident weight of neighbors. For a given node u, let r(u) := ω(I(u))

c(u) be the ratio of the weight
of all incident edges of u relative to its node weight (w.l.o.g. c(u) 6= 0). We expect that r(u)
is comparatively low for peripheral nodes and comparatively high for core nodes. This might
seem counter-intuitive since core nodes usually have higher node weight then peripheral nodes.
However, consider an unweighted input graph: Here, core nodes have a high number of incident
edges and peripheral nodes a low number of incident edges, while all nodes have equal weight.
We can expect that the ratios are similar for coarser levels.4

Assume that the current coarsening pass considers u and v as possible contraction partners.
To avoid contractions between core nodes and peripheral nodes, we compare the ratios of
both nodes: We forbid the contraction if max{ r(u)

r(v) ,
r(v)
r(u)} ≥ s where s is a tuning parameter.

However, our main goal is not to forbid such contractions, but to detect whether or not a node
should be separated. This is a straightforward extension – we separate a node u if r(v)

r(u) ≥ s for
every neighbor v of u (which means that there is no allowed contraction for u anyways). More
precisely, we apply this detection step when searching for a contraction partner for a particular
node in the coarsening phase (note that the nodes are processed in parallel). Then, the detected
nodes can be separated while the calculated contractions are applied to the remainder of the
graph.
There is one additional design choice that we consider: A node u can be adjacent to nodes
that were separated on a previous level. It is unclear how this should affect the decision to
contract or separate u. One possibility is to never separate a node that is adjacent to already
separated nodes – which consistent with the notion that the peripheral nodes approximate an
independent set – but could be too restrictive in practice. On the other hand, we can ignore
separated nodes and proceed as described before. In our actual implementation, we decided
to use a combination of both approaches. We define a second threshold t ∈ [0, 1] and only
separate a node u if ω(I ′(u)) ≤ t · ω(I(u)), where I ′(u) is the set of incident edges restricted to
already separated nodes and I(u) is the set of all incident edges.

Detection based on Outlier Detection of Statistical Properties. While the described ap-
proach is simple to integrate into the existing coarsening algorithm, there is also an obvious
drawback: It considers only the neighbors of a node and has no global view on the structure of
an instance. If a node has low ratio r compared to its neighbors, it does not necessarily imply

4This might raise the question why c(u) is used as divisor instead of e.g. multiplier. However, this is necessary
to ensure that the technique works consistently for different coarsening levels. If c(u) would be used as
multiplier, contracting two nodes would increase the ratio r(u) of the resulting contracted node u by a factor
of up to 4 in comparison to the two input nodes. Also, our fixed core partitioning algorithm orders the nodes
based on r(u) – thus we can view r(u) as the “priority” used for assigning u.
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that the ratio is low compared to other nodes of the graph. This problem can be avoided by
using an approach that considers the incident weight ratios of all nodes. The idea is to consider
the distribution of the ratio r and identify peripheral nodes as “outlier” with low value. How-
ever, defining the distribution with regards to the nodes does not work – since the majority of
the nodes of a star-like graph are peripheral, they are not actually outliers. Fortunately, the
problem can be solved by changing the perspective. While the peripheral nodes are no outliers,
this is not true of their incident edges: The vast majority of edges in a star-like graph is incident
to core nodes, making every edge that is incident to a peripheral node an outlier.
More precisely, we associate each node u to ω(I(u)) observations of the value r(u)−1 = c(u)

ω(I(u)) .
5

For a graph G = (V, E), the average than is µ(G) := 1
ω(E)

∑
u∈V ω(I(u))r(u)−1 = c(V )

ω(E) (i.e.,
the inverse density) and the standard deviation is σ(G) := 1

ω(E)
∑

u∈V ω(I(u))(r(u)−1− µ(G))2.
Using the average and the standard deviation combined with a threshold parameter d, we
consider a node peripheral if r(u)−1 ≥ µ(G)+d ·σ(G). Note that these values are comparatively
stable under contractions, i.e., the average value µ(G) = c(V )

ω(E) changes only by the weight of
the contracted edges.
The presented approach can be implemented as a preprocessing technique that runs before
coarsening. We use parallel sums for the average and standard deviation. Then, we iterate over
the nodes in parallel to mark all peripheral nodes, subsequently separating them from the core.

Detection based on Community Detection. The graph partitioning algorithm in which we
integrate our work uses a community detection algorithm as a preprocessing step [27]. Then,
in the coarsening phase contractions are restricted to the detected communities. The commu-
nity detection algorithm minimizes the modularity objective function [54]. This metric prefers
a community structure with sparse connections between communities and dense connections
within communities compared to a random graph model (see Ref. [8] for more details). The
algorithm uses the Louvain method [8, 32], which repeatedly maximizes the local modularity by
greedily assigning nodes to the neighboring community with the highest increase in modularity.
Since the increase in modularity of a node (also called its gain) mostly depends on the total
incident edge weight to the target community, we can use a similar technique as before. The
basic idea here is that nodes which are only weakly connected to their respective communities
are good candidates for peripheral nodes, e.g., if a node provides only a very small increase
in modularity compared to others. To implement this, we modify the community detection
algorithm: The first phase of the Louvain method is executed as usual, which greedily assigns
the nodes to communities. For a given node u, we define δ(u) as the difference in modularity
between placing the node in its current community and placing the node in its own community
with size one. As before, we want to consider the value in relation to the node weight. Therefore,
we define rδ(u) := δ(u)

c(u) as the ratio of modularity difference relative to its node weight.
Using this, we use a similar threshold as before, with average µδ(G) := 1

ω(E)
∑

u∈V ω(I(u))rδ(u)−1

and standard deviation σδ(G) := 1
ω(E)

∑
u∈V ω(I(u))(rδ(u)−1 − µδ(G))2. We iterate in parallel

over all nodes, separating a node if rδ(u)−1 ≥ µδ(G)+d·σδ(G) for a factor d. To separate nodes,
we can place them in their own community and afterwards separate all communities with size
one. More formally, we define a maximum weight c̃ and, during the coarsening phase, separate
a node u if its community has size one and c(u) ≤ c̃. This means that we also separate small
communities which are contracted into a single node during coarsening – which is probably a
good idea, as small communities have only sparse connections to the remainder of the graph.

5Note that we use the inverse of r(u) so that peripheral nodes become outliers with high value, which is easier
to detect with basic methods than outliers towards zero.
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There is also a number of variants that can be applied here. We can calculate the average ratio
and standard deviation for each community separately instead of using the values defined on
the complete graph. Further, instead of directly separating nodes that are below the threshold,
we can allow a small number of contractions between adjacent peripheral nodes before they
are separated. This might be useful as we want to minimize the amount of edges between
peripheral nodes. Approaches to implement this could be contracting all such edges, or applying
a community detection step which is restricted to the subgraph of peripheral nodes, allowing
contractions within the detected communities.

Detection based on a Density Clustering Formulation. Generally, it is desirable that there
are very few edges between peripheral nodes while the core has high density. This can be
used to directly define an objective function for the detection of peripheral nodes: For a given
graph G = (V, E) we define the density of G as D(G) := ω(E)

c(V ) . The goal is then to minimize
ϕ(P ) := D(G[P ])

D(G[V \P ]) where P are the peripheral nodes. Note that ϕ can be minimized by choosing
P as an independent set.
However, choosing P as a independent set is not really useful in practice: As already mentioned
earlier, there are usually a few edges between nodes that should be considered peripheral, even
though the majority of the edge weight is in the core of the graph. Fortunately, we can
circumvent this problem by using an initial set of nodes that is provided by another method,
e.g., the previously explained statistical approach. Then, we use an algorithm for the clustering
that is only allowed to add nodes but not to remove nodes. The result is that the clustering
converges towards a local minimum of ϕ without requiring P to be an independent set. There
are also possible variants for the definition of the objective function. For example, we can
further encourage maximizing the size of P by using ϕ′(P ) := c(V \P )

c(P ) ϕ(P ).
For the clustering, we sort the nodes in increasing order of their incident weight ratio r. After-
wards, we iterate over all nodes and add a node to P if this improves ϕ.

5.2. Coarsening

In traditional multilevel partitioning, the coarsening phase has multiple purposes. It should
successively reduce the size of the input graph such that we can afford to use expensive ini-
tial partitioning algorithms on the coarsened graph. For this, the coarsest graph should be
structurally similar to the input graph such that the initial partition can provide a good ap-
proximation of the optimal solution. Further, on coarser levels the refinement algorithm can
explore the search space efficiently while improving the solution in detail at finer levels.
The situation is somewhat similar for star partitioning. After separating the peripheral nodes,
we apply traditional coarsening algorithms to the core of the graph. However, it is also desirable
to apply some kind of coarsening to the peripheral nodes for similar reasons: The peripheral
nodes need to be integrated into both initial partitioning and refinement. While there are dif-
ferent possibilities for the exact strategy, most approaches require a coarsening of the peripheral
nodes to ensure both an acceptable running time and more efficient search steps during initial
partitioning and refinement.
However, traditional coarsening approaches based on clustering strongly-connected neighbors
are not applicable to the peripheral nodes, as these are not or only via a few edges connected
to other peripheral nodes. Instead, we apply two-hop coarsening: During a coarsening step,
we do not require that nodes are adjacent. Instead, we cluster nodes with a similar neighbor-
hood. This approach is already known to be useful for graphs with highly-skewed node degree
distribution [47], which indicates that it is a good choice for coarsening peripheral nodes.
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To preserve the structure of the peripheral nodes during two-hop coarsening, we prefer contrac-
tions between nodes with a large number of common neighbors. Further, as seen in Section 4,
the ratio r of incident edge weight to node weight can be important when the peripheral nodes
are assigned since the knapsack algorithm prioritizes nodes with high r ratios. For this reason,
it is preferable to contract nodes with similar ratio r in addition to a similar neighborhood. In
the following, we present a few techniques to implement this overall idea. While some of these
techniques are already known from Ref. [47], to the best of our knowledge both the similarity
matching and the node distance approach are novel in the context of a coarsening algorithm.

Degree One Nodes. Degree one nodes (which are connected to exactly one core node) are
handled as follows: We contract nodes with degree one and the same neighbor. However, as
mentioned we want to prefer contracting nodes with similar ratio of incident weight to node
weight. To achieve this, we first collect all degree one nodes adjacent to a given core node and
sort them by r. Then we cluster the nodes according to this order, grouping at most four nodes
in the same cluster. We implement this by iterating in parallel over all core nodes.

Twins. We call nodes u and v twins if their neighbor sets are identical, i.e., N(u) = N(v).
Clearly, twins are good candidates for contractions. The detection of twins can be implemented
in a similar fashion to the InrSrt algorithm of Aykanat et al. [5, 17] for detecting identical sets.
We calculate fingerprints of the neighborhoods by applying a hash function to the neighborhood
set – peripheral nodes with identical fingerprints are candidates for twins. Then, the nodes are
sorted by their fingerprint and ratio r and we use pairwise comparisons to determine contraction
partners. This is parallelized by distributing the peripheral nodes to different threads based on
their fingerprint.

Similarity Matching. Nodes might have very similar neighborhoods without being twins. In
the following, we present an approach that contracts nodes with similar neighborhoods that
are not twins. To provide a formal metric for the similarity of the neighborhoods of two nodes,
we can use the Jaccard index which measures the similarity of two sets. Given sets M and N ,
it is defined as J(M, N) := |M∩N |

|M∪N | . Additionally, we want to include edge weights, which can
be done by using the weighted Jaccard index for two peripheral nodes u and v:

J∗(u, v) :=
∑

w∈N(u)∩N(v) min{ω(u, w), ω(v, w)}∑
w∈N(u)∪N(v) max{ω(u, w), ω(v, w)}

Note that J∗(u, v) ∈ [0, 1]. Unfortunately, it is non-trivial to efficiently determine node pairs
with a high weighted Jaccard index. As a first step, we therefore ignore the edge weights and
try to group nodes based on their neighborhood sets. For this, we use a randomized approach
based on locality-sensitive hashing. The idea of locality-sensitive hashing is to hash the nodes in
such a way that the probability for nodes with a similar neighborhood to have equal hash values
is high, while the probability is low for nodes with dissimilar neighborhoods. For the Jaccard
index, the min-hash family of hash functions is known to be locality-sensitive [9] (see [49] for
an introduction to min-hashing and locality-sensitive hashing): Given a hash function h and a
set of nodes U ⊆ V , the min-hash is defined as h(U) := minu∈U h(u). Using this, we choose
a constant number b of hash functions h1, . . . , hb uniformly at random. Our similarity-based
coarsening algorithm then computes the hash function hS(u) := (h1(N(u)), . . . , hb(N(u))) for
each peripheral node u ∈ P . Given two nodes u and v, the probability that the hashes are equal
is P(hS(u) = hS(v)) = J(N(u), N(v))b due to the uniform distribution [49]. Nodes with similar
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u

v

1 2 3 4 5

1 2 1 2 3

1 2

b(u) = 010|010|001

b(v) = 100|010(|000)

Figure 7: Example of encoding paths in the spanning tree by assigning an index to each child.

neighborhood are thus more likely to have an equal hash value and increasing the number b of
min-hash functions decreases the probability of a hash collision exponentially.
To find contraction candidates, we then use the same approach as for twins with the fingerprint
of a node being the value of the hash function hS. In addition, we want to include the edge
weights for determining the similarity. We therefore compute the weighted Jaccard index
J∗(u, v) for a constant number of nodes with the same fingerprint. A second node v is chosen
as a match if the similarity J∗(u, v) is above a predefined threshold. Note that we can only
use pairwise contractions here (i.e., we compute a matching instead of a clustering) since the
similarity value is not transitive. Therefore, we use multiple passes such that nodes that stay
unmatched in the first pass can still be matched later. As before, we achieve parallelism by
distributing the nodes to different threads based on their fingerprints.

Degree Two Nodes. There is one additional case where we use a specialized technique: nodes
with degree two. Let P2 := {u ∈ P | d(u) = 2} be the set of peripheral nodes with degree
two. For a given node u ∈ P2 let N(u) = {n1, n2} ⊆ C be the neighborhood set of u such
that ω(u, n1) ≤ ω(u, n2). We define nmin(u) := n1 as the neighbor of u where the incident edge
has lower weight and nmax(u) := n2 as the neighbor of u where the incident edge has higher
weight. Further, for a core node c ∈ C we define P max

2 (c) := {u ∈ P2 | nmax(u) = c} as the set
of adjacent peripheral nodes with degree two and high incident edge weight.
For a given core node c, we want to find contractions within P max

2 (c) – which means that
nmax(u) = nmax(v) = c for contraction candidates u and v (which is desirable since it implies
J∗(u, v) ≥ 1

2). In addition, it could be useful to consider nmin(u) and nmin(v): For example, the
contraction is preferable if nmin(u) and nmin(v) are adjacent and strongly connected compared
to the case where nmin(u) and nmin(v) are not adjacent. To generalize this idea, we define a
distance metric on the core nodes as follows: Let us assume that C is connected. We construct
a maximal spanning tree T = (C, ET ) on the subgraph induced by C (i.e., T is a tree with nodes
C such that ω(ET ) is maximized) and define the distance d(u, v) of u, v ∈ C as the length of
the (unweighted) path from u to v in T . Note that for constructing T , we can use a modified
minimum spanning tree algorithm, e.g., we can use the Jarník-Prim algorithm with a max heap
instead of a min heap for choosing the next edge.
The goal is to find contraction partners u and v in P max

2 (c) where d(nmin(u), nmin(v)) is small.
Implementing this efficiently is non-trivial: Comparing each pair in P max

2 (c) is quadratic in
|P max

2 (c)|, processing T (e.g., with a breadth-first search) for each c ∈ C is quadratic in |C|.
Instead, we calculate for each node c ∈ C an encoding b(c) of its position within T as a bitstring,
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Stage Applied techniques Max. difference of ratio r
1 D1, Twins 1.4
2 D1, D2, Twins 1.8
3 D1, D2, Twins, Sim 2.1
4 D1, D2, Twins, Sim∗ 2.6
5 D1, D2, DX, Twins, Sim∗ 4.1
6 Any ∞

Table 2: Summary of the stages used for two-hop coarsening. Used techniques: degree one
nodes (D1), degree two nodes (D2), twin matching (Twins), similarity matching
(Sim), similarity matching with reduced threshold (Sim∗), cluster nodes in P max(c)
with degree ≥ 3 (DX), cluster any nodes in P max(c) (Any).

as exemplified in Figure 7.6 We then sort P max
2 (c) based on b(nmin(u)) for u ∈ P max

2 (c). Nodes
that are adjacent in T are likely to also be adjacent in this order. We compare each node to a
constant number of predecessors and successors, contracting a pair if the distance in T is below
a predefined threshold.
Here, we use a sequential implementation for the construction of the spanning tree, while
iterating in parallel over the core nodes for the second step. Note that the impact of this
technique is hard to measure and probably rather small. It likely works better if the core has
very small size.7

Nodes with a Common Neighbor. If the previously described techniques do not provide a
sufficient size reduction, we use a more coarse-grained approach. For a core node c, we define
similar to before P max(c) := {u ∈ P | ω(u, c) = maxv∈N(u) ω(u, v)} as the set of adjacent
peripheral nodes with high incident weight. First, we contract any nodes within P max(c) with
degree larger than two but we lift even the degree restriction if necessary. As before, the
implementation uses a parallel iteration over the core nodes.

Putting It All Together. We have presented five techniques for two-hop coarsening that can
effectively reduce the number of peripheral nodes and also try to preserve the structure of the
original graph. However, it is preferable to first try approaches that are likely to preserve the
structure to a higher degree, i.e., degree one nodes and twins. Only if these are not sufficient
to reach the desired size reduction, we apply the remaining techniques.
To provide a reasonable progression from more fine-grained to more coarse-grained techniques,
we use multiple stages for the two-hop coarsening algorithm. We execute the stages one after the
other and each stage runs a predefined set of coarsening techniques with a maximum acceptable
difference of the incident edge weight to node weight ratio r of contracted nodes. If we reach
the target size for the current coarsening level, the algorithm terminates. Otherwise, we run
the next stage. A summary of the stages is given in Table 2.

Implementation Details. Having established this two-hop coarsening technique, there are
some higher-level concerns that need to be addressed with regards to integrating it into the

6To calculate an encoding that is guaranteed to fit in a single machine word, we restrict both the maximum
degree and the maximum depth of T during construction. Then, we index the children of each node and
construct the bitstring as the concatenation of these indices. However, it is likely that more efficient encodings
are possible.

7Our experiments indicate that it finds an amount of contractions comparable to the other techniques if the core
is already coarsened. But it is unclear whether this has a quality benefit compared to simpler approaches.
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multilevel paradigm. First, the two-hop coarsening is defined on the core C of the graph, but
it is not specified whether C is the core of the input graph or a coarsened approximation of the
core. Using the coarsened representation can actually be preferable, as this reduces the node
degrees of peripheral nodes and thus makes our two-hop coarsening techniques more effective.
Our implementation supports two different coarsening strategies: In variant (i), we first con-
struct the complete contraction hierarchy for C using traditional coarsening techniques. Then,
the coarsest level of the core is used as basis for the two-hop coarsening. We apply our two-hop
coarsening algorithm and afterwards contract the peripheral nodes. This is repeated until a
size appropriate for initial partitioning is reached, using a predefined size reduction factor for
each step. Note that each step might include multiple different stages from Table 2. This
strategy is efficient for constructing a coarsened graph that can be used in the initial parti-
tioning. However, it is not useful for refinement: Refinement algorithms operate on each level
of the contraction hierarchy, thus if the peripheral nodes are to be included we need for each
level an according “level” of the peripheral nodes with comparable size. Therefore, strategy
(ii) constructs a contraction hierarchy of peripheral nodes with the same number of levels as
the hierarchy of the core. For this, we first reduce the size of the core by applying traditional
coarsening techniques to C and subsequently, we run our two-hop coarsening algorithm on the
peripheral nodes. Here, multiple two-hop coarsening steps could be required as the two-hop
coarsening provides less size reduction per step than traditional coarsening. Afterwards, we
contract the graph and proceed to the next level.8 The result allows to construct a unified
contraction hierarchy including both the core and the peripheral nodes. Then, we apply the
traditional refinement techniques used by Mt-KaHyPar during uncontraction.
For both strategies, it is necessary to determine a target number of peripheral nodes for the
two-hop coarsening. Our implementation uses the same predefined target size for the coarsest
level of the core as in traditional coarsening (i.e, 160k as used by Mt-KaHyPar).9 The target
size for the peripheral nodes is then p|C| where p is an input parameter and |C| is the size of the
coarsened core. This ensures that |P | ∈ O(|C|) which works well with our two-hop coarsening
techniques. In case of strategy (ii), we extrapolate the target size to the contraction levels such
that each level uses the same reduction factor.

5.3. Initial Partitioning

If the core is contracted to a sufficiently small size, we can assume the coarsened graph is similar
to a star graph. Naturally, we would like to use our fixed core partitioning algorithm to compute
a solution which provides a constant approximation guarantee. Unfortunately, the size of the
coarsened graph is still too large to directly apply our proposed brute-force method (at least
160k nodes). We could further reduce the size of the coarsened graph, but it has already been
shown that this negatively affects the solution quality [62, 63]. Instead, we modify the initial
partitioning algorithm implemented in Mt-KaHyPar to make use of our theoretical results from
Section 4.
The initial partitioning phase of Mt-KaHyPar uses multilevel recursive bipartitioning [27, 63].
Recursive bipartitioning first computes a bipartition of the input graph and then continues this
process on both blocks recursively until the graph is partitioned into the desired number of
blocks. This is done in multilevel fashion using a portfolio of different bipartitioning techniques
to compute an initial solution. The coarsening algorithm contracts the graph down to a target

8While the traditional coarsening and the two-hop coarsening are applied in alternating order conceptually,
note that our actual implementation first constructs the complete hierarchy for the core and afterwards
coarsens the peripheral nodes, using the according level of the core as input for each step.

9It might be interesting for future work to explore whether using a smaller target size for |C| makes sense.
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size of 320 nodes, while the initial solution is refined using label propagation and FM refinement
during uncoarsening.
Our goal is to combine this with fixed core partitioning to achieve improved quality for star-like
graphs. To achieve this, we first partition the core nodes using traditional initial partitioning
and then assign the peripheral nodes, using Algorithm 1 for fixed core partitioning. This
technique works well if the total cost of cutting the peripheral nodes is negligible compared
to the edge cut of the core. However, as we will see in the experimental evaluation, for many
instances we do not achieve good results without also considering the peripheral nodes during
the partitioning of the core. Thus we need a technique to include the peripheral nodes.

Partitioning of the Core. To compute an initial (k-way) partition of the core, we use a
modified version of the multilevel recursive bipartitioning algorithm employed by Mt-KaHyPar.
We include the peripheral nodes within the recursive bipartitioning by using the techniques for
coarsening and refinement recursively, i.e., two-hop coarsening is applied until the graph is
sufficiently small for bipartitioning. Note that it might make sense to use a separate parameter
p′ instead of p for the target size of peripheral nodes, i.e., the target size is p′|C| (with |C| = 320).
Then, we apply the portfolio of bipartitioning algorithms [27] on the coarsened graph that
includes both the core and the peripheral nodes. Afterwards, we apply refinement that is aware
of peripheral nodes which we discuss in the next section in more detail.

Computing the k-way Partition. After the core is partitioned, our initial partitioning al-
gorithm discards the assignment of the peripheral nodes and uses Algorithm 1 to compute a
new assignment. This substantially improves the quality, as shown in the experimental eval-
uation (see Figure 16). This is because – in contrast to the heuristic partitioning of the core
– the fixed core partitioning algorithm considers all k blocks at once and provides a constant
approximation guarantee.
Note that two-hop coarsening destroys some of the structure of the peripheral nodes and thus
may worsen the achievable quality of the initial partition. However, Algorithm 1 can handle a
large number of peripheral nodes efficiently. Therefore, we evaluate two different strategies that
applies the fixed core partitioning algorithm either to peripheral nodes of the smallest graph
or the input graph. If used on the input graph, we perform an additional two-hop coarsening
pass in which we restrict contractions to nodes of the same block (similar to a V-cycle [67]).
This hierarchy then replaces the hierarchy of our first two-hop coarsening pass.
Basically, there is a trade-off between quality and running time: We can either use coarsened
peripheral nodes for the fixed core partitioning or apply two-hop coarsening twice to achieve
better quality, as we will see in the experimental evaluation. A possibility for reducing the
running time could be to apply the fixed core partitioning algorithm to the peripheral nodes of
a partially coarsened graph (i.e., a level somewhere between the input graph and the smallest
graph) – we leave this for future work.

Tracking the Effects of Peripheral Nodes. The previously described approach for computing
an initial partition of the core directly includes the peripheral nodes into recursive bipartition-
ing. However, there is also an alternative approach: We can keep the peripheral nodes separated
from the core and and modify the algorithms used for computing an initial bipartition such
that they explicitly consider the effect of the peripheral nodes on the cut. The bipartition-
ing algorithms used in Mt-KaHyPar include greedy graph growing, graph growing via label
propagation, an alternating breadth-first search and random assignment [27, 30]. The greedy
graph growing and label propagation algorithms compute a gain value for moving a node u to
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a particular block. Here, the gain value is the incident edge weight between u and the corre-
sponding block, i.e., the gain for assigning u to block Vi is ∑v∈N(u)∩Vi

ω(u, v). In each step,
greedy graph growing then assigns the node with the highest gain to the corresponding block.
Label propagation works in rounds, where one round moves each node to the block with higher
gain. The partition is initialized with a small number of nodes that are chosen at random.
Then, label propagation rounds are repeatedly applied until the partition converges.

Algorithm 4: Label Propagation Round with Tracking of Peripheral Nodes
Input: Graph G = (C ∪P, E, c, ω), maximum allowed block weight Lmax, partial partition

{C1, C2}, tracking data structure T
1 foreach u ∈ V in random order do
2 bmax ←⊥ // target block for u
3 δmax ← 0
4 foreach i ∈ {1, 2} do
5 δ ← ∑

v∈N(u)∩Ci
ω(u, v)

6 if i 6= getCurrentBlock(u) then
7 cold ← T.getPeripheralNodesCut()
8 T.updateAssignment(u, i)
9 cnew ← T.getPeripheralNodesCut() // get cut with u assigned to new block

10 T.updateAssignment(u, getCurrentBlock(u)) // restore previous state
11 δ ← δ + cold − cnew // update gain value
12 if δ > δmax then
13 bmax ← i

14 if bmax 6= getCurrentBlock(u) and c(Cbmax) + c(u) ≤ Lmax then
15 moveToBlock(u, bmax)
16 T.updateAssignment(u, bmax)

Our idea is to apply these algorithms only to the core nodes, but in a modified version. Al-
gorithm 4 shows how this works for a label propagation round: For each step, we consider an
assignment of the peripheral nodes to the blocks of the partition that is based on the core nodes
which are already assigned. This is represented with a data structure that stores the current
assignment (denoted by T ). When the gain is calculated (Line 5), we additionally calculate
how moving a node would affect the assignment of the peripheral nodes and thus the cut, using
the result to update the gain value of the according move (Lines 6-11). For example, this might
reduce the gain value for adding a core node to a block that already contains many core nodes,
because less peripheral nodes can be assigned to this block afterwards. To implement this, the
data structure needs to support both querying the current cut with regards to the peripheral
nodes and updating the assignment of a core node. After the gains are calculated, the node is
assigned to the block with the highest gain and we update T accordingly (Lines 14-16).
However, the running time overhead to compute a new assignment of all peripheral nodes
for every step of the algorithm would be problematic in practice. Instead, we propose to
implement the data structure using incremental updates as follows:10 Given a partial partition
Φ = {C1, C2} of C (note that some nodes might not be assigned yet), we define a corresponding
partial partition {P1, P2} of P by assigning p ∈ P to P1 if ∑c∈C1 ω(p, c) ≥ ω(I(p))

2 , to P2 if∑
c∈C2 ω(p, c) ≥ ω(I(p))

2 and to none of the blocks otherwise. Both P1 and P2 are represented as a
10For the sake of clarity, the described variant is simplified and stores the data differently than in our actual

implementation.
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balanced binary tree. For P1, we use the ratio r1(p) := 1
c(p) (∑c∈C1 ω(p, c)−∑c∈C2 ω(p, c)) as key.

The key r2(p) used for P2 is defined analogous. For a given node p, we store the node weight as
well as∑c∈C1 ω(p, c) and∑c∈C2 ω(p, c) in the binary tree. In addition, we store the sum of each of
these values for the sub-tree with root p. To query an actual assignment (and corresponding cut)
of peripheral nodes that respects the balance constraint for the maximum allowed block weight
Lmax, we select for the first block a subset P1 of P1 with c(C1)+c(P1) ≤ Lmax by greedily adding
the node with the highest value of r1 until Lmax is reached. P2 is constructed analogous (note
that either P1 = P1 or P2 = P2). The resulting assignment is ΦP = {P1 ∪ P2 \ P2, P2 ∪ P1 \ P1}
and the cut of ΦP is consequently ∑

p∈P1∪P2\P2

∑
c∈C2 ω(p, c) + ∑

p∈P2∪P1\P1

∑
c∈C1 ω(p, c). To

compute this, we search in the tree representing P1 for the maximum position i where the total
weight of the nodes left from i does not exceed Lmax−c(C1): The set of these nodes is P1. Using
the stored node weight of the sub-trees this works in O(log |P |) time. To calculate the cut,
we then sum the stored incident edge weights of the sub-trees on the path to i in O(log |P |)
time. Note that this assignment of peripheral nodes corresponds to using Algorithm 1, but
with assigning the nodes greedily for each block instead of using a knapsack algorithm with an
approximation guarantee. When the assignment of a core node c is updated, we need to update
P1 and P2. For this, we iterate over the peripheral nodes that are adjacent to c and update
them, which might involve removing the node from the binary tree and inserting it at a new
position in P1 or P2. This works in O(|N(c) ∩ P | log |P |) time.
Note that this technique could also be used for refinement, i.e., we apply the traditional re-
finement algorithms only to the core of the graph but adjust the involved gains using the
peripheral nodes and the presented data structure. Unfortunately, the running time overhead
of this method is much more significant during refinement than during initial partitioning due
to the larger size of the graph. Also, generalizing this technique to work in the k-way case is
more complicated than in the two-way case. For these reasons, we implemented this technique
only for the two-way refinement that is used in the recursive bipartitioning but not for k-way
refinement.

5.4. An Efficient Data Structure for Separated Nodes

To enable processing both the core of the graph and the separated nodes in an efficient way, we
use a specialized data structure for representing the peripheral nodes. We want to note that
we could alternatively modify the existing graph data structure of Mt-KaHyPar to internally
separate both types of nodes, which might be beneficial for performance reasons. However,
using a separate data structure provides more flexibility for implementing and evaluating our
different strategies.
Given a graph G = (V, E) and separated nodes P , our data structure represents both the
subgraph G[P ] of separated nodes and all edges between the core C and P , i.e., ECP :=
{{c, p} ∈ E | c ∈ C ∧ p ∈ P} (while we use the established data structures of Mt-KaHyPar
for G[C]). We use an adjacency array to represent the subgraph containing ECP . Internal
edges in G[P ] are represented as an edge list (i.e., an unsorted array containing all edges), since
they are only accessed during reinsertion of the peripheral nodes in initial partitioning and
refinement. To integrate this data structure into the shared-memory partitioning algorithm
Mt-KaHyPar, the data structure needs to support the following operations (i) Insertion of a
set of new nodes and edges to G[P ] and ECP , (ii) updating the edges in ECP with regards to
a set of contractions of C and (iii) applying a set of contractions to P . Recall that for some
of our peripheral nodes detection strategies the peripheral nodes are known before coarsening,
while one strategy detects them during coarsening. For the latter strategy we need to support
operation (i), while (ii) and (iii) are required for two-hop coarsening.
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After identifying a set of peripheral nodes P , we need to update ECP and the subgraph G[P ].
To implement (i), we first compute the new IDs of the added nodes with a parallel prefix sum
over an array of size |V | that contains a one at every position u where u is a peripheral node. To
obtain the position of the first incident edge of a node u within the adjacency array representing
ECP , we compute a parallel prefix sum over an array of size |P | that contains at position u
(using the new ID) the degree of u within G[C], i.e., |N(u)∩C|. Then, we resize the adjacency
array accordingly and fill its entries by iterating over the peripheral nodes in parallel, using
the previously computed prefix sum. To update the edge list with the internal edges of G[P ],
we iterate over P in parallel and add edges that are incident to another peripheral node to the
edge list (each threads accumulates the edges locally and then copies the result into the edge
list).
After contracting the core, we have to (ii) update ECP (G[P ] is not affected). For this, we
iterate over all edges in ECP in parallel and update the node IDs of the core nodes to their
corresponding representative in the coarser representation of the core. However, ECP now might
contain duplicate edges. Thus, we apply a de-duplication step that accumulates the weights of
all identical edges at one representative and removes all others. This is done by iterating over
the peripheral nodes in parallel and sorting their adjacent nodes. The sorted edges then are
de-duplicated by iterating over the sorted order and aggregating the weight of each identical
edge at their first occurrence. Afterwards, we update the node degrees with a parallel prefix
sum and shrink the adjacency array accordingly.
After computing a set of two-hop contractions between peripheral nodes, we (iii) need to apply
these contraction to G[P ] and also update ECP accordingly. To remap the node IDs, we compute
a parallel prefix sum over an array of size |P | that contains a one for every representative of a
cluster. Then we iterate in parallel over the peripheral nodes and accumulate the node weights
and node degrees with atomic instructions. The updated nodes are copied into a new instance
of the adjacency array and we compute the position of the first incident edge for each node with
a parallel prefix sum over the node degrees. Then the edges are copied to the new instance
according to the computed positions. As this might result in duplicate edges, we apply the
same edge de-duplication step to ECP as in (ii). To de-duplicate the internal edges of G[P ] in
the edge-list we use a parallel sort on the edges, iterate over the sorted order and aggregate the
weight of identical edges at their first occurrence.
Further, the data structure supports extraction of a subset P1 of P , which is required for
recursive bipartitioning. Similar to before, we compute the new node IDs with a parallel prefix
sum over an array that contains a one for each node in P1. In addition, this involves extracting
a subset of the core, which can be implemented in a similar fashion to contracting the core (but
does not require de-duplication of edges).

5.5. Generalization to Hypergraphs
While this thesis focuses on graph partitioning, it might be interesting for future work to
generalize the developed techniques for hypergraphs. Therefore, we provide a short overview
of the associated challenges.
The techniques for detecting peripheral nodes are mostly based on the incident edge weight, i.e.,
nodes with low incident weight are considered peripheral. This could be applied in the same
way to hypergraph. However, large hyperedges should probably be rated differently so that the
total contribution of the hyperedge to the weight is similar to that of a smaller hyperedge. For
a given node u, this could be achieved by using ∑e∈I(u)

ω(e)
|e| or ∑e∈I(u)

ω(e)
|e|−1 instead of directly

summing the weights (the latter formula corresponds to the heavy-edge rating function that is
used for the coarsening of hypergraphs [42, 63]).
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The techniques for two-hop coarsening from Section 5.2 are only partially applicable for hy-
pergraphs: The generalization of similarity matching is rather straightforward, even though
the same considerations regarding the weight of hyperedges as before are required. While twin
matching could be applied, it is probably less effective in the case of hypergraphs: Neighbor-
hoods will likely not be exactly equal as soon as large hyperedges are involved. A possible
approach to improve this is ignoring hyperedges above a certain size threshold. The technique
for degree two nodes is unlikely to be effective for hypergraphs, as it requires that a peripheral
node is adjacent to exactly two core nodes. Finally, clustering degree one nodes is very useful
for graphs but harder to apply for hypergraphs, as it requires that a given peripheral node is
adjacent to only a single core node. A possible solution could be to handle a node as if it has
degree one if the majority of its incident edge weight is connected to a single core node.
With regards to initial partitioning, we use a fixed core partitioning algorithm to compute an
assignment of the peripheral nodes with a constant approximation guarantee. As we already
assume that the peripheral nodes are an independent set, it seems reasonable to use the same
requirement for a generalization to hypergraphs: Each hyperedge may be connected to at most
one peripheral node. With this assumption, we can reduce the problem of assigning peripheral
nodes for hypergraphs to fixed core partitioning. In the case of the (λ− 1)-metric, a hyperedge
e that is incident to a peripheral hypernode p can be modeled with an edge from p to every
block of the core that is incident to e. With the cut-net metric, a hyperedge can be removed
if it is already cut by the partition of the core and corresponds to a single edge otherwise.
The former case corresponds to cut-net splitting and the latter to cut-net removal, which are
techniques known from recursive bipartitioning of hypergraphs [13, 62]. In conclusion, fixed
core partitioning algorithms should be applicable for hypergraphs in the same way as for graphs.
Regarding bipartitioning and refinement, the approach of reinserting the peripheral nodes is
also applicable for hypergraphs. However, tracking the effect of peripheral nodes would be more
complicated than in the case of graphs and would require a generalization of the involved data
structures.
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Benchmark Set SNAP DAC Walshaw Recomp Random Other
Set A 6 2 4 2 5 6
Set B 29 4 2 7 18 20
Total 31 6 6 9 23 24
Star-like 6 0 0 9 8 0

Table 3: The number of graphs included for the different graph types and the number of star-
like graphs for each type.

6. Experimental Results
In this section, we evaluate the different configurations and parameter choices of our star
partitioning algorithm. First, we identify a set of well-performing configurations and analyze
their effectiveness with two different approaches: We compare the configuration with the best
overall performance to the state-of-the-art partitioning algorithm Mt-KaHyPar. In addition,
we present an algorithm portfolio that contains both our new configurations and the baseline
algorithm of Mt-KaHyPar and is capable of providing even better quality. To evaluate the
portfolio, we generalized the effectiveness tests presented by Ahkremtsev et al. [2] to portfolio
algorithms.

6.1. Setup and Methodology

We integrate our algorithms into the Multi-Threaded Kalsruhe Hypergraph Partitioning frame-
work Mt-KaHyPar [27, 30]. Mt-KaHyPar was originally developed for partitioning hypergraphs,
but implements optimized data structures for graph partitioning.
Mt-KaHyPar provides multiple partitioning configurations: Mt-KaHyPar-D (-Default) uses
multilevel partitioning with a logarithmic number of levels [27]. Mt-KaHyPar-Q (-Quality)
achieves better quality at the cost of longer running times using the n-Level approach, which
is the most extreme version of the multilevel scheme: Here, only a single node is contracted on
each level, thereby allowing more opportunities for refinement [28]. In addition, Mt-KaHyPar
extends these configurations with flow-based refinement techniques to improve the quality even
further [25] (Mt-KaHyPar-D-F and Mt-KaHyPar-Q-F, -Flows). Further, Mt-KaHyPar-SDet
(-Speed Deterministic) is a multilevel configuration with deterministic results [24]. We refer
to the dissertation of Heuer [30] for a detailed description of the configurations.

Methodology. For the evaluation, we use parameters ε = 0.03 and k ∈ {2, 4, 8, 16, 32} with
a time limit of one hour where not stated otherwise. For each instance (graph and number of
blocks k) we perform ten repetitions using different random seeds. We aggregate the edge cuts
and the running times of the different runs using the arithmetic mean. To aggregate running
times over multiple instances we use the geometric mean. If a run exceeded the time limit,
we use the time limit in the aggregate and mark it with 7 in the plot. If all runs for a given
instance exceeded the time limit or could not produce a feasible partition for other reasons, the
instance is similarly marked with 7 in the plot.

Instances. For our evaluation we use instances from different application areas as well as a set
of graphs that are generated from random models. An overview is given in Table 3. We include
instances from the Walshaw Benchmark for Graph Partitioning [65], the DAC 2012 Routability-
Driven Benchmark Suite (DAC) [66], the Stanford Network Analysis Project (SNAP) [48]
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and instances that are derived from scientific collaboration networks [55]. From a benchmark
set for finite element computations we include graphs that are generated from dynamic two-
dimensional numerical simulations [51] and from the 2018 Static Graph Challenge [59] we use
protein k-mer graphs where nodes represent segments of amino acids. Further, we use graphs
from the following random models: Random geometric graphs (rggX), where nodes are random
points on the unit square with connection based on the Euclidean distance [33]. Similarly,
Delaunay graphs (delaunayX) represent a Delaunay triangulation of random points in the unit
square [33]. Random hyperbolic graphs (rhgX) are another variant of random geometric graphs
generated by placing random points within a disk in the hyperbolic plane [22]. The Kronecker
graphs (kronX) are derived from an R-MAT generator that works by sampling from a perturbed
Kronecker product [7]. Based on a similar generator, the R-MAT graphs (rmatX) are created
using the PaRMAT generator as described in [43]. Finally, Erdös-Rényi graphs (erX) are
generated by assigning a uniform probability for inserting the corresponding edge to each pair
of nodes. In this case, the probability is chosen such that the expected number of edges is
logarithmic in the number of nodes. In addition, we include a set of graphs that are generated
by a text compression tool based on the recompression technique [36] (recompX). The texts for
the graphs are from the Pizza&Chili corpus [57]. Note that while all other benchmark instances
are unweighted, the recompX graphs have weighted edges.
The benchmark set contains 99 instances in total. These instances include 23 star-like graphs
which we identified in preliminary experiments. On these instances, we expect significant im-
provements by applying our star partitioning techniques. The remaining graphs are chosen
as a representative sample from the application domains and random graph models described
above. We use a subset consisting of 25 relatively small graphs for parameter tuning exper-
iments, denoted by benchmark set A. In this set, 7 out of the 25 instances have a star-like
structure. Afterwards, we evaluate our final configurations on benchmark set B, which consists
of 80 graphs of varying sizes (from a hundred thousand edges up to 1.2 billion edges for the
Twitter graph) and includes 19 star-like graphs. The two benchmark sets are mostly disjoint
except for six instances – we reuse the star-like social graphs for benchmark set B because only
few such instances are available.
Table 3 provides an overview over the composition of the benchmark sets with regards to the
different graph types. A complete list of the instances in benchmark set A and benchmark set
B is given in Appendix B.

System. The experiments are performed on a machine that uses an AMD Epyc 7702P pro-
cessor with 64 cores, a clock frequency of 1.50 GHz and 256 MiB L3-Cache. The machine
runs Ubuntu 20.04.2 LTS Linux and has 996 GB main memory. We run up to 8 processes in
parallel (provided the main memory is not exceeded) and use 8 threads per process. This setup
causes an overall increase in the running time measurements. However, this is reasonable since
the same setting is used for all algorithms and performance engineering is not the goal of this
work. Our implementation is written in C++ and compiled with g++-9.4 using the flags -O3
-mtune=native and -march=native.

Performance Profiles. We use performance profile plots [18] to compare the solution quality
of different algorithms. In the plot, each algorithm is represented by a performance curve. Let
A be the set of all algorithms we want to compare, I the set of instances, and qA(I) the quality
of algorithm A ∈ A on instances I ∈ I. For each algorithm A, we plot the fraction of instances
(y-axis) for which qA(I) ≤ τ ·Best(I), where τ is on the x-axis and Best(I) is the best solution
produced by any algorithm. For example, if the value of A on the y-axis is 0.6 for τ = 1.2,
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Name Applicable values Default
Peripheral nodes detection strategy local, stats, comm, cluster -

Parameters for comparing adjacent nodes (local)
Max. ratio difference s [1,∞) 3
Separated incident edge weight fraction t [0, 1] 1

Parameters for statistical threshold and community detection (stats, comm)
Standard deviation factor d R 2
Contractions of p. nodes (only comm) none, all, sub_communities none

Parameters for density based clustering (cluster)
Objective function ϕ, ϕ′ ϕ
Std. dev. factor d for initial solution R 4

Shared parameters
Coarsening target size p [1,∞) 2
Coarsening target size p′ for IP [1,∞) 2
Strategy for fixed core partitioning after IP none, coarse, input input
Fixed core partitioning algorithm greedy, approximate approximate
Initial partitioning strategy reinsert, tracking, core reinsert

Table 4: Overview of available strategies and parameters. A discussion of the strategies is given
in Section 5. Note: IP is a shorthand for initial partitioning.

then the cut of the partitions computed by this algorithm is at most 20% (τ = 1.2) worse than
the best solution found on 60% (y = 0.6) of the instances. For τ = 1, the y-value indicates the
percentage of instances for which an algorithm A ∈ A performs best. Note that we separate
the x-axis into three areas with different scale: The first area display instances which are close
(within 10%) to the quality of the best result. In the second area, instances are shown where
the quality is within 2 times of the best result. The third area uses a logarithmic scale to
display the remaining instances. Any remaining instances are either timeouts or the algorithm
could not find a feasible partition for other reasons. These infeasible instances are marked with
a 7-tick. Note that these plots relate the quality of an algorithm to the best solution and thus
do not permit a full ranking of three or more algorithms.

6.2. Parameter Tuning

To evaluate the strategies developed in Section 5 and choose configurations with effective pa-
rameters, we perform parameter tuning experiments on benchmark set A. The primary goal of
this study is to find a configuration computing partitions with the highest possible quality on
star-like graphs without negatively affecting the solution quality on the remaining instances.
However, this turned out to be difficult as we will see throughout this evaluation. Therefore,
we propose two configurations: one that works well for all instances (referred to as balanced
configuration) and one that achieves the highest possible quality for star-like graphs (referred
to as optimized configuration). An overview of available strategies and parameters is given in
Table 4. The provided default values are based on preliminary experiments. In the following
experiments, we evaluate different choices for one or two parameters, while all others are set to
their default values.
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Figure 8: Comparison of parameters for peripheral nodes detection based on comparing adja-
cent nodes (local).

6.2.1. Detection of Peripheral Nodes

Dynamic Detection in the Coarsening Phase. The local strategy separates peripheral
nodes in the coarsening phase. It compares the ratio r(u) := ω(I(u))

c(u) of adjacent nodes and
considers a node u peripheral if s · r(u) ≤ r(v) for all its neighbors v and a tuning parameter
s. Also, u can be adjacent to nodes that were separated on a previous level of the multilevel
hierarchy. We separate u only if ω(I ′(u)) ≤ t · ω(I(u)), where I ′(u) is the set of incident edges
restricted to already separated nodes and t is a second parameter. Figure 8 provides an overview
over the effect of both parameters on star-like instances. As it can be seen, smaller values for
s and larger values for t lead to better results on star-like instances. Using s = 2 instead of
s = 3 improves the quality by 1.5% in the median while t ∈ {0.5, 1} provides significantly better
results than smaller values of t. However, this tends to decrease the quality for instances that
are not star-like.
Figure 9 compares promising candidates for a balanced and an optimized configuration. The
best results for all instances are achieved with s ∈ {3, 4} and t = 0.3. The difference between
s = 3 and s = 4 is not significant on all instances, but we can see an improvement by 0.8%
in the median on star-like graphs when we use s = 3 instead of s = 4. Therefore, we use the
values (s = 3, t = 0.3) for the Balancedlocal configuration.
The candidates for an optimized configuration are s ∈ {1.3, 1.6} and t ∈ {0.5, 1}. All tested
configurations produce similar solutions on star-like graphs, as shown in Figure 9 (left). How-
ever, (s = 1.3, t = 0.5) and (s = 1.6, t = 1) produce on 12% of all instances solutions that are
more than a factor of two worse than the best solution, as it can be seen in Figure 9 (right).
We therefore choose (s = 1.6, t = 0.5) for the Optimizedlocal configuration.

Outlier Detection of Statistical Properties. The stats strategy considers the distribution
of the ratio r over the complete graph and detects peripheral nodes as outliers with small value.
The threshold for outliers is µ + d · σ, where µ is the average and σ the standard deviation of
the r values, and d a tuning parameter. Figure 10 compares different values for d. We see in
the plots that small values for d lead to better results on star-like instances but worse results
on all instances. The configurations with d ∈ {2, 3, 4} achieve the best quality on all instances.
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Figure 9: Comparison of parameters for peripheral nodes detection based on comparing adja-
cent nodes (local). We evaluate balanced configurations (top) and optimized con-
figurations (bottom).
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Figure 10: Comparison of parameters for peripheral nodes detection based on a statistical
threshold (stats). We evaluate balanced configurations (top) and optimized con-
figurations (bottom).
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Figure 11: Comparison of parameters for peripheral nodes detection based on a community
detection (comm). We evaluate balanced configurations (top-left) and different con-
traction strategies for edges of peripheral nodes with d = 3 (top-right), as well as
optimized configurations (bottom).

The differences are small, with a deviation of less than 2% in the median quality compared
to the best solution. We choose d = 4 for the Balancedstats configuration since it finds the
best solution for 40% of instances and also has slightly better running time on average (0.48s
compared to 0.5s for d = 3 and 0.54s for d = 2).
Further, Figure 10 (left) shows that the quality for star-like graphs continues to improve down
to surprisingly small values for d. The best quality is achieved for d = 0 (note: d = 0 means
that anything below average is considered an outlier). While d = −0.2 finds the best partition
for more instances than the other configurations (50% of instances), the results are also two
times worse than the best solution for ≈ 25% of the instances. Therefore, we choose d = 0 for
the Optimizedstats configuration.

Community Detection. The comm strategy is based on community detection. It uses a similar
statistical threshold as the stats strategy, but the distribution is based on the modularity gain
δ instead of r. As before, we use µ + d · σ with a parameter d as threshold. Figure 11 shows
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Figure 12: Comparison of the cluster strategy to the local strategy.

that small values for d provide better results for star-like and worse results for other instances,
similar to the stats strategy. On all instances, d = 3 and d = 4 achieve the best quality and
both configurations compute similar solutions. For a few instances, the solution found with
d = 4 is two times worse than the best solution, while the configurations have similar running
times. We therefore use d = 3 for the Balancedcomm configuration.
On star-like instances, d = 0 achieves the best quality: The results are within 10% of the best
solution on all instances. Similar to the stats strategy, d = −0.2 finds the best partition for
more instances than d = 0 but is two times worse than the best solution for more than 20% of
instances. Thus, we choose d = 0 for the Optimizedcomm configuration.
Further, Figure 11 (top-right) compares different strategies for contracting peripheral nodes:
The none strategy separates the nodes without applying contractions. With sub_communities,
community detection is applied to the peripheral nodes and the resulting communities are
contracted. The all strategy contracts all edges between peripheral nodes before separating
them. However, we see in the plot that both the sub_communities and all strategies worsen
the quality for star-like instances. The results for the remaining instances are nearly identical
to the none strategy. Therefore, we use the none strategy.

Density Clustering. The last peripheral nodes detection strategy (cluster) uses the density-
based clustering algorithm. The strategy takes a partition of the node set into peripheral and
core nodes computed via the stats strategy as input and then improves it by optimizing our
proposed objective function. The parameter d of the stats strategy is used for calculating the
input partition. For the clustering, we tested two variants of our objective function (ϕ and ϕ′,
see Section 5.1). However, Figure 12 shows that the results of this strategy are significantly
inferior to the local strategy, on star-like instances as well as on the overall benchmark set.
This holds with both objective functions and d ∈ {2, 4} and also in comparison to the stats
and comm strategies. Therefore, we do not use this strategy for our final configurations.

Comparison of Resulting Configurations. We compare the resulting configurations in Fig-
ure 13. Regarding the optimized configurations, the best quality on star-like instances is
achieved by Optimizedlocal. The results produced by Optimizedlocal are within 9% of the best
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Figure 13: Comparison of optimized configurations on star-like instances (left) and balanced
configurations on all instances (right).

solution for all instances. The Optimizedcomm and Optimizedstats configurations compute com-
parable solutions. However, the results of Optimizedcomm are within 20% of the best solution for
all instances while Optimizedstats computes partitions with up to 50% worse cut than the best
solution. On all instances, Balancedlocal provides better results than the two other configura-
tions, but only by a small margin (1% improvement in the median compared to Balancedcomm).
Note that Balancedlocal significantly outperforms the other balanced configurations on star-
like instances, finding the best solution for 80% of instances. If we compare Balancedcomm

and Balancedstats, it is not obvious from the plot which produces better results and both also
have similar running times (0.52s vs 0.48s). In summary, these results indicate that the local
strategy works best for star partitioning.

6.2.2. Coarsening and Initial Partitioning

In the following, we consider the parameters and strategies that are applicable independent
from the strategy for detecting peripheral nodes. While the detection of peripheral nodes tends
to be a trade-off between quality on star-like instances and quality on the remaining instances,
the shared parameters effect all instances similarly. The effects of the following parameters
are similar for all peripheral node detection strategies. We therefore evaluate them using the
Optimizedlocal strategy. However, we observed that the effects tend to be less pronounced for
balanced strategies.

Two-hop Coarsening Target Size. The parameters p and p′ determine the target size for
two-hop coarsening, which is p|C| peripheral nodes where C is the coarsest approximation of
the core. For each bipartitioning step within the initial partitioning, we use p′ instead of p.
Figure 14 shows that the impact on the quality is minor. Higher values such as p ≥ 4 lead to
slightly worse results. The quality achieved with p = 1 and p = 2 is almost identical. However,
p = 1 increases the running time by 9% on average. The reason might be that more coarsening
passes are required to reach the target size. In addition, we tested choosing p and p′ differently,
but this did not yield any improvement. Therefore, we use p = p′ = 2.
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Figure 14: Comparison of different values for the two-hop coarsening target size (based on
Optimizedlocal).
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Figure 15: Evaluation of the reinsert, tracking and core strategies for the initial partitioning
of the core (based on Optimizedlocal).
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Figure 16: Comparison of different strategies for fixed core partitioning after initial partitioning
(based on Optimizedlocal).

Initial Partitioning. For the initial partitioning of the core, we evaluate the following strate-
gies: Applying traditional initial partitioning techniques only to the core (core), applying tradi-
tional techniques to the graph that includes both the core and the peripheral nodes (reinsert)
and modifying the algorithms used for traditional bipartitioning to track the effect of the pe-
ripheral nodes on the cut (tracking). The results are presented in Figure 15. Clearly, the
reinsert strategy provides the best results, finding the best partition for 72% of the instances.
On the star-like instances, it is within 11% of the best solution for all instances. In compar-
ison, the quality of the tracking and core strategies on all instances is worse than the best
solution by 5% and 20% in the median, respectively.11 The inferior results of the core strategy
indicate that it is important to consider the peripheral nodes during the partitioning of the
core. In case of the tracking strategy, a possible reason for the worse results in comparison
to reinsert could be that tracking is not aware of edges between peripheral nodes. Also,
we observed that the difference between reinsert and tracking is significantly smaller for
balanced configurations.

Fixed Core Partitioning. To compute a high quality assignment of the peripheral nodes after
initial partitioning, we use our fixed core partitioning algorithm (see Section 5.3). For the
evaluation of this technique, we implement different strategies: The input strategy applies
the fixed core partitioning to the peripheral nodes of the input graph and afterwards applies
two-hop coarsening that respects the resulting assignment. In contrast, the coarse strategy
first applies two-hop coarsening and uses the coarsest level of peripheral nodes for fixed core
partitioning. Additionally, we implemented the none variant which does not apply fixed core
partitioning and instead uses the result of traditional initial partitioning.
Figure 16 provides a comparison of these strategies. Clearly, the best results are achieved with
input, which is within 4% of the best solution for all star-like instances. The coarse strategy
has 0.5% worse quality than the best solution in the median and 10% worse quality than the
best solution for 6% of the star-like instances. Also, we observed that the results of the coarse

11In addition, the current implementation of the tracking strategy increases the required running time for
initial partitioning by a factor of five in the geometric mean.
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strategy improve slightly when larger values for the two-hop coarsening target size p are used.12

If we do not apply fixed core partitioning, we further decrease the quality. On all instances, the
results for the none strategy are 3% worse than the best solution in the median. Overall, these
results suggest that the fixed core partitioning step is one of the most important components
for a high-quality star partitioning algorithm.
The described configurations all use Algorithm 1 for computing an assignment of peripheral
nodes with a constant approximation guarantee. To quantify the effect of the fixed core parti-
tioning algorithm on the solution quality, we compare our proposed approximation algorithm
to a simple greedy algorithm that sorts the peripheral nodes in decreasing order by the ω(I(U))

c(u)
ratios and assigns each node to the block to which the weight of all incident edges is maximized.
If we use the greedy algorithm, we can see that it produces significantly worse partitions than
Algorithm 1. For ≈ 50% of the star-like instances, the cut is at least 10% worse than for the
best result. This shows that the fixed core partitioning algorithm significantly affects the solu-
tion quality. Thus it might be interesting for future work to develop a fixed core partitioning
algorithm that further improves upon Algorithm 1.

Final Configurations. Based on the results of our parameter tuning experiments, we include
the Optimizedlocal, Optimizedcomm, Balancedlocal and Balancedcomm configurations for the com-
parison to Mt-KaHyPar. We use p = p′ = 2 as parameter for the two-hop target size and we
use the reinsert strategy for the initial partitioning of the core. To compute an assignment
of the peripheral nodes after initial partitioning, we apply our fixed core partitioning algorithm
with the peripheral nodes of the input graph.

6.3. Evaluation of Final Configurations

We evaluate both the quality and the running time of our final configurations on benchmark
set B. Our implementation shares many algorithmic components with Mt-KaHyPar-D. We use
the coarsening algorithm of Mt-KaHyPar-D to reduce the size of the core, while integrating
the two-hop clustering to handle peripheral nodes. Moreover, we extend the initial partitioning
phase of Mt-KaHyPar-D with a fixed core partitioning algorithm. During refinement, we use the
same local search algorithms as Mt-KaHyPar-D for both core nodes and peripheral nodes (i.e.,
label propagation and FM local search). Thus, we compare our algorithm to Mt-KaHyPar-D
as the most similar configuration.13. We do not include an explicit comparison to n-level
partitioning algorithms since multilevel partitioners can produce solutions with comparable
solution quality [30]. With regards to flow-based refinement, the current implementation is not
capable of handling large star-like graphs efficiently [30, see pp. 149-150]. Therefore, we leave
this for future work.
Additionally, we include the degree-based partitioning technique that we used to identify star-
like instances as a baseline implementation. This technique sorts the nodes by degree, placing
the first |V |

k
nodes in the first block, the second |V |

k
nodes in the second block and so on.

Afterwards, we perform one V-cycle [67] on the partition as a refinement step. A V-cycle
consists of one coarsening round where contractions are restricted to nodes within the same
block of the input partition. Afterwards, the input partition is used as initial partition which
12Note that the coarse strategy in principle allows for a reduced running time in comparison to the input

strategy, because only one two-hop coarsening pass is required. However, the architecture of our current
implementation does not allow to take advantage of this.

13The version of Mt-KaHyPar used for our experiments has the commit hash f21a419 while the implementation
of our star partitioning algorithm has the hash aa348c3. Mt-KaHyPar is publicly available from https:
//github.com/kahypar/mt-kahypar
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Figure 17: Performance profiles comparing the results of the different configurations both on
star-like instances (left) and the complete benchmark set B (right).

induces the same cut and balance as on the input graph. This allows to improve the input
partition in the uncoarsening phase.
Moreover, we observed that the star-partitioning techniques negatively impact the solution
quality on mesh networks. We therefore include a configuration that detects whether or not
the instance is a mesh graph and disables the star partitioning techniques if this is the case.
Mesh graph detection is already implemented in Mt-KaHyPar and is based on the average µ
and standard deviation σ of the node degrees of the graph. We assume a graph is a mesh
network if σ ≤ µ

2 , i.e., the graph has a uniform degree distribution [30].

Quality. Figure 17 provides a comparison of our final configurations. The Optimizedlocal

and Optimizedcomm configurations achieve the best results on star-like instances. They com-
pute comparable solutions, both finding the best partition for 40% of instances. However,
Optimizedlocal has significantly better results on all instances, while the quality of Optimizedcomm

is worse than the best solution by at least a factor of two for 40% of instances. Both balanced
configurations achieve similar quality on the complete benchmark set. While Balancedcomm

finds the best solution for 40% of instances, for 10% of instances it also computes partitions
which are worse than the best solution by a factor of two. Notably, Balancedlocal has better
quality than Balancedcomm on the star-like instances by 13% in the median. This indicates
that Balancedcomm provides only a small improvement on star-like instances in comparison to
traditional techniques. Note that all configurations except Balancedcomm reached the time limit
for a few instances.
The results of comparing our configurations to Mt-KaHyPar as well as the degree-based ap-
proach are summarized in Figure 18. Notably, our configurations compute significantly bet-
ter solutions than Mt-KaHyPar on the star-like instances. The Optimizedlocal configuration
achieves better quality than Mt-KaHyPar by a factor of 1.1 for 80% and better quality by a fac-
tor of 2 for 40% of the instances. For some of the recompX graphs (e.g., recomp_english1GB_5
with k ≥ 4) the quality is better by a factor of 10 or more. The degree-based approach also
performs surprisingly well on star-like instances, with a quality that is only 5% worse than the
best solution in the median. If we look at the Balancedlocal configuration, we see that adding
mesh graph detection further improves the quality on the complete benchmark set, as shown
in Figure 18 (top right). This is expected as mesh graphs do not have star-like properties. If
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Figure 18: Comparison to Mt-KaHyPar. We evaluate the effect of adding mesh graph detection
to the Balancedlocal configuration (+Mesh, top right), compare both local config-
urations to Mt-KaHyPar and the degree-based approach on the star-like instances
(left) and compare the Balancedlocal (+Mesh) configuration to Mt-KaHyPar on all
instances (bottom right).
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Figure 19: Comparison to Mt-KaHyPar and the degree-based technique for k ∈ {2, 4} (top)
and for k ∈ {8, 16, 32} (bottom).

we compare the configuration that includes mesh graph detection to Mt-KaHyPar, it finds the
best solution only for 40% of instances but unlike Mt-KaHyPar it is within a factor of 2 of
the best solution for almost all instances. On star-like instances, the Balancedlocal (+Mesh)
configuration has better quality than Mt-KaHyPar with an improvement of 65% in the median.
However, in this case the degree-based approach has competitive performance. In summary,
the Balancedlocal (+Mesh) configuration provides good quality on all instances, but only the
Optimizedlocal configuration is capable of outperforming the degree-based approach for star-like
instances.

Additionally, we evaluate how different values for k influence the solution quality in Figure 19.
Overall, the results are similar for k ≤ 4 and k > 4. However, the difference on star-like
instances is more pronounced for k ≤ 4. The results of Mt-KaHyPar are worse than the
best solution by a factor of 2 in the median while for k > 4, the median difference is only
a factor of 1.5. In addition, for k ≤ 4 Optimizedcomm computes slightly better results than
Optimizedlocal. On all instances, the Balancedlocal and Balancedcomm configurations have very
similar performance for k ≤ 4. For k > 4, Balancedlocal provides better results by 1.5% in the
median. This indicates that the comm strategy works better for small values of k.
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Figure 20: Performance profiles evaluating the effect of using one V-Cycle for Mt-KaHyPar-D
and Optimizedlocal.

V-cycles. V-cycles are a common technique to further improve the quality of a partition [67],
as already described. We evaluate the effect of V-cycles in Figure 20. As it can be seen, adding
one V-cycle provides a substantial quality improvement on all instances. Mt-KaHyPar-D with
one V-cycle finds the best solution for more than half of instances. In case of the Optimizedlocal

strategy, adding one V-cycle reduces the number of outliers with very bad quality (but the
results are still clearly inferior to Mt-KaHyPar-D). However, on star-like instances adding a
V-cycle does not provide a significant improvement for Mt-KaHyPar-D. For Optimizedlocal a
small improvement is achieved, but the quality difference compared to the variant without a V-
cycle is less than 1% on most instances. This indicates that adding V-cycles is not an effective
strategy for star-like graphs.

Running Time. We compare the running time of the algorithms in Figure 21. As it can
be seen, the star partitioning techniques have longer running times then Mt-KaHyPar. The
balanced configurations are slower than Mt-KaHyPar by a factor of two, while Optimizedlocal

is slower by a factor of four and Optimizedcomm is slower by a factor of ten on average.14 The
reason for this is that in our current implementation, we made sacrifices on performance in favor
of exploring the large design space of the star partitioning problem. However, this is likely not
inherent to star partitioning. With an improved understanding of the problem domain and
a more specialized implementation it should be possible to achieve a similar running time to
Mt-KaHyPar-D – we leave the engineering and optimization of such an implementation for
future work.

6.4. Evaluation of Algorithm Portfolios

Effectiveness Tests. Merely comparing the solution quality of two algorithms A and B is
often not sufficient for a comprehensive evaluation. If algorithm A produces better partitions
but is significantly slower than algorithm B, it may have an unfair advantage due to its longer
14The reason that Optimizedcomm is significantly slower than Optimizedlocal might be that it detects more

nodes as peripheral and it does this as a preprocessing step, thereby placing more load on the data structure
that represents peripheral nodes.
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Figure 21: Comparing the running time of each algorithm on benchmark set B. The number
under each boxplot denotes the geometric mean of the running time for the corre-
sponding algorithm. Note, 7 marks instances that exceeded the time limit.

running time. Effectiveness tests [2] allow to compare two algorithms with different running
time by performing additional repetitions with the faster algorithm. The situation is similar
if we want to evaluate a portfolio that consists of multiple algorithms – which is of particular
interest in our case, as the best results might be achieved by combining an algorithm that
is specialized for star-like instances with a traditional multilevel partitioner. Therefore, we
introduce a modified approach to effectiveness tests that allows to compare a single algorithm
with a portfolio of algorithms.

Definition 6.1. A portfolio P = {(A1, p1), . . . , (An, pn)} is a set of algorithms together with
a probability that the algorithm is selected for a given sample, subject to pi ≥ 0 for i ≤ n and
p1 + · · ·+ pn = 1.

Suppose we want to compare a portfolio P = {(A1, p1), . . . , (An, pn)} with an algorithm B on
instance I. We generate a virtual instance as follows: For a given time limit T , we sample runs
of B until their accumulated running time exceeds T . Let t1

B, . . . , tl
B denote the running times.

We accept the last sample with probability 1
T

(T −∑l−1
i=1 ti

B), which ensures that the expected
total running time of the samples equals T . We then plot the best solution of the included
samples. The solution quality for the portfolio P is determined similarly, except that for a given
sample we determine the used algorithm at random.To minimize the variance of the results, we
generate ten virtual instances per instance.
The time limit T is determined by sampling ten repetitions of algorithm B with running times
t1
B, . . . , t10

B and ten repetitions of each algorithm in P .15 Let tmax
P := maxi≤n,j≤10 tj

Ai
be the

maximum time required by an algorithm in the portfolio, where tj
Ai

denotes the running time
of the j’th repetition of algorithm Ai (we exclude infeasible repetitions). Then, the time limit
is defined as T := min{max{∑5

i=1 ti
B, 2tmax

P },∑10
i=1 ti

B}. The purpose of this definition is to allow
for enough running time such that a portfolio solution becomes worthwhile.

Results. In the following, we use effectiveness tests to evaluate algorithm portfolios with the
goal of achieving good quality on all instances. We use portfolios consisting of Mt-KaHyPar-D
15Since we executed ten runs per algorithm, this means we use all of the repetitions for determining T but

randomize their order.
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Figure 22: Evaluation of algorithm portfolios. We compare portfolios that use the Balancedlocal

(top) and Optimizedlocal (bottom) configurations to Mt-KaHyPar.
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Figure 23: Comparing the [Mt-KaHyPar-D, Optimizedlocal] portfolio to the Optimizedlocal con-
figuration on star-like instances (left) and to the Balancedlocal configuration on all
instances (right).

and one other algorithm with a probability of 1
2 for both algorithms. Additionally, we always run

Mt-KaHyPar-D for the first sample, since this strategy provides better quality than randomizing
all samples.16

Figure 22 shows the results for portfolios consisting of Mt-KaHyPar-D and one of our fi-
nal configurations. Note that Mt-KaHyPar-D always runs first. On the star-like instances,
both portfolios clearly outperform Mt-KaHyPar: The [Mt-KaHyPar-D, Balancedlocal] portfolio
achieves better quality than Mt-KaHyPar by a factor of 1.4 in the median, while the differ-
ence for [Mt-KaHyPar-D, Optimizedlocal] is a factor of 1.55 in the median. On all instances,
Mt-KaHyPar finds the best solution for a larger fraction of instances than the portfolios (≈ 20%
more of the instances). However, the portfolios provide significantly better results for the high
percentiles. For 10% of instances, the portfolios using the Balancedlocal configuration and the
Optimizedlocal configuration find better solutions by a factor of 1.53 and 1.63, respectively. The
difference is even larger for higher percentiles, up to a factor of 10 or more. This indicates that
the [Mt-KaHyPar-D, Optimizedlocal] portfolio is a good choice for achieving high quality on all
instances.
Further, we compare the effectiveness of the [Mt-KaHyPar-D, Optimizedlocal] portfolio to our
other configurations in Figure 23. The plots show that the results on star-like instances are
comparable to the Optimizedlocal configuration, finding the best solution only on 48% instead
of 73% of instances. However, the result of the portfolio is within 2% of the best solution on
more than 90% of instances – thus the overall difference is minor. For a few instances, the result
is significantly worse, most likely because the portfolio only chose Mt-KaHyPar in these cases.
On all instances, the portfolio clearly outperforms the Balancedlocal configuration: It finds the
best solution on 80% of instances and the quality is better than the quality of Balancedlocal by
4% in the median. Overall, from our presented algorithms the [Mt-KaHyPar-D, Optimizedlocal]
portfolio seems to be the best choice for achieving a high quality both on star-like graphs and
on other instances.

16We then adjust the probabilities for the current virtual instance to compensate the advantage given to
Mt-KaHyPar-D. Let A1 be the algorithm that runs first and let δA1 := min{t1

A1/T , p(A1)}. Then, the
adjusted probabilities are defined as p̃1 := 1

1−δA1
(p(A1)− δA1) and p̃i := 1

1−δA1
p(Ai) for i > 1.
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7. Conclusion
Star-like graphs are characterized by their high number of peripheral nodes with low degree
connected to a small and dense core. The properties of these instances allow us to use algorithms
specifically tailored for star-like instances to compute partitions with significantly smaller cut
than traditional multilevel algorithms. In this thesis, we developed the components that are
necessary to achieve this in practice. From a theoretical point of view, we constructed an
approximation algorithm where the running time is fixed-parameter tractable with regards to
the size of the core of the graph. The underlying idea is to reduce the problem to the fixed core
partitioning problem, for which we can compute a constant factor approximation in polynomial
time based on algorithms for the min-knapsack problem. Using a min-knapsack algorithm
with given approximation ratio R (a 3

2 -approximation can be computed in quadratic running
time [15] and an FPTAS exists [35]), our algorithm achieves an approximation ratio of R + 1 –
which is an important result as there exists no constant factor approximation for general graph
partitioning [10].
However, the running time of our approximation algorithm is exponential in the size of the
core, which would be infeasible in practice. Therefore, we explored techniques for modifying the
multilevel paradigm such that it allows to exploit the properties of star-like graphs. We found
that in traditional multilevel partitioning, peripheral nodes tend to get contracted onto core
nodes in the coarsening phase. Due to the increased node weight, this forces initial partitioning
to separate the core in multiple blocks. This induces a large cut, which can not repaired during
uncoarsening. In our implementation, we solve this by using the following components: First,
a strategy to detect peripheral nodes in the coarsening phase. Testing multiple strategies, we
achieved the best results using the local strategy that is based on comparing the ratio of
the incident edge weight of a node relative to its node weight between adjacent nodes. After
separating the peripheral nodes, we apply two-hop coarsening on the peripheral nodes. As
peripheral nodes are often not connected, we presented techniques to find contraction partners
based on the similarity of their neighborhoods. More precisely, this includes clustering of nodes
with identical neighborhood sets, or if this does not sufficiently reduce the size, we group nodes
with similar neighborhoods using the min-hashing technique. In the initial partitioning phase,
our theoretical results are put into practice. We showed that our approximation algorithm
can be used for assigning the peripheral nodes, which significantly improves the quality of the
resulting initial partition.
Our experimental results demonstrate that current state-of-the-art multilevel partitioners are
not capable of finding high-quality solutions for star-like graphs – for these instances, an as-
tonishingly simple technique based on sorting the nodes by their degree provides significantly
better results. The best quality is achieved by our Optimizedlocal configuration, which we tuned
to achieve the highest possible quality on star-like instances. Compared to Mt-KaHyPar, it im-
proves the quality by a factor of two for 40% of the star-like instances and up to a factor of
more than ten for some of the instances. However, this comes at the cost of worse quality for
the remaining instances. Thus, we also investigated balanced configurations that provide good
overall quality. To further improve the quality, we proposed to use an algorithm portfolio: On
our complete benchmark set, the portfolio consisting of Mt-KaHyPar and the Optimizedlocal

configuration computes better results than any single algorithm by a significant margin.

7.1. Future Work

We introduced the fixed core partitioning problem in Section 4 and showed in our experimental
evaluation that we can substantially improve the initial partitions on star-like graphs using
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an approximation algorithm for fixed core partitioning. Thus, a more thorough analysis of
this problem is both of theoretical interest and might lead to improved partitions in practice.
For this, future research could develop an algorithm with a better approximation guarantee,
possibly based on a generalization of our proposed two-slot algorithm. Note that the achievable
approximation ratio is bound by the approximation ratio of the used algorithm for the min-
knapsack problem. Alternatively, heuristic techniques could be used to improve fixed core
partitioning algorithms on real-world instances. In both cases, it would be insightful to integrate
the improved algorithm into the initial partitioning and provide an evaluation of the effect on
the quality for star-like graphs.
Since we adapted the multilevel scheme in a novel way, it is natural that there are multiple areas
for further research with regards to engineering a high-performing algorithm. Our experimental
evaluation shows that the detection of peripheral nodes is of central importance for the quality
of a star partitioning algorithm. While we explored and evaluated multiple detection strategies,
the design space is large and allows for the development of more alternative strategies. Further,
some of the parameters used for two-hop coarsening could be investigated in more detail.
Specifically, exploring different target sizes for the coarsening of the peripheral nodes could be
beneficial. With regards to initial partitioning, we developed two approaches for the application
of the fixed core partitioning algorithm: either using the peripheral nodes of the input graph
or of the smallest graph. This involves a trade-off between quality and running time (since
the first approach requires a second round of two-hop coarsening) and thus raises the question
whether it is possible to improve (or avoid) this trade-off. Another area of interest that is
not covered in this thesis is the development of refinement algorithms that are specialized for
star-like graphs. Peripheral nodes tend to have low impact on the overall cut in comparison
to their weight. Therefore, it could be beneficial to develop a refinement algorithm that is
capable of exploiting this. One approach could be developing a refinement algorithm that can
move (heavy) high-degree nodes to another block, e.g., by swapping them with a large set of
peripheral nodes.
Further, our current implementation focuses on the exploration of multiple possible design
choices and thus is not optimized with regards to running time. Consequently, future research
should focus on reducing the running time overheads, while providing the same solution quality
on star-like instances.
This thesis explores how to improve the quality on star-like graphs. However, it is likely that
there are also hypergraph instances with similar properties where star partitioning techniques
are applicable. Therefore, the notion of star-like graphs should be extended to hypergraphs
and the prevalence of such hypergraph instances in practice should be investigated. Then, the
techniques developed in this work should be generalized to hypergraphs. Section 5.5 provides
a starting point for this.
We have seen that algorithms specialized for star-like graphs involve a trade-off, decreasing the
quality for some of the other instances. To overcome this, we proposed to use an algorithm
portfolio including both a traditional multilevel algorithm and a specialized star partitioning
algorithm. However, there is another approach that could provide even better results. For a
given instance, we could use a preprocessing step to detect whether it is beneficial or not to use
a star partitioning algorithm. Thereby, we would avoid the running time overhead of executing
both algorithms and still achieve the same quality, provided the detection method is precise
enough. The detection could be based on statistical properties of the graph such as the node
degree distribution, or it could try to find peripheral nodes and consider, e.g., the density of
the subgraph of peripheral nodes and the density of the core. Here, it might also be possible
to reach a high accuracy by using machine learning techniques for the detection.

69



References

References
[1] Amine Abou-Rjeili and George Karypis. “Multilevel Algorithms for Partitioning Power-

law Graphs”. In: 20th International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2006. doi: 10.1109/IPDPS.2006.1639360.

[2] Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. “High-Quality Shared-Memory
Graph Partitioning”. In: IEEE Transactions on Parallel and Distributed Systems (TPDS)
31.11 (2020), pp. 2710–2722. doi: 10.1109/TPDS.2020.3001645.

[3] Yaroslav Akhremtsev et al. “Engineering a direct k-way Hypergraph Partitioning Algo-
rithm”. In: 19th Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM,
2017, pp. 28–42. doi: 10.1137/1.9781611974768.3.

[4] Maram Assi and Ramzi A. Haraty. “A Survey of the Knapsack Problem”. In: International
Arab Conference on Information Technology (ACIT). IEEE, 2018, pp. 1–6. doi: 10.1109/
ACIT.2018.8672677.

[5] Cevdet Aykanat, Berkant Barla Cambazoglu, and Bora Uçar. “Multi-level direct k-way
Hypergraph Partitioning with Multiple Constraints and Fixed Vertices”. In: Journal of
Parallel and Distributed Computing 68.5 (2008), pp. 609–625. doi: 10.1016/j.jpdc.
2007.09.006.

[6] Cevdet Aykanat et al. “Adaptive Decomposition and Remapping Algorithms for Object-
space-parallel Direct Volume Rendering of Unstructured Grids”. In: Journal of Parallel
and Distributed Computing 67.1 (2007), pp. 77–99. doi: 10.1016/j.jpdc.2006.05.005.

[7] David A. Bader et al. “Benchmarking for Graph Clustering and Partitioning”. In: Ency-
clopedia of Social Network Analysis and Mining. 2014, pp. 73–82. doi: 10.1007/978-1-
4614-6170-8_23.

[8] Vincent D. Blondel et al. “Fast Unfolding of Communities in Large Networks”. In: Journal
of Statistical Mechanics: Theory and Experiment 10 (2008). doi: 10.1088/1742-5468/
2008/10/P10008.

[9] Andrei Z. Broder. “On the Resemblance and Containment of Documents”. In: Compres-
sion and Complexity of Sequences (SEQUENCES). IEEE, 1997, pp. 21–29. doi: 10.1109/
SEQUEN.1997.666900.

[10] Thang Nguyen Bui and Curt Jones. “Finding Good Approximate Vertex and Edge Par-
titions is NP-Hard”. In: Information Processing Letters 42.3 (1992), pp. 153–159. doi:
10.1016/0020-0190(92)90140-Q.

[11] Rainer E. Burkard and Eranda Çela. “Linear Assignment Problems and Extensions”. In:
Handbook of Combinatorial Optimization. Springer, 1999, pp. 75–149. doi: 10.1007/978-
1-4757-3023-4_2.

[12] Ümit V. Çatalyürek and Cevdet Aykanat. “Hypergraph-Partitioning-Based Decomposi-
tion for Parallel Sparse-Matrix Vector Multiplication”. In: IEEE Transactions on Parallel
and Distributed Systems (TPDS) 10.7 (1999), pp. 673–693. doi: 10.1109/71.780863.

[13] Ümit V. Çatalyürek and Cevdet Aykanat. “Patoh (Partitioning Tool for Hypergraphs)”.
In: Encyclopedia of Parallel Computing. Springer, 2011.

[14] Ümit V. Çatalyürek et al. “More Recent Advances in (Hyper)Graph Partitioning”. In:
Computing Research Repository (CoRR) abs/2205.13202 (2022). doi: 10.48550/arXiv.
2205.13202. arXiv: 2205.13202.

70

https://doi.org/10.1109/IPDPS.2006.1639360
https://doi.org/10.1109/TPDS.2020.3001645
https://doi.org/10.1137/1.9781611974768.3
https://doi.org/10.1109/ACIT.2018.8672677
https://doi.org/10.1109/ACIT.2018.8672677
https://doi.org/10.1016/j.jpdc.2007.09.006
https://doi.org/10.1016/j.jpdc.2007.09.006
https://doi.org/10.1016/j.jpdc.2006.05.005
https://doi.org/10.1007/978-1-4614-6170-8_23
https://doi.org/10.1007/978-1-4614-6170-8_23
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1016/0020-0190(92)90140-Q
https://doi.org/10.1007/978-1-4757-3023-4_2
https://doi.org/10.1007/978-1-4757-3023-4_2
https://doi.org/10.1109/71.780863
https://doi.org/10.48550/arXiv.2205.13202
https://doi.org/10.48550/arXiv.2205.13202
https://arxiv.org/abs/2205.13202


References

[15] János Csirik. “Heuristics for the 0-1 Min-Knapsack Problem”. In: Acta Cybernetica 10.1-2
(1991), pp. 15–20.

[16] George B. Dantzig. “Discrete-Variable Extremum Problems”. In: Operations Research 5.2
(1957), pp. 266–277. doi: 10.1287/opre.5.2.266.

[17] Mehmet Deveci, Kamer Kaya, and Ümit V. Çatalyürek. “Hypergraph Sparsification and
Its Application to Partitioning”. In: 42nd International Conference on Parallel Processing
(ICPP). IEEE Computer Society, 2013, pp. 200–209. doi: 10.1109/ICPP.2013.29.

[18] Elizabeth D. Dolan and Jorge J. Moré. “Benchmarking Optimization Software with Per-
formance Profiles”. In: Mathematical Programming 91.2 (2002), pp. 201–213. doi: 10.
1007/s101070100263.

[19] Charles M. Fiduccia and Robert M. Mattheyses. “A Linear-Time Heuristic for Improving
Network Partitions”. In: 19th Design Automation Conference (DAC). ACM/IEEE, 1982,
pp. 175–181. doi: 10.1145/800263.809204.

[20] ICM Flinsenberg. “Graph Partitioning for Route Planning in Car Navigation Systems”.
In: 11th International Association of Institutes of Navigation World Congress (IAIN).
Eindhoven University of Technology, 2003.

[21] Michael L. Fredman and Robert Endre Tarjan. “Fibonacci Heaps and Their Uses in Im-
proved Network Optimization Algorithms”. In: Journal of the ACM 34.3 (1987), pp. 596–
615. doi: 10.1145/28869.28874.

[22] Daniel Funke et al. “Communication-free Massively Distributed Graph Generation”. In:
Journal of Parallel and Distributed Computing 131 (2019), pp. 200–217. doi: 10.1016/
j.jpdc.2019.03.011.

[23] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[24] Lars Gottesbüren and Michael Hamann. “Deterministic Parallel Hypergraph Partition-
ing”. In: 28th International European Conference on Parallel and Distributed Computing
(Euro-Par). Vol. 13440. Lecture Notes in Computer Science. Springer, 2022, pp. 301–316.
doi: 10.1007/978-3-031-12597-3_19.

[25] Lars Gottesbüren, Tobias Heuer, and Peter Sanders. “Parallel Flow-Based Hypergraph
Partitioning”. In: 29th European Symposium on Algorithms (ESA). Vol. 233. LIPIcs.
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 5:1–5:21.
doi: 10.4230/LIPIcs.SEA.2022.5.

[26] Lars Gottesbüren et al. “Deep Multilevel Graph Partitioning”. In: 29th European Sym-
posium on Algorithms (ESA). Vol. 204. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, 48:1–48:17. doi: 10.4230/LIPIcs.ESA.2021.48.

[27] Lars Gottesbüren et al. “Scalable Shared-Memory Hypergraph Partitioning”. In: 23rd
Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, 2021, pp. 16–
30. doi: 10.1137/1.9781611976472.2.

[28] Lars Gottesbüren et al. “Shared-Memory n-level Hypergraph Partitioning”. In: 24th Work-
shop on Algorithm Engineering and Experiments (ALENEX). SIAM, Jan. 2022, pp. 131–
144. doi: 10.1137/1.9781611977042.11.

[29] Michael Hamann and Ben Strasser. “Graph Bisection with Pareto Optimization”. In:
ACM Journal of Experimental Algorithmics 23 (2018). doi: 10.1145/3173045.

[30] Tobias Heuer. “Scalable High-Quality Graph and Hypergraph Partitioning”. PhD thesis.
Karlsruhe Institute of Technology, Germany, 2022.

71

https://doi.org/10.1287/opre.5.2.266
https://doi.org/10.1109/ICPP.2013.29
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1145/800263.809204
https://doi.org/10.1145/28869.28874
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1007/978-3-031-12597-3_19
https://doi.org/10.4230/LIPIcs.SEA.2022.5
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.1137/1.9781611977042.11
https://doi.org/10.1145/3173045


References

[31] Tobias Heuer, Nikolai Maas, and Sebastian Schlag. “Multilevel Hypergraph Partitioning
with Vertex Weights Revisited”. In: 19th International Symposium on Experimental Al-
gorithms (SEA). Vol. 190. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021, 8:1–8:20. doi: 10.4230/LIPIcs.SEA.2021.8.

[32] Tobias Heuer and Sebastian Schlag. “Improving Coarsening Schemes for Hypergraph
Partitioning by Exploiting Community Structure”. In: 16th International Symposium on
Experimental Algorithms (SEA). Vol. 75. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017, 21:1–21:19. doi: 10.4230/LIPIcs.SEA.2017.21.

[33] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. “Engineering a Scalable High
Quality Graph Partitioner”. In: 24th International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2010, pp. 1–12. doi: 10.1109/IPDPS.2010.5470485.

[34] Ellis Horowitz and Sartaj Sahni. “Computing Partitions with Applications to the Knap-
sack Problem”. In: Journal of the ACM 21.2 (1974), pp. 277–292. doi: 10.1145/321812.
321823.

[35] Mohammad Tauhidul Islam. “Approximation Algorithms for Minimum Knapsack Prob-
lem”. Master Thesis. University of Lethbridge, 2009.

[36] Artur Jez. “Faster Fully Compressed Pattern Matching by Recompression”. In: ACM
Trans. Algorithms 11.3 (2015), 20:1–20:43. doi: 10.1145/2631920.

[37] Andrew B. Kahng et al. LSI Physical Design - From Graph Partitioning to Timing Clo-
sure. Vol. 312. Springer, 2011. doi: 10.1007/978-3-030-96415-3.

[38] George Karypis and Vipin Kumar. METIS: A Software Package for Partitioning Unstruc-
tured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse
Matrices. 1997.

[39] George Karypis and Vipin Kumar. “Multilevel k-way Hypergraph Partitioning”. In: VLSI
Design 11.3 (2000), pp. 285–300. doi: 10.1155/2000/19436.

[40] George Karypis and Vipin Kumar. “Multilevel k-way Partitioning Scheme for Irregular
Graphs”. In: Journal of Parallel and Distributed Computing 48.1 (1998), pp. 96–129. doi:
10.1006/jpdc.1997.1404.

[41] George Karypis and Vipin Kumar. “Parallel Multilevel k-way Partitioning Scheme for
Irregular Graphs”. In: ACM/IEEE Conference on Supercomputing. IEEE Computer So-
ciety, 1996, p. 35. doi: 10.1109/SC.1996.32.

[42] George Karypis et al. “Multilevel Hypergraph Partitioning: Applications in VLSI Do-
main”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 7.1 (1999),
pp. 69–79. doi: 10.1109/92.748202.

[43] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. “Scalable SIMD-Efficient Graph
Processing on GPUs”. In: International Conference on Parallel Architectures and Compi-
lation (PACT). IEEE Computer Society, 2015, pp. 39–50. doi: 10.1109/PACT.2015.15.

[44] Richard E. Korf. “From Approximate to Optimal Solutions: A Case Study of Number
Partitioning”. In: 14th International Joint Conference on Artificial Intelligence (IJCAI).
IJCAI, 1995, pp. 266–272.

[45] Richard E. Korf. “Multi-Way Number Partitioning”. In: 21st International Joint Confer-
ence on Artificial Intelligence (IJCAI). IJCAI, 2009, pp. 538–543.

[46] Harold W. Kuhn. “The Hungarian Method for the Assignment Problem”. In: Naval Re-
search Logistics Quarterly 2.1-2 (1955), pp. 83–97. doi: 10.1002/nav.3800020109.

72

https://doi.org/10.4230/LIPIcs.SEA.2021.8
https://doi.org/10.4230/LIPIcs.SEA.2017.21
https://doi.org/10.1109/IPDPS.2010.5470485
https://doi.org/10.1145/321812.321823
https://doi.org/10.1145/321812.321823
https://doi.org/10.1145/2631920
https://doi.org/10.1007/978-3-030-96415-3
https://doi.org/10.1155/2000/19436
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1109/SC.1996.32
https://doi.org/10.1109/92.748202
https://doi.org/10.1109/PACT.2015.15
https://doi.org/10.1002/nav.3800020109


References

[47] Dominique LaSalle et al. “Improving Graph Partitioning for Modern Graphs and Ar-
chitectures”. In: 5th Workshop on Irregular Applications: Architectures and Algorithms
(IA3). ACM, 2015, 14:1–14:4. doi: 10.1145/2833179.2833188.

[48] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset Col-
lection. http://snap.stanford.edu/data. 2014.

[49] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. “Finding Similar Items”.
In: Mining of Massive Datasets (2014), pp. 68–122.

[50] Nikolai Maas. “Multilevel Hypergraph Partitioning with Vertex Weights Revisited”. Bach-
elor Thesis. Karlsruhe Institute of Technology, Germany, 2020.

[51] Oliver Marquardt and Stefan Schamberger. “Open Benchmarks for Load Balancing Heuris-
tics in Parallel Adaptive Finite Element Computations”. In: International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA). CSREA
Press, 2005, pp. 685–691.

[52] Henning Meyerhenke, Peter Sanders, and Christian Schulz. “Parallel Graph Partition-
ing for Complex Networks”. In: IEEE Transactions on Parallel and Distributed Systems
(TPDS) 28.9 (2017), pp. 2625–2638. doi: 10.1109/TPDS.2017.2671868.

[53] Henning Meyerhenke, Peter Sanders, and Christian Schulz. “Partitioning Complex Net-
works via Size-Constrained Clustering”. In: 13th International Symposium on Experi-
mental Algorithms (SEA). Vol. 8504. Lecture Notes in Computer Science. Springer, 2014,
pp. 351–363. doi: 10.1007/978-3-319-07959-2_30.

[54] Mark E. Newman. “Modularity and Community Structure in Networks”. In: National
Academy of Sciences 103.23 (2006), pp. 8577–8582. doi: 10.1073/pnas.0601602103.

[55] Mark E. Newman. “The Structure of Scientific Collaboration Networks”. In: National
Academy of Sciences 98.2 (2001), pp. 404–409. doi: 10.1073/pnas.98.2.404.

[56] David Pisinger and Paolo Toth. “Knapsack Problems”. In: Handbook of Combinatorial
Optimization (1998), pp. 299–428.

[57] Pizza&Chili Corpus (Compressed Indexes and their Testbeds). http://pizzachili.dcc.
uchile.cl/index.html. Accessed: 2022-11-30.

[58] Jakob Puchinger, Günther R. Raidl, and Ulrich Pferschy. “The Multidimensional Knap-
sack Problem: Structure and Algorithms”. In: INFORMS Journal on Computing 22.2
(2010), pp. 250–265. doi: 10.1287/ijoc.1090.0344.

[59] Siddharth Samsi et al. “Static Graph Challenge: Subgraph Isomorphism”. In: IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 2017, pp. 1–6. doi: 10.
1109/HPEC.2017.8091039.

[60] Peter Sanders and Christian Schulz. “Engineering Multilevel Graph Partitioning Algo-
rithms”. In: 19th European Symposium on Algorithms (ESA). Vol. 6942. Lecture Notes in
Computer Science. Springer, 2011, pp. 469–480. doi: 10.1007/978-3-642-23719-5_40.

[61] Peter Sanders and Christian Schulz. “High Quality Graph Partitioning”. In: Graph Parti-
tioning and Graph Clustering, 10th DIMACS Implementation Challenge Workshop. Vol. 588.
Contemporary Mathematics. American Mathematical Society, 2012, pp. 1–18.

[62] Sebastian Schlag. “High-Quality Hypergraph Partitioning”. PhD thesis. Karlsruhe Insti-
tute of Technology, Germany, 2020.

[63] Sebastian Schlag et al. “k-way Hypergraph Partitioning via n-Level Recursive Bisection”.
In: 18th Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, 2016,
pp. 53–67. doi: 10.1137/1.9781611974317.5.

73

https://doi.org/10.1145/2833179.2833188
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1007/978-3-319-07959-2_30
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.98.2.404
http://pizzachili.dcc.uchile.cl/index.html
http://pizzachili.dcc.uchile.cl/index.html
https://doi.org/10.1287/ijoc.1090.0344
https://doi.org/10.1109/HPEC.2017.8091039
https://doi.org/10.1109/HPEC.2017.8091039
https://doi.org/10.1007/978-3-642-23719-5_40
https://doi.org/10.1137/1.9781611974317.5


References

[64] Prabhakant Sinha and Andris A. Zoltners. “The Multiple-Choice Knapsack Problem”. In:
Operations Research 27.3 (1979), pp. 503–515. doi: 10.1287/opre.27.3.503.

[65] Alan J. Soper, Chris Walshaw, and Mark Cross. “A Combined Evolutionary Search and
Multilevel Optimisation Approach to Graph-Partitioning”. In: Journal of Global Opti-
mization 29.2 (2004), pp. 225–241. doi: 10.1023/B:JOGO.0000042115.44455.f3.

[66] Natarajan Viswanathan et al. “The DAC 2012 Routability-Driven Placement Contest and
Benchmark Suite”. In: 49th Design Automation Conference (DAC). ACM, 2012, pp. 774–
782. doi: 10.1145/2228360.2228500.

[67] Chris Walshaw. “Multilevel Refinement for Combinatorial Optimisation Problems”. In:
Operations Research 131.1-4 (2004), pp. 325–372. doi: 10.1023/B:ANOR.0000039525.
80601.15.

[68] Christophe Wilbaut, Said Hanafi, and Said Salhi. “A Survey of Effective Heuristics and
their Application to a Variety of Knapsack Problems”. In: IMA Journal of Management
Mathematics 19.3 (2008), pp. 227–244. doi: 10.1093/imaman/dpn004.

[69] Min Zhou et al. “Controlling Unstructured Mesh Partitions for Massively Parallel Sim-
ulations”. In: SIAM Journal on Scientific Computing 32.6 (2010), pp. 3201–3227. doi:
10.1137/090777323.

74

https://doi.org/10.1287/opre.27.3.503
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3
https://doi.org/10.1145/2228360.2228500
https://doi.org/10.1023/B:ANOR.0000039525.80601.15
https://doi.org/10.1023/B:ANOR.0000039525.80601.15
https://doi.org/10.1093/imaman/dpn004
https://doi.org/10.1137/090777323


A Visualization of a Star-like Graph

A. Visualization of a Star-like Graph
Most star-like instances in our benchmark set are too large to be visualized with common
techniques. However, we provide a visualization of wiki-Vote (the smallest instance), both for
the input graph and coarsened approximations.

Figure 24: Visualization of the wiki-Vote instance.

75



A Visualization of a Star-like Graph

Figure 25: Visualization of the coarsest approximation of wiki-Vote, computed with the tra-
ditional coarsening techniques used by Mt-KaHyPar.
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A Visualization of a Star-like Graph

Figure 26: Visualization of the coarsest approximation of wiki-Vote, computed with our star
partitioning algorithm. That is, traditional coarsening was applied to the core (blue)
and two-hop coarsening to the peripheral nodes (green).
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B Detailed Composition of Benchmark Sets

B. Detailed Composition of Benchmark Sets

In the following, we list the exact instances used for benchmark set A and benchmark set
B including their sizes, type and whether they are considered star-like with regards to the
experimental evaluation. Note that all instances are unweighted, except for the recompX graphs
that have edge weights.

Graph Nodes Edges Instance Type Star-like
add32.graph 4960 9462 Walshaw no
amazon0302.graph 262K 900K SNAP no
astro-ph.graph 17K 121K Scientific no
bcsstk29.graph 14K 303K Walshaw no
belgium.osm.graph 1441K 1550K Other no
coAuthorsCiteseer.graph 227K 814K Scientific no
cond-mat.graph 17K 48K Scientific no
delaunay_n14.graph 16K 49K delaunayX no
email-Enron.graph 37K 184K SNAP no
fe_sphere.graph 16K 49K Walshaw no
hugetrace-00010.graph 12M 18M Simulation no
kron_g500-simple-logn16.graph 66K 2456K kronX yes
luxembourg.osm.graph 115K 120K Other no
recomp_dna1GB_3.graph 2174 66K recompX yes
recomp_english1GB_3.graph 12K 316K recompX yes
rgg_n_2_15_s0.graph 33K 160K rggX no
rhg10.graph 992 3491 rhgX no
rmat_n16_m22.graph 65K 4194K rmatX yes
soc-Epinions1.graph 76K 406K SNAP yes
soc-Slashdot0811.graph 77K 469K SNAP yes
superblue14.graph 1251K 2049K DAC no
superblue19.graph 1034K 1714K DAC no
web-Stanford.graph 282K 1993K SNAP no
wiki-Vote.graph 7115 101K SNAP yes
wing.graph 62K 122K Walshaw no

Table 5: Instances of benchmark set A.
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B Detailed Composition of Benchmark Sets

Graph Nodes Edges Instance Type Star-like
amazon-2008.graph 735K 3523K SNAP no
amazon.graph 401K 2350K SNAP no
arabic-2005.graph 23M 554M SNAP no
asia.osm.graph 12M 13M Other no
bcsstk32.graph 45K 985K Walshaw no
bcsstk33.graph 8738 292K Walshaw no
channel.graph 4802K 43M Simulation no
citationCiteseer.graph 268K 1157K Scientific no
cnr-2000.graph 326K 2739K SNAP no
coAuthorsCiteseer.graph 227K 814K Scientific no
coAuthorsDBLP.graph 299K 978K Scientific no
com-dblp.ungraph.graph 426K 1050K SNAP no
com-LiveJournal.graph 3998K 35M SNAP no
com-lj.ungraph.graph 4037K 35M SNAP no
com-orkut.graph 3072K 117M SNAP no
coPapersDBLP.graph 540K 15M Scientific no
delaunay_n20.graph 1049K 3146K delaunayX no
delaunay_n22.graph 4194K 13M delaunayX no
delaunay_n24.graph 17M 50M delaunayX no
email-Enron.graph 37K 184K SNAP no
enwiki-2013.graph 4207K 92M SNAP no
enwiki-2018.graph 5617K 117M SNAP no
er-fact1.5-scale20.graph 1049K 11M erX no
er-fact1.5-scale21.graph 2097K 23M erX no
er-fact1.5-scale22.graph 4194K 48M erX no
eswiki-2013.graph 973K 21M SNAP yes
eu-2005.graph 863K 16M SNAP no
europe.osm.graph 51M 54M Other no
germany.osm.graph 12M 12M Other no
hollywood-2011.graph 2181K 114M SNAP no
hugebubbles-00010.graph 19M 29M Simulation no
hugetrace-00010.graph 12M 18M Simulation no
hugetric-00010.graph 6593K 9886K Simulation no
in-2004.graph 1383K 14M SNAP no
indochina-2004.graph 7415K 151M SNAP no
kmer_P1a.graph 139M 148M kmerX no
kmer_U1a.graph 65M 66M kmerX no
kmer_V2a.graph 54M 57M kmerX no
kron_g500-simple-logn18.graph 262K 11M kronX yes
kron_g500-simple-logn20.graph 1049K 45M kronX yes
kron_g500-simple-logn21.graph 2097K 91M kronX yes
ljournal-2008.graph 5363K 50M SNAP no
netherlands.osm.graph 2217K 2441K Other no
nlpkkt120.graph 3542K 47M Other no
nlpkkt200.graph 16M 216M Other no
packing.graph 2146K 17M Simulation no

Table 6: Instances of benchmark set B.
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B Detailed Composition of Benchmark Sets

Graph Nodes Edges Instance Type Star-like
recomp_dna1GB_9.graph 3233K 25M recompX yes
recomp_english1GB_5.graph 110K 2552K recompX yes
recomp_english1GB_7.graph 802K 13M recompX yes
recomp_proteins1GB_7.graph 2826K 44M recompX yes
recomp_proteins1GB_9.graph 15M 74M recompX yes
recomp_sources1GB_7.graph 899K 7272K recompX yes
recomp_sources1GB_9.graph 2792K 12M recompX yes
rgg_n_2_20_s0.graph 1049K 6892K rggX no
rgg_n_2_22_s0.graph 4194K 30M rggX no
rgg_n_2_24_s0.graph 17M 133M rggX no
rhg16.graph 62K 259K rhgX no
rhg18.graph 242K 987K rhgX no
rhg.graph 10M 200M rhgX no
rmat_n16_m23.graph 65K 8389K rmatX yes
rmat_n16_m24.graph 66K 17M rmatX yes
rmat_n25_m28.graph 27M 268M rmatX yes
roadNet-CA.graph 1971K 2767K Other no
roadNet-PA.graph 1091K 1542K Other no
soc-Epinions1.graph 76K 406K SNAP yes
soc-Slashdot0811.graph 77K 469K SNAP yes
soc-Slashdot0902.graph 82K 504K SNAP yes
superblue12.graph 2585K 4774K DAC no
superblue16.graph 1396K 2280K DAC no
superblue3.graph 1816K 3109K DAC no
superblue7.graph 2701K 4931K DAC no
twitter-2010.graph 42M 1203M SNAP yes
uk-2002.graph 19M 262M SNAP no
venturiLevel3.graph 4027K 8054K SNAP no
webbase-2001.graph 118M 855M SNAP no
web-Google.graph 876K 4322K SNAP no
web-NotreDame.graph 326K 1090K SNAP no
wiki-Talk.graph 2394K 4660K SNAP no
wiki-Vote.graph 7115 101K SNAP yes
youtube.graph 1135K 2988K SNAP no

Table 7: Instances of benchmark set B (continued).
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