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Abstract: Nanostructures, fabricated by locating molecular building blocks in well-defined positions,
for example, on a lattice, are ideal platforms for studying atomic-scale quantum effects. In this context,
STM data obtained from self-assembled Bis(phthalocyaninato) Terbium (III) (TbPc2) single-molecule
magnets on various substrates have raised questions about the conformation of the TbPc2 molecules
within the lattice. In order to address this issue, molecular dynamics simulations were carried out on
a 2D assembly of TbPc2 molecules. The calculations are in excellent agreement with the experiment,
and thus improve our understanding of the self-assembly process. In particular, the calculated
electron density of the molecular assembly compares well with STM contrast of self-assembled TbPc2

on Au(111), simultaneously providing the conformation of the two Pc ligands of the individual
double-decker molecule. This approach proves valuable in the identification of the STM contrast of
LnPc2 layers and could be used in similar cases where it is difficult to interpret the STM images of an
assembly of molecular complexes.

Keywords: 2D self-assembly; molecular magnets; bis(phthalocyaninato) terbium (III); STM;
electronic contrast; ab initio; molecular dynamics; molecular conformation; double-decker;
quantum computation

1. Introduction

Single-molecule magnets (SMMs) have been the object of intense research due to their
potential application in magnetic data storage, molecular spintronics, and as qubits for
quantum computation [1]. However, in practice, addressing individual SMMs, for example,
by means of the tip of an STM, requires the precise control of the 2D organization of these
molecules on a surface [2]. This question is of great relevance since intermolecular interac-
tions and molecule–substrate interactions play important roles in defining the properties of
assembled monolayers. Part of these properties can be tuned by functionalizing the molecu-
lar building blocks with proper functional groups in order to drive molecular conformation
and impact the spin properties of the SMMs. In this context, the lanthanide double-decker
complexes were found to exhibit interesting SMM behaviors at low temperatures [3–10]
without exhibiting the disadvantages of other systems [11]. Double-decker complexes
involving the phthalocyanine sandwich approach have been extensively investigated. As
a matter of fact, the significant breakthroughs recorded in the field of molecular magnets
have been lanthanide-based, which can mostly be attributed to the large anisotropy arising
from the unquenched orbital angular momentum of the f−orbitals.
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Due to their spin properties, the lanthanide double- and triple-decker molecules
gained most relevance in the realization of qubits and qudits for use in quantum informa-
tion processing (QIP) [12–14]. Developments accelerated when a reliable electric readout
of the quantum information of single-spin qubits was proposed. In this context, the
bis(phthalocyaninato Tb(III) (TbPc2) single-molecule magnet is one of the well-known ex-
amples in which the delocalized π-radical electron spin of the Pc ligand allows the reading
of the electronic and nuclear spin states of the Tb qubits [15,16]. It has been evidenced
that the π-radicals also play a major role in the quantum mechanical associations of such
SMMs [6].

Structurally, TbPc2 features a central Tb3+ octa-coordinated ion sandwiched between
two parallel phthalocyanines, with a dihedral rotation angle between the Pc ligands close
to ϑ = 45◦. This leads to a square-antiprismatic (D4d) coordination geometry [3,4] (see
Figure 1a,b). Whereas the dihedral angle of 45◦ is adopted by the stable gas-phase molecules,
it is also the usual conformation for isolated molecules on surfaces [5,6,17]. However, it
was inferred from a series of STM measurements conducted on monolayers of lanthanide
double-deckers (LnPc2) on surfaces that the molecules can also adopt a ϑ = 30◦ dihedral
angle (or some other values different from 45◦) [5–8], leading, for example, to a square
checkerboard arrangement of 45◦ and 30◦ molecules.
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The reasoning was as follows. It was assumed that the lower Pc ligands, those in con-
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in single metallo-phthalocyanine monolayers [18]. Since the upper Pcs of the double-
decker adopt different orientations inside the molecular layer (STM observation), it was 
then necessary to postulate the existence of at least two conformations with different di-
hedral angles for the molecules constituting the layer. However, these conclusions came 
only as a best guess and were not based on any direct observations since only the top Pc 
ligand is “visible” in STM experiments (Figure 1b). As a result, this assumption has never 
been verified properly. It is noteworthy that other works on monolayers of LnPc2 did not 
claim such an alternation in the dihedral angle [6,8–10]. In particular, it has been found 

Figure 1. (a) Geometry of the TbPc2 molecule. ϑ is the dihedral angle between the upper Pc (balls)
and the lower Pc (sticks). Color code: C (grey), N (blue), Tb (orange). (b) STM image (60 pA, −0.3 V)
of a single TbPc2 molecule on Au(111), where only the upper Pc is visualized using STM.

The reasoning was as follows. It was assumed that the lower Pc ligands, those in
contact with the substrate, all adopt the same orientation, one similar to the those observed
in single metallo-phthalocyanine monolayers [18]. Since the upper Pcs of the double-decker
adopt different orientations inside the molecular layer (STM observation), it was then
necessary to postulate the existence of at least two conformations with different dihedral
angles for the molecules constituting the layer. However, these conclusions came only as
a best guess and were not based on any direct observations since only the top Pc ligand
is “visible” in STM experiments (Figure 1b). As a result, this assumption has never been
verified properly. It is noteworthy that other works on monolayers of LnPc2 did not claim
such an alternation in the dihedral angle [6,8–10]. In particular, it has been found that 2D
islands, made up of a small number of TbPc2 molecules (one to four) on Au(111), follow a
well-defined arrangement with ϑ = 45◦ that optimizes compactness [6]. It is the purpose
of this work to find out the extent to which the association of molecules in networks can
modify their conformation and hence their electronic and magnetic properties.
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2. Materials and Methods
2.1. Scanning Tunneling Microscopy and Spectroscopy

All sample preparations were carried out in an ultrahigh vacuum (UHV) system with
a base pressure of 1 × 10−10 mbar. The single crystalline Au(111) substrate was cleaned by
Ne+ sputtering and annealing cycles. The powder sample of TbPc2 molecules (synthesized
by the Ruben group at the Karlsruhe Institute of Technology) was first degassed in vacuo
for several hours at a temperature slightly below the sublimation temperature. Deposition
of TbPc2 occurred at a sublimation temperature of 600 K onto the substrates kept at room
temperature. Molecule sublimation was performed in a side chamber of the UHV system;
during this operation, the pressure was kept below 1 × 10−9 mbar. All STM/STS data were
acquired at 4.5 K. STS spectra were measured using lock-in detection, with a modulation
between 1 mV and 10 mV (rms) depending on the features to be resolved. Manipulation by
means of the STM tip of this category of molecules was described earlier [17–19].

2.2. Computational Method

All calculations have been conducted in the framework of the density functional the-
ory [20] (DFT) as implemented in the CPMD [21] code. The exchange and correlation
functionals adopted are the ones of Becke [22] and Lee-Yang-Parr [23], respectively. These are
complemented by exact exchange [24], as routinely performed in the hybrid functional B3LYP.
For the long-range van der Waals interactions, we resorted to Grimme’s D2 formula [25].
This van der Waals correction was preferred to that of D3, which proved to be responsible
for parasitic effects that even lead to a non-physical phase separation in condensed matter
systems [26]. In fact, except for D3, a similarity in performance is found for D2, rVV10
and several others [27]. Core–valence interactions were described by norm-conserving
Troullier–Martins [28] pseudopotentials (PPs) for N, C, and H, while for Tb we make use of
a Goedecker–Teter–Hutter [29] semicore PP. Valence electron orbitals were expanded on a
plane wave (PW) basis set, with a cut-off energy of 80 Ry. A spin-unrestricted approach was
adopted, and the structure was fully optimized via damped dynamics [30], as implemented
in the developer’s version of the CPMD code, until residual atomic forces were smaller than
10−4 Hartree/Bohr. The annealing factor of the ions was set to 0.995, and we used an integra-
tion time step of 4.0 (0.097 fs) and a fictitious electronic mass of 340 au for the propagation
of the electronic wavefunctions within a Car–Parrinello scheme. A total simulation time of
about 8 ps was needed to bring the system to a stress-free structure at 0 K.

3. Results and Discussion

In a previous work, it was found that interactions between molecules in a cluster of
less than 10 molecules are such that only two types of molecular arrangements are found to
correspond to the parallel (dimer in Figure 2a) and staggered (see the trimer in Figure 2b)
arrangements. In either case, it has been unambiguously determined that each TbPc2
molecule conserves its ϑ = 45◦ dihedral angle (for details, see Ref. [6]). Additionally, the
quantum mechanical behavior of molecular π-radicals in the cluster formation has been
emphasized and detected by the Kondo resonance measurement with atomic resolution [6].
With increasing island size, however, molecules have to accommodate multiple interactions
and therefore adopt a more complex geometrical arrangement. This was observed using
STM on a semi-infinite 2D domain (lower left of Figure 2a–c), the understanding of which
is the main purpose of the present work. A simple scenario could be that the relatively
strong molecule–molecule interaction in clusters of a few molecules is progressively desta-
bilized when the 2D lattice is formed due to interaction with the ensemble of surrounding
molecules.
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so comes from the large number of atoms to be considered in the unit cell of a semi-infinite 
system. In this work, we address this issue by means of a full molecular dynamics and ab 

Figure 2. (a,b) Constant current STM images (70 pA, −0.3 V) of TbPc2 molecular islands and clusters
grown on Au(111). Contours of upper Pc’s are highlighted in red. (c) Zoom-in image of the circled
area in (b) showing bright (A) and dark (B) contrasts for molecules in a domain (70 pA, −0.3 V).
(d) dI/dV spectroscopy performed at the center of A-type (orange) and B-type (green) molecules,
respectively. Vertical lines/arrows show the correspondence between different peaks. (a,b) from
ref [6] with permission. Further permissions related to the material excerpted should be directed to
the ACS.

The square checkerboard lattice mentioned above for the monolayers of TbPc2 molecul
es on Au(111) manifests itself by alternating bright and dark STM contrasts located in the
center part of the molecules, as shown in Figure 2 [5–7]. Here, we simply term them A
and B, respectively (Figure 2c). It was observed, however, that these contrasts only appear
at specific values of the bias voltage [7], indicating a possible spectroscopic origin. For
example, the STM image of Figure 2c has been acquired at −0.5 V and shows contrasts that
are in good agreement with those observed by others on the same system and in the same
bias voltage interval [5]. In addition, the HOMO–LUMO gap measured at 760 meV for a
single TbPc2 molecule on Au(111) [6] is strongly decreased for spectra acquired above the
2D molecular lattice (Figure 2d). The HOMO–LUMO gap is only 100 and 200 meV (dotted
vertical lines) for A and B molecules, respectively. The reduction in the gap occurs due to
the molecular orbital overlap induced by the 2D lattice formation. However, at this stage,
and in the absence of specific hints, it remains impossible to identify unequivocally the
origin of the STM contrast. One should add that, to date, no calculation has been able to
fully explain the origin of A and B contrasts observed in STM experiments. The difficulty
in doing so comes from the large number of atoms to be considered in the unit cell of
a semi-infinite system. In this work, we address this issue by means of a full molecular
dynamics and ab initio DFT calculation, taking into account the symmetry of the system
and the weak interaction observed between the TbPc2 molecules and the Au(111) substrate.
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For the purpose of structure optimization, we initiate the calculation with an assembly
of four TbPc2 molecules with dihedral angles of 45◦ (Figure 3a). The only experimental
input is the dimension of the square lattice (1.42 nm). Periodic boundary conditions are
adopted for the calculation. For the optimization of the molecular dynamics process, we
assert that the molecule–substrate interaction can be neglected in the first approximation
based on the mobility of compact clusters, such as tetramers on Au(111), which are tested
by means of STM manipulation [6]. This approach is validated by the stability of the
molecular radical on Au(111), as probed via Kondo physics (absence of charge transfer
from the substrate). It should be stated, however, that for other substrates (different
systems), the molecule–substrate interaction is not negligible in the calculations [7,9,10,31].
After the full annealing of the system, it is found that the tetramer keeps its quasi-flat 2D
configuration (Figures S1 and S2) and, above all, that the dihedral angles of all molecules
remain unchanged and equal to 45◦ (Figure 3a). In addition, it is found that the molecules
adopt two different azimuthal orientations for A and B. The A and B orientations are
found along either diagonal of the square lattice (see Figure 3a). Simulation was initiated
from other configurations, but always converged to the one shown in Figure 3a, with 45◦

dihedral angles for both A and B sites.
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well with the STM image of Figure 2c. The agreement with the experiment also holds for 
the molecular orbital overlap between two adjacent molecules, as highlighted by the circle 
in the electron density image of Figure 3b. In addition to the eight external lobes of the 
upper Pc, the electron density clearly shows that eight small inner lobes merge into a 
cross-like contrast (Figure 3b). These results compare well with the experiment for data 
taken within the same energy range as that of the applied sample bias [6]. The results 
reflect the checkerboard symmetry of the system in that A-type molecules exhibit one az-
imuthal orientation, whereas B-type molecules exhibit another azimuthal orientation. 
From the contrast of the inner lobes, it is easily found that the whole B molecule is rotated 

Figure 3. (a) Primitive cell 1 × 1 of an assembly of four TbPc2 molecules with periodic boundary
conditions. Balls: upper Pc; sticks: lower Pc. Color code: C (grey), N (blue), Tb (orange). The only
experimental input is the dimension of the square lattice (1.42 nm). After full relaxation, it is found
that the dihedral angle ϑ = 45◦ for all the molecules and remains unchanged independent of initial
configuration. (b) Electron density 1 × 10−5 e/Å3 in the range [EF−0.6 eV, EF], top view, above the
upper Pc. The circle indicates the molecular orbital overlap between adjacent molecules.

For comparison with the STM experiment, Figure 3b shows the calculated electron
density within an interval [EF−0.5 eV, EF]. It can be noted that the external lobes correspond
well with the STM image of Figure 2c. The agreement with the experiment also holds
for the molecular orbital overlap between two adjacent molecules, as highlighted by the
circle in the electron density image of Figure 3b. In addition to the eight external lobes of
the upper Pc, the electron density clearly shows that eight small inner lobes merge into a
cross-like contrast (Figure 3b). These results compare well with the experiment for data
taken within the same energy range as that of the applied sample bias [6]. The results reflect
the checkerboard symmetry of the system in that A-type molecules exhibit one azimuthal
orientation, whereas B-type molecules exhibit another azimuthal orientation. From the
contrast of the inner lobes, it is easily found that the whole B molecule is rotated by 30◦

clockwise with respect to the A molecule. These results are in perfect agreement with
respect to the A molecule, in good agreement with the experiment [6].
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It is instructive to consider the images obtained for different values of electron density.
It is found that the correspondence with the STM experiment is best for low density
values, such as 1 × 10−5 e/Å3 (Figure 3b), as opposed to 1 × 10−4 e/Å3 or 1 × 10−2 e/Å3

(Figure S3). This makes sense, since the STM experiment primarily accesses the tail of the
wave function. The energy range explored by the STM experiment is also decisive, typically
between EF−0.5 eV and EF, since a larger interval (involving deeper energy levels) leads to
a significantly different picture (Figure S3b).

An energy level analysis performed close to the Fermi energy sheds additional light
on the properties of the molecular arrangement (see Figure 4a). As expected, the HOMO–
LUMO gap of the so-assembled molecules decreases from the single molecule to less
than 200 meV, which is in good agreement with the experiment (see Figure 2d). Let us
now consider the HOMO and HOMO-1 states relevant for the STM spectroscopy analysis.
According to Figure 4b,c, we find that both spin orientations of the HOMO localize on
A-type molecules, whereas both spin directions of the HOMO-1 localize on the B-type
molecules. The fact that the HOMO wave function is found exclusively on A-molecules,
while the HOMO-1 wave function exists exclusively on B-molecules, is an additional
confirmation of the electronic (spectroscopic) origin of the checkerboard symmetry observed
in the STM contrasts. A wide range density of state (DOS) can be found in Figure S4.
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4. Conclusions

The very good agreement of the calculation with the experiment tells us that there is no
need to consider two sets of conformationally different molecules, as proposed previously.
It is found that the molecules are able to arrange themselves so as to exhibit the same
alternating contrast observed experimentally and simultaneously, leading to a ϑ = 45◦

dihedral angle on each molecule of the assembly. Therefore, although we cannot exclude
completely a small deviation (less than 2◦) of the dihedral angle from 45◦, we demonstrate
here that the presence of a second species with ϑ = 30◦ is not a necessary condition to
explain the experimental observation. It is noteworthy that good agreement is found
between simulation and experiment for a relatively narrow energy window at EF and at the
low-electron-density calculation, proof that only the tail of the wave function is captured in
an STM image. In summary, our approach proves valuable in identifying the STM contrast
of LnPc2 layers and could be used in similar cases where it is difficult to interpret the STM
images of an assembly of molecular complexes.
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