KIT | KIT-Bibliothek | Impressum | Datenschutz

Nonlinear modulational dynamics of spectrally stable Lugiato–Lefever periodic waves

Haragus, Mariana; Johnson, Mathew A.; Perkins, Wesley R.; de Rijk, Björn 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider the nonlinear stability of spectrally stable periodic waves in the Lugiato– Lefever equation (LLE), a damped nonlinear Schrödinger equation with forcing that arises in nonlinear optics. So far, nonlinear stability of such solutions has only been established against co-periodic perturbations by exploiting the existence of a spectral gap. In this paper, we consider perturbations which are localized, i.e., integrable on the line. Such localized perturbations naturally yield the absence of a spectral gap, so we must rely on a substantially different method with origins in the stability analysis of periodic waves in reaction–diffusion systems. The relevant linear estimates have been obtained in recent work by the first three authors through a delicate decomposition of the associated linearized solution operator. Since its most critical part just decays diffusively, the nonlinear iteration can only be closed if one allows for a spatio-temporal phase modulation. However, the modulated perturbation satisfies a quasilinear equation yielding an apparent loss of regularity. To overcome this obstacle, we incorporate tame estimates on the unmodulated perturbation, which satisfies a semilinear equation in which no derivatives are lost, yet where decay is too slow to close an independent iteration scheme. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000162249
Veröffentlicht am 20.09.2023
Originalveröffentlichung
DOI: 10.4171/aihpc/65
Scopus
Zitationen: 5
Web of Science
Zitationen: 4
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2023
Sprache Englisch
Identifikator ISSN: 0294-1449, 1873-1430
KITopen-ID: 1000162249
Erschienen in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Verlag Elsevier
Band 40
Heft 4
Seiten 769–802
Vorab online veröffentlicht am 08.12.2022
Schlagwörter Nonlinear stability, modulational dynamics, Lugiato–Lefever, periodic waves
Nachgewiesen in Scopus
Web of Science
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page