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Abstract – The dispersion properties of surface type electromagnetic waves are 

studied. The waves are considered to propagate along a slab transition layer located 

between two infinite homogeneous plasma regions of different particle densities. 

The wavelength is assumed to be short as compared with the layer width. The waves 

propagate across a static magnetic field which is parallel to the layer interface. The 

influence of the smoothness of the gradient of the plasma particle density within the 

layer on the surface wave propagation/disappearance is discussed. The conclusions 

derived in the present paper are of interest in the fields of plasma electronics, nano-

technologies, plasma-antenna systems, plasma production, and magnetic 

confinement fusion. 
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I. Introduction 

Real plasmas do not have absolutely sharp boundaries. An interface between 

the plasma and another medium can be considered as a sharp one in studies of 
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electromagnetic Surface Wave (SW) propagation only if the width of the transition 

layer is much smaller than the wave penetration depth. This takes place in particular 

at the interfaces of plasmas in semiconductors. The model of sharp boundary was 

effectively applied as first approach in many studies in the past.  

Interest to SW propagation and excitation is explained by their extensive 

application in many fields of physics and technology (see e.g. [1] and references 

therein). Specifically, SWs play an important role in plasma electronics [2,3] since 

they propagate within those frequency ranges where bulk waves do not propagate. 

Surface-enhanced Raman scattering demonstrates its potential in various types of 

ultrasensitive sensing applications in a wide variety of fields [4]. In recent years, 

SWs have obtained a new field of application, namely plasma-antenna systems. 

These plasma antennas get advantage from utilization of a plasma as medium with 

sufficiently high conductivity instead of metal wires which makes it possible to be 

quickly switched-off and/or switched-on [5]. Radio frequency (RF) gas discharges 

sustained by SWs appear to be very convenient for plasma production since they are 

generally less expensive, easier to handle, more efficient, and more reliable sources 

of particles and radiation as compared with the various DC discharges [6]. RF power 

was mentioned in [7] to be lost during RF wave penetration through the plasma 

periphery in magnetic confinement thermonuclear fusion plasma devices, because 

of parasitic absorption. In particular, undesirable excitation of SWs by RF antennas 

was reported in [8] to be foreseen in the plasma periphery of DEMO and ITER. 

Further optimization which could help to avoid excitation of these SWs was also 

discussed. However, the considered model was in a slab geometry only. 

Interest to the role of the transition layer between two plasma layers is often 

explained by the presence of local resonances therein, which can cause in particular 

additional plasma heating. Since in most cases the transition layer separates the 

plasma layer from vacuum, the heating can take place in the plasma edge. The latter 
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can be a parasitic phenomenon if one has the objective to heat the plasma core, like 

it happens in controlled thermonuclear fusion devices with magnetic plasma 

confinement. On the other hand, edge plasma heating can be of interest for 

technological applications if one has the goal to process the surface of a sample with 

plasma-like properties. 

In the case of isotropic plasmas, modelling the plasma density within the 

transition layer by using a linear dependence makes it possible to reduce the Laplace 

equation to a second order differential equation of Bessel type. An analytic 

expression for the damping rate of surface waves caused by the presence of a local 

resonance in the transition layer at the plasma edge was derived in [9]. The damping 

rate was shown to be independent of the collision frequency. The dispersion relation 

was demonstrated to have no solution if the transition layer width was larger than 

the wavelength. This was treated as the disappearance of the SWs. 

Electromagnetic energy absorption within the local plasma resonance in the 

transition layer at the edge of isotropic plasmas was carefully studied in [10]. Three 

structures were considered: flat boundary vacuum-plasma, thin flat layer, and thin 

plasma cylinder. 

The influence of the viscosity on the resonance absorption of incompressible 

magnetohydrodynamic SWs within a thin transition layer was considered in [11]. 

The classical viscous stress tensor for a magnetized plasma was applied. The 

electromagnetic power absorption was evaluated and found to be independent of the 

viscosity coefficient, and to correspond to SW power absorption obtained from the 

equations of ideal magnetohydrodynamics.  

The growth rate of SWs in the presence of a p-polarized pump wave (electric 

field is polarized parallel to the plane of incidence) was reported in [12] to be by 

several orders of magnitude larger as compared with that in the case of sharply 

bounded plasmas. The mechanism of this process was explained as follows. The 
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plasmons localized in the plasma vacuum transition layer were shown to be 

parametrically excited and transfer their energy to the surface waves. The width of 

the transition layer was assumed to be small as compared to the wavelengths 

involved in the problem and large as compared to the Debye length of the electrons. 

The presence of local resonances can result in the higher importance of 

nonlinear phenomena occurring in the boundary region than those of the bulk 

plasma. The nonlinear phenomena were noted in [13] to cause a significant 

modification of the SW dispersion relations derived under assumption of a sharp 

boundary. 

The propagation of electromagnetic SWs with account for nonlinear 

phenomena inside a diffuse boundary was considered in [14]. The plasma particle 

density profile within the transition layer was assumed to be linear. The width of the 

layer was suggested to be smaller than the wavelength of the surface wave and larger 

than the electron Debye length. An external static magnetic field was neglected. 

A variety of experimental techniques which provide indirect evidence of the 

existence of local resonances in a transition layer was noted, e.g., in [15] for plasma 

discharges with various configurations and dimensions sustained by SWs. A review 

of experiments and discussions about the existence of such resonances can be found 

in [16]. 

The authors of the present study also contributed to the analysis of 

electromagnetic energy absorption within local resonances [see, e.g., 17-19]. 

However, even the brief overview of the role of local resonances presented above 

makes it possible to conclude that the role is clarified well enough. The main 

motivation for the present study is to assess the effect of the transition layer on SW 

propagation for the case that no resonances are influencing the SWs. This might be 

important, because in many numerical cases SWs can appear close to resonances, 

and it is not clear what the reason for SWs is: the discontinuity of the medium or the 
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resonance itself. That is why the present paper deals with transition layers without 

any local resonance. 

The dispersion properties of SWs propagating along the interface of a metal 

and a semibounded gaseous plasma in Voigt geometry were analyzed in [20] with 

account for plasma particle density inhomogeneity in the direction perpendicular to 

the interface. The non-uniformity was modeled by introducing a transition layer 

where the density varied according to a three-parameter sinusoidal law. Lack of 

computing possibilities did not allow the authors to make an in-depth analysis of the 

influence of the transition layer parameters on the wave dispersion properties. The 

main conclusion was about the tangential component of the SW electric field. Its 

amplitude was reported to be non-zero inside the plasma and to be zero at the plasma-

metal interface in contrast to the case of the sharp boundary between the metal and 

uniform plasma, for which the tangential component of the SW electric field is equal 

to zero inside the entire plasma. The qualitative conclusion about the dependence of 

the wave eigenfrequency on the plasma density sharpness within the transition layer 

was in agreement with the wave dispersion properties in a uniform plasma half-

space. An overview of these results can be found in [21].  

 The metal wall was naturally modelled in [21] as ideal (non-dissipative) 

medium with infinite plasma particle density. The main distinguishing feature of the 

present study, compared to that in [21], is that the metal in the left half space is 

replaced by a plasma with finite density.  

The present study was initiated by the following motivation. Often, an 

inhomogeneous plasma density profile is modelled by a set of radial layers of 

different widths and steps of uniform density. For instance, in numerical 

calculations, sharp plasma–vacuum interfaces are commonly used as a simple 

method of avoiding issues associated with local resonances. However, additional 

roots of the dispersion relation are the unavoidable consequence of introducing 
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additional interfaces between plasma layers of different densities. These non-

physical SWs also prevent convergence in numerical calculations within the ion 

cyclotron frequency range [22]. 

 The paper is arranged as follows. The motivation of the study is explained in 

Introduction being section I. The model to be considered is reported in section II. 

Short explanation of how the wave equation is derived is provided in section III. 

Wave field spatial distributions in the left half space, right half space and within the 

transition layer are given in sections IV, V, and VI respectively. The dispersion 

relation is derived and analytically investigated in section VII. The results of 

numerical studying the SW dispersion properties are presented in section VIII. The 

main conclusions and discussions are displayed in section IX. 

  

II. Model description  

The following plasma structure is considered (Fig. 1). The half space  𝑥 < −𝑎/2 is occupied by uniform cold collisionless plasma with the plasma particle 

density 𝑛1. A plasma with another uniform particle density 𝑛3 > 𝑛1 is placed in the 

half space 𝑥 > 𝑎/2. A transition plasma layer of the width 𝑎 separates the half  

 

 

Fig. 1. Schematic of the problem. Left: 

uniform plasma half space: 𝑥 < −𝑎/2, 

transition layer: − 𝑎2 < 𝑥 < 𝑎/2, right: 

uniform plasma half space: 𝑥 > 𝑎/2 
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spaces with uniform, but different plasma particle densities. An external static 

magnetic field 𝐵⃗ 0 is assumed to be parallel to the interfaces between the three media. 

Its direction is chosen to coincide with the axis 𝑧 , 𝐵⃗ 0||𝑧 .  
One can choose the position of the transition layer in any other way. For 

example, one plasma medium can be placed in the half space 𝑥 < 𝑏 ≠ −𝑎/2, and 

the other in the half space 𝑥 > 𝑏 + 𝑎 with 𝑏 being an arbitrary constant. Such 

approach with 𝑏 = 0 was realized, e.g. in [1,20]. However, it is demonstrated below 

that it is the position 𝑏 = −𝑎/2 chosen in the present paper, which provides the 

symmetry of the problem, which in its turn simplifies algebra and makes the solution 

self-consistent. The symmetry means that the considered structure coincides with 

itself in the result of a coordinate system rotation around the 𝑧 axis by the angle of 𝜋 with the only consequence that plasma particle density gradient becomes negative.  

Plasma electrodynamic properties are described in terms of the cold collisionless 

plasma tensor of dielectric permittivity 𝜀𝑖𝑗: 

𝜀̂ = ( 𝜀1 𝑖𝜀2 0−𝑖𝜀2 𝜀1 00 0 𝜀3).                          (1) 

The components of the tensor read 𝜀1 = 1 − ∑ Ω𝛼2𝜔2−ω𝛼2𝛼 , 𝜀2 = −∑ Ω𝛼2𝜔𝛼𝜔(𝜔2−ω𝛼2 )𝛼 , 𝜀3 = 1 − ∑ Ω𝛼2𝜔2𝛼 .                (2) 

In (2), Ωα is the plasma frequency of the particle of species α (α = 𝑖 for ions and α = 𝑒 for electrons), ωα is corresponding cyclotron frequency.  

 

III. Wave equation 

The present study is restricted to consideration of transversal (whose wave 

vector is perpendicular to the external static magnetic field,  𝑘𝑧 = 0) electromagnetic 
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waves of extraordinary polarization (with the wave field components 𝐸𝑥, 𝐸𝑦, 𝐻𝑧). 

The temporal-spatial dependence of the wave longitudinal magnetic field reads  𝐻𝑧(𝑟 , 𝑡) = 𝐻𝑧(𝑥)exp⁡[𝑖(𝑘𝑦𝑦 − 𝜔𝑡)].              (3) 

In (3), 𝑘𝑦 and 𝜔 are the wavenumber in 𝑦-direction and the wave angular frequency, 

respectively.  

This configuration, in which the waves propagate across the external static 

magnetic field, which in turn is parallel to the interface, is known to be called as 

Voigt geometry [21]. The theory of surface electromagnetic wave propagation in 

Voigt geometry along the plasma-metal interface in plane and circular (partially) 

waveguides was overviewed in [21]. A comprehensive review of SW propagation, 

beam excitation and applications in circular waveguides was given in [1]. Note that 

transversal electromagnetic surface waves of ordinary polarization (with the wave 

field components 𝐻𝑥, 𝐻𝑦, 𝐸𝑧) do not propagate in the plasma structure considered 

here, for any magnitude of the wavenumber 𝑘𝑦. The restriction to set the axial 

wavenumber equal to zero (𝑘𝑧 = 0) makes the problem tractable. In addition, 

application of such simplification is justified by the following reason. The authors 

of [23] considered SW propagation at an arbitrary angle to 𝐵⃗ 0 along the slab plasma-

metal interface. They concluded that the wave field components 𝐻𝑥, 𝐻𝑦, 𝐸𝑧 are not 

negligible only in a small region of the phase plane (𝑘𝑦, 𝑘𝑧).  

Maxwell equations provide the following second order uniform differential 

equation for the amplitude 𝐻𝑧(𝑥) of the longitudinal magnetic wave field 

 𝑑𝑑𝑥 ( 1𝑘⊥2 𝑑𝐻𝑧𝑑𝑥 ) − 𝐻𝑧 [1 + 𝑘𝑦2𝑘⊥2 − 𝑑𝑑𝑥 (𝜇𝑘𝑦𝑘⊥2 )] = 0.                          (4) 

 

In (4), 𝑘⊥2 = 𝑘2𝑁⊥2, 𝑁⊥2 = 𝜀1(𝜇2 − 1) > 0, 𝜇 = 𝜀2/𝜀1, 𝑘 = 𝜔/𝑐. If the plasma is 

uniform, eq. (4) reads:  
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𝑑2𝐻𝑧𝑑𝑥2 − [𝑘⊥2 + 𝑘𝑦2]𝐻𝑧 = 0.                                              (5) 

 

 

IV. Wave field distribution in the left half space 

In the left half space, 𝑥 < −𝑎/2, the solution of eq. (5) which has the form of a 

surface wave and meets the boundary condition at 𝑥 → −∞ reads 

 𝐻𝑧(1)(𝑥) = 𝐴exp[𝑘1(𝑥 + 𝑎/2)],          (6) 𝐸𝑦(1)(𝑥) = 𝑖𝑁⊥12 𝐴 (N1 + μ1Ny)exp[𝑘1(𝑥 + 𝑎/2)].         (7) 

In (6) and (7), 𝐴 is the constant of integration, 𝑁𝑦 = 𝑘𝑦/𝑘 is refractive index, and 𝑁1,3 = 𝑘1,3/𝑘. The depth 𝑘1−1 of wave penetration into the plasma in this region is 

determined as 𝑘1,32 = 𝑘⊥1,32 + 𝑘𝑦2 for the plasma particle density 𝑛 = 𝑛1. The 

subscript “1” nearby the observables μ1, and 𝑁⊥12  means that they are calculated for 𝑛 = 𝑛1. 

 

 

V. Wave field distribution in the right uniform half space 

In the right uniform region, 𝑥 > 𝑎/2, the solution of the Maxwell equations, 

which has the form of a surface wave and satisfies the boundary condition at 𝑥 →+∞, reads 𝐻𝑧(3)(𝑥) = 𝐵exp[−𝑘3(𝑥 − 𝑎/2)],                                         (8) 𝐸𝑦(3)(𝑥) = 𝑖𝑁⊥32 𝐵 (−N3 + μ3Ny)exp[−𝑘3(𝑥 − 𝑎/2)].                       (9) 

In (8) and (9), 𝐵 is the constant of integration, μ3 and 𝑁⊥32  are the observables 𝜇 and 𝑁⊥2 calculated for higher plasma particle density, 𝑛 = 𝑛3.  
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VI. Wave field distribution in the transition layer 

In the following, only short wavelength waves are under the consideration. This 

means that the wave length is assumed to be sufficiently small:  |𝑘𝑦| ≫ ⁡ |𝑘⊥1,3|, 1/𝑎.                                                (10) 

Note that the condition 𝑘𝑦2 > |𝑘⊥1,32 | is necessary to provide surface nature of the 

wave in the uniform half-spaces if 𝑘⊥1,32  is negative. The strong inequality (10) can 

also be treated as sufficiently large width of the transition layer which excludes the 

possibility to use the results of studying SWs propagation along a sharp plasma-

plasma interface as a limiting case.  

Then asymptotic methods can be applied for solving eq. (4) within the 

transition layer, −𝑎/2 < 𝑥 < 𝑎/2. In particular, the amplitude of the magnetic wave 

field can be presented as the series 𝐻𝑧(2) = 𝐻𝑧(2,0) + 𝐻𝑧(2,1)
 (|𝐻𝑧(2,1)| ≪ |𝐻𝑧(2,0)|) 

where the main term 𝐻𝑧(2,0)
 is the solution to eq. (4) in zero approximation: 1𝑘⊥2 𝑑2𝐻𝑧(2,0)𝑑𝑥2 − 𝑘𝑦2𝑘⊥2 𝐻𝑧(2,0) = 0.                                     (11) 

The solution of eq. (11) reads: 𝐻𝑧(2,0) = 𝐶1 exp(𝑘𝑦𝑥) + 𝐶2exp⁡(−𝑘𝑦𝑥).                          (12) 

The first order correction 𝐻𝑧(2,1)
 is the solution of the following second order 

nonuniform differential equation: 1𝑘⊥2 𝑑2𝐻𝑧(2,1)𝑑𝑥2 − 𝑘𝑦2𝑘⊥2 𝐻𝑧(2,1) = 𝑀̂𝐻𝑧(2,0)
.                                     (13) 

In (13), the r.h.s. reads 𝑀̂𝐻𝑧(2,0) = − 𝑑𝐻𝑧(2,0)𝑑𝑥 𝑑𝑑𝑥 ( 1𝑘⊥2) + 𝐻𝑧(2,0) [1 − 𝑑𝑑𝑥 (𝜇𝑘𝑦𝑘⊥2 )].                (14) 

The correction 𝐻𝑧(2,1)
 is found by the method of constant variation:  
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𝐻𝑧(2,1) = exp(𝑘𝑦𝑥) 12𝑘𝑦 ∫ exp(−𝑘𝑦𝑥) 𝑘⊥2𝑀̂𝐻𝑧(2,0)𝑑𝑥𝑥
𝑥1  

−exp⁡(−𝑘𝑦𝑥) 12𝑘𝑦 ∫ exp⁡(𝑘𝑦𝑥)𝑘⊥2𝑀̂𝐻𝑧(2,0)𝑑𝑥𝑥𝑥2 .                         (15) 

Correspondingly, the amplitude of the tangential electric wave field reads 𝐸𝑦(2,0) = 𝑖𝑁𝑦𝑁⊥2 {𝐶1 exp(𝑘𝑦𝑥) (1 + 𝜇) − 𝐶2 exp(−𝑘𝑦𝑥) (1 − 𝜇)}.        (16) 𝐸𝑦(2,1) = 𝑖2𝑘𝑁⊥2 {[exp(𝑘𝑦𝑥)∫ exp(−𝑘𝑦𝑥) 𝑘⊥2𝑀̂𝐻𝑧(2,0)𝑑𝑥𝑥
𝑥1  

+exp(−𝑘𝑦𝑥)∫ exp(𝑘𝑦𝑥) 𝑘⊥2𝑀̂𝐻𝑧(2,0)𝑑𝑥𝑥
𝑥2 ] 

+𝜇 [exp(𝑘𝑦𝑥)∫ exp(−𝑘𝑦𝑥) 𝑘⊥2𝑀̂𝐻𝑧(2,0)𝑑𝑥𝑥
𝑥1  

−exp⁡(−𝑘𝑦𝑥) ∫ exp⁡(𝑘𝑦𝑥)𝑘⊥2𝑀̂𝐻𝑧(2,0)𝑑𝑥𝑥𝑥2 ]}.         (17) 

The expression (15) is the correct solution of eq. (13) for arbitrary magnitudes of 

the constants of integration 𝑥1 and 𝑥2. This makes it possible to choose such 

magnitudes for the constants 𝑥1,2 which provide the conditions of applicability of 

the method of successive approximations, |𝐻𝑧(2,1)| ≪ |𝐻𝑧(2,0)|, in the best manner. 

This consideration results in the following choice:  𝑥1 = (0.5𝑎)𝑠𝑔𝑛(𝑘𝑦) and 𝑥2 = −(0.5𝑎)𝑠𝑔𝑛(𝑘𝑦).               (18) 

 

VII. Dispersion relation 

A wave field distribution in the form of eqs. (6), (8), (12), and (15) contains four 

constants of integration: 𝐴, 𝐵, and 𝐶1,2. Direct application of the four boundary 

conditions (continuity of the tangential wave electric and magnetic fields 𝐸𝑦 and 𝐻𝑧 
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at the interfaces 𝑥 = −0.5𝑎 and 𝑥 = 0.5𝑎) can result in derivation of the dispersion 

relation in the form of a fourth order determinant which could be used for numerical 

analysis of the problem. However, the boundary conditions {𝐻𝑧}±𝑎/2 = 0 make it 

possible to exclude the constants 𝐴 and 𝐵: 𝐴 = 𝐶1 exp(−0.5𝑘𝑦𝑎) (1 + 𝐼1) + +𝐶2 exp(0.5𝑘𝑦𝑎) + 𝐶2 exp(−0.5𝑘𝑦𝑎) 𝐼2,     (19) 𝐵 = 𝐶2 exp(−0.5𝑘𝑦𝑎) (1 + 𝐼4) + +𝐶1 exp(0.5𝑘𝑦𝑎) + 𝐶1 exp(−0.5𝑘𝑦𝑎) 𝐼3,     (20) 

in the explicit expressions for the boundary conditions {𝐸𝑦}±𝑎/2 = 0. The following 

notations are used in (19) and (20): 𝐼1 = ∫ 𝑘⊥22𝑘𝑦 [𝑘𝑦 𝑑𝑑𝑥 (𝜇+1𝑘⊥2 ) − 1] 𝑑𝑥𝑎/2−𝑎/2 ,                             (21) 𝐼2 = ∫ 𝑘⊥22ky exp(−2𝑘𝑦𝑥) [𝑘𝑦 𝑑𝑑𝑥 (𝜇−1𝑘⊥2 ) − 1] 𝑑𝑥𝑎/2−𝑎/2 ,                    (22) 𝐼3 = ∫ 𝑘⊥22ky exp(2𝑘𝑦𝑥) [𝑘𝑦 𝑑𝑑𝑥 (1+𝜇𝑘⊥2 ) − 1] 𝑑𝑥𝑎/2−𝑎/2 ,                    (23) 𝐼4 = ∫ 𝑘⊥22𝑘𝑦 [𝑘𝑦 𝑑𝑑𝑥 (𝜇−1𝑘⊥2 ) − 1] 𝑑𝑥𝑎/2−𝑎/2 .                            (24) 

At the first glance, the substitution of expressions (19) and (20) into the boundary 

conditions {𝐸𝑦}±𝑎/2 = 0 has the only consequence to make these conditions more 

cumbersome. If so, then one has no profit from replacing the dispersion relation in 

the form of the fourth order determinant by that of the second order, since a computer 

solves both equations sufficient quickly. However, the elements 𝛼𝑖𝑗 of the dispersion 

relation in the form of the second order determinant appear to be of rather simple 

form after regrouping the like terms, which makes the further analytic research of 

the relation possible. These elements read in the case of positive wavenumber, 

 𝑘𝑦 > 0:  

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
6
5
4
1
6



13 

 

𝛼11 = (1 + 𝐼1)(𝑁1 − 𝑁𝑦),                                       (25) 𝛼12 = exp(𝑘𝑦𝑎) (𝑁𝑦 + 𝑁1) + 𝐼2(𝑁1 − 𝑁𝑦),                           (26) 𝛼21 = exp(𝑘𝑦𝑎) (𝑁3 + 𝑁𝑦) + 𝐼3(𝑁3 − 𝑁𝑦),                           (27) 𝛼22 = (1 + 𝐼4)(𝑁3 − 𝑁𝑦).                                          (28) 

If SWs propagate in the negative direction, 𝑘𝑦 < 0, then the elements of the 

determinant read: 𝛼11 = (𝐼1 − 1)(𝑁3 + 𝑁𝑦),                                           (29) 𝛼12 = exp(−𝑘𝑦𝑎) (𝑁𝑦 − 𝑁3) + 𝐼2(𝑁3 + 𝑁𝑦),                           (30) 𝛼21 = exp(−𝑘𝑦𝑎) (𝑁1 − 𝑁𝑦) − 𝐼3(𝑁1 + 𝑁𝑦),                           (31) 𝛼22 = (1 − 𝐼4)(𝑁1 + 𝑁𝑦).                                         (32) 

For both directions of SW propagation, the term 𝛼12𝛼21 in the dispersion 

relation appears to be larger than the term 𝛼11𝛼22 by the factor of exp(2|𝑘𝑦|𝑎). This 

makes it possible to search for the asymptotic solutions of the dispersion relation as 

those of the equations 𝛼12 = 0 and 𝛼21 = 0.                                        (33) 

If SWs propagate along the 𝑦-axis, 𝑘𝑦 > 0, the eqs. (33) take the following form: 𝜇1𝑁⊥12 = −8𝑁𝑦2 or 𝜇3𝑁⊥32 = 8𝑁𝑦2.                           (34) 

If SWs propagate in the opposite direction, 𝑘𝑦 < 0, then the eqs. (33) take a similar 

but different form: 𝜇3𝑁⊥32 = −8𝑁𝑦2 or 𝜇1𝑁⊥12 = 8𝑁𝑦2.                              (35) 

Implying the condition (10) of applicability of the present approach suggests 

to search for the solutions of eqs. (34) and (35) nearby the hybrid frequencies, where |𝜇1,3| ≫ 1. This circumstance explains why SWs do not propagate along the 

interface between isotropic plasmas, in which case 𝜇1,3 ≡ 0. Consequently, the 

present paper does not contradict with the conclusions of Romanov [9] who 
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considered isotropic plasma and proved the absence of any solutions of the 

corresponding dispersion relation in the case of short wavelengths, |𝑘𝑦|𝑎 ≫ 1.  

Note that the condition (10) also fails nearby the hybrid frequencies. After 

substituting the expression for 𝜀1 = ±(|𝜀23|/(8𝑁𝑦2)), which follows from the 

dispersion relations (34) and (35), into strong inequality (10) one derives the 

following restrictions on the wavenumber in the lower hybrid range, 𝜔 ≈ 𝜔𝐿𝐻 (here 𝜔𝐿𝐻 = [(|𝜔𝑒|𝜔𝑖)−1 + Ω𝑖−2]−12⁡⁡ is the lower hybrid frequency): |𝑘𝑦|𝛿 ≫ (64𝑚𝑒𝑚𝑖 𝑍21+𝑍2)14
,                                           (36)  

and in upper hybrid range, 𝜔 ≈ 𝜔𝑈𝐻 (here 𝜔𝑈𝐻 = (Ω𝑒2 + 𝜔𝑒2)12 is the upper hybrid 

frequency): |𝑘𝑦|𝛿 ≫ (64 𝑍2+1𝑍4 )14
,                                           (37)  

which also can be treated as consideration of short wavelength SWs. Hereinafter, 𝛿 = 𝑐/Ωe is the skin-depth and 𝑍 ≡ Ω𝑒/|𝜔𝑒| is the ratio of electron plasma and 

electron cyclotron frequencies. 

 Since |𝜇1,3| ≫ 1 in the range of hybrid frequencies, the expression for 𝑁⊥1,32  

can be further simplified to 𝑁⊥2 ≈ 𝜀22/𝜀1. Then the dispersion relations (34) and (35) 

read 𝜀213 /𝜀112 = 8𝑁𝑦2 or 𝜀233 /𝜀132 = −8𝑁𝑦2 if 𝑘𝑦 > 0,                     (38) 𝜀233 /𝜀132 = 8𝑁𝑦2 or 𝜀213 /𝜀112 = −8𝑁𝑦2 if 𝑘𝑦 < 0.                    (39) 

At this step, one can expect to find eight solutions of the four dispersion 

relations (38) and (39) – two for each equation (one of the solutions is expected in 

the lower hybrid frequency range, and the other – in the upper hybrid frequency 

range). However, the existence of these solutions depends on the sign of the 
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permittivity tensor component 𝜀2. In the range of the lower hybrid frequency, 𝜔 ≈𝜔𝐿𝐻1,2, the permittivity tensor component 𝜀2 is negative:  𝜀2 = − Ω𝑒2|𝜔𝑒|𝜔𝐿𝐻 < 0.                                           (40) 

This means that only 𝛼21 can turn to zero and 𝛼12 ≠ 0 in the lower hybrid frequency 

range:  𝜀233 /𝜀132 = −8𝑁𝑦2, if 𝑘𝑦 > 0, and 𝜀213 /𝜀112 = −8𝑁𝑦2, if 𝑘𝑦 < 0.      (41) 

In the upper hybrid frequency range, 𝜔 ≈ 𝜔𝑈𝐻1,3, the permittivity tensor 

component 𝜀2 is positive:  𝜀2 = |𝜔𝑒|𝜔𝑈𝐻 > 0.                                              (42) 

This makes it possible to narrow our search to the consideration of the equation 𝛼12 = 0, while 𝛼21 ≠ 0:  

 𝜀213 /𝜀112 = 8𝑁𝑦2, if 𝑘𝑦 > 0, and 𝜀233 /𝜀132 = 8𝑁𝑦2, if 𝑘𝑦 < 0.                 (43) 

 When the model under the consideration was described in Section II, the 

symmetry of the three-component plasma structure was stressed. This symmetry can 

be seen in eqs. (41) and (43). Specifically, the replacement of the wavenumber sign, 𝑘𝑦 ↔ −𝑘𝑦, is accompanied by replacement of the magnitudes of the plasma particle 

density, 𝜀21 ↔ 𝜀23 and 𝜀11 ↔ 𝜀13, in these dispersion relations.  

 

VIII. Numerical analysis of the dispersion relation 

The dispersion curves are shown in Figs. 2-4 in the form of the wave 

eigenfrequency 𝜔 dependence on the wavenumber 𝑘𝑦. During the calculations the 

plasma particle density within the transition layer is assumed to vary linearly, 𝑛(𝑥) = 𝑛1 + (𝑛3 − 𝑛1)(𝑥 + 0.5𝑎)/𝑎,                              (44) 
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and the assumptions are checked up, under which the dispersion relation is derived. 

In particular, the correction 𝐻𝑧(1)
 to the amplitude of the longitudinal magnetic wave 

field is small in absolute value as compared to the main term 𝐻𝑧(0)
, as well as |𝑘𝑦|𝑎 ≫ 1.  

All the Figs. 2-4 are presented as the dependence of normalized SW 

eigenfrequencies on the normalized wavenumber 𝑘𝑦𝛿1. The subscript “1” means that 

the plasma particle density of the left uniform half space is applied. The latter choice 

is explained by the following reason. The dispersion properties of surface type 

electromagnetic waves propagating along the azimuthal angle in circular metal 

waveguides entirely filled by two layers of plasma in axial static magnetic field were 

studied in [24]. The wave dispersion properties were found to depend mostly on the 

electrodynamic characteristics of the medium with smaller plasma particle density. 

Electrodynamic properties of the plasma with larger density were reported to 

introduce only small corrections to eigenfrequency and spatial wave field 

distribution. 

The ratio of the electron to ion masses is chosen in the calculations to be as in 

deuterium, 𝑚𝑒/𝑚𝑖 ≈ 2.69 × 10−4. Since the order of hybrid frequencies,  𝜔𝐿𝐻1 < 𝜔𝐿𝐻3 < 𝜔𝑈𝐻1 < 𝜔𝑈𝐻3, is clear without specific explanation, the branches 

are normalized in Figs. 2-4 by these hybrid frequencies, respectively. 

The existence of eight branches of the dispersion curves is demonstrated in 

Fig. 2 by solid curves. The plasma particle density of the right uniform plasma half 

space is assumed to be higher than that of the left half space by the factor of ten, 𝑛3/𝑛1 = 10. The magnitude of the external static magnetic field is taken into 

account via the ratio of electron plasma and electron cyclotron frequencies 𝑍. Since 

the calculations for the Figs. 2,3 are carried out on the base of eqs. (41) and (43), 

which do not contain the transition layer width 𝑎 because they are derived in the  
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Fig 2. SW eigenfrequency 𝜔/𝜔𝐿𝐻 vs the wavenumber subject to the 

magnitude of an external static magnetic field. Left (lower hybrid SWs): 𝜔/𝜔𝐿𝐻1⁡ for 𝑘𝑦 < 0, and 𝜔/𝜔𝐿𝐻3⁡ for 𝑘𝑦 > 0 (according to eq. (44)).     

Right (upper hybrid SWs): 𝜔/𝜔𝑈𝐻3⁡ for 𝑘𝑦 < 0, and 𝜔/𝜔𝑈𝐻1⁡ for 𝑘𝑦 > 0 

(according to eq. (46)); 𝑍1 ≡ Ω𝑒1/|𝜔𝑒| = 5.0 (solid curves), 𝑍1 ≡Ω𝑒1/|𝜔𝑒| = 10.0 (dashed curves),⁡𝑍1 ≡ Ω𝑒1/|𝜔𝑒| = 20.0 (dotted curves) 

 

limit |𝑘𝑦|𝑎 → ∞, then the magnitude of 𝑎 is not specified for these figures. One can 

see in Fig. 2 (right) that smaller strength of the external static magnetic field 𝐵0 

(which is equivalent to higher magnitudes of 𝑍) causes a smaller difference between 

the SW eigenfrequencies and the upper hybrid frequency. This is true for both 

relative, |(𝜔 − 𝜔𝑈𝐻)/𝜔𝑈𝐻|, and absolute, |𝜔 − 𝜔𝑈𝐻|, difference. This observation 

is in line with the conclusion of the present paper that the short wavelength SWs 

considered here can propagate in magnetized plasma only. The same decrease of 𝐵0 

by the factor of four causes negligible effect (maximum 0.042%) on the 

eigenfrequency of lower hybrid SWs in Fig. 2 (left). That is why neither dashed nor 

dotted curves are present there. 
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Fig 3. SW eigenfrequency 𝜔/𝜔𝐿𝐻 vs 

the wavenumber subject to the 

transition layer width. 𝜔/𝜔𝐿𝐻1 <1.0⁡, and 𝜔/𝜔𝐿𝐻3 > 1.0. 𝑍1 = 5.0. 𝑎/𝛿1 = 0.3 (solid curves), 𝑎/𝛿1 =1.0 (dashed curves), 𝑎/𝛿1 = 3.0 

(dotted curves) 

It is clear that the considered SWs cannot exist in the limiting case of zero plasma 

particle density gradient, (𝑛3 − 𝑛1)/𝑎 = 0. This limiting case can be realized either 

by increasing of transition layer width 𝑎 as compared to the skin-depth 𝛿1 which is 

realized in Fig. 3 or by decreasing the ratio of plasma particle density in the right 

and left uniform half spaces, 𝑛3/𝑛1, which is presented in Fig. 4. The results shown 

in Figs. 3,4 are obtained via calculating the full dispersion relation (29)-(32). 

Increase of the transition layer width 𝑎 is demonstrated in Fig. 3 to manifest itself 

in three ways. First, the larger 𝑎 is, the smaller the magnitude of |𝑘𝑦| can be taken 

to remain in the framework of the assumption |𝑘𝑦|𝑎 ≫ 1. Second, increase of 𝑎 is 

accompanied by a decrease of the difference between the SW eigenfrequency and 

the correspondent hybrid frequency, |𝜔 − 𝜔𝐿𝐻|, for fixed magnitude of the 

wavenumber. It is the latter phenomenon which is treated in the present paper as 

disappearance of SWs with turning of the plasma particle density gradient to zero. 

This result is in qualitative agreement with the conclusion of the paper [24], where 

the SW disappearance in the case of a sharp interface of two plasma layers in circular 

waveguides was investigated. Third, the larger 𝑎 is, the larger the difference  |𝜔 − 𝜔𝐿𝐻| is observed for smallest possible magnitude of |𝑘𝑦|. 
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Fig 4. SW eigenfrequency 𝜔/𝜔𝐿𝐻 vs 

the wavenumber subject to the 

difference in plasma particle density 

in left and right half spaces, 𝑛3/𝑛1. 𝑛3/𝑛1 = 10.0 (solid curve), 𝑛3/𝑛1 =3.0 (dashed curve), 𝑛3/𝑛1 = 1.25 

(dotted curve). 𝑎/𝛿1 = 0.3, 𝑍1 = 5.0 

 

Decrease of the ratio 𝑛3/𝑛1 is also shown in Fig. 4 to cause the SW 

disappearance. Lower hybrid SWs are inspected as example. The smaller the ratio 𝑛3/𝑛1 is, the smaller the difference |𝜔 − 𝜔𝐿𝐻1| is. Here one should emphasize the 

applicability of the initial assumptions made in the present research. The choice of 

the smallest magnitudes of |𝑘𝑦| to be applied in the calculations is determined by 

the necessity to provide these assumptions. Specifically, min{|𝑘𝑦|𝛿1} = 20.0 in Fig. 

4 provides |𝑘𝑦|𝑎 = 6.0 ≫ 1. The precision of application of the method of 

successive approximations is worse for smaller magnitudes of |𝑘𝑦|𝛿1. In particular, 

for |𝑘𝑦|𝛿1 = 20.0, the precision of application of the method of successive 

approximations is about 35% for 𝑛3/𝑛1 = 10.0 (solid curve), 20% for 𝑛3/𝑛1 = 3.0 

(dashed curve), and 8% for 𝑛3/𝑛1 = 1.25 (dotted curve). The precision is much 

better (|𝐻𝑧(1)/𝐻𝑧(0)
|<0.1%) already for |𝑘𝑦|𝛿1 = 40.0.  

In the following, the possibility of experimental observation of the phenomenon 

reported in the present paper is demonstrated. The results presented in Fig. 4 are 

chosen for example, within which 𝑍1 = 5.0 and 𝑎 = 0.3𝛿1. If the structure with 

moderate plasma particle density, 𝑛1 ≈ 1011⁡𝑐𝑚−3, is considered, then the magnetic 

field 𝐵0 should be of ≈ 203⁡𝐺; and the transition layer width should be of ≈ 0.5⁡𝑐𝑚. 
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If to choose the abscissa magnitude as |𝑘𝑦|𝛿1 = 50.0 (the corresponding point is 

marked in Fig. 4 by the star), then the wavenumber is |𝑘𝑦| ≈ 30⁡𝑐𝑚−1. In this case, 

the wave eigenfrequency is smaller than the lower hybrid frequency 𝜔𝐿𝐻1 ≈57.5 × 106⁡𝑠−1 by ≈ 0.668 × 106⁡𝑠−1.  

To complete the presentation of numerical results the wave amplitude 

distribution in the vicinity of the transition layer is displayed in Fig. 5. The 

distribution is calculated for the same conditions as those related to the star in Fig. 

4. Absolute values of the two amplitudes are shown in Fig. 5 - those of the 

longitudinal magnetic wave field, |𝐻𝑧(𝑥)|, and transversal electric wave field, |𝐸𝑦(𝑥)|. The maximum of the amplitudes is situated near the interface 𝑥 = −0.5𝑎 

rather than at 𝑥 = 0.5𝑎. This is in agreement with the choice of the frequency which 

is a little bit smaller than 𝜔𝐿𝐻1. The amplitudes are displaced in arbitrary units, and 

maximum magnitude of |𝐸𝑦(𝑥)| is chosen to be the unit. The maximum amplitude 

of |𝐻𝑧(𝑥)| is chosen on Fig. 5 to be equal to 0.5 with the goal to make visible the 

difference and/or similarity in the spatial distribution of the two amplitudes. 

However, in the calculations, 𝑀𝑎𝑥{|𝐸𝑦(𝑥)|} ≈ 10.0𝑀𝑎𝑥{|𝐻𝑧(𝑥)|}. Similar radial 

profiles of the surface wave electromagnetic fields peaked nearby the plasma-plasma 

circular interface were presented in [24]. Within uniform plasmas, the amplitudes of 

the wave fields are proportional to each other: |𝐸𝑦(𝑥)| ≈ 10.0|𝐻𝑧(𝑥)| in the left 

uniform plasma, 𝑥 < −0.5𝑎; and |𝐸𝑦(𝑥)| ≈ |𝐻𝑧(𝑥)| in the right uniform plasma, 𝑥 > 0.5𝑎. Consequently, within the transition layer, the amplitude |𝐻𝑧(𝑥)| 
decreases more smoothly than |𝐸𝑦(𝑥)|. Specifically, the amplitude |𝐸𝑦(𝑥)| deceases 

twice at the distance of ≈ 0.072𝑎 from the interface 𝑥 = −0.5𝑎, while the amplitude |𝐻𝑧(𝑥)| – at the distance of ≈ 0.12𝑎.  
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Fig 5. Absolute magnitude of SW 

field amplitudes, |𝐸𝑦(𝑥)| (dashed 

curve) and |𝐻𝑧(𝑥)| (solid curve), vs 

the 𝑥-coordinate. 𝑛3/𝑛1 = 10.0, 𝑎/𝛿1 = 0.3, 𝑍1 = 5.0, 𝑘𝑦𝛿1 = −50.0, 𝜔 ≈ 0.01591|ωe| 
 

IX. Conclusions and discussions 

Short wavelength electromagnetic waves of surface nature are shown to 

propagate along the slab transition layer between two uniform plasma half-spaces in 

Voigt geometry in the lower and higher hybrid frequency ranges. In this case, the 

wave penetration depths into the plasmas are of the order of the inverse wavenumber, 𝑘1,3 ≈ |𝑘𝑦|. Asymptotic methods are applied to determine the wave field spatial 

distribution within the transition layer. The transition layer width is assumed to be 

large as compared with the wavelength. Due to this assumption, the results of the 

present paper cannot be compared with those in the case of a sharp interface between 

the two uniform half spaces. 

Here, the influence of the transition layer width as compared with the plasma 

skin-depth on the wave dispersion properties is studied. Disappearance of the surface 

waves with decreasing plasma particle density gradient within the transition layer is 

shown to manifest itself by decreasing the difference between the wave 

eigenfrequency and corresponding hybrid frequency. The plasma particle density 

gradient within the transition layer is determined by the layer width 𝑎 and difference 
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between the two densities of the uniform plasma half-spaces |𝑛3 − 𝑛1|. Increase of 𝑎 and decrease of the difference |𝑛3 − 𝑛1| are shown to cause a qualitatively similar 

influence on the wave dispersion properties by pushing the dispersion curve to the 

corresponding hybrid frequencies.  

The contradiction between the results obtained in the present paper with those 

reported by Romanov [9] are explained as follows. A simple and clear from the 

physical point of view criterion was suggested in [9] for switching on/off the 

possibility for SWs to propagate along the transition layer between two isotropic 

(𝐵0 = 0) plasma half spaces. The SWs were demonstrated to disappear in the limit 

of sufficiently large transition layer width 𝑎 as compared with the wavelength 2𝜋/|𝑘𝑦|. In this case, |𝑘𝑦|𝑎 ≫ 1, and the dispersion relation derived in [9] for 

isotropic plasmas was analytically demonstrated to have no roots. Application of an 

external static magnetic field 𝐵0 is the necessary condition for the short wavelength 

SW propagation in Voigt geometry. The presented results become meaningless in 

the case of isotropic plasmas with 𝐵0 = 0.  

Note that the possibility of SW propagation with sufficiently high wavenumber, |𝑘𝑦| > 1/𝑎, in Voigt geometry along the transition layer between a plasma half 

space and a metal was demonstrated as well in [20]. There, the figures, displaying 

the dependence of SW eigenfrequency on the transverse wavenumber normalized by 

the transition layer width |𝑘𝑦|𝑎, with abscissa up to ≈ 7.5 were given. No problems 

with solving the dispersion relation for larger products |𝑘𝑦|𝑎 were reported.  

Unfortunately, the conclusions above cannot be considered as universal. First, 

they relate to electromagnetic surface wave propagation perpendicular to the static 

magnetic field (𝑘𝑧 = 0). This assumption significantly simplifies the derivation of 

the dispersion relation, since it provides separation of electromagnetic waves into 

ordinary polarized and extraordinary polarized modes. In addition, just extraordinary 
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polarized modes are studied here. Note that ordinary polarized waves cannot be of 

surface nature in this case. Second, the approximation of sufficiently short 

transversal wavelengths is applied to get use of the asymptotic method to solve 

Maxwell equations within the transition layer. Third, a slab geometry is considered. 

On the other hand, the applied method does not imply any direct restrictions on the 

width of the transition layer as compared to the skin-depth 𝛿 = 𝑐/Ωe.  

The presented results can be applied, e.g., in plasma electronics, plasma-antenna 

systems, plasma production, nano-technologies, and for explanation of 

electromagnetic wave propagation in the plasma periphery of magnetic confinement 

fusion devices. 

The data that supports the findings of this study are available within the article. 
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