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Kurzfassung

Die Entwicklungen der letzten Jahre haben im industriellen Umfeld heutzuta-
ge eine nie dagewesene Komplexität, Dynamik und Unsicherheit erzeugt. Im
Zuge anhaltender Globalisierung sind riesige, weltweit verteilte Netzwerke ent-
standen, die eine effiziente Gestaltung und Steuerung ihrer Informations- und
Materialflüsse erfordern. Um langfristig am Markt zu bestehen, sind ausgefeil-
te automatisierte Systeme unerlässlich. Hier werden Steuerungsarchitekturen
zunehmend dezentralisiert, indem die Intelligenz des Gesamtsystems auf meh-
rere, unabhängige funktionale Einheiten verteilt wird. Selbst für große und
komplexe Systeme gewährleistet dies Flexibilität, Skalierbarkeit, Robustheit
und Echtzeitfähigkeit auch unter unsicheren und volatilen Einsatzbedingungen.
Darüber hinaus erfordern abnehmende Lagerbestände und reduzierte Pufferka-
pazitäten eine Umgestaltung gegenwärtiger Materialflusskonzepte, da benötigte
Güter gemäß der Verbrauchsreihenfolge an ihrem Bedarfsort verfügbar sein
müssen. Deshalb verspricht ein automatisiertes, dezentral gesteuertes System
zur sequenzgetreuen Materialbereitstellung eine Optimierung der Materialflüs-
se für diverse Anwendungen im Logistik- wie Produktionssektor.

Die vorliegende Dissertation stellt einen dezentralen Algorithmus vor, der die
gleichzeitige Sequenzierung mehrerer Batch-Aufträge in höchst-dichten Ste-
tigfördernetzwerken ermöglicht. Dabei werden materielle Objekte, die von
einem vorgelagerten Prozess in zufälliger Reihenfolge am System ankommen,
so umgeordnet, dass sie einem nachgelagerten Prozess in der dort benötigten
Reihenfolge am gewünschten Bedarfsort zur Verfügung stehen. Der entwickel-
te Algorithmus bedient mehrere Eingangs- und Ausgangspunkte zur parallelen
Auftragsbearbeitung. Lokale Entscheidungen auf Basis lokaler Datenhaltung
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Kurzfassung

führen durch die Interaktion autonomer Systemelemente zur Gesamtfunktio-
nalität. Aufgrund des modularen, dezentralen Systemaufbaus sind eingesetzte
Sequenziersysteme hochflexibel, robust und skalierbar, sodass sie für spezifi-
sche Anwendungsszenarien individuell zugeschnitten werden können.

Die Sequenzierung basiert auf einer dynamischen Pufferstrategie, bei der zwi-
schengelagertes Material bei Bedarf verschoben wird, um Routen zeit- und
entfernungseffizient durch das Netzwerk zu planen. Hierbei liegt das Konzept
der logischen Zeit zugrunde, wodurch die Ausführung der geplanten Transporte
dezentral koordiniert werden kann.

Der vorgestellte dezentrale Sequenzierungsalgorithmus schließt Deadlocks, Li-
velocks und Starvation sowohl innerhalb der algorithmischen Operationen als
auch der Ressourcenallokation grundsätzlich aus, wodurch die Lebendigkeit
des Systems zu jedem Zeitpunkt sichergestellt ist. Der erforderliche Kommu-
nikationsaufwand skaliert mit der Systemgröße n. Auf Netzwerkebene liegt
die algorithmische Komplexität damit in der Größenordnung O(n3), was auf
Ebene der dezentralen Systemelemente auf O(n2) reduziert wird.

Die Qualität dezentral generierter Lösungen kann für kleine Probleminstanzen
im Vergleich zu optimalen Ergebnissen bewertet werden. Daraus ergibt sich
ein durchschnittliches Lösungsdefizit von weniger als 20%. Gemessen an einer
analytisch berechneten unteren Schranke zeigt der dezentrale Sequenzierungs-
algorithmus außerdem eine konstante Lösungsqualität über Systemvariationen
größerer Problemstellungen hinweg.

Mithilfe simulativer Leistungsanalysen werden Batchgröße, vorgegebene Vor-
gänger-Nachfolger Beziehungen, der Bedarf an Umordnung der Objekte inner-
halb des Systems sowie die verfügbare Ausschleusekapazität des Netzwerks als
wesentliche Einflussgrößen des erzielbaren Grenzdurchsatzes identifiziert. Au-
ßerdem erweisen sich kompakte, hochvernetzte Systeme und geradlinige Wege
zwischen Ein- und Ausgängen als vorteilhaft.
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Abstract

Due to the developments in recent years, today’s industrial environments have
become highly complex, dynamic, and uncertain. These are integrated within
huge, globally distributed networks where the flow of information and materials
need to be organized efficiently. Sophisticated, automated systems are crucial
to ensure long-term productivity. Their control architectures are increasingly
decentralized by distributing the overall intelligence to several independent
functional entities. Even for large-scale and complex systems, this guarantees
flexibility, scalability, robustness, and real-time capability under uncertain and
volatile conditions. Additionally, decreasing inventory levels and limited buffer
space complicate current material flow control, as required items need to be sup-
plied at their point of use in the order of consumption. Therefore, an automated
system based on decentralized control enabling sequenced item supply is able
to enhance various material handling applications within warehouse operations
or production systems.

This dissertation presents a decentralized algorithm for multi-batch sequencing
using highest-density conveyor networks. Physical objects randomly arriving
from an upstream process are reorganized within the system to be provided
to a downstream process observing the correct sequence at the required point
of consumption. The developed algorithm handles multiple input and output
points which allows parallel order processing. Local decisions based on local
databases yield the overall system functionality using the interaction of au-
tonomous entities. Due to the modular, decentralized system setup, installed
sequencing systems are highly flexible, robust, and scalable such that they can
be individually customized for specific application scenarios.
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Abstract

Sequencing is realized using a dynamic buffering approach where buffered
physical objects can be relocated to plan efficient paths regarding time and
distance within the network. These are scheduled based on the concept of
logical time which enables decentralized transport coordination.

The presented decentralized sequencing algorithm ensures system liveliness at
any point in time by generally preventing deadlocks, livelocks and starvation
within algorithmic operations as well as resource allocation. The required
communication effort scales with system size n. At network level, we obtain an
algorithmic complexity of order O(n3) which reduces to O(n2) at level of the
decentralized system elements.

We assess the quality of solutions provided by the decentralized sequencing
algorithm compared to optimal results for small problem settings. This yields an
average decentralized solution deficit of less than 20%. Larger problem settings
are benchmarked against a lower bound approximation where the algorithmic
quality level is maintained throughout the system variations with larger problem
sizes.

Simulative performance evaluations indicate that batch size, predefined prede-
cessor-successor dependencies, the rearrangement effort of objects within the
system as well as the available outflow capacity of a network are key factors
influencing the achieved limiting throughput. Additionally, we recommend
compact system setups with highly connected network structures and straight
paths from input to output nodes.
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1 Introduction

Dynamics – uncertainty – complexity. These three factors fundamentally
and comprehensively influenced industrial environments over the past decades
(Spath et al. 2013). Globally distributed actors are intertwined in huge net-
works, where the flow of information and materials need to be organized such
that performance goals are met (Wang 2016). To operate efficiently under these
circumstances, sophisticated automated systems are vital, while additionally
reducing manual work increases accuracy and speed of industrial applications.
This sets the basis for the topic of this dissertation (cf. Section 1.1). We derive
six research objectives to be achieved within the investigations (cf. Section 1.2).
In Section 1.3, we outline the structure of this dissertation organized in nine
chapters.

1.1 Problem Description

Due to increasing global interconnections of market participants, inside as well
as outside their organizations, huge networks involving material, information
and financial flows emerged (Lanza et al. 2019). Simultaneously, we observe
substantial changes arising from customer requirements (Kartnig et al. 2012).
They expect high-quality, uniquely individualized products which are immedi-
ately available at minimum cost (Kumar 2007). Therefore, companies offer a
vast number of different product variants produced at low volume (Johansen et
al. 2021). Additionally, striving for continuously decreasing stock levels and
inventory investments favors a make-to-order production based on customer
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1 Introduction

demand reducing feasible lot sizes (Chikán et al. 2016, Spath et al. 2013). This
results in high volatility and major sales fluctuations (Spath et al. 2013).

To cope with these changes, innovative production and material handling sys-
tems as well as processes are essential (Wang 2016, Spath et al. 2013, Günthner
et al. 2008). The main success factors for long-term competitiveness in the mar-
ket have shifted from costs or performance goals to flexibility, availability, and
adaptability (Furmans et al. 2011). Thus, controlling the flow of information
andmaterials requires agile processes and highly responsive automated systems,
which cannot be realized using traditional rigid centralized control architectures
(Kartnig et al. 2012). These are designed such that one single higher-level el-
ement monitors the entire system using a comprehensive database (Rana and
Taneja 1988). This strives for global system optimization at the cost of a single
point of failure, inflexibility concerning modifications, limited processing ca-
pacity, and long response times (Dilts et al. 1991, Rana and Taneja 1988, Duffie
et al. 1988).

Therefore, control architectures of automated systems are increasingly decen-
tralized by eliminating hierarchical layers (cf. Figure 1.1) (Martins et al. 2020,
Rana and Taneja 1988). Splitting processingworkload, information, and control
allows the intelligence of the system to be distributed among several indepen-
dent functional entities (de Ryck et al. 2020, Furmans et al. 2010, Duffie 1990).
These are interconnected and operate autonomously by making local deci-
sions based on local information (Dilts et al. 1991, Günthner and ten Hompel
2010, p. 6ff.). Even for large-scale and complex systems, this provides flexibil-
ity regarding system adaptions to changing requirements, scalability regarding
varying system sizes, and robustness, i.e., fault tolerance regarding failures of
single control entities (Furmans et al. 2011, 2010, Duffie 1990, Duffie et al.
1988). Overall, we achieve quick reactions and thus real-time capability under
uncertain and volatile conditions (Trentesaux 2009).

In addition to redesigning traditional control architectures, automated systems in
industrial applications need to provide increasingly sophisticated functionalities
to guarantee efficiency. Decreasing inventories and buffer space allows for cost

2



1.1 Problem Description

techniques will be more prevalent in the future and thus, which will be
more suitable for decentralized control of AGV systems. We complete
the paper with a brief research discussion in Section 10 on how the AGV
of the future looks like and how it will be controlled. Finally, we draw
some general conclusions about every core AGV task in Section 11.

2. AGVs in an Industry 4.0 context

Industry 4.0 represents the fourth industrial revolution in manu-
facturing. The Industry 4.0 paradigm puts information central. The
paradigm creates value from information extracted and refined from
data. It is the paradigm by choice for our factories of the future which
enable mass customization and allow further horizontal and vertical
integration.

With the possibility of free flow of data between elements in the
production or in the logistics ecosystem, there is no need to rely on
central architectures anymore to steer those elements. As industry 4.0
models migrate from the typical automation pyramid ISA 95 to RAMI
4.0 (see Figs. 2 and 3 respectively), members in a more complex system
may communicate directly with each other and with their local en-
vironment on different levels. Intelligence can be distributed among the
members and new architectures that generate value can be explored.
Value here in terms of performance, scalability, robustness, and flex-
ibility. In literature, the term ‘Factory of the Future’ is used as well to
denote a factory reflecting these Industry 4.0 features. Also in the fac-
tory of the future, transportation is prevalent. With the use of mobile
robots, an efficient and dynamic transportation of goods can be
achieved. These mobile robots need to cope with the emerging re-
quirements of Industry 4.0 as well. The fleet needs to adapt to changing
circumstances, needs to be robust in any case, and needs to be scalable
to any transport demand at any time.

AGVs need to be intelligent, gathering useful information to make

smart decisions very dynamically. Besides transport, the variety of tasks
of AGVs will enlarge. In an Industry 4.0 context AGVs will not stay
homogeneous. Using their intelligence and equipped with tools, they
will have more functions other than transportation only. AGVs will be
used more for “Ad Hoc” solutions. This in the sense that AGVs will be
used for specific situations and will be equipped with tools to perform
specific tasks. We expect a fleet of AGVs to be more heterogeneous,
flexible, and dynamic where each vehicle will have specific abilities and
will be able to operate in a flexible manufacturing system in a “plug-
and-produce”-way. To realize the potential of the Industry 4.0 para-
digm, AGVs need a different control architecture leaning next to big
data, inter-connectivity, and cloud computing, on decentralization. The
total intelligence of a system will not be centered anymore in one
control unit but all devices will have their own intelligence creating
data for independent information retrieval. This decentralization, and
especially the adoption in general AGV control, is the specific aspect the
authors are interested in. In the next section, this adoption in general
manufacturing systems is discussed.

3. Discussion on the adoption of a decentralized control
architecture

Decentralized control is one of the main features of Industry 4.0
paradigm. Many research is already conducted towards decentralized
algorithms and techniques to control manufacturing systems in a dis-
tributed way [5–7]. Some research is done to the benefits of this ar-
chitecture comparing to currently central and hierarchical structures.
Many researchers mention the future need for decentralization [5,8–17]
recognizing the limits of the current central architectures as not suitable
to handle flexible manufacturing, custom products, and complicated
product specifications. Meissner et al. [18] makes a comparison be-
tween current central and decentral control architectures in manu-
facturing and clarifies that centralized and hierarchical architectures
are not compatible with the needs of future systems and that decen-
tralization is the likely strategy to cope with the modern conditions.
They state that decentral control fits for dynamic environments as it
quickly adapts to changes. However, they also state the limitations of
such a decentralized architecture. The main drawback in decentralized
control is the increased effort needed to coordinate all those in-
dependent entities as each of them tries to reach their own goals. This
will not necessarily lead to the global optimum of the overall system.
When adopting decentralized control architectures in a manufacturing
process, there will always be a trade-off between optimality and flex-
ibility. For small systems, decentralized approaches will be not as op-
timal as a centralized architecture but can guarantee more robustness
and flexibility. However, because of the limitations of a central archi-
tecture, this will be, for larger systems, also be far from optimal. And

Fig. 1. Central and decentral control architectures.

Fig. 2. ISA 95 model [4].

Fig. 3. Axis 1 of the RAMI 4.0 model [4].
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(a) Centralized control architecture.
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some general conclusions about every core AGV task in Section 11.
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enable mass customization and allow further horizontal and vertical
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production or in the logistics ecosystem, there is no need to rely on
central architectures anymore to steer those elements. As industry 4.0
models migrate from the typical automation pyramid ISA 95 to RAMI
4.0 (see Figs. 2 and 3 respectively), members in a more complex system
may communicate directly with each other and with their local en-
vironment on different levels. Intelligence can be distributed among the
members and new architectures that generate value can be explored.
Value here in terms of performance, scalability, robustness, and flex-
ibility. In literature, the term ‘Factory of the Future’ is used as well to
denote a factory reflecting these Industry 4.0 features. Also in the fac-
tory of the future, transportation is prevalent. With the use of mobile
robots, an efficient and dynamic transportation of goods can be
achieved. These mobile robots need to cope with the emerging re-
quirements of Industry 4.0 as well. The fleet needs to adapt to changing
circumstances, needs to be robust in any case, and needs to be scalable
to any transport demand at any time.

AGVs need to be intelligent, gathering useful information to make

smart decisions very dynamically. Besides transport, the variety of tasks
of AGVs will enlarge. In an Industry 4.0 context AGVs will not stay
homogeneous. Using their intelligence and equipped with tools, they
will have more functions other than transportation only. AGVs will be
used more for “Ad Hoc” solutions. This in the sense that AGVs will be
used for specific situations and will be equipped with tools to perform
specific tasks. We expect a fleet of AGVs to be more heterogeneous,
flexible, and dynamic where each vehicle will have specific abilities and
will be able to operate in a flexible manufacturing system in a “plug-
and-produce”-way. To realize the potential of the Industry 4.0 para-
digm, AGVs need a different control architecture leaning next to big
data, inter-connectivity, and cloud computing, on decentralization. The
total intelligence of a system will not be centered anymore in one
control unit but all devices will have their own intelligence creating
data for independent information retrieval. This decentralization, and
especially the adoption in general AGV control, is the specific aspect the
authors are interested in. In the next section, this adoption in general
manufacturing systems is discussed.

3. Discussion on the adoption of a decentralized control
architecture

Decentralized control is one of the main features of Industry 4.0
paradigm. Many research is already conducted towards decentralized
algorithms and techniques to control manufacturing systems in a dis-
tributed way [5–7]. Some research is done to the benefits of this ar-
chitecture comparing to currently central and hierarchical structures.
Many researchers mention the future need for decentralization [5,8–17]
recognizing the limits of the current central architectures as not suitable
to handle flexible manufacturing, custom products, and complicated
product specifications. Meissner et al. [18] makes a comparison be-
tween current central and decentral control architectures in manu-
facturing and clarifies that centralized and hierarchical architectures
are not compatible with the needs of future systems and that decen-
tralization is the likely strategy to cope with the modern conditions.
They state that decentral control fits for dynamic environments as it
quickly adapts to changes. However, they also state the limitations of
such a decentralized architecture. The main drawback in decentralized
control is the increased effort needed to coordinate all those in-
dependent entities as each of them tries to reach their own goals. This
will not necessarily lead to the global optimum of the overall system.
When adopting decentralized control architectures in a manufacturing
process, there will always be a trade-off between optimality and flex-
ibility. For small systems, decentralized approaches will be not as op-
timal as a centralized architecture but can guarantee more robustness
and flexibility. However, because of the limitations of a central archi-
tecture, this will be, for larger systems, also be far from optimal. And

Fig. 1. Central and decentral control architectures.

Fig. 2. ISA 95 model [4].

Fig. 3. Axis 1 of the RAMI 4.0 model [4].
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(b) Decentralized control architecture.

Figure 1.1: Control architectures (de Ryck et al. 2020).

reductions but complicates current material flow control. Required items need
to be supplied at their point of use in the order of consumption, as there is no
space or capacity to reorganize them. Therefore, in the field of production,
the concept of Just-in-Sequence (JiS) is widespread. It provides a high level of
flexibility to operate competitively in dynamic and customer-oriented markets
(Thun et al. 2007). Part deliveries are synchronized with predefined production
sequences, in which these parts need to be assembled into the final product
(Wannenwetsch 2014, p. 188ff.). The part required next is always available
without wasting time for identification or searching (Boysen et al. 2015). This
enables a high number of variants to offer individually customized products and
shortens the time-to-customer due to efficient order processing. Additionally,
inventory and therefore space requirements and capital lockup are reduced.

In other areas, such as warehouse operations or cross docking, inefficiencies
occur due to additional searching or sorting if goods from an upstream pro-
cess are not provided in the correct sequence as required for the downstream
process. The overall flow of materials is only selectively optimized, missing
an integrated consideration of interactions and dependencies among upstream
and downstream processes (Azadeh et al. 2019). Retrieving from an automated
storage and retrieval system typically focuses on throughput optimization. How-
ever, in-sequence supply from the warehouse to the picking zone, as required to
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process customer orders, can increase the performance of the picking process
(Lienert and Fottner 2018). When palletizing goods from an automated ware-
house, the pick and pack process needs to satisfy a given sequence of customer
orders. Finished packages are loaded into some kind of vehicle for delivery.
Depending on the size of the vehicle and the number of parcels, the order in
which the goods are delivered to their destinations is driving the amount of
work involved when unloading the vehicle on its tour. A loading strategy based
on the unloading sequence can reduce manual work during delivery and thus
increase efficiency. In cross docking, sojourn times of trucks at the handling
location can be reduced by supplying gates in the correct sequence based on the
delivering order (Lienert and Fottner 2018).

All outlined applications have in common that supplying physical objects ac-
cording to the sequence as required at their point of demand enhances the overall
flow of materials. This includes, initially, determining a specific sequence, in
which these objects should appear to benefit the underlying application. Subse-
quently, they need to be provided at the desired point of demand observing the
predefined sequence, i.e. the sequence needs to be physically realized.

Sequence determination is addressed in several existing scientific problems in
the area of warehouse operations, cross docking, or production (Lienert and
Fottner 2018). These comprise aligning picking or retrieval operations with
incoming customer orders in manual or automated storage systems (de Koster
et al. 2007, Gu et al. 2007, Gagliardi et al. 2014), specifying the sequence in
which trucks are processed at dock doors (Buakum and Wisittipanich 2019),
scheduling jobs to machines in production systems to optimize certain perfor-
mance criteria (Pinedo 2016, p. 7), or feeding an assembly line with a specific
sequence of product variants to balance the workload of assembly stations (Boy-
sen et al. 2009, Gravel et al. 2005). In this dissertation, we address sequence
realization, i.e. we assume the predefined sequence of physical objects to be
determined in advance. However, these objects do not observe this sequence
when arriving at their point of use and need to be physically rearranged ac-
cordingly. Using an automated system based on decentralized control, we aim
to provide sequenced supply of physical objects to support various practical
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applications. This will contribute to efficient production and material handling
processes within dynamic, uncertain, and complex industrial environments.

1.2 Research Objectives

We address the introduced problem by presenting a decentralized algorithm
for multi-batch sequencing using highest-density1 conveyor networks. This
contribution comprises:

• defining requirements of network arrangements for sequencing,

• describing the decentralized sequencing algorithm,

• proving system liveliness,

• investigating the algorithmic complexity,

• assessing the quality of decentralized solutions, and

• deriving recommendations for practical applications.

This results in six research objectives, each of which we intend to address using
one research question.

Current production and material handling systems are complex in terms of their
structure, processes, and size. Furthermore, space in production and logistics
facilities is becoming ever more limited (Gue 2006). High(est)-density systems
are able to operate even when space is scarce. However, sequenced supply of
physical objects requires certain network characteristics to be able to rearrange
unordered physical objects. Thus, we pose the first research question:

1: Which requirements are necessary for conveyor networks to
enable multi-batch sequencing at highest density?

1 Highest-density is an extreme case of high-density as defined in Gue (2006). Details are given
in Chapter 2.
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In order to cope with the increased challenges in complex industrial envi-
ronments, decentralized control concepts emerged (cf. Section 1.1). These
enable flexibility and responsiveness in dynamic and uncertain situations while
preserving robustness and scalability. Therefore, they outperform traditional
centralized rigid control concepts. Sequenced supply of materials to their point
of use improves the performance within a variety of production and material
handling applications and enables efficient order fulfillment processes. This
results in the second research question:

2: How can we enable multi-batch sequencing of physical ob-
jects using decentralized controlled highest-density conveyor
networks?

In decentralized systems, the overall functionality follows from the interactions
of several autonomous entities. These independently claim available resources
without a higher-level element supervising the whole system. Due to distributed
information and decision making, decentralized systems are prone to create
situations from which they – partially or entirely – can no longer progress
(Trentesaux 2009). To guarantee stable system operation, we need to ensure
system liveliness at any point in time. This yields the third research question:

3: How can we demonstrate the liveliness of the decentralized
sequencing system?

Decentralized controlled systems involve communication efforts to coordinate
the distributed entities (Monostori et al. 2015). It increases the more infor-
mation is exchanged, which consumes available capacity for data processing
and communication. Running the decentralized sequencing algorithm within
a simulation environment, but especially on a physical system needs to sat-
isfy real-time requirements. Using complexity analysis, we can estimate the
algorithmic efficiency during runtime (Skiena 2008, p. 31ff.). Therefore, we
investigate the fourth research question:

4: How can we evaluate the complexity of the decentralized
sequencing algorithm?
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Local decision-making of independent autonomous decisional entities com-
plicates global optimization at system level (Dilts et al. 1991). Decentralized
systems are likely to result in sub-optimal solutions, as decisions are based on
incomplete information due to distributed local databases (de Ryck et al. 2020).
This offers the known benefits of flexibility, robustness, and scalability. Nev-
ertheless, sufficiently high system performance is necessary to achieve efficient
processes (Trentesaux 2009). Thus, we derive the fifth research question:

5: Howdodecentralized solutions for sequencing problems com-
pare to optimal solutions?

To efficiently support practical applications, theoretical results need to meet the
requirements of industrial environments. The achievable sequencing through-
put of a specific system configuration is decisive for whether an installed sys-
tem will be profitable or not. System throughput is influenced by a variety of
parameters concerning the individual underlying application. These interde-
pendencies need to be studied and understood to purposefully improve practical
applications. From this follows the sixth research question:

6: What throughput predictions and recommendations can we
derive for sequencing in practical applications?

1.3 Structure of the Dissertation

To address the introduced research objectives, we structure this dissertation
into nine chapters. Figure 1.2 assigns the resulting research questions to the
corresponding chapter they are covered in.

After presenting the problem description and research objectives, we review
related topics from scientific literature to derive the research gap in Chapter 2.
Chapter 3 defines the system, which forms the basis for all concepts and models
developed in the subsequent chapters. This includes specifying the necessary
system requirements of conveyor networks for sequencing to respond to the
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requirement definition � Chapter 3

algorithm description � Chapter 4

proof of liveliness � Chapter 5

complexity analysis � Chapter 6

quality assessment � Chapter 7

application recommendations � Chapter 8

1

2

3

4

5

6

Figure 1.2: Structure of the dissertation.

first research question. In Chapter 4, we present the decentralized algorithm
for multi-batch sequencing in highest-density conveyor networks providing an
answer to the second research question. Referring to the third research question,
we prove that liveliness is always guaranteedwithin the decentralized sequencing
system in Chapter 5. Chapter 6 analyzes the algorithmic complexity in terms
of the message processing effort to respond to the fourth research question.
In Chapter 7, we assess the quality of decentralized solutions by investigating
the deficit compared to optimal solutions. This enables answering the fifth
research question. Throughput analyses to derive recommendations for practical
application scenarios are given inChapter 8, which responds to the sixth research
question. In Chapter 9, we summarize the main findings of this dissertation and
present an outlook on further research opportunities.
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2 Literature Review

We structure the literature review according to the related research topics

• high-density conveyor systems (cf. Section 2.1),

• decentralized algorithms (cf. Section 2.2), and

• sequencing systems (cf. Section 2.3).

From the intersection of these three areas, we derive the research gap of this
dissertation (cf. Section 2.4).

2.1 Centralized Algorithms for High-Density
Conveyor Systems

Centralized algorithms for high-density conveyor systems originate from the
15-puzzle invented in the 19th century. On a square field containing 16 cells, 15
of themare occupied by tiles numbered 1, . . . , 15 leaving a blank space at the last
position. Originally, the aimof the puzzle is to swap the positions of tiles number
14 and 15 using a series of legal moves, while the remaining tiles are found
at their original positions (cf. Figure 2.1) (Archer 1999). Alternative variants
intend to transform a randomly arranged puzzle into the initial numerically
ordered configuration. Basically, the 15-puzzle can be generalized to any
(n ·m− 1)-puzzle of size n×m for all integersm,n greater than 1 (Parberry
2015).
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

(a) Start configuration.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

(b) Goal configuration.

Figure 2.1: The 15-puzzle game.

A legal move of this puzzle consists of sliding an occupied cell adjacent to the
empty cell horizontally or vertically into the empty cell, such that they swap
their positions (Archer 1999). The puzzle should be transferred from the initial
to the goal configuration using the minimum number of moves (Parberry 2015).
Ratner and Warmuth (1990) prove this problem to be NP-hard. Using the
theory of even and odd permutations, Johnson and Story (1879) demonstrate
that even permutations can only be formed from even permutations and vice
versa. Consequently, the 15-puzzle can only be solved for exactly half of the
16! possible initial configurations, i.e., the configurations of Figure 2.1 are
impossible to obtain from each other (Archer 2007).

In the field of material handling systems, the 15-puzzle game is a fundamental
base concerning storage system design, particularly in cases with limited space
and high demand for storage locations (Kota et al. 2015). The density of
a storage system depends on the space required to store a given number of
items. Increasing storage density reduces storage costs. Therefore, puzzle-
based storage systems aim to maximize storage density (Gue and Kim 2007).
They consist of square storage cells arranged in am×n grid, like in a 15-puzzle
game. Each cell is either occupied with a single item or empty (Yalcin et al.
2019a). Empty cells are called escorts and enable moving the occupied cells
(Kota et al. 2010). Thus, the maximum attainable storage density of a puzzle-
based storage system corresponds to m·n−1

m·n (Gue and Kim 2007). A common
measure used to evaluate the performance of storage systems is the retrieval
time of an item (Yu et al. 2017). Generally, there is a tradeoff between storage
density and the required retrieval time. Taylor and Gue (2008) investigate these
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relations using simulation for different application scenarios in terms of initial
escorts positioning, allocating storage locations, and demand distribution.

A variety of algorithms have been developed to determine item retrieval paths in
puzzle-based storage systems using optimal and heuristic approaches. Table 2.1
classifies these regarding the presented sequencing problem. Themain objective
is to minimize the number of movements required to retrieve requested items.
Different systemdensities –measured in the number of escorts – are investigated.
We exclude from this analysis approaches which rely on the virtual aisle strategy
(cf. Zaerpour et al. 2017a,b), as in the presented sequencing system the number
of empty cells may not be sufficient to form a complete virtual aisle. If the
system provides more than one escort, multiple independent movements are
possible simultaneously, which may reduce retrieval times. Note that in this
case, minimizing the retrieval time is no more equivalent to minimizing the
number of movements. Additionally, we investigate the number of items being
retrieved in parallel as well as that of available input/output (I/O) points within
the studied systems. To reflect the material flows of a multi-batch sequencing
application, both need to be greater than one.

Gue andKim (2007) provide an optimal algorithm for retrieving items in puzzle-
based storage systems with one single escort placed at the I/O point in the lower
left corner. Furthermore, they investigate problem settings withmultiple escorts
lined up at the I/O point along the horizontal axis. A dynamic programming
formulation to optimally solve small problem sizes as well as a heuristic to solve
larger ones are presented. Based on these findings, Kota et al. (2010) develop
optimal analytical results for retrieving items in puzzle-based storage systems
with a single escort placed randomly within the grid and with two escorts – one
placed at the I/O point, the other one remaining randomly positioned. For a
general number of escorts, they propose an integer programming formulation.
Puzzle-based storage systems with one I/O point and entirely random initial
escort positioning are studied in Kota et al. (2015). They provide analytical
results for one or two escorts, while heuristic solutions with associated worst-
case bounds are presented for systems in which the number of escorts exceeds
two. Ma et al. (2022) develop a heuristic search algorithm based on state

11



2 Literature Review

Table 2.1: Centralized algorithms for high-density conveyor systems.

Publication Method Escorts Simultaneous
movements

Item
retrieval

I/O
points

Gue and Kim
(2007)

optimal 11 no 1 1
optimal,
heuristic

k1 no 1 1

Kota et al. (2010) optimal 1,21 no 1 1
optimal2 k no 1 1

Kota et al. (2015) optimal 1,2 no 1 1
heuristic k no 1 1

Ma et al. (2022) heuristic k no 1 1
Yu et al. (2017) optimal k yes 1 1
Mirzaei et al. (2017) optimal,

heuristic
11 no m 1

Yalcin et al. (2019a) optimal,
heuristic

k no 1 n

Rosenfeld (2022) heuristic k no m n
Zou and Qi (2021) heuristic k no m n
Yalcin et al. (2019b) heuristic k yes m n
Bukchin and Raviv
(2020)

optimal k yes 1 n

Bukchin and Raviv
(2022)

optimal,
heuristic

k yes 1 n

This dissertation optimal k yes m n

appraisal, neighborhood search, and beam search with improved accuracy and
computational efficiency compared to existing approaches for the same problem
setting.

1 at least one of the escorts not placed at an arbitrary position
2 only integer programming formulation without solutions
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To improve system performance, developed approaches include simultaneous
movements, where several items can be moved independently at the same time.
Yu et al. (2017) study those systems with a single I/O point and multiple escorts
at random positions. Based on an integer programming model, they develop an
approach to find an optimal path for the requested item to the I/O point with
minimum retrieval time considering necessary item movements. Moreover,
simultaneously retrieving multiple items by moving them to a common location
and then transferring them jointly to the I/O point allows reducing their overall
retrieval time. Mirzaei et al. (2017) investigate systems in which one escort is
initially located at the I/O point. They propose optimal solutions for the 2-item
retrieval problem. A heuristic is suggested for larger numbers of retrieved items.

Several approaches address puzzle-based storage systems with multiple I/O
points. Yalcin et al. (2019a) develop an exact and a heuristic A*-based search
algorithm for retrieving a single item with multiple randomly positioned escorts
moving sequentially. Extending this problem to multiple items to be retrieved
is addressed in Rosenfeld (2022). Likewise, they formulate the problem as a
graph search problem and propose a set of heuristic algorithms. Simulation is
used to evaluate the different solution variants. Additionally, they investigate
the runtime-memory tradeoff. Another heuristic approach for retrieving mul-
tiple items in puzzle-based storage systems with multiple randomly positioned
escorts and multiple I/O points is given in Zou and Qi (2021). They model
the problem as a Markovian decision process providing sequential movements
based on the current system state. Yalcin et al. (2019b) develop an adapted
multi-agent route planning heuristic for problem settings incorporating both
storing and retrieving multiple items, where simultaneous movements are pos-
sible. Themultiple item problem is reduced to a sequential single item problem.
Using simulation, the authors evaluate their approach with regard to different
storage and retrieval strategies. Optimal solutions to the single item retrieval
problem in puzzle-based storage systems, where items can move simultane-
ously to multiple I/O points using an arbitrary number of randomly positioned
escorts are proposed by Bukchin and Raviv (2020). As the developed dynamic
programming algorithm guarantees optimality but is limited with respect to
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solvable problem sizes, they build upon their previous studies to provide fur-
ther solution approaches in Bukchin and Raviv (2022). In addition to an integer
linear programming formulation, they develop a heuristic based on the former
dynamic programming approach, which is used when the two exact methods
fail to provide optimal solutions in reasonable time.

The overview of existing centralized algorithms for item retrieval in the field of
puzzle-based storage systems reveals a high problem complexity resulting from
the large number of relevant model parameters and their different investigated
constellations. Heuristics frequently apply, as optimal approaches are limited
regarding solvable problem sizes. All of them depend on global system infor-
mation. Thus, for a decentralized system setup, the presented approaches may
serve as a starting point, however, they need to be enhanced substantially to
reduce processing load and regain run time efficiency.

Sequencing problems as considered in this dissertation correspond to systems
with an arbitrary number of escorts, simultaneous itemmovements, parallel item
processing, andmultiple I/O points, where additionally the retrieval sequence of
these items is observed. Moreover, the design of the system is dynamic in terms
of handling a continuous material flow of arriving transport units which are
processed within the system and depart from it afterwards. None of the existing
approaches is able to provide optimal solutions to the specified problem setting,
which will be necessary to assess the quality of decentralized solutions.

2.2 Decentralized Algorithms for General
Conveyor Systems

Decentralized algorithms are already applied to realize specific material han-
dling operations using modular conveyor systems. These are summarized in
Table 2.2. Since deadlocks compromise system liveliness in a decentralized
setup, we investigate whether and how the presented algorithms handle them.
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There are four possible strategies differing in terms of the risk incurred (Tanen-
baum and Bos 2015, p. 443):

1. Ignorance: Deadlocks occur and are not handled.

2. Detection: Deadlocks occur, are identified, and recovered.

3. Avoidance: Deadlocks do not occur, as they are actively averted.

4. Prevention: Deadlocks do not occur, as they are structurally excluded.

Furthermore, we classify the introduced approaches regarding their imple-
mented routing strategy. Following the definition of Shiller (2015), we dif-
ferentiate offline and online routing. With the former, item routes are planned
entirely from start to destination before initiating transportation, whereas with
the latter, they are planned incrementally with stepwise itemmovements. Based
on Gue (2006), we rank the achievable density of a system as high if there are
interfering items preventing from accessing desired items. We further define
highest-density systems as those which can operate with just one emptymodule.
The module size specifies whether a conveyor module is capable of handling
an item on its own (1:1) or whether multiple modules are required (n:1).

Transport systems with decentralized control are provided by Mayer and Fur-
mans (2010), Krühn et al. (2013), Firvida et al. (2018), and Sohrt andOvermeyer
(2020). All of these approaches are based on an offline route planning algorithm.

The FlexConveyor of Mayer and Furmans (2010) consists of single unit-sized
right-angle-transfer conveyor modules (cf. Figure 2.2). By combining multiple
modules, various shapes for material flow systems can be created. The locally
controlled modules interact via communication connections to their adjacent
modules. For routing an incoming transport unit to its destination module, the
selected path of modules is reserved using a reservation token. Pathfinding is
based on shortest distances while considering the reservations of other transport
units within the system. When executing scheduled transports, deadlock avoid-
ance is guaranteed by special messages – so-called deadlock tokens – which
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Table 2.2: Decentralized algorithms for general conveyor systems.

Publication Functionality Density Routing Deadlock
handling

Module
size

Mayer and
Furmans (2010)

transport low offline avoidance 1:1

Krühn et al. (2013) transport low offline avoidance n:1
Firvida et al.
(2018)

transport low offline -/- n:1

Sohrt and
Overmeyer (2020)

transport low offline avoidance 1/n:1

Gue et al. (2014) store high online prevention 1:1
Uludağ (2014) pick high online avoidance3 1:1
Shekari Ashgzari
and Gue (2021)

pick highest online avoidance 1:1

Seibold et al.
(2022)

sort low offline prevention 1:1

This dissertation sequence highest offline prevention 1:1

are sent between modules at critical route sections before initiating transporta-
tion. However, this mechanism is not intended for high(est)-density conveyor
networks.

The transport systems of Krühn et al. (2013) and Firvida et al. (2018) are
based on small, multidirectional conveying elements where multiple modules
are required to carry a single transport unit.
For route planning, theCognitive Conveyors (cf. Figure 2.3) presented in Krühn
et al. (2013) use a distance vector routing metric. It considers existing routes
in the system, dimensions and necessary rotations of the transport unit as well
as the physical system boundaries. For deadlock avoidance during transport
execution, the authors extend the deadlock handling approach of Mayer and

3 not generally proven and only under certain conditions
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and considered material handling tasks are different, but they 
all have the objective to develop flexible, self-adapting 
systems. One challenge of decentralized control is to design 
algorithms for decision-taking with locally restricted view, and 
at the same time, to achieve with these algorithms stable and 
efficient system behavior. 

The Internet of Things describes a vision, where 
autonomous entities communicate and take routing decisions 
based on local information [5]. MultiShuttle Move is an 
autonomous Automated Guided Vehicle (AGV) which 
develops swarm intelligence by several vehicles working 
together. The allocation of jobs is done by negotiating and 
vehicles are able to drive on the floor and as shuttles in storage 
systems. Another autonomous AGV named KARIS [6] cannot 
only perform the transport of single items but is designed to 
form two different functional clusters, as shown in Fig. 2: As 
discontinuous cluster, four KARIS vehicles connect to each 
other in order to transport huge items, for example a pallet. As 
continuous cluster, several KARIS vehicles form a conveyor 
line to realize high throughput of goods.  

 
Figure 2.  Single KARIS vehicle, discontinuous and continuous cluster 

To handle dynamic and structural complexity of logistics 
networks, autonomous capabilities for decentralized 
coordination of autonomous logistic objects in heterarchical 
structures are required [7]. New control strategies with 
autonomous logistic objects have been developed to ensure 
flexibility and reactivity to dynamically changing external 
influences while maintaining global goals. 

In the research project CogniLog, several applications of 
cognitive logistics systems are developed [8]. One of these 
applications is a highly functional intralogistics node built out 
of small-scaled modules (see Fig. 3). Each module is smaller 
than the transported item and disposes of a controller. Together 
acting as functional node, they can perform tasks like 
transporting, collecting, separating, sorting, merging, 
sequencing and aligning of goods. 

 
Figure 3.  Cognitive Conveyors as high-functional intralogistics nodes [8] 

Other control algorithms for material handling applications 
are developed that could be technically realized with a 
decentralized controlled system like the FlexConveyor. The 
three systems GridStore, GridPick and GridSequence are based 
on the idea of puzzle-movement. GridStore is a storage system 

combining high-density and high throughput [9]. GridPick is a 
picking system which requires little space, reduces the picking 
time and, thus, increases throughput. GridSequence puts goods 
that are incoming in arbitrary order in a defined order [10]. 

One of the main advantages of FlexConveyor is its 
technical simplicity. As it is only moved and installed by the 
user, the safety for people working in the same area can easily 
be guaranteed. The FlexConveyor logic can be adapted and 
installed in any conventional hardware which facilitates 
industrialization. In this paper we want to focus on the 
application of sorting with the FlexConveyor. For layout 
changes and the associated flexibility, we define the 
Plug&Play-capability as important characteristic of future 
material handling systems. 

III. THE FLEXCONVEYOR 
The FlexConveyor can convey in the four cardinal 

directions. Being connected to neighboring modules (see 
Fig. 4), the modules can communicate by point-to-point 
message passing. The FlexConveyor has to fulfill several tasks 
in order to transport items to their destination without 
deadlocks. An underlying, permanent process is the recognition 
of the conveying network. Once a module identifies a new 
neighbor, this connection information is propagated through 
the network. Each module establishes an adjacency matrix of 
the complete network. With this matrix, the modules are able to 
compute necessary information about routes to possible 
destinations. With the Dijkstra algorithm [11], the path lengths 
to all destinations via the four cardinal directions are 
calculated. 

 
Figure 4.  A conveying network of FlexConveyor modules 

Once an item is introduced in the network, the carrying 
conveyor starts the reservation process: A reservation message 
is sent into the direction of the shortest path to the destination. 
Each FlexConveyor receiving a reservation message decides on 
its own in which direction to forward the message. To prevent 
simple deadlocks, the receiving and sending conveying 
direction is reserved and, thus, blocked for items in opposite 
direction. If the shortest path is blocked because of another 
reservation, alternative routes are used.  Once the reservation 
message has reached the destination, a confirmation message is 
sent back to the source and the transport is started. During 
transport, circular deadlocks have to be prevented which is 
done by message passing before conveying to the next 
FlexConveyor module [12]. 
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Figure 2.2: Conveying network of FlexConveyor modules (Seibold et al. 2013).

Furmans (2010) to fit the smaller module size of their system. This is validated
using simulation.

and considered material handling tasks are different, but they 
all have the objective to develop flexible, self-adapting 
systems. One challenge of decentralized control is to design 
algorithms for decision-taking with locally restricted view, and 
at the same time, to achieve with these algorithms stable and 
efficient system behavior. 

The Internet of Things describes a vision, where 
autonomous entities communicate and take routing decisions 
based on local information [5]. MultiShuttle Move is an 
autonomous Automated Guided Vehicle (AGV) which 
develops swarm intelligence by several vehicles working 
together. The allocation of jobs is done by negotiating and 
vehicles are able to drive on the floor and as shuttles in storage 
systems. Another autonomous AGV named KARIS [6] cannot 
only perform the transport of single items but is designed to 
form two different functional clusters, as shown in Fig. 2: As 
discontinuous cluster, four KARIS vehicles connect to each 
other in order to transport huge items, for example a pallet. As 
continuous cluster, several KARIS vehicles form a conveyor 
line to realize high throughput of goods.  

 
Figure 2.  Single KARIS vehicle, discontinuous and continuous cluster 

To handle dynamic and structural complexity of logistics 
networks, autonomous capabilities for decentralized 
coordination of autonomous logistic objects in heterarchical 
structures are required [7]. New control strategies with 
autonomous logistic objects have been developed to ensure 
flexibility and reactivity to dynamically changing external 
influences while maintaining global goals. 

In the research project CogniLog, several applications of 
cognitive logistics systems are developed [8]. One of these 
applications is a highly functional intralogistics node built out 
of small-scaled modules (see Fig. 3). Each module is smaller 
than the transported item and disposes of a controller. Together 
acting as functional node, they can perform tasks like 
transporting, collecting, separating, sorting, merging, 
sequencing and aligning of goods. 

 
Figure 3.  Cognitive Conveyors as high-functional intralogistics nodes [8] 

Other control algorithms for material handling applications 
are developed that could be technically realized with a 
decentralized controlled system like the FlexConveyor. The 
three systems GridStore, GridPick and GridSequence are based 
on the idea of puzzle-movement. GridStore is a storage system 

combining high-density and high throughput [9]. GridPick is a 
picking system which requires little space, reduces the picking 
time and, thus, increases throughput. GridSequence puts goods 
that are incoming in arbitrary order in a defined order [10]. 

One of the main advantages of FlexConveyor is its 
technical simplicity. As it is only moved and installed by the 
user, the safety for people working in the same area can easily 
be guaranteed. The FlexConveyor logic can be adapted and 
installed in any conventional hardware which facilitates 
industrialization. In this paper we want to focus on the 
application of sorting with the FlexConveyor. For layout 
changes and the associated flexibility, we define the 
Plug&Play-capability as important characteristic of future 
material handling systems. 

III. THE FLEXCONVEYOR 
The FlexConveyor can convey in the four cardinal 

directions. Being connected to neighboring modules (see 
Fig. 4), the modules can communicate by point-to-point 
message passing. The FlexConveyor has to fulfill several tasks 
in order to transport items to their destination without 
deadlocks. An underlying, permanent process is the recognition 
of the conveying network. Once a module identifies a new 
neighbor, this connection information is propagated through 
the network. Each module establishes an adjacency matrix of 
the complete network. With this matrix, the modules are able to 
compute necessary information about routes to possible 
destinations. With the Dijkstra algorithm [11], the path lengths 
to all destinations via the four cardinal directions are 
calculated. 

 
Figure 4.  A conveying network of FlexConveyor modules 

Once an item is introduced in the network, the carrying 
conveyor starts the reservation process: A reservation message 
is sent into the direction of the shortest path to the destination. 
Each FlexConveyor receiving a reservation message decides on 
its own in which direction to forward the message. To prevent 
simple deadlocks, the receiving and sending conveying 
direction is reserved and, thus, blocked for items in opposite 
direction. If the shortest path is blocked because of another 
reservation, alternative routes are used.  Once the reservation 
message has reached the destination, a confirmation message is 
sent back to the source and the transport is started. During 
transport, circular deadlocks have to be prevented which is 
done by message passing before conveying to the next 
FlexConveyor module [12]. 
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Figure 2.3: The Cognitive Conveyors (Krühn et al. 2013).

The decentralized routing algorithm of Firvida et al. (2018) applies to small con-
veyor elements in shape of equilateral triangles, squares, or regular hexagons.
Shortest paths are identified following a breadth-first search based broadcast
procedure towards the destination module considering the dimensions of the
transport unit. The presented algorithm ignores other transport units in the sys-
tem. Furthermore, route execution as well as deadlock and collision handling
are not addressed.
In Sohrt and Overmeyer (2020), physical time windows are used for route
planning of transport units within modular conveyor systems. These are nego-
tiated by the corresponding modules with the objective of optimizing system
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throughput. Each conveyor module is assigned a clock, which is synchronized
throughout the network. This is necessary to guarantee reliable system behavior.
The authors show that their decentralized algorithm avoids conflicts, deadlocks,
livelocks, and starvation. Additionally, the algorithmic complexity in terms of
the maximum number of messages is investigated.

Besides transporting, advanced material handling operations such as storing,
picking, and sorting are realized using decentralized control algorithms. Of
those, sorting is most closely related to sequencing, as this represents the special
case of sequencing with batch size one.

Building upon the concept of puzzle-based storage systems (cf. Section 2.1),
Gue et al. (2014) present GridStore – a high-density conveyor system with
decentralized control for storage and retrieval of unit loads (cf. Figure 2.4).
Identical square conveyor modules, each of them capable of conveying in the
four cardinal directions, form a rectangular grid. Retrieval occurs at the south-
ernmost system edge, replenishment at the northernmost one. The online route
planning algorithm is based on an iterative procedure where adjacent conveyor
modules negotiate item movements via messages. To match negotiation and
movement phases at each module, the system is synchronized. North-south
negotiation messages are used to convey requested items southwards to the
retrieval edge. Interfering items on their paths are moved using east-west nego-
tiations. This requires at least one emptymodule per row. TheGridStore system
operates in a constant work-in-process (CONWIP) mode, which is guaranteed
by an external overall control scheme. In this way, the system is shown to be
deadlock-free.

Based on GridStore, Uludağ (2014) develops the decentralized controlled pick-
ing system GridPick (cf. Figure 2.5) which is likewise built from identical
right-angle-transfer conveyor modules connected to a rectangular grid network.
Requested items can be picked from the bottom edge of the system. In an
extension of GridPick, picking from the upper system edge is additionally
possible. The synchronized conveyor modules run an online route planning
algorithm, where requested items move vertically while interfering items are
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2.2 Decentralized Algorithms for General Conveyor Systemsthe items via RFID or other means of communication. Conveyor modules realize that they

carry a requested item, which needs to be moved down and reach the takeaway conveyor.

Figure 1.1: The GridStore System

In Figure 1.1, black items are requested and required to reach the bottom takeaway

conveyor. Other items are either stored items moving east or west to allow the passage of

requested items or replenishing items that are restocked from the top replenishment conveyor.

A decentralized control algorithm is adopted in GridStore, which enables modularity,

reconfigurability, and scalability. In each time step, conveyor modules assess their own state,

negotiate with their neighbors, and do the conveying. This state transition scheme iterates

in each time unit, and concludes with the required decisions to move requested items to the

takeaway conveyor.

1.4 Research Objectives

In an order picking system design problem, the main objective is to have a high SKU

density, and consequently a high pick density. This will decrease the amount of time spent

for traveling and increase the picks per unit time. Storage density is also preferred to

6

Figure 2.4: The GridStore System (Uludağ 2014).

relocated using east- and westward movements. The system requires at least one
empty module per row. As the storage containers of GridPick do not leave the
system after picking, additional vertical movements are necessary to balance
the number of empty modules per row. The author analyzes system deadlock
behavior using Petri nets. By limiting the maximum order size to the number
of columns c and the total number of requested items to (2 · c− 1) deadlocks
are avoided for small systems. Due to memory storage overflow, the absence of
deadlocks cannot be proven in general.

Figure 3: GridPick for carton picking from pallets.

3.1 System Description

The decentralized control scheme is based on an Assess-Negotiate-Convey cycle. In
the Assess phase, each conveyor module determines its state (empty? occupied? etc.)
and relays it to its four neighbors. The Negotiate phase consists of message passing
between neighbor modules, in which modules communicate their needs (“I’ve got an
item that needs to move to the pick face”) and their ability to accommodate (“I am
empty and can receive an item from the left”), among other things. At the end of the
Negotiate phase, each module has decided whether or not it will convey, and if so,
in which direction. In a carton-picking operation, for example, grid-based material
movement allows the pick face to change dynamically, in response to skus required for
the current order or orders soon to be picked. Therefore, each pallet position in the
pick face effectively accommodates more than one sku, thereby increasing sku density
and reducing worker travel.

Figure 3 illustrates a GridPick system for picking cartons from pallets. Gray
pallets are stored and not needed in the current or next order. Black pallets contain
skus for the order number indicated on top. As soon as all pallets for an order reach
the pick face, pallets for the next order “activate” and begin to make their way to
the pick face. The goal is to have all pallets for an order at the pick face before the
worker begins picking that order.

3.2 The Algorithm

A detailed description of the GridPick algorithm is beyond the scope of this paper.
Here we provide an overview of the control logic, and then illustrate the system with
an example.

Figure 2.5: The GridPick System (Gue and Uludağ 2012).
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Shekari Ashgzari and Gue (2021) introduce the picking system GridPick+,
which allows picking items from all four edges of a rectangular modular con-
veyor grid (cf. Figure 2.6). Furthermore, the items are transferred to a specific
picking position at the corresponding system edge, eliminating the need for
the picker to move for collecting the requested items as with GridPick. The
online route planning algorithm is based on the concepts of Hao (2020) (cf.
Section 2.3), which are modified to enable order picking. It requires at least one
empty module for item movements. To identify those, surrounding conveyor
modules are explored sequentially. The system avoids deadlocks by following
defined rules to exclude critical movements in each iteration.

M. Shekari Ashgzari and K.R. Gue / Intl. Trans. in Op. Res. 00 (2020) 1–26 7

A conveyor

An order

A pick gate

A SKU box

Fig. 3. GridPick (left) and GridPick+ (right).

conveyor. Negotiations are engaged sequentially: N2 starts only if the active conveyor could not get
a confirmation for N1. N3 starts only if N2 fails, and so on. Details of the message passing protocol
and negotiation are described in Hao (2020).

Because several modules can be active at the same time, conflicting requests are possible. To
resolve this problem, GridHub forces some active conveyors to become passive for a few number
of iterations. The status of variables TASKLMTR, TASKLMTL, TASKLMTU , and TASKLMTD
are one for such modules, temporarily. The decisions made in the negotiation phase are executed in
the conveyance phase. The system continues this process by repeating the assessment–negotiation–
conveyance cycle at any iteration (Fig. 1).

4. GridPick+

GridPick+ is developed based on GridHub and is different from GridPick (Uludağ, 2014) in five
main ways: (a) GridPick+ delivers requested boxes to a specific gate, rather than to any gates on
the edge; (b) GridPick cannot fix a box in a gate even while it is receiving picking service, whereas
GridPick+ is capable of doing so; (c) GridPick+ uses its sequencing functions to deliver the boxes
for processing multiple orders at the same time, whereas GridPick is restricted to processing one
order at a time; (d) GridPick+ allows for an arbitrary number of order picking workstations on
any edge, whereas GridPick allows at most one picker per edge on two parallel edges; and (e)
GridPick+ is a true goods-to-person system in which human or robotic pickers are stationary,
whereas GridPick requires the picker to travel a large length. Figure 3 illustrates these differences.
Here is the list of the main assumptions in our system design:

• All the pick requests are announced by an external source, for example, a warehouse management
system, and released to the system by the shared management layer.

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies

Figure 2.6: The GridPick+ system (Shekari Ashgzari and Gue 2021).

TheGridSorter of Seibold et al. (2022) and Seibold (2016) represents amodular
sorting system with decentralized control. Similarly to the aforementioned
systems, it is built up of square conveyor modules transporting in the four
cardinal directions (cf. Figure 2.7). The decentralized algorithm for routing
transport units from their arrival location to the correct destination is based on
the concept of logical time introduced by Lamport (1978). Pathfinding uses
a decentralized iterative deepening A* algorithm (DIDA*) which identifies the
shortest path in terms of logical time considering other reservations at the
system modules. Transport execution follows the confirmed reservations at
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each module in ascending logical time. This allows proving deadlock, livelock,
and starvation prevention.

1.1 Problem Description and Research Questions

goods i.e. multiple items enter the system at sources and are transported
to their specific destination. Figure 1.1 is a schematic representation of
an exemplary system set-up: The boxes enter the system on one side and
leave the system sorted by color on the other side.
Each of the modules is a conventional right-angle-transfer module and is
able to convey a box in four directions with its sensors, actuators and
its own control. By communicating with each other, the modules coor-
dinate their actions. The GridSorter has no central control holding all
information about the system state and taking decisions. In contrast,
communication among the modules is required so that a module gets the
necessary information to take decisions.

Figure 1.1: Schematic representation of an exemplary GridSorter system

The control algorithm must be able to fulfill different tasks. First, the
conveyor modules must recognize the topology of the system because it is
built up physically by the user and can be different each time. Second,
the conveyor modules must take routing decisions in order to find routes
to the destination of the goods. And third, the conveyor modules must
perform the transport of the boxes without any collisions.

1.1 Problem Description
and Research Questions

Many different material handling systems have been researched and devel-
oped. The handling of deadlocks has been identified as one key challenge
(Mayer 2009; Krühn 2014) that must be resolved to guarantee system live-

3

Figure 2.7: The GridSorter system (Seibold 2016).

From the presented decentralized algorithms for general conveyor systems,
we conclude that transporting, storing, picking, and sorting can be realized
using decentralized control, while sequencing is not yet covered. Based on
the definition of high-density systems (cf. Gue 2006), transporting and sorting
systems are in general low-density systems, as arriving items are routed directly
to their destinations. All of the low-density systems are based on offline route
planningwhich allows operating inmore complex, i.e., non-rectangular, network
structures (Hao 2020). Route planning in high(est)-density systems requires
relocating interfering items. So far, this is only possible using online approaches.
These systems need to be synchronized involving a higher level coordination
element to ensure that all modules execute the algorithmic phases consistently.
Therefore, buffer times are incorporated within the negotiation cycles, which
can reduce system performance (Uludağ 2014). None of the existing approaches
provides a decentralized algorithm based on offline route planning applying to
high(est)-density conveyor networks. Thus, preventing deadlocks or ensuring
system liveliness in general under these conditions remains unresolved as well.
Complexity aspects of the presented decentralized algorithms are poorly studied.
Furthermore, a quality assessment of the obtained decentralized solutions is
generally not provided.
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2.3 Approaches for Sequencing Systems

Conventional sequencing system configurations are highly specific and hence
inflexible, consume large space, and are not controlled on a decentralized basis.
Figure 2.8 (a) shows an exemplary setup for sequenced retrieval downstream
from an automated storage and retrieval system. It is limited to two concurrent
sequences. Additionally, sequences may block each other (Lienert and Fottner
2018). Alternatively, sortation conveyors can be used, as shown in Figure 2.8 (b).
The items circulate inside until they are requested at their corresponding output
point. Due to long travel distances of items, system throughput is reduced. In
the field of production, the concept of selectivity banks arose in order to match
multiple assembly systems (cf. Figure 2.8 (c)). If for two consecutive assembly
systems the output sequence of the first one does not fit the input sequence
of the subsequent one, selectivity banks allow to buffer and re-sequence parts,
supplying them to the following system in the required order (Jayaraman et
al. 1997). However, sequencing is limited due to the number of lines and the
available buffer capacities per line.

To improve flexibility, space utilization, and efficiency of sequencing processes,
several approaches are proposed in scientific research (cf. Table 2.3). We
classify them according to their level of decentralization, as this determines their
applicability within dynamic, uncertain, and complex industrial environments
(cf. Section 1.1). Multi-batch processing results from the available I/O points
in the system and is only possible within an (m : n) setting with m > 1 input
and n > 1 output points. We investigate density, routing algorithms, and
integrated deadlock handling strategies to ensure system liveliness by analogy
with Section 2.2.

Referring to (n2 − 1)-puzzle games (cf. Section 2.1), Alahmad and Ishii (2021)
develop an A*-based search algorithm for rearranging an (n ·m− 1) puzzle to
a sequenced final configuration. This can be used for item sequencing within
high(est)-density systems of logistic applications. To overcome unsolvable start
configurations of the puzzle, they propose a pre-sorting strategy, where two

22



2.3 Approaches for Sequencing Systems
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Fig. 2. Example of a system with tier-to-tier and aisle-to-aisle vehicles 

In systems with aisle-to-aisle vehicles, every storage unit 
can be moved to every connected lift and therefore be provided 
at every I/O location. This enables retrieval in a desired 
sequence directly from the storage system. No additional 
conveyance technology within the pre-storage area is required. 
In this paper, we focus on systems with aisle-to-aisle and tier-
to-tier vehicles. However, the presented approach is generic; it 
can also be applied to systems with tier-captive vehicles. 

This contribution extends our previous work as follows: 
We describe an improved algorithm for routing vehicles that 
must arrive at a destination in a given sequence, compared to 
the inverse routing presented in [5]. We therefore use the time 
window routing method, which provides efficient deadlock-
free routes for shuttles on every storage tier. We apply the 
generic approach presented in [6], extended by the robust 
integration of acceleration and deceleration processes of the 
vehicles within the model as explained in [7]. Finally, we use 
the routing-based sequencing algorithm for retrieval-in-
sequence with shuttle systems, modelling the storage system as 
[8] describes in detail.

II. PROBLEM STATEMENT

AS/RSs are warehousing systems used to store and retrieve 
products in both distribution and production environments [9]. 
The need to retrieve stored items in a given sequence 
diminishes throughput [10]. 

Figure 3 explains how that throughput is lost. It provides a 
schematic layout of a conventional stacker-crane-based AS/RS 
(left), which could also be interpreted as a shuttle system with 
aisle-captive vehicles. Retrieval is realized aisle by aisle. In the 
pre-storage area, a conveyor loop connects different aisles and 
points of use. Two independent sequences (sequence A and 
sequence B) need to be provided at two different points of use 
(marked as Seq A and Seq B in figure 3). We denote the place 
where the storage units must be in the correct sequence as the 
sequence point (SP). The storage units’ order can no longer be 
manipulated after the sequence point. 

Seq A

A1

A2

A4

A3

A5

A6

A7

A8

A9

A0

B3B5

B6
B4

B7

B8

B9 B2

B0

B1

Seq B

Buffer locations

IP

SP A

SP B

Fig. 3. Retrieval-in-sequence with a stacker-crane-based AS/RS 

Storage units within a sequence are labeled with increasing 
sequence numbers. Once a retrieval request is released, the 
corresponding stacker-crane retrieves the storage unit from its 
storage location and hands it over to a buffer location between 
storage aisle and conveyor loop. The storage unit waits there 
until it is allowed to enter the conveyor loop. Before the latter 
happens, the storage unit with the preceding sequence number 
must have passed the identification point (IP), where a scanner 
detects it and sends its sequence number to the material-flow 
computer. The buffer can provide space for several storage 
units. However, sooner or later waiting storage units will fill it 
if its size is feasible, preventing the stacker-crane from 
working. The consequence is decreased throughput. 

Although sequences are independent, they do affect each 
other. For instance, as sequence number B4 has been retrieved 
from the same storage aisle as sequence number A4, the former 
has to wait until sequence number A4 has been released before 
it can enter the conveyor loop. This delays all of the following 
sequence numbers within sequence B. In a worst case scenario, 
the sequences permanently block each other, and a deadlock 
emerges, which order-releasing management needs to avoid 
(figure 4). 

A2

A1 B2

B1

Fig. 4. Two independent sequences permanently block each other; a 
deadlock arises that has to be avoided. 

Geinitz investigated the impact of retrieval-in-sequence 
with a stacker-crane-based AS/RS. Dependencies among 
sequences being hard to determine analytically, he conducted a 
simulation study and showed that considerably more 
throughput is lost than for chaotic retrieval (up to 30%). 
However, this decreases when fewer aisles are involved and 
more buffer locations are available in front of the aisles [10]. 

(a) Retrieval in sequence at an AS/RS (Lienert and
Fottner 2018). Figure 3: Sliding shoe sorter POSISORTERTM(Source: Vanderlande) (left), a typical sorter

setting in a warehouse (middle) and telescope conveyor (Source: Budde Fördertechnik) (right)

picked items or the packed customers parcels onto the main sorter. Typically, a loop sorter
is applied [61, 85], but also line sorters can be found [90, 22]. Bi-directional or even more
complicated networks, however, are rather uncommon. On the outbound side, we have the
accumulation lanes which either collect individual picking orders or shipments for distinct
transport providers. In the former case, the vast number of potential customers requires that
the assignment of outbound destinations (customers) to outbound stations (accumulation
lanes) is variable, whereas the subcontracted transport providers often remain stable over a
longer period of time so that also a �xed assignment is possible. The following three sections
review the literature related to the main decision problems arising when applying an ASS in a
warehouse.

3.1 Layout planning

During the design phase, the physical layout of an ASS has to be determined. The main
system elements that need to be selected during this phase and whose speci�cation can be
supported by OR methods are the following:

• selection of either line and loop sorter,

• capacity (length) of the sorter,

• velocity of the sorter, and

• number and capacity of accumulation lanes.

To quickly evaluate the trade-o� between investment costs and operational performance of
di�erent elements and layouts, mainly fast methods such as analytical methods and simulation
studies are suggested by the existing literature.

Bozer and Sharp [32] evaluate di�erent sorter layouts for warehouse sortation systems with
wave picking. In the simulated generic system, waves are initially released to a single induction
lane. The items may then leave the system through one of multiple accumulation lanes. Items
that do not leave the sorter circulate on a single recirculation conveyor. Finally, items leaving
the system through the accumulation lanes are handled by a worker, who removes items from
the lanes with a deterministic rate. In a slightly alternative setting, which is also simulated,
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(b) Loop sortation conveyor (Boysen et al.
2019).

chain conveyor), it is ready to leave the selectivity bank and proceed to the sub-

sequent downstream paint bay as soon as it is chosen by the respective control

application.

If a selectivity bank is to be used for sequencing, two decision processes can be

distinguished. First, a lane has to be selected for each car body that is arriving

from upstream operations. Second, at the exit of the selectivity bank, the car to be

retrieved next needs to be chosen. These decisions can be taken by either human or

machine operators (cf. Stroud 1998). If there are only automatic controls (as shall be

assumed for the present paper), the necessary decisions are usually based on a simple

set of rules in real-world paint shops. With regard to colour batching, the very basic

set of rules for lane selection (storage) and for car selection (retrieval) are as follows:

. Basic lane selection:

. If there is a lane where the most recently stored car has to get the same

colour as the car that needs to be stored, select this lane.

. If there are empty lanes, select one of them.

. Select the lane holding the least number of cars.

. Basic car selection:

. Choose the car with the same colour as the one most recently retrieved from

the selectivity bank.

. If there is no such car at the end of one of the lanes, choose the longest

waiting car.

Depending on the overall number of different colours and on the number of lanes in

the considered selectivity bank, this simple set of rules may lead to poor sequencing

results. Spieckermann and Voß (1996) give an example where the average colour

batch size is no larger than 1.5 cars, resulting in overall annual costs of US$2.7

million based on an annual production of 200 000 units and costs of US$15–25

per car due to a waste of paint. Consequently, its importance for practitioners has

been valued as being very high. For instance, Lustig and Puget (2001) describe a

1
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Figure 1. Selectivity bank with eight lanes.

1866 S. Spieckermann et al.

(c) Selectivity bank with eight lanes (Spieckermann et al. 2004).

Figure 2.8: Conventional sequencing system configurations.

specific items need to be switched within the system. The algorithm is entirely
centralized such that deadlock handling is not addressed.

Single batch sequencing from one input to one output point is possible using
the GridSequence system of Gue et al. (2012) (cf. Figure 2.9). Based on the
length of a given sequence, each item is assigned a specified target position
within the system depending on its index in this sequence. A transport unit
cannot be unloaded until all of its predecessors reach their target positions. The
decentralized control algorithm is based on the same concept as in Gue et al.
(2014) and Uludağ (2014). All modules are synchronized and negotiate item
movements in single steps. North-south negotiations are used to move items
downwards to their target rows, while east-west negotiations serve for relocating
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Table 2.3: Approaches for sequencing systems.

Publication Decentrali-
zation

I/O
points

Density Routing Deadlock
handling

Alahmad and Ishii
(2021)

none 1:1 highest offline -/-

Gue et al. (2012) complete 1:1 high online -/-
Gue (2016) partial 1:1 high online prevention
Sittivijan (2015) partial m:n highest online centralized

detection
Lieberoth-Leden
and Fottner (2018)

partial m:n medium offline detection

Hao (2020) complete m:n highest online prevention4

This dissertation complete m:n highest offline prevention

interfering items. The length of the given sequence determines the necessary
system size. Additionally, the system requires further space at its edges, which
reduces the achievable density. Deadlock handling is not addressed.

Including a centralized element within the system architecture as in Gue (2016),
Sittivijan (2015) and Lieberoth-Leden and Fottner (2018), allows reducing
the complexity of a sequencing problem while accepting the drawbacks of
inflexibility and high failure probability.

In the GridHub system of Gue (2016), trucks are loaded from a grid-based
conveyor system following a specific sequence (cf. Figure 2.10). They are
processed sequentially. Each truck holds the same number of containers, i.e.,
all order batches are assumed of equal size. The control architecture of Grid-
Hub comprises two hierarchical layers, where a centralized element on the top
layer coordinates the unloading sequence by broadcasting requested containers
together with their position within the sequence to all system modules on the

4 livelocks not prevented

24



2.3 Approaches for Sequencing Systems

 

The GridSequence system is based on having target positions for the cartons according 
to the required sequence. Cartons enter the system from the upper right corner and 
travel left in the top row until they reach their target columns. After reaching their 
appropriate columns, cartons move down to reach their target rows. Once in the correct 
position in the grid, items move left or right temporarily only to allow passage of other 
items seeking their own positions in the grid.  

Items leave the system from the bottom right corner. So, the first item in the sequence 
should be placed in the most bottom right position. Other items are assigned to 
corresponding target positions. For instance, to sequence 100 items in an 11x11 grid, 
cartons 0-9 should be placed in the right most column, cartons 10-19 in the column to 
the left of the right most column, and so on. 

Interfering items must move left and right to allow the downward movement of items 
traveling to their target rows. This means that they are leaving their target positions 
temporarily and that they should return to their target positions to keep the sequence. 
Items that have already moved to the side are not allowed to move farther away from 
the target position. So, there is a limited “puzzle based movement” for interfering items 
and it is restricted to one cell to the right or left. 

 
Figure 4: Snapshot of the GridSequence System. Items 44 and 60 are in the grid and 
traveling down to their target rows. Item 60 will travel to the bottom row. Items 67 and 68 
are moved to the left to allow item 60 to pass by. Item 48 is moved to the left to allow 
passage of item 44. Item 88 is traveling to its target column on the top row. 

4.2 Details of the Algorithm 

Modules are synchronized to execute at the same time. Therefore, modules are in the 
same phase of the algorithm at a given time. The main steps of the algorithm are 
described below. 

Figure 2.9: The GridSequence system (Gue et al. 2012).

layer below. At module level, the corresponding container transfers are orga-
nized. The developed decentralized online routing algorithm is based on the
same synchronized iterative movement negotiations as Gue et al. (2012), but
additionally requires eliminating fully occupied rows or columns to enable dead-
lock avoidance. Item priorities are used to resolve conflicts if empty modules
are requested multiply.

the bottom row of conveyors to load and unload containers. The row of conveyors closest
to the railway cars is the loading and unloading row. Other conveyors form the storage area,
and all of the containers are stored and transferred on these conveyors. Since the system is
grid shaped, the location of a conveyor corresponds to its column and row, and we use the
columns and the rows of conveyors in the rest of this paper to describe groups of conveyors.

Figure 1: Overview of GridHub

Railway cars are numbered ascending from 1 according to their arrival sequence. In
each railway car, there are slots in which to place π-containers, and each slot can hold only
one π-container. Slots in one railway car are numbered from the left to the right side of the
car starting with number 1.

Every π-container has departure information, which consists of two parts: the slot in
which it should be loaded in its destination car (slot number) and the rail car onto which it
will be loaded (car number). π-containers are sorted into different groups according to their
slot numbers, and all containers in a same group have the same slot number. Each group
of containers is sorted by car number to form a “virtual queue.” The queue number of the
container indicates the position of that container in its virtual queue. In brief, this number
of one container is generated according to its car number. In other words, a container with
a smaller car number consequently has a smaller queue number. When containers leave or
enter the system, the grouping and sorting of containers will be performed, hence the queue

Figure 2.10: The GridHub system (Gue 2016).
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Sittivijan (2015) develops an algorithm to transfer a modular warehouse con-
sisting of unit-sized right-angle-transfer conveyor modules from an initial to a
final configuration (cf. Figure 2.11). This may represent a sequencing problem
if the final configuration forms a specific item sequence. The control algorithm
combines centralized and decentralized elements and is based on unique prior-
ities assigned to items. Supervising all item movements and detecting deadlock
situations occurs at system level. At module level, an A*-based route planning
is used to identify the paths from current to target item positions. Conflicts are
resolved by a tagging procedure based on the assigned priorities. The results
of Sittivijan (2015) are further refined in Dayıoğlu et al. (2020), but without
increasing the level of decentralization.

 

101 

the warehouse for later loading. The unloaded packages specify their holding area in the 

warehouse, become active and move to that area. In this case, the holding area of a package 

is specified based on finding the area with available modules with the shortest rectilinear 

distance the package’s planned loading destination. For example, assume there is a package 

unloaded at module (10,1) and it has to be loaded on another truck at module (24,16). 

Assuming that there are two unoccupied modules at (28,16) and (32,16), module (28,16) will 

be assigned as the holding module for this package because it has a shorter distance to 

module (24,16). 

 

 

 

Figure 6.1: Illustration of modular warehouse operations at 80 % utilization. 
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Figure 2.11: Modular warehouse system (Sittivijan 2015).

The automated material flow system of Lieberoth-Leden and Fottner (2018)
(cf. Figure 2.12) is composed of autonomous modules providing multiple ma-
terial handling tasks, including sequencing. Within its control architecture,
a centralized element holds all data of the system to ensure consistent infor-
mation for all other elements. Furthermore, it defines the necessary routes
for processing incoming transport tasks. To reduce the disadvantages related
to centralized control concepts, the centralized element changes dynamically
(Lieberoth-Leden et al. 2018). For sequencing, transport units are buffered at
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one or several intermediate destination modules, which are determined by the
centralized element. Sufficient buffer capacity within the system for upcoming
sequencing tasks needs to be ensured externally. Deadlock handling is limited
to detection once the system already stagnates.

 

 

III. DISTRIBUTED STRATEGIC MATERIAL FLOW CONTROL FOR 

AMFSS 

The agent for a strategic material flow control is based on 
the routing and scheduling procedures of the aMFS. In the 
following section the system architecture, the routing, the 
scheduling and the strategic material flow control are explained 
on the example of the aMFS shown in Fig. 2. 

A. System Architecture 

The aMFMs possess a knowledge base which describes the 
available logistical functions, geometrical data and further 
abilities of the module and which is manually created in the 
engineering phase [20]. The knowledge of the layout is 
generated automatically during the self-configuration process 
of an aMFM, when an aMFM detects its neighbourhood and 
establishes the material flow interfaces to neighbouring 
aMFMs. The neighbourhood information is aggregated at a 
central instance (coordinator). The central coordinator 
aggregates data and provides consistent information for all 
aMFMs. However, a central instance represents a single-point-
of failure, as its malfunctioning often leads to a standstill of the 
entire system. In order to avoid this drawback while taking 
advantage of the benefits of central coordination, a 
dynamically allocable coordinator is used [21, 22]. Instead of 
defining a specific aMFM to perform the coordination tasks, 
every aMFM in the aMFS has the ability to activate itself as 
the coordinator. The main objective of the coordinator is to 
receive, store and send data to aMFMs. The processing of data 
is locally performed on an aMFM using local and system 
knowledge in order to ensure scalability. Nevertheless, for 
aMFSs with a great number of aMFMs, at least one aMFM 
should possess a powerful PLC to act as coordinator. 

 

Fig. 2. Layout of a simplified aMFS with a transversal carriage. 

B. Routing and Scheduling 

After the autonomous self-configuration, an aMFM is ready 
to execute transport tasks. Determining an individual aMFM 
path for each transport task allows high flexible routing for 
alternating layouts, alternating material flow relations, or 
adaption to current traffic. But highly flexible routing causes a 
high communication load with regard to traffic in decentralised 
aMFSs. Changing the layout in aMFSs requires manual effort 
in the installation or removal of aMFMs from the operator. 
Therefore, the layout usually changes at most on a daily basis, 
and otherwise less frequently. Even in dynamic production 
networks, the material flow relations do not change 
fundamentally within a minute or even an hour. A material 
flow relation states how many TUs are transported from a 
system entrance (source aMFM) to a system exit (sink aMFM). 
Also, in dynamic production networks the operator aims to 
level the utilisation of the resources over time in order to avoid 
waiting times or standstill of single resources. Subsequently, 
stable material flow relations often develop where the average 
transport volume from a source to a sink only fluctuates 
slightly for a period of time. Therefore, an alternative to highly 
flexible routing are semi-static routes in aMFSs, based on the 
multi-label protocol switching concept used in communication 
networks [23]. For each material flow relation, a route is 
negotiated in the aMFSs, based on already existing routes and 
required capacity, priority, etc. of the material flow relations. 
Basis for the route calculation is the system topology which is 
stored at the coordinator. The result is a path of aMFMs 
through the aMFS and a granted capacity for the material flow 
relation, which is called a “semi-static route” in this paper. All 
affected aMFMs in this route are informed and the semi-static 
route is established [21]. A semi-static route does not guarantee 
conflict-free routing because the routes are only determined on 
the basis of on average available capacity, i.e. two opposing 
routes on one aMFM can occur. Therefore, for conflict-free 
routing a reservation and scheduling algorithm is applied. 
During reservation phase, a reservation request collects from 
all aMFMs on the route planning information and a time 
window is finally determined which provides sufficient 
capacity for the transport. Afterwards, from the destination to 
the start aMFM, a confirmation message is forwarded and 
processed at each module which determines a firmed TU 
sequence on each aMFM of the semi-static route [14, 16, 21]. 

C. Strategic Material Flow Control 

There are three material flow roles for an aMFM: Start, 
destination and intermediate destination. The material flow 
agent of an aMFM is only active when a role is assigned. A 
strategic material flow control releases TUs and assigns 
intermediate destinations on demand to perform material flow 
tasks. The functions of the material flow agent depend on the 
role of the aMFM. The start aMFM of a transport has other 
responsibilities than a destination aMFM. However, an aMFM 
can act for one transport as a start and for another as a 
destination at the same time. 

1) Workflows: Superior systems send transport tasks to the 

coordinator. The coordinator processes the transport task for a 

TU and generates workflows through the aMFS shown in Fig. 

3. For each start / intermediate to a destination / intermediate 

Figure 2.12: Layout of a simple automated material flow system (Lieberoth-Leden and Fottner
2018).

Hao (2020) presents GridHub – a modular decentralized controlled high(est)-
density material handling system, where right-angle-transfer conveyor modules
are arranged to a rectangular grid network (cf. Figure 2.13). Item loading
and unloading is possible at all four system edges. The developed algorithm is
capable of storing, retrieving, sorting, and sequencing while processingmultiple
items simultaneously. Similar to Gue et al. (2012) or Gue (2016), conveyor
modules are synchronized and negotiate item movements iteratively in single
steps. Thus, the approach is limited to rectangular network structures. Items
proceed to their destinations using empty modules within the system. These
are identified by sequential search phases with ascending number of additional
steps for relocating interfering items. For sending and processing messages,
rules are specified based on the current module state and the search phase of the
message. At system level, priority directions are defined to resolve negotiation
conflicts. The algorithm focuses on transferring items to their destinations via
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shortest paths, which – in case of sequencing – can cause congestion at the
output points if necessary predecessor items are missing. The system is proven
to be deadlock-free, however, livelocks cannot be generally excluded.

Figure 6: An analog of the GridHub with requested item moving in four directions.

The grey tiles are conveyors, and boxes are the yellow cubes. A white triangle on

the boxes indicates the direction to move the requested boxes.

1.3 Dissertation organization

The rest of the dissertation is organized as follows: Chapter 2 reviews

literature and summarizes the related background. We explain terminologies of the

grid-based system first, then existing grid-based systems are reviewed. In the second

part of this chapter, related background, such as controlling deadlock solutions, are

summarized. In Chapter 3, the system descriptions of unit-sized GridHub are

presented first. Then, we explain the control algorithms. In Chapter 4, system

behaviors, deadlock, and livelock in the unit-sized GridHub are discussed. We prove

that unit-sized GridHub is deadlock free. It is also livelock free under specific

conditions. In Chapter 5, we show the performance of the unit-sized GridHub. In

7

Figure 2.13: The GridHub system (Hao 2020).

From the presented approaches, we conclude that basically all of them offer a
solution to realize a high(est)-density conveyor system for sequencing. The ma-
jority suffers from centralized system functionality where essential algorithmic
parts, such as path finding, data holding, or deadlock handling, are delegated
to a centralized element. Often, single batch problems are considered. Several
of the proposed systems require additional space within the network, which
reduces the achievable density. Online routing algorithms apply frequently,
such that only synchronized systems with rectangular network structures can
be realized (Hao 2020). None of the presented approaches provides decen-
tralized sequencing from multiple input to multiple output points in general
high(est)-density conveyor networks while ensuring system liveliness in terms
of deadlock, livelock, and starvation prevention.

2.4 Chapter Conclusion

The results of the literature review state the research gap of this dissertation.
First, there is no decentralized multi-batch sequencing algorithm which is able
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to operate in highest-density conveyor systems with arbitrary network structures
(cf. Sections 2.2 and 2.3). Second, ensuring system liveliness by preventing
deadlocks, livelocks, and starvation in highest-density conveyor networks based
on a decentralized offline route planning algorithm remains unresolved (cf.
Section 2.2). Third, complexity aspects of decentralized algorithms are poorly
studied (cf. Section 2.2). Fourth, none of the identified (partially) decentralized
algorithms is benchmarked against a centralized approach to assesses the quality
of its generated solutions (cf. Sections 2.2 and 2.3). Furthermore, a centralized
algorithm applicable to multi-batch sequencing from multiple input to multiple
output points for processing a continuous flow of materials as in the specified
problem setting does not yet exist (cf. Section 2.1). Fifth, we found that
the numerical studies of the presented approaches insufficiently address the
requirements of practical applications within current industrial environments,
as mainly rectangular networks are investigated. This dissertation addresses all
of the identified shortcomings to comprehensively close this research gap.
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3 System Definition

In decentralized systems, the intelligence of the system is distributed to several
of its components eliminating hierarchical dependencies (de Ryck et al. 2020,
Rana and Taneja 1988). This leads to a connected network of autonomous,
equivalent decisional entities, which we can describe and formalize using graph
theory (Trentesaux 2009, Dilts et al. 1991) (cf. Section 3.1). This formal
description allows specifying the necessary system requirements of conveyor
networks for sequencing (cf. Section 3.2). Transferring the elements of the
graph-based system model to components in reality yields the showcase system
used to demonstrate the developed decentralized sequencing algorithm (cf.
Section 3.3). By summarizing the results of this chapter, Section 3.4 provides
an answer to the first research question of this dissertation.

3.1 Graph-based System Model

A graph G is defined as a tuple G(V,E) with V representing a nonempty set
of nodes connected by the set of edges E with E ⊆ [V ]

2. Each pair of nodes
vi and vj ∈ V is called adjacent if there is an edge e ∈ E : e = {vi, vj}
which directly connects both nodes. Two non-adjacent nodes vk and vl can be
connected via a series of adjacent nodes {vk, vk+1, . . . , vl−1, vl}which is called
a path. In weighted graphs, edges are assigned weights, such that w : E → R,
representing certain costs to determine more or less favored paths. The graph
G is connected if each pair of its vertices vi, vj ∈ V (i 6= j) is connected. The
connectivity indicates the intensity of its coherence. We denote a graph G as
k-connected for k ∈ N if removing at least k nodes is necessary to disconnect
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it. Transferring objects within a graph is modeled using flows between nodes,
where capacity constraints serve for limiting the amount of objects which can
be transferred simultaneously. (Diestel 2017, p. 2ff., 151; Erciyes 2013, p. 11ff.;
Brandes and Erlebach 2005, p. 7ff.)

Using the analogy of graphs, we can understand a decentralized conveyor
network in terms of a set of connected nodes. Between these nodes, physical
objects as well as data objects are transferred. Each node has its own control
unit for locally receiving, storing, processing, and forwarding data objects. For
identifying and transferring physical objects, they are equipped with technical
instruments. The underlying technology may vary and is not relevant for the
developed algorithm. Nodes provide the overall system functionality. They
are connected by edges to enable transferring objects via a path of adjacent
nodes. Physical objects need to be sequenced within the conveyor network
which is organized by sending data objects throughout the network representing
the decentralized communication of the nodes. We divide the set of all nodes
into input, output, and sequencing nodes. The flow of physical objects proceeds
from input to output nodes. Therefore, edges for transferring physical objects
connected to input and output nodes are unidirectional, while all other edges are
bidirectional. The outflow of the network at the output nodes needs to observe
the predefined unloading sequences. This is achieved by reordering the physical
objects using the sequencing nodes in between.

3.2 System Requirements

Weuse the graph-based system description to define the system requirements for
sequencing. These relate to both capacity and structural characteristics of the
conveyor network, which we discuss in Sections 3.2.1 and 3.2.2, respectively.
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3.2.1 Capacity

Within the decentralized conveyor network, physical and data objects are trans-
ferred between its nodes. To avoid congesting the system, we need to define
capacity constraints. We derive the overall network capacity based on the ca-
pacity of its nodes (cf. Section 3.2.1.1). It limits the flow of objects throughout
the network (cf. Section 3.2.1.2).

3.2.1.1 Nodes

Capacity constraints within decentralized conveyor networks differ depending
on whether data objects or physical objects are exchanged (Qiu et al. 2002).
Data objects are immaterial and can be transferred in negligible time. As de-
centralized communication processes are not the focus of this dissertation, we
assume sufficient memory, communication, and data processing capacities at
the network nodes such that node capacity regarding data objects becomes un-
constrained. In contrast, transferring physical objects requires a non-negligible
amount of time and space. This limits processing transport units simultaneously
at a single node. Due to their spatial dimensions, two adjacent nodes need to
be connected seamlessly to provide continuous movements. When transferring
a physical object between two adjacent nodes, it temporarily occupies parts of
both nodes until it is entirely located at the receiving node. Therefore, we de-
scribe the physical object capacity of the network by the physical object capacity
of its nodes. It results from the relation of the space occupied by a physical
object and that provided by a node for conveying – e.g. for 2-dimensional net-
works the base area is decisive, while for 3-dimensional networks the volume
needs to be considered.
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LetU be the set of all physical objects to be sequenced andϕuo the space required
by physical object u. Each node offers space of ϕv . Then, the capacity κv of a
single node v is given as

ϕv
max
u∈U

ϕuo
≤ κv ≤

ϕv
min
u∈U

ϕuo
. (3.1)

We suppose similar space requirements of all physical objects. Thus,

κv =

 ϕv
max
u∈U

ϕuo

 =

 ϕv
min
u∈U

ϕuo

 . (3.2)

As all nodes have identical properties, we obtain the same capacity at each
node, i.e.,

κv = κv́ ∀ v, v́ ∈ V. (3.3)

The density of a network depends on the number of occupied nodes compared
to the overall number of nodes within the system. Moving a physical object
within the network requires a set of unoccupied nodes Ve, such that∑

v∈Ve

κv ≥ 1 (3.4)

holds. If

κv ≥ 1 (3.5)

is satisfied for each node of the network, transferring a physical object between
each pair of adjacent nodes requires no more than one edge. Otherwise, several
nodes need to cooperate to transfer the physical object collectively. We exclude
such cases when presenting the decentralized sequencing algorithm. However,
these can be covered without loss of generality by integrating grouping mech-
anisms into the algorithmic operations as described in Krühn et al. (2013),
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Firvida et al. (2018), Sohrt and Overmeyer (2020), or Colling et al. (2016). If
nodes provide capacity for several physical objects, i.e.

κv ≥ ϑ ∀ v ∈ V, (3.6)

with ϑ ≥ 2 (ϑ ∈ N), this allows splitting each node into ϑ single nodes each of
which satisfies equation (3.5).

Thus, we assume the physical object capacity of each node within a conveyor
network as

1 ≤

 ϕv
max
u∈U

ϕuo

 = κv =

 ϕv
min
u∈U

ϕuo

 < 2. (3.7)

3.2.1.2 Network Flow

For sequencing physical objects, the outflow of the network needs to observe
their predefined predecessor-successor dependencies. We denote a batch as
a group of physical objects assigned to the same output node. Each batch
contains an ordering of its objects according to which these need to arrive there.
Assuming that input and output nodes do not provide capacity for buffering
physical objects, but are only used for introducing and unloading them, the
physical object capacity of a network follows from that of its sequencing nodes
(cf. equation (3.7)).

The inflow of physical objects at the input nodes reduces remaining available
network capacity, while the outflow releases occupied capacity. Due to the
predefined predecessor-successor dependencies, sufficient capacity is required
within the network to buffer physical objectswhich are introduced at a input node
prior to one of their predecessors. Restricting the inflow of physical objects into
the system allows relaxing capacity requirements, while an unrestricted inflow
into the system requires increasing the provided network capacity to generally
enable sequencing. Inflow and capacity of the system need to be matched to
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prevent congestion. This means that the number of buffered physical objects
maintains the system capable of operating at any given time without stagnating
due to excessive capacity consumption. Therefore, we specify a relation between
system inflow and capacity to ensure sequencing.

In the following, we assume a given conveyor network comprising the set
of sequencing nodes C. Furthermore, occupied node capacity according to
equation (3.7) is uniquely assigned to a physical object for each node at any point
in time, i.e., each node holds atmaximumone physical object at a time. Moving a
physical object for relocation always requires at least one unoccupied sequencing
node adjacent to the node occupied by this object (cf. equation (3.4)). As the
graph of the conveyor network is entirely connected, where edges between each
pair of sequencing nodes are bidirectional (cf. Section 3.1), any sequencing node
can become unoccupied by moving the buffered physical objects. Therefore,
we need to guarantee that there is always at least one arbitrary unoccupied
sequencing node within the conveyor network.

We define a subset of released objects Ur within the set of all physical objects
to be sequenced. This subset represents the physical objects which can be
introduced from their assigned input nodewithout compromising the operability
of the system. Ur satisfies the following conditions:

(I1) If an object is included in Ur, then all of its predecessors within the
unloading sequence at their output node are or were included as well.

(I2) The cardinality of Ur never exceeds (|C| − 1).

(I3) Objects leaving the system at an output node are removed from Ur.

Any physical object originating at an input node which is not yet included in
the set of released objects is prevented from being introduced into the network.
Otherwise, we cannot guarantee that there is at least one unoccupied sequencing
node. It needs to be ensured that creating a subset of released objects according
to conditions (I1) to (I3) is always possible from the flow of physical objects
arriving at the system. We refer to this as inflow constraints.
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Using the defined inflow constraints, we are able to generally prevent congesting
a conveyor network comprising |C| sequencing nodes. Congestion implies a
system arrangement inwhich a |C|-th physical object needs to be introduced into
the network before another physical object currently occupying a sequencing
node may be unloaded due to the predecessor-successor dependencies. Thus,
all of the |C| sequencing nodes are occupied, preventing any physical object
movement. This occurs only if a successor is introduced into the system before
one of its predecessors. According to condition (I1), this is only possible if the
successor is included in the set of released objects together with all of its pre-
decessors. Limiting the cardinality of this set to (|C| − 1) (cf. condition (I2))
ensures that there is always sufficient capacity available in the system to intro-
duce all necessary predecessors. When removing a sequenced physical object
(cf. condition (I3)), a sequencing node becomes unoccupied again such that the
next physical object is included in Ur to proceed in sequencing.

Note that different from other systems with decentralized control, such asGrid-
Sorter (cf. Seibold et al. 2022) or GridStore (cf. Gue et al. 2014), installing
a work-in-process based load control is not feasible when sequencing prede-
fined batches to their destinations, as without introducing a predecessor into
the system its buffered successors may never be unloaded due to the predefined
predecessor-successor dependencies.

3.2.2 Structure

The connections of input, output, and sequencing nodes define the structure
of a conveyor network. They build up possible paths for transferring objects.
The conveyor network represents an entirely connected graph. Paths of data
objects are independent of specific node types, while for physical objects, any
output node can be reached from any input node and any sequencing node can
be reached from any other sequencing node via a path of sequencing nodes (cf.
Section 3.1). The set of input and output nodes are non-empty to establish the
flow of physical objects.
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For sequencing, physical objects may be buffered within the network to observe
the predefined unloading sequences at the output nodes. Each sequencing node
provides capacity for buffering exactly one physical object (cf. Section 3.2.1). In
case of highest-density system occupation, there is one unoccupied sequencing
node within the network (cf. Section 2.2). To forward a requested physical
object, the unoccupied node is iteratively positioned such that this object can be
transferred one node further towards its destination node –much likemoving the
escort in an (n2−1)-puzzle game to a selected location. This requires relocating
other buffered physical objects on a path, which we refer to as relocation path.
As each node cannot hold more than one physical object, this relocation path
needs to omit the node currently occupied by the requested physical object to
avoid collision (cf. Figure 3.1).

jO

I

I

O output node

node of requested object

input node

occupied node

unoccupied node

feasible relocation path

path of requested object

infeasible relocation path with collision

Figure 3.1: Collisions at relocation paths for relocating physical object j.

We can ensure that at highest-density system occupation, there is always a valid
path for relocation if the network provides at least two internally disjoint paths
between each pair of sequencing nodes. Internally disjoint paths only share their
start and end nodes (Diestel 2017, p. 74). Thus, there is always an alternative
path to relocate a buffered physical object, which is interfering on the path
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of a requested physical object, without using the node the latter is currently
occupying. If this holds for each pair of sequencing nodes, we can transfer
a physical object on any path within the network using only one unoccupied
sequencing node.

Following Menger’s theorem, at least k internally disjoint paths exist between
two distinct nodes vi, vj ∈ V in a k-connected graph (Menger 1927). Therefore,
the sub-graph of sequencing nodes within the given conveyor network needs
to be at least 2-connected to provide sequencing at highest-density system
occupation. Specifically, this means that there are no cut-vertices or bridges
(cf. Figure 3.2).1 In such networks, sequencing is not generally possible at
highest-density occupation, as more than one unoccupied sequencing node is
required to overcome the corresponding nodes.

O

I

cut-vertex bridge

Figure 3.2: Graph with cut-vertices and a bridge.

1 A cut-vertex represents a node, and a bridge represents an edge whose removal disconnects a
graph (Diestel 2017, p. 11).
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3.3 Showcase System

Sequencing problems arise in various industrial application environments (cf.
Section 1.1). For demonstration, we transfer the graph-based network model
to a practical showcase system. We introduce the different real-world system
elements in Section 3.3.1. A running conveyor network, initially, requires
system installation (cf. Section 3.3.2). Afterwards, it is ready to operate such
that a flow of arriving physical objects can be processed for sequencing (cf.
Section 3.3.3). Note that the terms (sequencing) system and conveyor network
(for sequencing) can be understood synonymously throughout this dissertation.

3.3.1 System Elements

Within the showcase system, nodes, physical objects and data objects are rep-
resented using conveyor modules (cf. Section 3.3.1.1), transport units (cf.
Section 3.3.1.2) and messages (cf. Section 3.3.1.3), respectively. Transferring
objects is realized using corresponding mechanical and electronic connections
(cf. Section 3.3.1.4).

3.3.1.1 Conveyor Modules

We use standard rectangular conveyor modules for representing network nodes,
such as the FlexConveyor of Mayer (2009) (cf. Figure 3.3). It is square shaped
with an edge length of 500mm. These modules can be adjusted to different
heights and are equipped with lockable wheels guaranteeing stability during
operation. They can easily be unlocked to flexibly modify an existing conveyor
network. Loads are identified by photoelectric sensors or a distance measuring
system detecting whether the module is currently occupied (Furmans et al.
2019).

Although we refer to this standard rectangular module shape, the developed de-
centralized sequencing algorithm is not limited to right-angle-transfer conveyor
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Figure 3.3: FlexConveyor module (Karlsruhe Institute of Technology: Institute for Material Han-
dling and Logistics 2009).

modules. Generally, any module shape providing more than two movement
directions is possible (cf. Figure 3.4 (a)), as long as the requirements regard-
ing node capacity are met (cf. Section 3.2.1.1). This also allows for creating
three-dimensional structures with additional vertical movement direction (cf.
Figure 3.4 (b)) and includes conveyor networks consisting of different module
shapes as well. However, we stick to the standard case of square conveyor mod-
ules within two-dimensional networks due to their broad practical applicability.

Fig. 3: Representation of the GridSorter (Seibold, 2016)

structures. These two characteristics provide certainly high
scalability and reconfigurability. However, the construction
and applied routing strategy limit the range of achievable
logistic tasks, i.e. process flexibility. In order to increase
this, the material flow system must have more control over
the object transportation. In other words, the material flow
system must be capable of transporting multiple objects with
a combination of controlled omnidirectional translations and
rotations with neither collisions or deadlocks. None of the
existing systems are capable of such transportation, which
explains their narrow range of achievable logistic tasks. A new
strategy for decentralized control must then be conceived to
close this research gap, so that modular material flow systems
become profitable as well.

In the next section, the first algorithm for a decentralized
omnidirectional route planning and reservation for small-
scaled material flow systems in a grid-like network is pre-
sented. This algorithm considers any change of the layout or
form of the transported object dynamically, and provides the
shortest route from source to destination along the available
small-scaled modules.

III. FORMAL ALGORITHM DESCRIPTION

A. First Considerations

The developed algorithm is valid for any continuous ma-
terial flow system in the three regular tessellations, namely
equilateral triangles, squares and regular hexagons (Grunbaum
and Shephard, 1977). It was reasonable to narrow down the
indefinite number of module shapes to these three, as they are
the only shapes that can build a Euclidian plane by congruent
copies of itself with an edge-to-edge tiling. These provide the
highest layout flexibility by building a flat surface without
considering position or orientation of the modules (see Fig.
4).

As the material flow system must execute in parallel mul-
tiple object transportation with omnidirectional transportation
and rotation, three considerations must be taken: (i) all mod-
ules involved in a transportation must be aware of the two-
dimensional trajectory and current position of the object with
respect to themselves, (ii) agree about this information, and
(iii) correspondingly act with a cooperative and synchronous
execution. In consequence, the modules must execute an initial
configuration procedure on power up to collect information

(a) Equilateral trinagles (b) Squares (c) Regular hexagons

Fig. 4: The three unique regular tessellations

about the network topology. During this procedure, the mod-
ules recognize which adjacent neighbors are operative as
well as their own position and orientation in the network
with respect to a common coordinate system. This is hereby
needed, because an omnidirectional transportation and rotation
of an object is not viable without the agreement between the
modules of the physical geometry.

Although the metric Cartesian coordinate system might
seem the standard choice for the representation of a flat
conveyor system, more sophisticated ones can be applied in
search of advantages. By defining the common coordinate
system considering the resulting grid graph of the network, the
modules can easily be identified by their location. In this way,
not only a deterministic identification system is established
during the very initial procedure, but also a location based
addressing is possible. This addressing is hereafter referred as
coordinate addressing.

For each of the three possible module shapes, it was decided
to use a triangular offset, Cartesian and H2 coordinate system
as the common coordinate system for equilateral triangles,
squares and regular hexagons, respectively (see Fig. 5).
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(a) Triangular offset
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u,v-1

u+1,v
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u-1,v+1

u-1,v

(c) H2-coordinates

Fig. 5: The three decided coordinate systems

After each module is aware of its physical position and
orientation with respect to a common coordinate system, as
well as the availability of their adjacent neighbors, the om-
nidirectional route planning and reservation can be executed.
The developed algorithm is a parallel version of the breadth-
first search through a wavefront propagation, well-known in
robotics for grid-map path planning (LaValle, 2006). This
provides all the possible minimal routes along the modules
from source to destination, i.e. the L1-norm paths with respect
to the applied metric. A path shortening heuristic is applied
to determine a valid route as close as possible to the L2-norm

687

(a) Hexagonal module shape
(Firvida et al. 2018).
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by lifts (an example can be found in the last part of the
movie MI4). In fact, many system manufacturers are
currently developing such so-called “live-cube” stor-
age systems in different variants with a growing num-
ber of implementations in automated parking systems,
warehousing and cross-docking, and container han-
dling (e.g., Hyundai Elevator Co. Ltd. 2013; Automo-
tion Parking Systems 2013; Eweco 2014; Wöhr 2013;
OTDH 2013; Navstors 2013; Navpak 2013; EZ-Indus
2013). However, many research questions still have
to be answered, including cycle time calculations for
given sizes and storage strategies; in particular, cost
comparisons have to be made. In addition, buildings
and operations have to become more sustainable, so
energy consumption is also a point of consideration.

We address these issues in this paper:
1. What is the performance of a live-cube storage

system of a given size and configuration?
2. What is the optimal configuration of a live-cube

storage system that minimizes the response time, given
a required storage capacity?

3. Is a live-cube system better (in terms of invest-
ment and operational costs and environment) than a
traditional system? What is the impact of system con-
figuration on the investment and operational costs of
such systems?

The main components of the live-cube system are
multiple levels of storage grids, shuttles, a lift, and a
depot (or input/output (I/O) point) as shown in Fig-
ure 1. Shuttles can move in x and y directions while
carrying a unit load. Each unit load holds only one
product. All storage locations and unit loads are stan-
dard and have the same size. Shuttles simultaneously
move unit loads into the empty locations (at least one
empty location needed on each level) to maneuver the
requested unit load to the lift at the unit load’s stor-
age level. In case of a single empty location, moving
a requested unit load to the depot is comparable to
solving a “15-puzzle,” which consists of 15 numbered
tiles in a random order in a 4× 4 frame (Slocum and
Sonneveld 2006). We assume the I/O point is located
at the lower left corner of the system (at the ground

Figure 1. (Color online) A Live-Cube Compact Storage System with a Lift

x

z
y

Shuttle
Unit load

Lift

z

x
y

level) and we furthermore assume a random storage
policy is used, which implies all storage locations have
an equal chance of serving a storage job. Random stor-
age requires the least data since no product informa-
tion is used in determining the storage location and
it is broadly studied in the literature (e.g., Hausman,
Schwarz, and Graves 1976; Bozer and White 1984;
Goetschalckx and Ratliff 1990; Lee and Elsayed 2005;
de Koster, Le-Duc, and Yu 2008). In addition, random
storage is frequently used as a benchmark in compar-
ison for system response time with other storage poli-
cies (e.g., Hausman, Schwarz, and Graves 1976; Lee
and Elsayed 2005).

Our first contribution is the derivation of expected
retrieval time formulas for any system configuration.
Building and land restrictions might force managers to
evaluate the performance of nonoptimal system con-
figurations. We obtain the expected retrieval time for-
mulas for an arbitrary retrieval corresponding to all
possible (16 in total) system configurations through a
comprehensive decomposition procedure. To simplify
the problem analysis, we assume the coordinates of the
system to be continuous. The assumption of contin-
uous dimensions is commonly made in other papers
(e.g., Hausman, Schwarz, and Graves 1976; Yu and
de Koster 2009). In addition, we consider a system
with multiple empty locations on each level. The shut-
tles can then cooperate to create a virtual aisle for
fast retrieval of a requested unit load. To evaluate
the quality of these closed-form formulas (obtained
using a continuous-space approximation), a Monte
Carlo simulation is performed based on a real (dis-
crete) application. Our second contribution is deriving
closed-form expressions for the optimal dimensions
of a live-cube compact storage system minimizing the
expected retrieval time. To obtain these dimensions,
we propose a mixed-integer nonlinear model. We split
the model into several solvable submodels such that
the optimal solution for the model can be obtained.
Our third contribution is to compare live-cube systems
with traditional systems in terms of investment and
operational costs, energy consumption, and carbon

(b) Three-dimensional system configuration (Zaerpour et al.
2017a).

Figure 3.4: Advanced conveyor network structures.
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3 System Definition

3.3.1.2 Transport Units

We refer to physical objects as transport units, such as parcels, boxes, small
load carriers etc., as these can be easily transferred using the specified conveyor
modules (cf. Section 3.3.1.1). Bulk materials, liquids or gases may also be
processed and sequenced as unit loads when combined with suitable packaging
and/or load carriers (Arnold and Furmans 2019, p. 1). To meet the capacity
requirements as defined in Section 3.2.1.1, the area covered by one transport unit
fits onto the surface provided by a single conveyor module. A conveyor module
can handle only one single transport unit simultaneously as given in Mayer
(2009). Transport units are organized in batches of a certain size corresponding
to the number of transport units included in the batch. Each transport unit
of a batch is assigned a rank to specify the predefined unloading sequence at
its output node. It may be completely or partially defined (cf. Figure 3.5).
A partially defined sequence comprises several transport units sharing equal
rank. These may arrive at their output node in arbitrary sequence while still
preserving their distinct predecessor and successor transport units. Throughout
this dissertation, we consistently characterize batches using colors, while the
ranks of transport units within a batch are denoted with numbers.

6
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3

2

1

(a) Completely defined.

3

2

1

2

2

3

equally ranked
transport units

(b) Partially defined.

Figure 3.5: Batch unloading sequences.
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3.3 Showcase System

Load specific information as destination or rank is encoded using RFID-tags
or barcodes. These are attached to the transport units such that they can be
identified by the conveyor modules.

3.3.1.3 Messages

Each data object is represented as an instance of the abstract message class
to model the decentralized communication of the conveyor modules (cf. Fig-
ure 3.6). This allows arriving transport units to be processed for sequencing
based on the local information and decisions at each node.

Message

- sender: Node

- recipient: Node

- content: String

Figure 3.6: UML class diagram of message class.

3.3.1.4 Connections

Connecting several nodes of the network is necessary for exchanging objects
between them. Each conveyor module provides two dimensional transportation
in the four cardinal directions for transferring transport units. The primary
movement direction is realized with rollers, while powered elastic bands are
lifted up to the conveyor level for the secondary movement direction.

Exchanging messages occurs via electronic and electrical connections between
the modules. Each module offers a communication interface for each transport
direction, i.e., to each of its adjacent modules. Communication to non-adjacent
modules within the network requires a corresponding message transmission
mechanism. It forwards messages via a series of adjacent modules to the
respective recipient (cf. Figure 3.7).
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i� l i� l i� l

Figure 3.7:Message transmission mechanism – The message from module i to module l is for-
warded via modules j and k.

3.3.2 System Installation

System installation involves all necessary steps until the system is available
to operate. It needs to be set up (cf. Section 3.3.2.1) and configured (cf.
Section 3.3.2.2) to acquire certain essential information concerning the estab-
lished conveyor network. Sequencing may not start until the system is entirely
installed.

3.3.2.1 Setup

System setup entails physically implementing the conveyor network before pow-
ering on. The underlying application determines the required number of con-
veyor modules. Each node of the graph-based network model corresponds to
a single conveyor module. Therefore, we represent them as input, output, and
sequencing modules in the following. Sequencing modules transfer transport
units in all four cardinal directions, while input and output modules provide
unidirectional conveying for introducing and unloading transfers, respectively
(cf. Section 3.1).

All modules are arranged in the application environment while establishing
electrical and electronic connections to their adjacent modules. Due to the
Plug&Play technology, system setup requires less time than with conventional
systems (Furmans et al. 2010). As soon as all system modules are correctly
arranged and connected, the system is powered on for configuration.
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3.3 Showcase System

3.3.2.2 Configuration

System configuration is initiated, as soon as the modules are supplied with
electric power. Each module registers its adjacent modules via the connections
established during system setup. All other installed modules of the conveyor
network are identified using flooding mechanisms from information routing in
distributed systems (cf. van Steen and Tanenbaum 2017, p. 226ff.).2 Based on
that, the shortest directional distance information related to the own position
within the network is derived for all modules. It corresponds to the minimum
number of modules that need to be passed in order to arrive at a destination
module when choosing a specific direction as starting point of the path (cf.
Figure 3.8). For this, path finding algorithms such as the Floyd–Warshall
algorithm of Floyd (1962) and Warshall (1962) or the A* algorithm of Hart et
al. (1968) apply. The calculated distance is saved locally for each combination
of destination module and direction. Further global network information is not
available at module level.

Figure 3.8: Directional distances from start module S to destination module D.

Based on the acquired system information, we verify whether the network is
capable of sequencing at highest density. This requires redundant paths between

2 We will not go into detail about the algorithms for system configuration, as they are not an
integral part of the developed decentralized sequencing algorithm. These are rather necessary
preceding steps to the main algorithmic operations described in Chapter 4.
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all pairs of sequencing modules (cf. Section 3.2.2). Therefore, algorithms
for determining the connectivity in graphs as proposed by Tarjan (1974) are
applicable.

3.3.3 System Operation

For sequencing, transport units are processed by the installed conveyor network
(cf. Section 3.3.3.1). To avoid congesting the system during operation, this
needs to be coordinated with introducing and unloading of transport units (cf.
Section 3.3.3.2).

3.3.3.1 Processing Transport Units

The sequencing system receives arriving transport units from an upstream pro-
cess, sequences them, and forwards these to a downstream process. As the
design of the upstream and downstream operations is irrelevant to the presented
system model, these are not detailed further. The input modules link from the
upstream process to the sequencing system to introduce arriving transport units.
Likewise, the output modules provide these transport units to the downstream
process after processing by the intermediate sequencing modules.

For sequencing, a set of arbitrarily arriving batches of transport units is reordered
such that they can be unloaded at their assigned output modules adhering to
the predefined batch sequences. As the system offers multiple input and output
modules, this creates an (m : n) setting (m,n ∈ N) where each input module
supplies to all output modules and each output module collects transport units
from all input modules. Figure 3.9 illustrates an example. The (m : n) setting
allows batches of transport units with different destinations to be introduced,
sequenced, and unloaded simultaneously, i.e., parallel order processing. In
this way, the system is adaptable to many different applications and can be
individually customized for specific use cases.
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Figure 3.9: Example sequencing system comprising five input, five output, and 5 × 5 sequencing
modules.

3.3.3.2 Introducing and Unloading

The destination of the batches, i.e., the output module where they are to be
supplied to the downstream process as well as the ranks of the transport units
within each batch are assumed to be given upon arrival at the system. The
arrival characteristics of transport units result from the upstream process. As
transport units cannot be identified until they are physically positioned on their
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input module, these need to comply with the defined inflow constraints to avoid
congesting the system (cf. Section 3.2.1.2).

To handle the inflow constraints within the decentralized system setup, infor-
mation concerning the inflow and outflow of the system, which is locally held
at its input and output modules, needs to be combined. Each output module
is aware of the batches it will receive including their size. Therefore, the set
of released transport units is specified at the output modules. Input modules
register arriving transport units at their assigned output module. The number
of transport units missing within all incomplete batches at the output modules
is decisive whether a transport unit can be introduced or not (cf. conditions (I1)
and (I2)). This is responded to the respective input module accordingly. When
unloading a transport unit at its output module, a new transport unit becomes
released (cf. condition (I3)). If this is already registered, the corresponding
input module, which is currently detaining the arrived transport unit, is notified
to introduce it.

3.4 Chapter Conclusion

In this chapter, we present the general definition of a sequencing system which
forms the basis for all approaches developed in the following. Overall, this
responds to the first research question:

Which requirements are necessary for conveyor networks to
enable multi-batch sequencing at highest density?

The decentralized system design can be described as a graph-based model in
which autonomous nodes transfer physical objects for sequencing as well as
data objects for decentralized communication. We divide the set of all nodes
into input, output, and sequencing nodes. The flow of physical objects proceeds
from input to output nodes, where the predefined unloading sequences need
to be observed. This is achieved by reordering the physical objects using the
sequencing nodes in between.
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3.4 Chapter Conclusion

Based on the graph-based system model, we derive capacity and structural
system requirements for sequencing. Data object capacity can be assumed un-
constrained, while for physical objects, node capacity is set to a minimum of
one to represent their spatial dimensions. Sequencing requires buffering phys-
ical objects within the network to observe the predefined unloading sequences
at the output nodes. Assuming that input and output nodes are only used for
introducing and unloading, the physical object capacity of the network results
from that of its sequencing nodes. Given a conveyor network comprising |C|
sequencing nodes, no more than (|C| − 1) physical objects may occupy a se-
quencing node simultaneously to enable movements within the network. We
define the subset of released physical objects Ur based on conditions (I1) to
(I3). The inflow constraints require the physical objects to arrive at the system
such that a feasible released set Ur can always be created. Physical objects
arriving at their input node which are not yet released are prevented from being
introduced into the network. The structure of a conveyor network results from
the connections of input, output, and sequencing nodes establishing an entirely
connected graph. Its sub-graph of sequencing nodes needs to satisfy at least
2-connectivity as sequencing at highest-density requires two internally disjoint
paths between each pair of sequencing nodes.

For demonstration, we develop a practical showcase system where nodes, phys-
ical objects, and data objects are represented using conveyor modules, transport
units, and messages, respectively. Objects are transferred by corresponding
mechanical or electronic connections. Before operation, the system needs to be
set up and configured. This gives the local directional distances for all modules
and allows verifying whether the installed network is capable of sequencing.
The showcase sequencing system receives arriving transport units from an up-
stream process at multiple input points, sequences them, and forwards these to
a downstream process at multiple output points ((m : n) setting).
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4 Decentralized Sequencing

Chapter 4 of this dissertation is based on Fleischmann and Fur-
mans (2023) (Chapter III).

Multi-batch sequencing frommultiple input tomultiple output modules requires
the flow of arriving transport units to be processed correctly throughout the con-
veyor network. We present a decentralized sequencing algorithm starting with
the overall design approach to outline its main ideas at system level (cf. Sec-
tion 4.1). Based on that, we detail the concept of decentralized interactions at
module level, where modules act as autonomous entities taking different roles
(cf. Section 4.2). We use flow charts and state charts to demonstrate the algorith-
mic procedures based on the graphical notation of Figure 4.1. For demonstrating
the developed algorithm, we implement an agent-based simulation model (cf.
Section 4.3). By summarizing the results of this chapter, Section 4.4 provides
an answer to the second research question of this dissertation.

4.1 Design Approach

To observe the predefined predecessor-successor dependencies for sequenced
supply of physical objects, route planning needs to coordinate different routes.
This requires buffering transport units in case at least one necessary predecessor
within the unloading sequence is missing when it arrives at its input module.
Therefore, we split the overall routes of buffered transport units into sub-routes
(cf. Section 4.1.1). Buffer modules are used as intermediate destinations
which need to be allocated to support efficient sequencing (cf. Section 4.1.2).
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Figure 4.1: Graphical notation for flow charts and state charts.

Finding a path for each (sub-)route considers the resulting system occupation
(cf. Section 4.1.3).

4.1.1 Transport Unit Flow

Sequencing differs from transporting, retrieving, picking, or sorting, as physical
objects may only be unloaded if all of their predecessors have already been
unloaded. To prevent a transport unit which is not yet requested when arriving at
its inputmodule from confounding the predefined unloading sequence, buffering
is necessary (cf. Figure 4.2). We refer to a transport unit as requested if its
corresponding output module is able to claim this transport unit, as all necessary
preceding transport units have been scheduled there.

Processing a transport unit means specifying its route through the system. The
overall route of each transport unit initially starts at the input module where it
is introduced and ends at the output module where it is unloaded. In case of

1 This task is detailed in another flow chart, which can be found in Figure x.y of this dissertation.
2 The meaning of the colors yellow, green and red remains unchanged. If no sender:recipient-

relation is specified, this corresponds to one sender and one recipient, i.e., (1:1).
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Figure 4.2: Processing transport units for sequencing.

buffering, this overall route is split into two sub-routes using a buffer module
as intermediate destination. The first sub-route goes from the input module to
the buffer module, while the second sub-route goes from the buffer module to
the output module. If route splitting is limited to only these two sub-routes,
this corresponds to a static buffering approach, as the transport unit occupies
only a single buffer module until being unloaded at its output module. With
dynamic buffering, a transport unit can switch between different buffer modules
before being unloaded (Sohrt et al. 2014). This is crucial when operating in
high(est)-density systems, where interfering items prevent directly accessing
requested items.

We define two types of routes for sequencing transport units:

• active routes starting at an input module and/or ending at an output
module and

• passive routes starting and ending at a sequencing module for buffering.
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Active routes are necessary to introduce arriving transport units into the system
and to unload requested transport units at their output modules. Thus, active
routes generally guide the process of sequencing. Passive routes, instead,
depend on active routes. If a not yet requested transport unit is buffered in
the system such that it interferes with an active route, a passive route is initiated
for relocation. This allows to represent the overall route of each buffered
transport unit from the input to the output module as combination of one active
route at the beginning and end and an arbitrary number of passive routes in
between (cf. Figure 4.3). In case a transport unit is already requested when
arriving at its input module, the two active routes are consolidated such that the
transport unit is routed directly from the input to the output module.

input 

module active route

output 

module

buffer 

module
buffer 

module
buffer 

module
buffer 

module

passive route

Figure 4.3: Splitting the overall route of a transport unit into active and passive routes.

By integrating the concept of active and passive routes, we can detail the
necessary steps for processing a transport unit (cf. Figure 4.4). This generally
represents the perspective of a single transport unit. However, the intelligence
of the presented sequencing system is not provided by the transport units but
by the autonomous conveyor modules (cf. Section 3.1). Thus, the objective of
the decentralized sequencing algorithm is to achieve a transport unit behavior
according to the flowchart of Figure 4.4 using decentralized interactions at
module level (cf. Section 4.2).
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Figure 4.4: Flow chart for sequencing from the perspective of a transport unit.

4.1.2 Buffer Module Allocation

Active routes for not yet requested transport units as well as each passive route
proceed from the currently allocated module of this transport unit to a se-
quencing module available for buffering. Generally, we only allow sequencing
modules for buffering, as input and output modules are restricted to introduc-
ing and unloading transport units (cf. Section 3.2.1.2). To enable efficient
sequencing, we develop the unloading sequence-based buffer selection rule for
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active routes, while for passive routes, the distance-based buffer selection rule
applies. Both are designed to meet different requirements of the specific route
type when identifying suitable buffer modules (cf. Table 4.1).

Table 4.1: Buffer module allocation.

Active route Passive route

Requirement Pre-sequenced buffering to
enable fast unloading

Preserve pre-sequenced
arrangement

Objective Buffer predecessors closer to
the output module than their
successors

Move transport unit to an
adjacent module

Selection rule Unloading sequence-based
buffer selection rule

Distance-based buffer
selection rule

Selecting
module

Output module Buffer module of interfering
transport unit

For active routes, buffering is organized to enable fast unloading as soon as
the transport unit is requested. This is realized by allocating buffer modules
according to the predefined unloading sequence. Transport units requested
earlier are buffered closer to their corresponding output module than those
requested later, which we refer to as pre-sequencing. As the number of missing
transport units regarding an unloading sequence is locally available at each
output module, these are responsible for requesting and selecting potential
buffer modules.

Passive routes relocate transport units from previously allocated buffer modules.
To preserve the pre-sequenced arrangement, a relocated transport unit is kept
as close as possible to its previous position. Therefore, passive routes move
a buffered transport unit to a module adjacent to its currently allocated buffer
module the route originates from. In case the adjacent module is not available
for buffering, as it is occupied by a buffered transport unit itself, this buffered
transport unit is relocated to an adjacent module as well. The chain continues
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until reaching the closest feasible non-buffering module. This distance-based
selection is also preferable regarding energy consumption, measured in terms
of the number of additional movements due to relocations.

4.1.3 Path Characteristics

While the path of an active route generally includes multiple modules, each
passive route represents exactly one relocation step of a transport unit (cf. Sec-
tion 4.1.2). Therefore, clearing the path of an active route due to an interfering
buffered transport unit may require moving several transport units in a chain
– especially when system density is high. We refer to this chain of relocation
steps as relocation route, i.e. a relocation route may combine multiple passive
routes in direction to a module available for buffering. Figure 4.5 shows a use
case of two active routes from buffer to output and from input to buffer module,
respectively, including their induced passive routes.

buffer module

active route

passive route

relocation route

2

1

8

Figure 4.5: Use case of active and passive routes.

For efficient processing of transport units, paths of active as well as relocation
routes aim to consider:
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• the length of the route, as this defines the time for transferring the transport
unit,

• the number of buffered transport units on the route, as these need to be
relocated to be able to access there, and

• the number of directional changes on a route, as this implies a certain delay
due to acceleration and deceleration as well as switching the conveyor
modules between their rectangular transport directions.

4.2 Algorithm Concept

Processing transport units within the system as shown in the flowchart of Fig-
ure 4.4 is realized using decentralized communication of the autonomous sys-
tem modules. To proceed in sequencing, active routes are crucial, which are
initiated according to the predefined predecessor-successor dependencies (cf.
Section 4.2.1). Using an offline route planning approach, all routes are sched-
uled entirely from their start module to their (intermediate) destination module
(cf. Section 4.2.2). By aggregating the operations for route initiation and plan-
ning, each decentralized module can be represented as an independent state
machine (cf. Section 4.2.3). After completing route planning, the correspond-
ing transport units are physically transferred (cf. Section 4.2.4).

4.2.1 Route Initiation

Sequencing requires active routes for introducing arriving transport units from
their input modules into the system as well as for unloading transport units
out of the system at the output modules (cf. Figures 4.3 and 4.4). To observe
the predefined predecessor-successor dependencies, information about newly
arriving transport units at the input modules, buffered transport units at the
sequencing modules, and requested transport units at the output modules needs
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to be consolidated and coordinated. Due to the decentralized system setup, this
information is held locally at the respective responsible modules.

Route initiation notifies the module currently assigned to a transport unit that
planning an active route for this transport unit can start. Input modules identify
newly arriving transport units and register them at their output module. Based
on the current state of its unloading sequence, the latter is able to determine
whether the route for the corresponding transport unit requires a buffer module
or goes directly to the output module. In case of buffering, the output module
requests potential buffer modules based on the unloading sequence-based buffer
selection rule for active routes (cf. Section 4.1.2). To reduce the messaging
load, the distance information from the initial system configuration (cf. Sec-
tion 3.3.2.2) is used to iteratively modify the search distance until a suitable
non-buffering module is found based on the current system occupation. The
output module then returns the destination of the active route, i.e., either the
identified module for buffering or the output module itself, to the requesting
input module. Figures 4.6 and 4.7 illustrate the corresponding communication
within the system for initiating an active route originating from an input module.

When scheduling a transport unit at its output module, currently buffered trans-
port units might become requested. Output modules keep track of the respective
buffer modules allocated to not yet requested transport units of their unloading
sequence. Therefore, they can request such buffered transport units directly at
their current buffer module to initiate an active route for unloading (cf. Fig-
ure 4.8).

Due to relocations of interfering buffered transport units, the local information
at the output module about allocated buffer modules may be outdated up to this
request. To deal with inconsistencies, the decentralized algorithm is designed
to discard outdated requests at the receiving module if the allocation no longer
applies. Additionally, each reallocated buffermodule updates the corresponding
output module, which we will discuss in more detail in Section 4.2.2.4. If an
output module receives a relocation update for a requested transport unit, it
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Figure 4.6: Initiating an active route starting from an input module.

resends the previous request to the newly allocated buffer module. This ensures
that the overall route of the transport unit is correctly continued for sequenced
unloading without deadlocks, livelocks, or starvation.

For each active route, the message received from the output module initiates
route planning at the input and buffer module, respectively (cf. Figures 4.6 and
4.8).

4.2.2 Route Planning

Route planning originates from the currently allocatedmodule of a transport unit
to the (intermediate) destination module. Using a decentralized authorization
concept, we are able to prevent deadlocks by ensuring consistent information in
route planning (cf. Section 4.2.2.1). Path selection identifies an optimal series
of modules to the destination of the active route according to the criteria defined
in Section 4.1.3 (cf. Section 4.2.2.2). On this path, the corresponding modules
negotiate reservations based on logical time windows (cf. Section 4.2.2.3). For

60



4.2 Algorithm Concept

requesting module requested module

create buffer 

requests
(1:n) available for 

buffering

yes

no

create 

confirmation
(n:1)

select modules 

according to 

buffer selection 

rule

create rejection

(n:1)

non-buffer-

ing module 

found

yes

no

Figure 4.7: Iterative identification of non-buffering sequencing modules.
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Figure 4.8: Initiating an active route starting from a buffer module.

interfering buffered transport units this requires specifying a relocation route
using stepwise passive routes (cf. Section 4.2.2.4).
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4.2.2.1 Authorization Concept

Within the decentralized system setup, all conveyor modules are independent
and act autonomously. Planning several active routes simultaneously may cre-
ate conflicts if requests are mutually exclusive. This could be solved by setting
priorities among modules, transport units or directions as in Sohrt and Over-
meyer (2020) or Hao (2020), but limits universality of the presented algorithm
especially with respect to more complex network structures.

Therefore, we develop a decentralized authorization concept ensuring that all
active routes are planned sequentially. Planning processes are decoupled such
that deadlock-free system operation is guaranteed (cf. Section 5.1.1). Note
that this only applies to route planning while not affecting their execution. As
the time required for transferring data is negligible when compared to that for
transferring physical objects, we do not expect limitations regarding system
performance due to this sequential procedure.

For implementing the decentralized authorization concept, each system module
acts as a state machine as illustrated in Figure 4.9. At any time, there is exactly
one authorized module within the system. Only this module is entitled to plan
an active route. At system configuration, it is initialized with the first input
module of the system. Whenever the authorization is passed, the sequencing
and input modules of the system are notified, as from these an active route may
originate. Output modules never plan active routes and are therefore excluded
from the authorization process.

Active routes are used to introduce and unload transport units into and out of
the system (cf. Section 4.1.1). Each time a module intends to start planning
an active route, it first sends a request to the currently authorized module to be
authorized next. As soon as this completed planning its active route, it passes the
authorization to the next module among the incoming requests. Active routes
for unloading are prioritized over those for buffering, as the former directly
contribute to system throughput. If an authorization request is not granted,
the notification of changed authorization triggers a new request to the currently
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Figure 4.9: Authorization concept.

authorized module. To ensure that there is always an authorized module within
the system, the authorized state can only be exited if and only if an authorization
request has been received. In case a requested transport unit is relocated to an
alternative buffer module, the former one is no longer responsible for initiating
the active route of the corresponding transport unit. Thus, it aborts initiating the
active route while the newly allocated buffer module is triggered by the output
module to initiate route planning after receiving the update of the changed buffer
module allocation (cf. Figure 4.8).

4.2.2.2 Path Selection

While paths of passive routes are rather clear defined (cf. Section 4.1.2), active
routes entail a large range of possible paths. Based on the path characteristics
defined in Section 4.1.3, we develop an adapted decentralized A* algorithm for
path selection of active routes which is illustrated in Figure 4.10. Starting from
the initiating module of the active route, the exploring module continues the
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open list of known modules by its adjacent modules in each search iteration
and identifies the best module to be explored next. In case of equivalent best
modules, decisions are made randomly. The selected module is notified to con-
tinue the A* search, providing all currently available path information. Thus,
the explored module becomes the next exploring module until the destination
of the active route is found. Then, the best path is fixed by confirming the
corresponding predecessor modules up to the initiating module.

exploring module explored module

create request to 

next explored 

module

route 

destination

no

yes

create 

confirmation for 

route 

predecessor

update open list 

route 

initiating 

module
yes

no

Figure 4.10: Path selection of active routes using the decentralized A* algorithm.

Selecting the next explored node is based on path lengths, interfering buffer
modules, and necessary directional changes along the route (cf. Section 4.1.3).
Due to the decentralized system setup, only the local information of exploring
modules can be accessed directly in each iteration. It requires several iterations
for specifying all necessary information concerning the path characteristics of
a sub-path when determining an optimal solution.

Path lengths result from the directional distances specified during system config-
uration (cf. Section 3.3.2.2). Thus, this information can already be incorporated
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to guide the A* search before notifying the next exploring module. Interfering
buffered transport units cannot be detected before exploring the respective buffer
module, as the allocation of buffered transport units is held locally. Directional
changes can be derived based on the transmitted path predecessor combined
with the direction towards the adjacent module. This implies a series of at
least three modules for identifying directional changes along a potential path.
Particularly, directional changes arising in later iterations cannot be anticipated.

We calculate the estimated path cost c̃n of an adjacent module n proceeding
from modulem as

c̃n = c̃m (4.1)
+
(
d~nme − d∗me

)
+

{
pb ifm is buffer module
0 otherwise

+

{
pc if n implies directional change
0 otherwise.

It incorporates the estimated path cost c̃m of module m from a prior iteration.
Added to this is the length of the detour (d~nme − d∗me) measured in module
lengths when routing via its adjacent module n. It corresponds to the difference
between the directional distance d~nme to the destination module e via module
n and the shortest possible distance d∗me from module m to module e. The
penalty terms pb and pc for buffer modules and directional changes can be
parameterized to specifically guide path selection. However, adding pc depends
on the path predecessor and may retroactively change the cost estimate of
different paths. For guaranteeing optimality, path cost estimation needs to be
admissible according to the A* requirements, i.e. path costs must never be
overestimated (Hart et al. 1968). To satisfy admissibility, pc cannot be set
arbitrarily.

We denote by
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• c̃p the estimated cost for (sub-)path p,

• dp the distance of (sub-)path p measured in module lengths,

• npb the number of buffer modules on (sub-)path p (npb < dp),

• npc the number of directional changes on (sub-)path p,

• p∗ a sub-path of an optimal solution,

• ṕ a sub-path of a non-optimal solution, and

• M the set of conveyor modules within the network.

As we aim to avoid buffer modules and directional changes within selected paths
(cf. equation (4.1)), generally, the lower bound of

pb, pc ≥ 0 (4.2)

applies. This is also consistent with the restriction to non-negative edge weights
required in the A* search.

The upper bound of pc follows from Bellman’s principle of optimality, where
an overall optimal solution is derived from combining optimal partial solutions.
Therefore, no estimated path costs may be generated for all possible sub-paths
ṕ and p∗ with equal start and end nodes such that

c̃ṕ ≤ c̃p∗ . (4.3)

This means that the estimated cost difference between each optimal and non-
optimal sub-path must exceed pc, as otherwise, the non-optimal sub-path may
outperform the optimal one if the optimal sub-path includes a directional change
prior to the non-optimal one. To generally satisfy admissibility within the
decentralized A* search,

c̃p
∗
< c̃ṕ (4.4)

⇔ dp
∗

+ np
∗

b · pb + np
∗

c · pc < dṕ + nṕb · pb + nṕc · pc
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must hold for all possible sub-paths ṕ and p∗ with equal start and end nodes.
This gives

pc <

(
dṕ − dp∗

)
+
(
nṕb − n

p∗

b

)
· pb

np
∗
c − nṕc

, (4.5)

where nṕc 6= np
∗

c . Note that overestimation is only critical in case of sub-paths
with different numbers of directional changes, as otherwise, these are penalized
equally such that their prioritization remains unchanged.

Due to equation (4.2) either(
dṕ − dp∗

)
+
(
nṕb − n

p∗

b

)
· pb

!
> 0 ∧ (4.6)(

np
∗

c − nṕc
)

!
> 0

or (
dṕ − dp∗

)
+
(
nṕb − n

p∗

b

)
· pb

!
< 0 ∧ (4.7)(

np
∗

c − nṕc
)

!
< 0

applies. Thus, we define the positive minimum of equation (4.5) for specifying
pc, i.e.

pc
!
< min

(dṕ − dp∗)+
(
nṕb − n

p∗

b

)
· pb

np
∗
c − nṕc

 ∈ R+. (4.8)

Since the system is limited regarding its size(
dṕ − dp∗

)
,
(
nṕb − n

p∗

b

)
,
(
np
∗

c − nṕc
)
∈ Z ∩ {−|M |, . . . , |M |} (4.9)
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holds. Observing equations (4.6) and (4.7), the minimum of equation (4.8)
results from

max
ṕ,p∗:
ṕ 6=p∗

∣∣∣np∗c − nṕc ∣∣∣ (4.10)

and
min
ṕ,p∗:
ṕ 6=p∗

∣∣∣(dṕ − dp∗)+
(
nṕb − n

p∗

b

)
· pb
∣∣∣ . (4.11)

Due to equation (4.9) andM 6= ∅, equation (4.10) can be restricted to

1 ≤ max
ṕ,p∗:
ṕ 6=p∗

∣∣∣np∗c − nṕc ∣∣∣ ≤ |M |. (4.12)

Equation (4.11) becomes arbitrarily small with growing system size, as it de-
pends on the particular path characteristics of ṕ and p∗ as well as the value of
pb. Therefore, we set

min
ṕ,p∗:
ṕ 6=p∗

∣∣∣(dṕ − dp∗)+
(
nṕb − n

p∗

b

)
· pb
∣∣∣ ≤ ε. (4.13)

From this follows the upper bound of pc as

pc
!
<

ε

|M | (4.14)

covering all possible combinations of two sub-paths ṕ and p∗ to guarantee
general optimality within the decentralized A* search for path selection.

4.2.2.3 Route Reservation

Route reservation aims to schedule the routes of transport units within the
system. This comprises the selected path of the active route as well as its
induced passive routes, where interfering buffered transport units are relocated
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(cf. Section 4.2.2.4). We apply a time window-based approach using the
concept of logical time. It builds upon the preliminary work of Lamport (1978)
and Seibold et al. (2022).

Logical time is used to synchronize parallel processes in distributed systems.
Each process comprises a defined causally related sequence of events (cf. Fig-
ure 4.11). Lamport (1978) defines the "happened before" relation ’→’ rep-
resenting an irreflexive partial ordering among the set of all events within the
system: ei → ej implies event ei happened before event ej , i.e., ei causally
affects ej . If neither ei → ej nor ej → ei holds, these events are stated concur-
rent. Each process q is assigned a logical clock Cq , where Cq〈ei〉 defines the
logical time of event ei within process q. From this follows the clock condition:
If ei → ej then Cq〈ei〉 < C q́〈ej〉 for all events ei, ej of processes q and q́.

Process a

a1

a2

a3 b2

b1

b3

c2

c1

Process b Process c

Figure 4.11: Parallel processes with multiple events and causal relations (based on Lamport 1978).

Seibold et al. (2022) transfer these findings to controlling decentralized material
handling systems within a sorting application. A process relates to a transport
route through the system, while each transfer between two adjacent modules
corresponds to a single event of this process (cf. Figure 4.12). Each conveyor
module is assigned a logical clock. Transferring a transport unit requires reserv-
ing a logical time window at all modules of its route. Therefore, each module
of the system locally holds a reservation table in which all of its transfers are
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scheduled. These are executed in ascending order of their reserved logical time
windows. When completing a transfer, the involved modules update their log-
ical clocks accordingly. Thus, clock times refer to events rather than physical
time points.

SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

The property of system liveness includes the termination
of each process i.e. each box must be transported to its
destination. In order to prove system liveness, it is necessary
to prove the absence of deadlocks, livelocks and starvation.

Below we review the concept of logical time from [10] and
then describe a modified logical time for material handling
that guarantees system liveness.

IV. LAMPORT’S LOGICAL TIME

A distributed system consists of multiple parallel processes,
each comprising an ordered set of events. Because of this
defined order, causal relations exist between the events of
one process. Lamport [10] refers to a causal relation between
two events as a “happening before” relation. The events of
the processes are represented by dots in Figure 4. Parallel
processes are connected to each other by messages defining a
causal relation between the events of two different processes:
the event of sending a message happens before the event of
receiving it. The sending of a message is represented by a
wavy arrow in Figure 4. The entire set of causal relations forms
a partial ordering of the events in the system. For example,
event p1 happens before q3 in Figure 4 because the events are
connected through a sequence of causal relations. However,
the ordering of events p3 and q3 cannot be determined because
there is no sequence of causal relations.

Fig. 4: Distributed system: parallel processes with multiple
events and causal relations, from [10].

Lamport [10] assigns a number to each event representing
the logical time at which the event occurs. Ci is the logical
clock of process Pi and Ci〈a〉 the logical time of event a if
it is an event of process Pi. The set of logical clocks of all
processes is represented by C where C〈a〉 = Ci〈a〉 if a is an
event of process Pi. Lamport formulates the clock condition
as follows: For any events a, b: if a → b then C〈a〉 < C〈b〉,
where “→” is the symbol for “happening before.”

Lamport also defines timestamps on messages as a means
of updating logical time and requesting and managing ac-
cess to a common resource. Because in a distributed system

there is no universal clock, modules only become aware
of changes in time when executing events. For Lamport,
events are coincident with sending and receiving messages and
acknowledgments. A sender indicates its logical time with the
timestamp; if later than the receivers’ logical time, the receiver
updates its logical clock; the sender does likewise with the
acknowledgment.

a

b

a1 a2 a3

b1

b2

b3

c

c1

c2

Fig. 5: Example routes for three boxes.

To see how logical time might be understood in the context
of material handling, consider a small network of unit-sized
conveyors arranged in a grid (Figure 5), such that each
conveyor can convey only to its immediate physical neighbors.
Logical time increments by one unit in this example. Two dif-
ferent “happening before” relations exist: First, the transport
steps of each unit can only take place in a predetermined order:

a1 → a2 → a3

b1 → b2 → b3

c1 → c2

Second, on the module where the routes of handling unit a
and b cross, the transport steps must occur in a certain order:
Handling unit a must have left the module before unit b enters
or vice versa.

b3 → a1 or a2 → b2

The route of box c does not overlap with another route.
Therefore, no causal relations exist, and the transport of box
c can be performed independently from the other boxes.

For the two kinds of “happening before” relations, the
following two conditions must be fulfilled in order to satisfy
Lamport’s clock condition:

1) The transport steps of one box must happen at advancing
logical time.

2) Consider one conveyor module: The outgoing transport
of one box must take place at an earlier logical time
than the incoming transport of the next box.

In the example of Figure 6, the following conditions must
be fulfilled regarding the logical time at which the transport
steps are performed:

C〈a1〉 < C〈a2〉 < C〈a3〉

C〈b1〉 < C〈b2〉 < C〈b3〉

C〈c1〉 < C〈c2〉

Figure 4.12: Describing transport routes using processes and events from Figure 4.11 (according
to Seibold et al. 2022).

For route reservation within the developed decentralized sequencing algorithm,
the involved modules of a transferred transport unit negotiate logical time win-
dows matching their local reservation tables. Sequencing requires the following
reservation conditions (R1) to (R6) to be satisfied. We use the notation accord-
ing to Seibold et al. (2022) (cf. Table 4.2).

Tin (Pa, Ri) < Tout (Pa, Ri) (R1)

The outgoing transport of each transport unit at each module is scheduled after
its incoming transport there.

Tout (Pa, Ri) = Tin (Pa, Rj) (R2)

Each pair of adjacent modules i and j along the transport route of a transport
unit agrees on the timing regarding their common event. Combining reservation
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Table 4.2: Notation for defining reservation conditions (based on Seibold et al. 2022).

Symbol Physical equivalent

Processes Pa, Pb Transport routes of transport units a and b
Process Psa Transport route of a successor of transport unit a

within their unloading sequence
Resource Ri, Rj Conveyor modules i and j
Resource Ro Output module o
Logical clock Ci Logical clock of module i
Event Tin (Pa, Ri) Incoming transfer of transport unit a at module i
Event Tout (Pa, Ri) Outgoing transfer of transport unit a at module i

conditions (R1) and (R2) yields ascending logical timewindowswithin the event
sequence of each process.

Tout (Pa, Ri) < Tin (Pb, Ri) (R3)

Each module can hold only one transport unit at a time. Thus, the respective
logical time windows according to reservation condition (R1) for two routes
scheduled at the same module may not overlap.

Ci < Tin (Pa, Ri) (R4)

Upcoming events are scheduled in future logical time regarding the reserved
module to satisfy the causal event dependencies (cf. Lamport 1978).

Tin (Pa, Ro) < Tin (Psa , Ro) (R5)

Each succeeding transport unit may not enter at the assigned output module be-
fore any of its predecessors. This upholds the predefined unloading sequences.

Tout (Pa, Ri) =∞ (R6)
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Each buffered transport unit blocks its allocated buffer module for an unlimited
time period until its predecessor is planned or it is relocated (cf. Figure 4.4).
Thus, reservation condition (R6) defines a buffer module.

Establishing a set of logical time windows adhering to reservation condi-
tions (R1) to (R6) is realized via decentralized negotiations along the selected
path of active routes as shown in Figure 4.13. Adjacent modules iteratively
suggest feasible logical time windows based on their local reservation tables
until an agreement is found.

Each reservation request is created observing reservation condition (R1) at the
requesting module. Furthermore, the suggested next open time window is
always scheduled later than the requested one when rejecting reservation re-
quests. Verifying the feasibility of the requested logical time by checking the
local reservation table at the requested module reveals potential conflicts vio-
lating reservation conditions (R3) and (R4). Reservation condition (R5) only
applies at output modules and represents an additional feasibility requirement.
If the requested time disrupts the predefined unloading sequence, the output
module suggests the next possible time window to guarantee the correct se-
quence required at the downstream process. Buffer modules need to satisfy
reservation condition (R6). Thus, sequencing modules which are specified as
the destination module of a route check a time window of indefinite length
when receiving the corresponding reservation request. Reserving the destina-
tion module of the active route implies that an agreement among all involved
modules is found, such that the reservations are confirmed up to the initiating
module. Each pair of adjacent modules synchronizes the logical time of their
common event to observe reservation condition (R2).

For active routes terminating at a buffer module, the overall route of the corre-
sponding transport unit cannot yet be determined entirely (cf. Section 4.1.1).
To correctly continue the subsequent active route from the buffer module to the
output module, the buffer module registers the allocated transport unit at the
responsible output module (cf. Figure 4.14). Thus, the latter is able to claim
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Figure 4.13: Active route reservation.

the buffered transport unit as soon as it is requested such that the active route
for unloading at the output module is initiated (cf. Section 4.2.1).
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Figure 4.14: Updating buffer module allocation at output modules.

4.2.2.4 Relocation

In highest-density conveyor networks, a selected path of an active route may
include several modules currently allocated for buffering transport units, which
are not yet requested. Using a dynamic buffering approach (cf. Section 4.1.1),
interfering transport units are relocated to alternative buffer modules to enable
the path of the active route. Due to reservation condition (R6), buffer modules
receiving a reservation request cannot accept any logical time window after the
buffered transport unit enters there. Therefore, they initiate planning passive
routes for relocating the interfering buffered transport unit before processing the
received reservation request regarding the active route (cf. Figure 4.13).

A relocation route moves buffered transport units to access the module of the
interfering transport unit at the active route. The number of buffered transport
units to be moved results from the length of the relocation route. Based on the
distance-based buffer selection rule (cf. Section 4.1.2), the currently allocated
buffer module of the interfering transport unit first identifies the closest non-
buffering module using the distance information from system configuration (cf.
Figure 4.7).

Paths of relocation routes are planned stepwise, where passive routes are used
to move buffered transport units towards the identified non-buffering module.
Therefore, a relocation route is created by buffer modules successively request-
ing an adjacentmodule to pass their buffered transport unit. To guarantee system
liveliness, relocation routes need to observe the following path restrictions:
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(P1) The module the reservation request was received from is omitted.

(P2) No module is requested more than once for relocation.

Condition (P1) results from the spatial dimensions of the transferred transport
units. When executing the active route, the interfering buffered transport unit
needs to be relocated via an alternative path to avoid collision. This is always
possible, as we claim 2-connectivity of the underlying conveyor network (cf.
Section 3.2.2). Using condition (P2), we ensure cycle-free paths on passive
routes for livelock prevention (cf. Section 5.2.1). We refer to modules not
compliant with conditions (P1) and (P2) as invalid modules. With each further
relocation request, these are updated to observe the path restrictions for passive
routes.

Passive route reservation proceeds as illustrated in Figure 4.15. Starting from
the allocated buffer module of the interfering transport unit, the shortest ad-
missible path in direction to the identified non-buffering module is explored by
successively sending relocation requests. An admissible path does not include
any invalid modules. Therefore, each buffer module receiving a relocation re-
quest creates a subsequent relocation request directed to one of its admissible
adjacent modules which represents a shortest path towards the identified non-
buffering module. To avoid switching delays, adjacent modules are preferred
if they are located on the same transport axis as the module from which the
incoming relocation request was received. In case of equivalent adjacent mod-
ules, decisions are made randomly. If there is no admissible adjacent module
available, the passive route to the predecessor of the relocation route is rejected.
The predecessor in turn requests other admissible adjacent modules, if avail-
able. Otherwise, it also rejects to the sending module of its relocation request.
Rejecting modules become invalid according to condition (P2).

The series of relocation requests continues until reaching a non-buffering mod-
ule which can accept an indefinite buffer reservation according to reservation
condition (R6). Then, the relocation route is defined enabling all adjacent mod-
ules of the included passive routes to negotiate logical time windows at which
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Figure 4.15: Passive route planning.

their allocated buffered transport unit will be passed to the subsequent module.
When confirming a relocation request, the requesting module, i.e. the start
module of this passive route, becomes a non-buffering module, as its indefinite
buffer reservation is resolved. Thus, it is able to respond to the relocation request
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it received from its predecessor on the relocation route. Each module accepting
a relocation notifies the responsible output module such that it can correctly
claim the buffered transport unit as soon as it is requested (cf. Section 4.2.1).

Especially in non-grid networks, the effective route length may be underesti-
mated when searching for a non-buffering module based on shortest directional
distances. Due to the decentralized system design, invalid modules extending
a relocation route cannot be anticipated. Therefore, the relocation route termi-
nates at the first requested non-buffering module. The identified non-buffering
module solely directs the path of a relocation route while guaranteeing capacity
to take a buffered transport unit in any case. This allows avoiding unnecessary
relocations.

4.2.3 Routing State Machine

Aggregating the operations for route initiation and planning yields a routing
state machine at decentralized module level as illustrated in Figure 4.16. It runs
concurrently to the state machine of the decentralized authorization concept
(cf. Figure 4.9). Buffer modules hold an indefinite buffer reservation according
to reservation condition (R6), otherwise they are in state transport. Requested
transport units require an active route from their allocated buffer module to the
output module. Therefore, buffer modules of requested transport units become
impulsive buffers, while buffer modules of transport units which are not yet
requested remain in state non-impulsive buffer. Impulsive buffer modules aim
to initiate active routes. This creates interdependencies with the decentralized
authorization concept (cf. Section 4.2.2.1), as planning an active route may not
be started before being authorized.

Input and output modules are generally not used for buffering transport units
such that their routing state machines can be simplified (cf. Figure 4.17).
Introducing transport units into the system requires an active route starting from
the input module the transport unit arrives at. Therefore, input modules are
included within the decentralized authorization concept and intend to initiate
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Figure 4.16: Routing state machine of sequencing modules.

an active route as impulsive buffers upon receiving the destination for their
currently allocated transport unit from the output module. As the next active
route is not required until another transport unit arrives, input modules switch
to state transport after completing route planning. Output modules are only in
state transport, as they do not initiate active routes. Transport units which enter
there are immediately passed to the downstream process.

4.2.4 Transport Execution

In offline route planning, transports are not executed until route planning is
complete (cf. Section 2.2). Each active and passive route represents an in-
dependent sub-route. Therefore, the physical transfers of the corresponding
transport unit are initiated after confirming the reservation at the start module
of an active or passive route. These are processed following their reserved
logical time windows in ascending order (cf. Seibold et al. 2022). Within the
decentralized system setup, this is realized by exchanging transport requests
and confirmations (cf. Figure 4.18). A transport unit is transferred if and only
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Figure 4.17: Routing state machine of non-sequencing modules.

if both adjacent modules aligned their transport direction and agree on the next
logical time step within their respective reservation tables. After completing a
transfer, the involved modules forward their logical clocks. The sending mod-
ule updates its logical clock to Tout, the receiving one to Tin of their reserved
logical time windows for the corresponding transport unit. This guarantees
an unambiguous transfer sequence at each module within the system providing
deadlock-free system operation during transport execution (cf. Section 5.1.2).

4.3 Agent-Based Simulation Model

To validate the developed decentralized sequencing algorithm, we implement an
agent-based simulation model using the Java-based simulation software Any-
logic. As the proposed decentralized sequencing system consists of several
autonomous decisional entities, which act independently, the overall system be-
havior cannot be described analytically (Fottner et al. 2021). For such systems,
agent-based simulation models are increasingly used to analyze the complex
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Figure 4.18: State machine for transport execution.
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interdependencies (Macal and North 2014). Object-oriented programming lan-
guages are suitable, as attributes and methods can be encapsulated into the
entities themselves (Law 2015, p. 695). Creating an agent-based model com-
prises defining the simulation environment, the agent types, as well as their
interactions (Macal and North 2014), which we describe in Sections 4.3.1,
4.3.2, and 4.3.3, respectively.

4.3.1 Simulation Environment

System installation (cf. Section 3.3.2) and system-related data recording (cf.
Section 8.1.2) are included in the central simulation environment to provide
a more user-friendly simulation model. These are already realized within
existing decentralized applications such that we can reduce model complexity
without loss of generality. We outline the simulative implementation of system
installation and system-related data recording in Sections 4.3.1.1 and 4.3.1.2,
respectively. As the flow of transport units arriving from the upstream process
needs to be compatible with the available sequencing capacity of an installed
conveyor network (cf. Section 3.2.1.2), we generate the network inflow within
the implemented simulation model to meet the defined inflow constraints (cf.
Section 4.3.1.3).

4.3.1.1 System Installation

For system setup, the network of the considered sequencing system is read from
an external file defining the number and arrangement of sequencing, input, and
output modules. Each required conveyor module is created as an independent
conveyor module agent and positioned within the simulation area accordingly.
The lowest indexed input module is identified to be authorized within the
decentralized authorization concept at each module (cf. Section 4.2.2.1). Ad-
ditionally, the parameters of the decentralized sequencing algorithm pb and pc
are set locally (cf. Section 4.2.2.2).
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From the network structure, adjacent modules including their connecting di-
rections are derived for each module. This allows to calculate the shortest
directional distances – measured in module lengths – from each module to all
other modules in the system via each of its adjacent modules. Based on that,
we can verify the feasibility requirements for sequencing networks as defined
in Section 3.2.2. If the conveyor network is capable of sequencing, system
configuration is finished such that processing of arriving transport units starts.

4.3.1.2 Data Recording

Providing system-related key figures allows to assess the performance of the de-
centralized sequencing system directly at runtime. All local data of the module
agents is continuously consolidated to an overall system result and visualized
using different diagrams (cf. Figure 4.19). After terminating a simulation run,
aggregated key figures are calculated from all recorded data. Additionally, heat
maps and diagrams are generated. All evaluations are exported to an external
file to be used for further analysis.

Figure 4.19: Snippet of simulation model – Performance Evaluation.

4.3.1.3 Network Inflow

To ensure running operations without congestion, we need to generate the flow
of transport units arriving at the system such that the defined inflow constraints
can be satisfied (cf. Section 3.2.1.2). Generally, we describe the set of transport
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units for sequencing within the implemented simulation model by the numerical
parameters

• batch size k ∈ N

• sequencing rate s ∈ [0, 1], and

• arrival rate λ ∈ R

as well as the non-numerical parameters

• arrival sequence and

• input-output assignment.

These can be set stochastically or deterministically. The batch size corresponds
to the number of transport units included in each batch. Completely and partially
defined unloading sequences, as shown in Figure 3.5, are generated using the
sequencing rate. The rank rb of a transport unit b within its batch sequence for
unloading follows as

rb =


1 if @ pb

rp
b

+ 1 if ∃ pb ∧ % < s

rp
b if ∃ pb ∧ % ≥ s,

(4.15)

where pb represents the direct predecessor of transport unit b within the batch
sequence and % a [0, 1)-uniformly distributed random number. This means that
for completely defined unloading sequences, s = 1 applies. The share of
equally ranked transport units within a batch increases with decreasing value of
s. We obtain a batch sorting use case for s = 0, as no predecessor-successor
dependencies arise within a single batch.

The arrival sequence of a batch corresponds to a permutation of the predefined
unloading sequence. The more these two sequences diverge, the more capacity
needs to be provided by the sequencing modules for buffering not yet requested
transport units. Within the arrival sequence of a batch, each transport unit is
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assigned to one of the input modules of the network for being introduced into
the system. Furthermore, each batch entails a specified destination, i.e., one
of the output modules where it will be unloaded. This is captured using the
input-output assignment. To model a continuous flow of materials, transport
units arrive at their assigned input modules according to a defined arrival rate
based on exponentially distributed interarrival times. To compare different
conveyor networks regardless of their number of input modules, λ relates to
the overall sequencing system. Assuming that arriving transport units are on
average equally distributed among all input modules within the network, the
arrival rate λi of input module i ∈ I follows as

λi =
λ

|I| . (4.16)

Observing the inflow constraints means that creating a subset of released trans-
port units according to conditions (I1) to (I3) is always possible from the flow
of transport units arriving at the system. We can ensure conditions (I1) and (I2)
by restricting the maximum processable batch size based on the given conveyor
network as well as the mixing of batches within the arrival characteristics at the
input modules. Condition (I3) is intrinsically satisfied.

Consider a single batch sequencing system where only one batch of size n with
completely defined unloading sequence is processed. If the transport units of
this batch arrive in entirely reverse order, the network is initially filled with
buffered transport units of rank 2 . . . n. When introducing the last transport
unit, i.e., the first one to be unloaded at the assigned output module, n− 1

sequencing modules are already occupied. In this case, n sequencing modules
are necessary to accept all transport units of this batch. Moving transport
units within the network requires at least one unoccupied sequencing module.
Thus, we limit a conveyor network comprising the setC of sequencing modules
to processing batches with a maximum of (|C| − 1) transport units to handle
arbitrary batch arrival sequences. For single batch sequencing systems, this
requirement suffices to observe conditions (I1) and (I2).
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To extend the single batch sequencing system such that multiple batches – still
with a maximum size of (|C| − 1) – can be processed simultaneously within
an (m : n) setting, we specify a definite batch processing sequence. This needs
to be observed within the arrival characteristics of transport units at all input
modules. Let πbi and πb̃i denote the positions of two transport units b and
b̃ within the queue of arriving transport units at their input module i. Both
transport units are associated with different batches, but assigned to the same
input module. If the batch containing transport unit b is processed before that
of transport unit b̃, then

πbi < πb̃i (4.17)

needs to be satisfied for all input modules where transport units assigned to both
of these batches arrive.

Due to the maximum processable batch size of (|C| − 1), the available capacity
of the conveyor network suffices to entirely sequence each batch. Restricting the
batch mixing within the arrival characteristics at the input modules allows this
capacity to be applied to multi-batch sequencing without requiring additional
sequencing modules. Transport units are introduced if and only if they can be
included in the set of released transport units, which is limited to (|C| − 1)

(cf. condition (I2)). Thus, available capacity within the network is allocated
to buffered transport units while ensuring that a transport unit requested next
within the unloading sequence of an output module can still be introduced when
arriving at its input module. Each batch can be processed entirely such that we
achieve a continuous flow of materials in sequencing.

Note that the effective arrival times of transport units result from the interarrival
time distribution at the corresponding input modules. Transport units arriving
at different input modules are independent in terms of their arrival times, i.e., a
transport unit assigned to a subsequently processed batch may arrive earlier at
its input module than a transport unit assigned to an previously processed batch.
To comply with the defined inflow constraints, only their positions within the
queue of arriving transport units are relevant.

85



4 Decentralized Sequencing

4.3.2 Agent Types

In the literature, there is no universal agreement on precisely defining the
term agent in the context of agent-based simulation models (Macal and North
2014). Based on the definitions given in Macal (2016), we define two agent
categories to model the decentralized sequencing system: active and passive
agents. Passive agents can be understood as self-centered entities incorporating
several attributes andmethods, whereas active agents additionally take decisions
and are able to interact with other active agents (cf. Figure 4.20).

attributes

methods

attributes

methods

attributes

methods

attributes

methods

attributes

methods

attributes

methods

(a) Passive agents.

attributes

methods

attributes

methods

attributes

methods

attributes

methods

attributes

methods

attributes

methods

(b) Active agents.

Figure 4.20: Agent types.

Transport units (cf. Section 3.3.1.2) represent passive agents within the simula-
tion model. They are illustrated as colored, numbered squares, where the color
corresponds to their batch and the number to their rank within the batch. The
decentralized controlled conveyor modules (cf. Section 3.3.1.1) represent active
agents. They are illustrated as gray squares sized to cover the area of a transport
unit, where input, output, and sequencing modules can be distinguished by
their hue. Additionally, an output module inherits the color of the batch it is
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currently unloading at runtime. Figure 4.21 shows a snippet of the simulation
model of a 5 × 5 square arrangement of sequencing modules including 5 input
and 5 output modules at the top and bottom, respectively.

Figure 4.21: Snippet of simulation model – Sequencing System.

The arrival of transport units follows a given interarrival time distribution (cf.
Section 4.3.1.3). Once a transport unit enters the system at the assigned input
module, it becomes visible there. The transport unit disappears when reaching
its assigned outputmodule. Further illustration of the upstream and downstream
processes is not included, as these fall outside the defined system boundaries
(cf. Section 3.1). Identifying transport units in terms of their batch and rank is
not modeled explicitly, but assumed to be given and without errors.

4.3.3 Agent Interactions

Active agents are able to interact with each other using events, i.e. sending
messages and transferring transport units. These events trigger reactions at the
receiving agent, such as

• initiating an active route,

• forwarding a message,
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• sending a response message,

• taking an incoming transport unit, or

• updating its logical clock.

To reduce the processor load during simulation execution, the message trans-
mission mechanism (cf. Figure 3.7) is modeled as direct messaging events
with a temporal delay proportional to the distance between message sender and
recipient. Thus, sending a message from module i to module j takes a time of

tijmsg = d∗ij · tmḿmsg, (4.18)

where tmḿmsg denotes the message sending delay between two adjacent modules
and d∗ij the length of a shortest path of modules from module i to module j.
We assume faultless communication within the simulation model.

In reality, the drives of conveyor modules, which are controlled by attached
sensors and actuators, enable physically moving transport units (cf. Sec-
tion 3.3.1.1). We omit specificallymodeling the corresponding hardware control
within the simulation to reduce model complexity. Transport units are trans-
ferred between adjacent modules, which takes a time of tconv . We neglect
acceleration and deceleration by assuming them to be included in tconv . Chang-
ing between orthogonal conveying directions at a module requires switching
from roller to belt drive or vice versa (cf. Section 3.3.1.4). This causes a time
delay of tswitch. We assume faultless transport execution within the simulation
model, i.e. transport units are always transferred along their planned route
according to the negotiated reservations at each module.

Unless otherwise stated, we set tmḿmsg = 0.005 s, tconv = 1 s, and tswitch = 0.5 s.
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4.4 Chapter Conclusion

In this chapter, we develop the overall design, the decentralized concept as well
as the simulative implementation of the decentralized sequencing algorithm.
Overall, this responds to the second research question:

How can we enable multi-batch sequencing of physical ob-
jects using decentralized controlled highest-density conveyor
networks?

Sequencing is realized by splitting the overall route of a transport unit from
its input to its output module into sub-routes. We differentiate active and
passive routes. Active routes generally guide the process of sequencing. They
enable introducing arriving transport units into the system as well as unloading
requested transport units at their output modules. Passive routes depend on
active routes and are used to relocate buffered transport units interfering with
active routes. Allocating buffer modules for active routes is based on the
unloading sequence-based buffer selection rule, while for passive routes the
distance-based buffer selection rule applies. These are designed to create a
pre-sequenced arrangement of buffered transport units to enable fast unloading
as soon as these are requested at their output modules. Pathfinding for active
and passive routes considers the length of a route as well as buffered transport
units and directional changes.

Decentralized communication of the systemmodules achieves processing trans-
port units within the system for sequencing. Active routes are initiated based
on the scheduled reservations at the output modules such that the predefined
predecessor-successor dependencies are observed. Due to an offline route plan-
ning approach, all routes are planned entirely from the start module to the
(intermediate) destination module before being executed. Planning an active
route comprises

• being granted the authorization for route planning,

• selecting the path of modules forming the active route, and
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• reserving feasible logical time windows for the active route as well as all
induced passive routes for relocation.

The decentralized authorization concept ensures that all active routes are
planned sequentially. This avoids conflicts and enables deadlock-free systemop-
eration. For path selection, we develop an adapted decentralized A* algorithm
including the defined path characteristics. Optimality is generally guaranteed
if it is parameterized as

pc <
ε

|M | . (4.19)

Route reservation follows a time window-based approach using the concept of
logical time. Adjacent modules of active routes negotiate feasible logical time
windows according to the defined reservation conditions (R1) to (R6). As in
high(est)-density conveyor networks buffered transport units may interfere with
active routes, relocations and even chains of relocations are required. These
are planned as sub-processes during route reservation using stepwise passive
routes. Satisfying 2-connectivity always enables specifying a feasible relocation
route starting from any sequencing module within the conveyor network. After
confirming all reservations up to the start module of an active or passive route,
the corresponding transport units are physically transferred by processing the
scheduled reservations in ascending order at each module.

For demonstrating the developed decentralized sequencing algorithm, we im-
plement an agent-based simulation model where each conveyor module is rep-
resented by an individual agent instance. These interact with each other using
events, i.e. sending messages and transferring transport units. This allows
predicting the behavior of the physical decentralized conveyor network for se-
quencing in reality.
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Chapter 5 of this dissertation is based on Fleischmann and Fur-
mans (2023) (Chapter IV).

Decentralized systems operate based on local decisions of several autonomous
entities. Each of them is only aware of a small portion of the information about
all processes and resources within the system (cf. Section 3.3.1). This makes it
prone to entering states fromwhich it cannot recover such that – despite faultless
operation – the system can no longer progress. These states are referred to as
deadlock, livelock or starvation situations (Tai 1994). In the presented sequenc-
ing system, the algorithmic operations as well as the allocation of resources
for physically moving transport units are processed at decentralized module
level. In the following, we show that system liveliness is generally ensured by
demonstrating deadlock, livelock, and starvation prevention in Sections 5.1, 5.2
and 5.3, respectively. By summarizing the results of this chapter, Section 5.4
provides an answer to the third research question of this dissertation.

5.1 Deadlocks

A deadlock results from a set of processes where each process is waiting for
an event of another process in this set (Tanenbaum and Bos 2015, p. 439). We
subdivide the investigations concerning deadlock prevention into algorithmic
operations (cf. Section 5.1.1) and resource allocation (cf. Section 5.1.2).
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5.1.1 Algorithmic Operations

The algorithmic operations are deadlock-free if we can guarantee that for each
arriving transport unit a complete route from its input to its output module is
initiated in finite time, observing the predefined predecessor-successor depen-
dencies. This allows a continuous flow of all transport units through the system.
At system level, a feasible solution needs to exist for the set of all necessary
active and passive routes. This requires all relevant modules to use consistent
information. Outdated or incomplete local information may create requests
which are mutually exclusive. We initially demonstrate how these inconsisten-
cies are prevented within the algorithmic operations. Based on that, we can
ensure that the system can always proceed in processing arriving transport units
if the defined system requirements (cf. Section 3.2) are satisfied.

Localmodule information is updatedwhen receiving confirmations. The decen-
tralized authorization concept (cf. Section 4.2.2.1) guarantees that active routes
are planned sequentially based on updated system information. Each request
is confirmed before receiving a new request concerning another active route.
This ensures that each module is in the correct state to respond to an incoming
request at any time. Planning multiple active routes simultaneously is possible
if and only if there is more than one module in state authorized. This requires
either an authorized module to pass on the authorization before completing
route planning of its current active route, or multiple modules to be notified of
being authorized next. The former case contradicts the specification of the state
transition from authorized to unauthorized (cf. Figure 4.9). Assuming faultless
system behavior, simultaneously authorizing multiple modules is impossible,
as exactly one sending module is selected from the incoming requests. Thus,
we can guarantee that all active routes are planned sequentially which prevents
interdependencies of different active routes and guarantees consistent system
information.

Due to sequential route planning, we can consider each active route individually.
Active routes are necessary to keep the system operating for sequencing. We
show that for each arriving transport unit, an active route to its output module
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is initiated in finite time. This ensures that the algorithmic operations required
for processing each transport unit are always triggered and prevents the system
or parts of it from stagnating in a deadlock situation.

Initiating an active route to the output module of a transport unit is possible as
soon as it is requested (cf. Section 4.1.1). This requires all of its necessary pre-
decessors to be introduced into the system and scheduled at the output module.
We guarantee this using the defined inflow constraints (cf. Section 3.2.1.2).
Condition (I1) ensures that each missing transport unit within the unloading
sequence of an output module is available in finite time such that the route of
the direct successor can be planned while observing reservation condition (R5).
The corresponding notification of the output module triggers route initiation at
the allocated buffer module (cf. Section 4.2.1). Using condition (I3), the set
of released transport units is updated for processing newly arriving transport
units. Condition (I2) limits the set of released transport units such that moving
transport units is always possible. As passive route planning interrupts route
reservation on the active route, multiple relocation routes are never planned
at the same time. Therefore, one non-buffering sequencing module is gener-
ally sufficient within the network. The algorithmic operations for sequencing
can continuously proceed preventing the system or parts of it from becoming
deadlocked.

5.1.2 Resource Allocation

Resource allocation for physically transferring the corresponding transport units
implies coordinating the utilization of the common system resources. Accord-
ing to Coffman et al. (1971), a resource deadlock requires the following four
conditions to coexist:

(D1) Mutual exclusion: Processes claim exclusive control of their required
resources.
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(D2) Hold and wait: Processes hold allocated resources while waiting for
further resources.

(D3) No preemption: Allocated resources are used to completion and released
by the process holding them.

(D4) Circular waiting: There is a circular chain of processes, each of which is
requesting a resource held by the next process in the chain.

To prevent deadlocks, at least one of these four conditions needs to be excluded
(Coffman et al. 1971). In modular conveyor systems, conditions (D1) to (D3)
are generally true, as (Mayer and Furmans 2010):

• each conveyor module can handle only one transport unit at a time satis-
fying mutual exclusion (cf. condition (D1)),

• each transport unit occupies a conveyor module until the next conveyor
module on its overall route is specified and becomes available satisfying
hold and wait (cf. condition (D2)), and

• occupying a conveyor module cannot be interrupted by another transport
unit satisfying no preemption (cf. condition (D3)).

Thus, we need to demonstrate that circular waiting (cf. condition (D4)) is gen-
erally excluded when allocating scheduled resources. Circular waiting requires
a set of transport units – referred to as processes P1 . . . Pn – holding a chain
of conveyors – referred to as resource R1 . . . Rn – forming a closed loop while
each process requests the resource currently held by the next process in the
chain (cf. Figure 5.1).

Referring to Table 4.2, the overall route of each transport unit through the system
corresponds to a cohesive process starting at an input module and ending at an
output module. To observe the predefined predecessor-successor dependencies,
planning the overall process of a transport unit is decomposed by defining
active and passive routes (cf. Section 4.1.1). For each buffered transport
unit, an indefinite buffer reservation is created at the allocated resource for
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process P holding ressource R

Figure 5.1: Circular waiting condition.

buffering according to reservation condition (R6). It is resolved entirely when
initiating the active route from the buffer module to the output module (cf.
Section 5.1.1). Thus, we obtain a finite overall process for each transport unit
ending up at its output module. It represents a series of ascending logical time
windows according to reservation conditions (R1) and (R2) even if the route
of the transport unit is partially specified as composition of active and passive
routes. This allows demonstrating deadlock prevention for resource allocation
similar to Seibold et al. (2022).

Due to reservation conditions (R1) and (R3), satisfying circular waiting (cf.
condition (D4)) as illustrated in Figure 5.1 results in the following reservation
dependencies for processes P1 . . . Pn:

Tin (P1, R1) < Tout (P1, R1) < Tin (Pn, R1) (5.1)
Tin (P2, R2) < Tout (P2, R2) < Tin (P1, R2)

...
Tin (Pn, Rn) < Tout (Pn, Rn) < Tin (Pn−1, Rn) .
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Based on reservation condition (R2), we obtain for the circular chain of adjacent
resources R1 . . . Rn:

Tout (P1, R1) = Tin (P1, R2) (5.2)
...

Tout (Pn−1, Rn−1) = Tin (Pn−1, Rn)

Tout (Pn, Rn) = Tin (Pn, R1) .

From this, it follows

Tout (P1, R1) < Tout (Pn, Rn) < Tout (Pn−1, Rn−1) (5.3)
< . . . < Tout (P2, R2) < Tout (P1, R1)

which is a contradiction. This demonstrates that observing reservation condi-
tions (R1) to (R6) within the algorithmic operations prevents deadlocks during
resource allocation by excluding circular waiting (cf. condition (D4)). The
scheduled reservations create a consistent ordering for processing transport
units at each module. As completing the transfer of a transport unit includes
forwarding the logical clock at the involved resources according to the logical
time of their common event (cf. Section 4.2.4), this ordering is preserved due
to reservation condition (R4).

5.2 Livelocks

In a livelock, a process indefinitely repeats the same sequence of actions without
progressing (Holzmann 1991, p. 38). We subdivide the investigations concern-
ing livelock prevention into algorithmic operations (cf. Section 5.2.1) and
resource allocation (cf. Section 5.2.2).
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5.2.1 Algorithmic Operations

Within the algorithmic operations, livelocks exist if modules send and receive
messages in an endless loop. In Section 5.1.1 we demonstrate that a feasible
solution for processing each arriving transport unit using active routes exists at
system level. This ensures that the corresponding active routes are initiated. For
livelock prevention, we show that this solution is found at decentralized module
level such that the algorithmic operations terminate at the initiating module.
We can guarantee this if path selection, route reservation, as well as all induced
relocation operations terminate.

Path selection iteratively explores the network of conveyor modules from the
start module to the destination module of an active route using the decentralized
A* algorithm. This requires a path to exist which is given by the defined
network requirements (cf. Section 3.2.2). Messaging loops imply that the
same modules are notified more than once to continue the A* search, i.e., the
selected path needs to include a cycle. As the decentralized A* algorithm is
based on non-negative edge weights (cf. Section 4.2.2.2), a path including
a cycle is always less valuable than the same path without the cycle. Thus,
modules which have already been explored are never selected for re-exploration
such that messaging loops are generally excluded. This guarantees that path
selection always terminates with confirming the active route at its initiating
module.

Route reservation includes the routes of multiple transport units when interfer-
ing buffered transport units are relocated using passive routes. This requires
all involved modules to achieve a feasible reservation schedule according to
the defined reservation conditions (R1) to (R6). At any time during reserva-
tion negotiations, there are no more than two actively negotiating modules (cf.
Figures 4.13 and 4.15). All other involved modules either already received a
confirmation or are awaiting a response to their request to continue negotia-
tions. Therefore, we show that each pair of adjacent modules always reaches an
agreement on the logical time of transferring the corresponding transport unit
while observing reservation conditions (R1) to (R6).

97



5 System Liveliness

Reservation requests to non-buffering modules on the active route may create
livelock situations if the rejection loop from two negotiating modules (cf. Fig-
ure 4.13) is never interrupted. The next open timewindow the requestedmodule
suggests is later than the requested one. This avoids repeating identical reserva-
tion requests. Non-buffering modules only hold finite reservations within their
local reservation tables. Therefore, the reservation request is feasible at the lat-
est when the new reservation is scheduled last at both negotiating modules. The
initiating module of the active route does not hold any reservation scheduled
later than that of its allocated transport unit such that postponing reservations
is always possible without contradicting reservation conditions (R1) and (R2)
along the active route. Due to sequential route planning using the decentralized
authorization concept, this also applies in the given (m : n) setting.

Reservation requests to buffer modules induce passive route planning for relo-
cating the interfering buffered transport unit before continuing reservation on
the active route. This resolves the indefinite buffer reservation according to
reservation condition (R6) such that it becomes a non-buffering module. Due
to the defined inflow constraints (cf. Section 3.2.1.2), there is always at least
one module in the system which is not a buffer module and thus accepts the
indefinite relocation request (cf. Figure 4.15).

Livelocks occur if relocation requests are passed on indefinitely in a circular
chain of buffer modules without arriving at a non-buffering module. For such
a cycle of requests, no solution can be found, as negotiating a feasible solution
requires Tout < ∞ to be satisfied for at least one buffer module of the cycle,
which contradicts reservation condition (R6). Due to the defined path restric-
tions (P1) and (P2), cycles within a relocation route are generally excluded.
Before sending a subsequent relocation request, an admissible adjacent module
is initially verified (cf. Figure 4.15). Continuously updating the invalid modules
of the relocation route ensures that (P1) and (P2) are always met. The graph
of the conveyor network satisfies 2-connectivity (cf. Section 3.2.2) such that
there is always a feasible relocation path to move an interfering buffered trans-
port unit without collision to proceed on the active route. When negotiating
passive routes, the non-buffering module sets the time at which it confirms the
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indefinite buffer reservation. At the requesting module of the passive route,
reservation condition (R6) holds. Therefore, it can postpone the scheduled
outgoing transport of the relocated buffered transport unit such that the relo-
cation request is accepted. This guarantees that the algorithmic operations for
each relocation route always terminate at the initiating module of the interfering
buffered transport unit.

5.2.2 Resource Allocation

When allocating the scheduled resources, a livelock refers to a transport unit
circulating indefinitely within a cycle of conveyor modules without arriving at
its output module. Processing a transport unit throughout the system consists
of active and passive routes. Combined, they form the overall route of the
transport unit from its input to its output module. Resource allocation follows
the reserved logical time windows of each transport unit in ascending order.
Thus, the sequence of occupied modules is clearly defined for each transport
unit. As input and output modules are distinct, each transport unit is guaranteed
to be unloaded at its output module in finite time, even if – due to relocations –
the same modules may be reused along its overall route. This prevents livelocks
when allocating resources for transferring transport units within the system.

5.3 Starvation

Starvation describes a situation where a process – not being deadlocked – is
waiting indefinitely, as it is never allocated its requested resource (Ramesh
2010, p. 78). Thus, it never terminates. We subdivide the investigations
concerning starvation prevention into algorithmic operations (cf. Section 5.3.1)
and resource allocation (cf. Section 5.3.2).
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5.3.1 Algorithmic Operations

Within the algorithmic operations, requesting modules await the response of the
requested module. Starvation means that a requesting module waits indefinitely
for a response which is never received. In Section 5.2.1, we demonstrate that
route planning always terminates at the initiating module. This initially requires
being granted the authorization (cf. Section 4.2.2.1). We show that any module
initiating an active route is authorized to start route planning in finite time.

For this, we first need to ensure that there is always at least one module within
the system in state authorized. As the authorization is only passed in case of
incoming requests (cf. Section 4.2.2.1), we can guarantee that the authorization
is never lost. Combined with the findings of Section 5.1.1, we can restrict the
number of authorized modules to exactly one at any point in time.

If the authorized module changes, it notifies all relevant modules such that
initiating modules of active routes address their authorization requests correctly.
The number of simultaneously initiated active routes results from the buffer
modules allocated a transport unit requested at its output module and the input
modules occupied by a transport unit to be introduced into the system. These
may compete to be granted the authorization for route planning.

Sequencing requires observing the predefined predecessor-successor dependen-
cies when processing arriving transport units. An initiating module of an active
route cannot be disadvantaged indefinitely when passing the authorization, as
after a limited number of requests, there will be no other module awaiting to
be authorized. Due to the defined inflow constraints, all input modules re-
strain a transport unit from being introduced which cannot be released yet (cf.
Section 3.2.1.2). These will not generate an authorization request. Unload-
ing buffered transport units requires all necessary predecessors to be available
within the system. This limits the set of transport units requested at the output
modules, as it depends on the inflow into the system. Each buffer module of a
requested transport unit is therefore authorized for route planning in finite time.
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Likewise, buffered transport units cannot become requested if their predeces-
sors are not introduced. As the set of released transport units is limited and
matched to the system size (cf. condition (I2)), the authorization is granted to
each requesting input module in finite time. Thus, starvation is excluded within
the algorithmic operations.

5.3.2 Resource Allocation

Starvation within resource allocation means that a transport unit is continuously
denied from accessing a module on its overall route through the system. In
Section 5.1, we show that each transport unit is processed in finite time such
that its set of reservations represents a series of ascending logical time windows
of definite length ending up at its output module. The order of transferring
transport units at each module is given by their local reservation tables. If
different transport units use the same modules on their routes through the
system, a requested module may not immediately be available to receive the
corresponding transport unit, as other transport units are scheduled there before.
However, this waiting time is limited due to the reserved logical time windows.
These unambiguously specify the order of transport units to be transferred for
each module such that any process is able to use a requested resource in finite
time. This excludes starvation within resource allocation.

5.4 Chapter Conclusion

In this chapter, we show that the presented sequencing system ensures system
liveliness at any point in time by generally preventing deadlocks livelocks, and
starvation. Overall, this responds to the third research question:

How can we demonstrate the liveliness of the decentralized se-
quencing system?
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We investigate the algorithmic operations as well as the allocation of resources
for physically moving transport units, as these are processed at decentralized
module level. Due to the specified system requirements, reservation conditions,
and module interactions, we can guarantee that each arriving transport unit is
processed for sequencing in finite time.

The defined inflow constraints specified by conditions (I1) to (I3) ensure route
initiation for each transport unit up to its outputmodule. Route planning is based
on the decentralized authorization concept, which excludes mutually exclusive
requests and guarantees consistent system information. For each initiated route,
the planning authorization is granted in finite time.

Within route planning, a feasible solution is always found at decentralized
module level such that the algorithmic operations terminate at the initiating
module of an active route. This is given, as

• path selection using the decentralizedA* algorithmexcludes re-exploration,

• route reservation based on the defined reservation conditions (R1) to (R6)
always results in an agreement between each pair of adjacent negotiating
modules, and

• all induced relocation routes end up at a non-buffering module via an
admissible path of stepwise passive routes due to path restrictions (P1)
and (P2).

Thus, the algorithmic operations yield a finite overall process for each transport
unit ending up at its output module. The set of reservations represents a series
of ascending logical time windows of definite length even if the route of the
transport unit is partially specified as composition of active and passive routes.
At each module, the scheduled reservations create a consistent ordering for
processing transport units. This ensures that any transport unit is able to enter
the next module on its route in finite time to be unloaded at its assigned output
module.
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Chapter 6 of this dissertation is based on Fleischmann and Fur-
mans (2023) (Chapter V).

Due to localized information and decision making, decentralized systems in-
volve increased communication and coordination efforts (Monostori et al. 2015).
The presented sequencing algorithm is based on decentralized interactions of
the conveyor modules in terms of exchanging messages. Algorithmic complex-
ity usually relies on the required elementary computing operations an algorithm
performs based on a given input size (Arora and Barak 2009, p. 13). As the
presented algorithm is event-based such that sending and receiving messages
drive the algorithmic operations, we rather evaluate the complexity of the de-
centralized sequencing algorithm using the number of messages required for
sequencing. Section 6.1 introduces the general assumptions underlying this
complexity analysis. Based on that, we derive the messaging effort of the
decentralized sequencing algorithm (cf. Section 6.2). This yields its overall
algorithmic order of complexity (cf. Section 6.3). By summarizing the results
of this chapter, Section 6.4 provides an answer to the fourth research question
of this dissertation.

6.1 General Assumptions

We denote by C the number of messages, i.e., the messaging effort, required to
sequence a given set of transport units B using a conveyor network comprising
the set of conveyor modules M , where M includes all sequencing, input, and

103



6 Complexity Analysis

output modules of the network. The algorithmic operations for processing the
set of transport units are triggered equally for each transport unit. Therefore, C
linearly depends on |B|, i.e.,

C = |B| · Cb, (6.1)

where Cb represents the average number of messages incurred per transport unit.
This allows analyzing the messaging effort at the level of a single transport unit.

Routing a transport unit from its input to its outputmodule is organized via active
and passive routes, where passive routes arise if this transport unit interferes
with other active routes. We consider processing each transport unit as the
composition of its active routes together with its induced passive routes. This
will not change the overall result, as each transport unit just incorporates the
relocations of its interfering buffered transport units rather than its own ones.
These are considered at the transport units where this transport unit interferes.

We denote by Ca the average number of messages per active route, including its
passive routes to relocate interfering buffered transport units. For each transport
unit, no more than two active routes are required. This gives

Cb ≤ 2 · Ca (6.2)
and thus,

C ≤ 2 · |B| · Ca. (6.3)

To determine the order of complexity the presented decentralized sequencing
algorithm can be classified to, we need to specify an upper bound of the required
messaging effort. Thus, we can ensure that any sequencing problem is covered.
Let Ĉ be the maximum number of messages required for a given sequencing
problem and Ĉa the maximum number of messages required per active route,
then based on equation (6.3), it follows

Ĉ ≤ 2 · |B| · Ĉa. (6.4)
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Each active route includes messages for initiation, planning, and execution (cf.
Section 4.2). The total number of messages per active route results from the
sum of messages required for these partial components. We denote by CIa , CPa ,
and CEa the average messaging effort required per active route for initiation,
planning, and execution, respectively, while ĈIa , ĈPa , and ĈEa refer to their upper
bounds. Generally,

Ca = CIa + CPa + CEa (6.5)
and thus,

Ĉa = ĈIa + ĈPa + ĈEa (6.6)

applies.

6.2 Messaging Effort

Based on the given conveyor network comprising |M | conveyor modules, we
are able to quantify the messaging effort for initiating, planning, and executing
an active route. This allows estimating the upper bounds ĈIa , ĈPa , and ĈEa ,
which we present in Sections 6.2.1, 6.2.2 and 6.2.3, respectively. We use the
factor ξ to represent linear dependencies resulting from responses to requests
or forwarding messages, but do not affect the order of algorithmic complexity.
For all ξX introduced in the following 1 ≤ ξX << |M | holds, where index X
represents an algorithmic component.

6.2.1 Route Initiation

Initiating an active route is triggered when the output module notifies the mod-
ule currently allocated to a transport unit (cf. Figures 4.6 and 4.8). In case
of relocations, the allocated modules of buffered transport unit change. This
requires updating the respective output module for each relocation (cf. Fig-
ures 4.15 and 4.14). Each active route incorporates less than |M | interfering
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buffered transport units, each of which is moved on a relocated route comprising
less than |M | passive routes. An upper bound for the messaging effort ĈUa of
each active route to update the corresponding output modules due to relocations
is therefore given by

ĈUa ≤ ξU · |M |2. (6.7)

Additionally, identifying non-buffering modules requires requesting potential
buffer modules (cf. Figure 4.7). This messaging effort arises for the active route
if the corresponding transport unit is not yet requested at its output module (cf.
Figure 4.6), as well as for each of its induced relocation routes (cf. Figure 4.15).
As the length of the active route is limited by |M |, no more than |M | non-
buffering modules can be used in total. These are identified using no more than
|M | requests to potential buffer modules. This yields an upper bound for the
messaging effort ĈBa of each active route to identify non-buffering modules as

ĈBa ≤ ξB · |M |2. (6.8)

From equations (6.7) and (6.8), we obtain the overall messaging effort for route
initiation as

ĈIa ≤ ξU · |M |2 + ξB · |M |2 (6.9)
⇔ ĈIa ≤ ξI · |M |2.

6.2.2 Route Planning

Planning an active route starts with acquiring the authorization for route plan-
ning (cf. Figure 4.9). As the number of simultaneously initiated active routes is
limited by the defined inflow constraints and the set of transport units requested
at the output modules, the number of requests to the currently authorized
module until being authorized is definitely less than |M |. When passing the au-
thorization on to the module initiating the corresponding active route, all other
modules, an active route may originate from, are notified. Thus, we derive an
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upper bound for the messaging effort ĈAa of each active route to be granted the
authorization for route planning as

ĈAa ≤ ξA · |M |2. (6.10)

Messaging effort for path selection of an active route (cf. Figure 4.10) is driven
by the size of the conveyor network, as this determines the number of modules
to be explored. For each active route, the decentralized A* algorithm takes no
more than |M | search iterations to reach the destination module. This gives an
upper bound for the messaging effort ĈSa of each active route to select the path
of modules as

ĈSa ≤ ξS · |M |. (6.11)

Route reservation comprises scheduling the transfers of an active route along the
selected path of modules as well as of all induced passive routes for relocating
interfering buffered transport units. We subdivide the investigations into the
messaging effort for reserving the modules of the active route and that for
reserving all necessary relocation routes. Thus, we first consider only the
negotiations between non-buffering modules of the active route. Transforming
interfering buffermodules to non-bufferingmodules before being able to process
an incoming reservation request at a buffer module is investigated within passive
route planning.

Negotiations for route reservation on the active route are based on the existing
reservations at the selected modules. In case of conflicting reservations, in-
coming reservation requests are rejected while suggesting an alternative logical
time window (cf. Figure 4.13). The number of rejected reservation requests
is limited by the number of reservations within the local reservation table at
each module. At any time, no more than |M | transport units are scheduled
within the system simultaneously due to the necessary capacity requirements
(cf. Section 3.2.1). The maximum number of reservations arises at a module
assuming that it is included in each relocation route. For each transport unit
scheduled within the system, no more than |M | relocation reservations can be
generated at the same module. Therefore, a module can never hold more than
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|M |2 reservations in its reservation table simultaneously. Each active route
incorporates less than |M | negotiating adjacent modules. With this, we obtain

ĈRaa ≤ ξRa · |M |3 (6.12)

as an upper bound for the messaging effort ĈRaa of each active route to negotiate
feasible reservations along its selected path of modules.

On relocation routes induced by an active route, each two adjacent modules of
a passive route agree on the time at which the currently non-buffering module
can accept the transport unit of the buffer module ahead of it (cf. Figure 4.15).
Due to reservation conditions (R3) and (R6), the buffer reservation needs to
be scheduled at the non-buffering module after the last of its existing finite
reservations. The latter specifies the feasible time such that the messaging
effort to negotiate a single passive route can be considered constant. Each active
route incorporates less than |M | interfering buffered transport units, each of
which is moved on a relocated route comprising less than |M | passive routes.
Thus, an upper bound for the messaging effort ĈRra of each active route to plan
all required relocation routes is given by

ĈRra ≤ ξRr · |M |2. (6.13)

From equations (6.10), (6.11), (6.12) and (6.13), the overall messaging effort of
route planning follows as

ĈPa ≤ ξA · |M |2 + ξS · |M |+ ξRa · |M |3 + ξRr · |M |2 (6.14)
⇔ ĈPa ≤ ξP · |M |3.

6.2.3 Transport Execution

For transport execution, each two adjacent modules agree on the physical time
for transferring a scheduled transport unit. Transfers are only requested if
the currently occupied module is ready to forward the corresponding transport
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unit and confirmed if the adjacent next receiving module is ready to take it
(cf. Figure 4.18). Thus, the messaging effort for transferring a transport unit
between two adjacent modules can be considered constant. For each active
route, no more than |M |2 reservations are scheduled, as its length as well as the
length of its induced relocation routes is limited by |M |. This yields an upper
bound for the messaging effort ĈEa of each active route for transport execution
as

ĈEa ≤ ξE · |M |2. (6.15)

6.3 Order of Complexity

Based on equations (6.9), (6.14), and (6.15), an upper bound of the total
messaging effort per active route follows as

Ĉa ≤ ξI · |M |2 + ξP · |M |3 + ξE · |M | (6.16)
⇔ Ĉa ≤ ξ · |M |3.

Combined with equation (6.4), we obtain an upper bound of the messaging
effort for a given sequencing problem:

Ĉ ≤ 2 · ξ · |B| · |M |3. (6.17)

As the message sender and recipient are not necessarily directly connected,
the message is transmitted via a shortest path of adjacent modules (cf. Sec-
tion 3.3.1.4). The length of this path is limited by the maximum shortest
distance of two modules within the conveyor network and can therefore be
included in the factor ξ.

This implies an overall complexity of

On = O(n3) (6.18)
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at network level scaling with system size, i.e. the number of conveyor modules
n within the network.

Equation (6.17) provides an upper bound of the messaging effort arising within
the system, i.e., at |M | conveyor modules. As we always assume |M | conveyor
modules involved in each partial component of the algorithm when determining
Ĉa, we can derive an upper bound of the messaging effort at module level
as well. Due to the decentralized system setup, there are |M | control units
for message processing within the system – one installed at each module (cf.
Section 3.3.1.1). Therefore, the messaging effort per module Cm decreases to

Cm ≤ ξ · |B| · |M |2. (6.19)

This corresponds to a complexity of

Om = O(n2) (6.20)

at module level scaling with system size, i.e. the number of conveyor modules
n within the network.

6.4 Chapter Conclusion

In this chapter, we analyze the complexity of the decentralized sequencing
algorithm in terms of the number of exchanged messages for sequencing a set
of transport units using an installed conveyor network. Overall, this responds
to the fourth research question:

How can we evaluate the complexity of the decentralized se-
quencing algorithm?

The order of complexity follows from the upper bound of the requiredmessaging
effort. It increases linearly with the number of transport units. Routing a
transport unit from its input to its output module comprises initiating, planning,
and executing active routes including the induced passive routes. The total
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messaging effort per active route results from the sum of messages required for
these partial components. Overall, this gives a complexity of order O(n3) at
network level which reduces to O(n2) at module level, both scaling with the
number of modules n.
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In decentralized systems, the dynamic interactions of several autonomous de-
cisional entities aggravate analyzing efficiency and providing insightful metrics
to derive a general performance evaluation (Trentesaux 2009). Moreover, there
is no generally applicable centralized benchmark algorithm for the investigated
sequencing problem of this dissertation (cf. Section 2.1). In this chapter, we
develop centralized concepts providing solutions to the problem of sequenc-
ing in highest-density conveyor networks. This allows assessing the quality of
solutions obtained by the decentralized sequencing algorithm. In Section 7.1,
we present approaches for determining optimal solutions to given sequencing
problems based on mixed-integer programming. Due to NP-hardness, only
small problem sizes are solvable given the currently available computing power.
To compensate for bigger and more realistic systems, we additionally develop
a lower bound approach to analytically approximate the minimum sequencing
time (cf. Section 7.2). The deficit of solutions generated by the decentralized
sequencing algorithm is investigated in Section 7.3. By summarizing the results
of this chapter, Section 7.4 provides an answer to the fifth research question of
this dissertation.

7.1 Optimal Approaches

To benchmark solutions of the decentralized sequencing algorithm against opti-
mal solutions, we develop two optimization models. The single stage optimiza-
tion model is able to provide globally optimal solutions but suffers from ex-
tensive computation time. The iterative segmented optimization model intends
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to solve larger problem settings than the single stage one, while guaranteeing
partial optimality. Section 7.1.1 introduces the preliminary assumptions of both
models. Based on that, we present the single stage and the iterative segmented
optimization model in Sections 7.1.2 and 7.1.3, respectively. Section 7.1.4
details the performance indicators used to quantify the deficit of decentralized
solutions.

7.1.1 Preliminary Assumptions

Table 7.1 outlines the notation for formally describing the single stage as well as
the iterative segmented optimization model. Sets, elements and parameters are
specified by the given problem setting, while the values of decision variables
are determined by solving the corresponding optimization model. They define
the optimal result of a sequencing problem.

Table 7.1: Notation of the single stage optimization model.

Symbol Description

Sets
I Set of input modules (I ⊆M )
O Set of output modules (O ⊆M )
C Set of sequencing modules (C ⊆M )
M Set of conveyor modules (I ∪O ∪ C = M ; I ∩O ∩ C = ∅)
Nm Set of adjacent modules directly connected to module m

(Nm ⊆M )
B Set of transport units
Bi Set of transport units arriving at input module i (Bi ⊆ B)
Bo Set of transport units unloaded at output module o (Bo ⊆ B)

Continued on next page
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Table 7.1 – Continued from previous page

Symbol Description

P bo Set of direct predecessors of transport unit b within the unload-
ing sequence at output module o (P bo ⊆ Bo)1

T Set of time points defining the time frame of the sequencing
problem (T ⊆ R+

0 : n ·∆t, n ∈ N0)
Elements
ib Input module transport unit b is assigned to
ob Output module transport unit b is assigned to
f bi Direct successor of transport unit b within the queue of arriving

transport units at input module i (f bi , b ∈ Bi)
Parameters
ab Arrival time of transport unit b at the system
d∗mḿ Length of a shortest path of modules from modulem to module

ḿ

tconv Transfer time of a transport unit between two adjacent modules
∆t Incremental length of successive time points
L Large positive number
Decision variables
xbtm 1 if transport unit b occupies modulem at time t

0 otherwise
ybtmḿ 1 if transport unit b moves from modulem to an adjacent

module ḿ at time t
0 otherwise

1 In case of partially defined unloading sequences (cf. Section 3.3.1.2), the set P b
o may comprise

more than one transport unit, otherwise it refers to the single directly preceding transport unit
within the unloading sequence.
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In the decentralized sequencing system, the system arrangement may change
continuously over time, as modules are independent and operate autonomously.
However, formulating the optimization models using the time-based decision
variables xbtm and ybtmḿ requires a discrete time frame T . In the presented
optimization models, we discretize the continuous time frame of the real system
into time increments of length ∆t = tconv

2 .

At any point in time, the positions of all transport units define the current system
arrangement, which changes as transport units are moved within the system.
Discretizing the continuous time frame into time segments of length∆t = tconv

2

matches the physical movements of transport units. Transferring a transport unit
currently occupying module m to an adjacent module ḿ requires a period of
tconv . While transitioning, the transport unit occupies both modules. This is
modeled using the specified decision variables defining whether a transport unit
is currently moved – ybtmḿ – or stationary positioned – xbtm (cf. Figure 7.1).
Assuming that transport units move at constant speed between modules, from
the time when the transport unit is positioned on module m until it occupies
both of these modules equally, a time period of tconv2 elapses. Similarly, it takes
tconv

2 until the transport unit completely arrives at the adjacent module ḿ. This
yields the defined time frame T ⊆ R+

0 : n ·∆t, n ∈ N0 (cf. Table 7.1).

Figure 7.1:Moving transport unit b between adjacent modulesm and ḿ.

The time frame T needs to be predefined when solving the optimization model
for a given problem setting. If it is set too small, there will be no solution where
all transport units are sequenced to their assigned output modules. We deter-
mine the time frame T based on the solution of the decentralized sequencing
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algorithm. Let Hdec be the physical time required for sequencing the given set
of transport units within the decentralized sequencing system, then

|T | ≤
⌈
Hdec

∆t

⌉
=

⌈
2 ·Hdec

tconv

⌉
(7.1)

holds, as Hdec represents an upper bound of the optimal result.

7.1.2 Single Stage Optimization Model

The multi-criteria weighted objective function of the single stage optimization
model (7.2) minimizes the sequencing time of the given set of transport units
using the least possible number of movements:

min Wss = − |T | ·
∑
t∈T

∑
b∈B

xbtob +
∑
t∈T

∑
b∈B

∑
m∈M

∑
ḿ∈Nm

ybtmḿ. (7.2)

Minimizing the sequencing time is equal to maximizing the time the transport
units spend at their assigned output module. The specified formulation focuses
on the minimum sequencing time of all transport units keeping movement
minimization as secondary objective. InAppendixA.1, we attach the underlying
calculations proving this.

We minimizeWss subject to constraints (7.3) to (7.13) representing the require-
ments of the given sequencing problem. For reasons of clarity and comprehen-
sibility, we structured them according to their field of impact.

Introducing and Unloading

Constraints (7.3) initially assign all transport units to their respective input
modules. They are introduced according to their arrival sequences (cf. con-
straints (7.4)) and arrival times (cf. constraints (7.5)). Constraints (7.6) ensure
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that unloading observes the predefined sequences at the assigned output mod-
ules.

xb0ib ≥ 1 ∀ b ∈ B (7.3)

xbtib ≤ x
fb
ib
t

ib
∀ t ∈ T, b ∈ B (7.4)

t · ybtibm ≥ ab + ∆t−
(
1− ybtibm

)
· L (7.5)
∀ t ∈ T, b ∈ B,m ∈ Nib

ybtmob ≤ xptob ∀ t ∈ T, b ∈ B, p ∈ P bob ,m ∈ Nob (7.6)

Capacity Requirements

Transport units andmodules need to be assigned such that capacity requirements
are met. At any time, each transport unit occupies a defined position within the
system (cf. constraints (7.7)) while observing the capacity of the sequencing
modules (cf. constraints (7.8)).∑

m∈M
xbtm +

∑
m∈M

∑
ḿ∈Nm

ybtmḿ = 1 ∀ t ∈ T, b ∈ B (7.7)

∑
b∈B

xbtm +
∑
b∈B

∑
ḿ∈Nm

(
ybtmḿ + ybtḿm

)
≤ 1 ∀ t ∈ T,m ∈ C (7.8)

Transport Unit Movements

Movements of transport units are restricted to directly adjacent modules. The
system arrangement at time t + ∆t results from that at time t (cf. con-
straints (7.9) and (7.10)). To avoid collisions, entering a module is not possible
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until the movement of a preceding transport unit is finished entirely (cf. con-
straints (7.11)).

xbtm ≤ xb(t+∆t)
m +

∑
ḿ∈Nm

y
b(t+∆t)
mḿ (7.9)

∀ t ∈ {0, . . . , (|T | − 2) ·∆t}, b ∈ B,m ∈M
ybtmḿ ≤ xb(t+∆t)

ḿ (7.10)
∀ t ∈ {0, . . . , (|T | − 2) ·∆t}, b ∈ B,m ∈M, ḿ ∈ Nm

1−
∑
b∈B

∑
ḿ∈Nm

ybtmḿ ≥
∑
b∈B

∑
ḿ∈Nm

y
b(t+∆t)
ḿm (7.11)

∀ t ∈ {0, . . . , (|T | − 2) ·∆t},m ∈ C

Value Range of Decision Variables

Constraints (7.12) and (7.13) restrict the binary decision variables of the opti-
mization model.

xbtm ∈ {0; 1} ∀ t ∈ T, b ∈ B,m ∈ C ∪ ib ∪ ob (7.12)
ybtmḿ ∈ {0; 1} ∀ t ∈ T, b ∈ B,m ∈

(
C ∪ ib

)
, ḿ ∈

(
Nm ∩

(
C ∪ ob

))
(7.13)

7.1.3 Iterative Segmented Optimization Model

In contrast to the single stage optimization model, the iterative segmented op-
timization model creates smaller sub-problems (cf. Section 7.1.3.1). This
requires adjusting the optimization objective (cf. Section 7.1.3.2). In Sec-
tion 7.1.3.3, we formally describe the iterative segmented optimization model
based on the formal description of the single stage optimization model.
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7.1.3.1 Creating Sub-problems

The problem size of an optimization model which can be solved in reasonable
time is highly dependent on its number of non-trivial decision variables. Re-
garding the defined decision variables of the formulated sequencing problem –
xbtm and ybtmḿ – it results from three dimensions:

• the number of transport units b ∈ B,

• the number ofmodulesm ∈M and their connectionswithin the conveyor
network,

• the number of time points t ∈ T , i.e. the amount of time it takes until the
last transport unit of setB is positioned at its assigned output module ob.

Figure 7.2 shows how the set of time points influences the number of decision
variables for exemplary problem settings.
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Figure 7.2: Number of decision variables depending on time frame T for single batch problems
of size 5, 10, and 15 and a square 4×4 arrangement of sequencing modules (cf.
Figure 7.10).
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The iterative segmented optimization model reduces the problem size regarding
the time frame T . For each time point t > 0, the respective system arrangement
follows from the system arrangement at time t −∆t, as a transport unit either
keeps its position at the current module or is moved to an adjacent module
(cf. constraints (7.9) and (7.10)). Splitting the total time frame T into subsets
Tk with Tk ⊂ T results in several smaller sub-problems which are formulated
and solved iteratively. The system arrangement at the end of an iteration k is
fixed and used as initial arrangement for the optimization problem of iteration
k + 1. This iterative procedure terminates when the system reaches the final
arrangement, where all transport units are positioned at their assigned output
modules. Figure 7.3 opposes the solution generation of the single stage and the
iterative segmented optimization model.

T

t

(a) Single stage optimization.

T0

t

Tk-1 Tk Tk+1… …

(b) Iterative segmented optimization.

Figure 7.3: Comparison of the developed optimization models.

Based on equation (7.1), we derive the time frame Tk of each single iteration
from the decentralized sequencing time Hdec using the time split factor l as

Tk =

⌈ |T |
l

⌉
=

⌈
1

l
·
⌈

2 ·Hdec

tconv

⌉⌉
, (7.14)

where l ∈ N.

As the given time frame of each sub-problem is limited, the system proceeds
from the initial arrangement to a certain terminal arrangement following the
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defined objective of the iterative segmented optimization (cf. Section 7.1.3.2).
The movements of the transport units necessary for this transformation may
consume less time than provided by the time frame Tk. In this case, idle time
within the solution of this iteration is cut off accordingly for continuing the
optimization in the subsequent iteration. Therefore, the overall solution of a
sequencing problem, which results from combining all iteratively calculated
partial solutions, may comprise solutions of different time frame lengths (cf.
Figure 7.3 (b)).

7.1.3.2 Objective of a Single Iteration

For the single stage optimization model, we formulate the objective of mini-
mum sequencing time using the final arrangement of the sequencing problem
where all transport units are positioned at their assigned output modules (cf.
equation (7.2)). Reaching this final arrangement requires a sufficient time frame
T , which is not necessarily given within the iterative segmented optimization
due to the decomposition into sub-problems with Tk ⊂ T . Thus, we define the
objective of the iterative segmented optimization model such that the system
proceeds in sequencing as far as possible in each iteration. Each sub-problem
strives for the best pre-sequenced arrangement in the given time frame Tk. Pre-
sequencing supports fast unloading in the subsequent iterations to enable an
efficient overall solution of the given problem setting.

A pre-sequenced arrangement intends to prevent successors within the un-
loading sequence from interfering with their predecessors when accessing the
assigned output module. We evaluate the position of each transport unit by
comparing its distance to the assigned output module to that of its direct prede-
cessors and penalize arrangements where a predecessor occupies a sequencing
module more distant to the output module than its successor. This enables
lower ranked transport units to be unloaded primarily to proceed in sequencing.
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We denote by zbt the pre-sequenced arrangement of transport unit b at time t in
relation to its direct predecessors p ∈ P bob as

zbt = max

{(∑
m∈M

d∗mob · xbtm +
∑
m∈M

∑
ḿ∈Nm

d∗mob + d∗ḿob

2
· ybtmḿ

)
,

(7.15)

zpt − xptip · L
}

∀ t ∈ Tk, b ∈ B, p ∈ P bob

The pre-sequenced arrangement of the overall system at a given time results
from combining the arrangements of all transport units at this time. Minimizing
yields the best pre-sequenced system arrangement according to this definition.

Generally, an overall solution of the iterative segmented optimization model
consists of local optima resulting from the solutions of the single sub-problems.
The objective of pre-sequencing cannot guarantee global optimality, as future
movements, which may be necessary in later iterations, are not anticipated
when solving a sub-problem. Nevertheless, the presented iterative segmented
optimization enables reducing the size of a given sequencing problem such that
larger problem settings can be solved compared to the single stage optimization
(cf. Section 7.3.2).

7.1.3.3 Formal Description

The iterative segmented optimization model uses the same notation as the single
stage optimization model, but requires extensions to model the optimization
using sub-problems (cf. Table 7.2).

In each iteration, the multi-criteria weighted objective function of the iterative
segmented optimization model (7.16) minimizes the pre-sequenced terminal
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Table 7.2: Additional notation of the iterative segmented optimization model.

Symbol Description

Sets
K Set of iterations, i.e. number of sub-problems (K ⊆ N0)
Tk Set of time points in iteration k (Tk ⊆ T, |Tk| ≥ 2)
Xk

0 Set of non-zero x-variables defining the system arrangement
iteration k starts from (k > 0)

Y k0 Set of non-zero y-variables defining the system arrangement
iteration k starts from (k > 0)

Elements
tk0 Initial time point of iteration k
Decision variables
zbt Pre-sequenced arrangement of transport unit b at time t

system arrangement within the given time frame using the least possible number
of movements:

min Wit = |Tk|2 ·
∑
b∈B

(
zb(t

k
0+(|Tk|−1)·∆t) + ∆t

)
+ (7.16)∑

t∈Tk

∑
b∈B

∑
m∈M

∑
ḿ∈Nm

(
t− tk0

)
· ybtmḿ.

Deliberately, we only include the terminal arrangement at time point
tk0 + (|Tk| − 1) ·∆t to accept intermediately poorer system arrangements if
they yield an improved solution at the end of the given time frame. As the
movements of transport units from their initial arrangement to the optimal pre-
sequenced terminal arrangement of an iteration may consume less time than
the given time frame Tk, movement minimization is time-dependent by includ-
ing the weighting factor

(
t− tk0

)
. The specified formulation of the objective

function (7.16) focuses on pre-sequencing keeping movement minimization as
secondary objective. The underlying calculations proving this can be found in
Appendix A.2.
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MinimizingWit within the iterative segmented optimization model requires the
additional or adapted constraints (7.17) to (7.22) compared to the single stage
optimization model.

Pre-sequenced Arrangement

Constraints (7.17) and (7.18) define the pre-sequenced arrangement according
to equation (7.15).

zbt ≥
∑
m∈M

d∗mob · xbtm +
∑
m∈M

∑
ḿ∈Nm

d∗mob + d∗ḿob

2
· ybtmḿ (7.17)

∀ t ∈ Tk, b ∈ B
zbt ≥ zpt − xptip · L ∀ t ∈ Tk, b ∈ B, p ∈ P bo (7.18)

Initial Arrangement

The initial arrangement of an iteration results from the positions of all trans-
port units within the terminal arrangement of the previous iteration (cf. con-
straints (7.19) and (7.20)).

x
btk0
m ≥ 1 ∀ b ∈ B,m ∈M : x

btk0
m ∈ Xk

0 (7.19)

y
btk0
mḿ ≥ 1 ∀ b ∈ B,m ∈M, ḿ ∈ Nm : y

btk0
mḿ ∈ Y k0 (7.20)

Capacity Requirement

Achieving a partial solution from which a feasible solution can be calculated in
the subsequent iteration necessarily requires at least one unoccupied sequencing
module (cf. constraints (7.21)).∑
b∈B

∑
m∈C

xbtm +
∑
b∈B

∑
m∈M

∑
ḿ∈Nm

ybtmḿ ≤ |C| − 1 ∀ t ∈ Tk (7.21)
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Time Frame Adaptions

The time frame needs to be adapted to the given sub-problem as

• ∀ t ∈ Tk for constraints (7.4) to (7.8), (7.12), (7.13) and

• ∀ t ∈ {tk0 , . . . , tk0 + (|Tk| − 2) ·∆t} for constraints (7.9) to (7.11).

All other introduced specifications remain unchanged.

Value Range of Decision Variables

The additional decision variables to specify the pre-sequenced arrangement are
positive continuous (cf. constraints (7.22)).

zbt ∈ R+
0 ∀ t ∈ Tk, b ∈ B (7.22)

7.1.4 Performance Indicators

Weapply the sequencing time of a given problem setting as primary performance
indicator while the number of movements is included supplementarily. We
denote these by H and F , respectively. The sequencing time represents the
time required until unloading all transport units of a given sequencing problem
at their assigned output modules. It depends on the time of unloading the
highest-ranked transport unit of the last batch.

We derive the decentralized sequencing timeHdec from the simulation runtime
of the given sequencing problem. As the decentralized sequencing algorithm
incorporates stochastic decisions (cf. Sections 4.2.2.2 and 4.2.2.4), we conduct
several replications within a simulation experiment to obtain reliable results.
The number of replications is based on a 95%-confidence interval related to
the mean sequencing time of the single simulation runs for a given parameter
setting as well as the specifications given in Appendix B.3.

126



7.1 Optimal Approaches

For the optimal result, we denote by H∗ the optimal sequencing time of the
overall problem, while hb∗ refers to the optimal sequencing time of transport
unit b, i.e., the unloading time of transport unit b within the optimal solution.
With this, we obtain

H∗ = max
b∈B

hb
∗
. (7.23)

Based on a solution of the single stage optimization model or a composite
solution of all iterations of the iterative segmented optimization model, we can
derive hb∗ for all transport units from the values of their respective decision
variables. It corresponds to the minimum time at which a transport unit is
positioned at its assigned output module, i.e.,

hb
∗

= min
t∈T

t : xbtob = 1. (7.24)

Thus,

H∗ = max
b∈B

{
min
t∈T

t : xbtob = 1

}
. (7.25)

Due to discretizing the time frame T , the solutions of the optimization mod-
els correspond to a synchronized system with time steps of incremental length
∆t = tconv

2 (cf. Section 7.1.1). Within optimal solutions, changes in the sys-
tem arrangement can only be captured at integer multiples of ∆t. The conveyor
modules of the decentralized sequencing system, however, operate indepen-
dently such that transport units can be transferred continuously. Therefore,
the actual optimal value H∗real may deviate from H∗ within the interval of(
H∗ − tconv

2 ;H∗
]
. H∗ represents the least possible multiple of tconv2 which is

greater than or equal to the actual valueH∗real of the decentralized system. This
means

2 ·H∗
tconv

=

⌈
2 ·H∗real
tconv

⌉
. (7.26)
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The number of movements results from the necessary transfers of all transport
units when being processed within the system. For a decentralized solution, we
derive Fdec from the corresponding path lengths of the simulation experiment.
The number of movements F ∗ resulting from the optimization models is given
as

F ∗ =
∑
t∈T

∑
b∈B

∑
m∈M

∑
ḿ∈Nm

ybtmḿ. (7.27)

Within the numerical evaluations of Chapter 7.3.2, we focus on presenting
the sequencing time results while providing the number of movements in the
attached research data (Fleischmann 2023).

7.2 Lower Bound Approach

The presented optimization models serve as a benchmark to evaluate the deficit
of decentralized solutions for small problem settings. As problem size increases,
they suffer from excessive computation times (cf. Figure 7.4). For bigger and
more realistic sequencing problems, we develop an analytical lower bound of
the minimum sequencing time. Comparing it with achievable optimal solutions
allows assessing its suitability as a reference for real-world problem settings.
Section 7.2.1 outlines the dependencieswithin the given set of transport units the
lower bound calculation relies on. Section 7.2.2 provides the formal description
of this approach.

7.2.1 Recursive Dependencies

The sequencing time of a given problem setting results from the sequenc-
ing times of all transport units (cf. Section 7.1.4). Specifically, the time
of unloading the highest-ranked transport unit of the last batch is crucial (cf.
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Figure 7.4: Overall runtime of optimization models for problem settings with batch size 5 and
average-case arrival sequence using a square 4×4 arrangement of sequencing modules.

equation 7.23). Sequencing times of transport units depend on the predecessor-
successor relations. If any predecessor is missing within the flow of arriving
transport units, all of its succeeding transport units cannot be unloaded. This
creates recursive dependencies, which we use to derive a simplified lower bound
for the sequencing time of each transport unit. From this follows the sequencing
time of the overall problem.

Each lowest ranked transport unit within the first batch assigned to an output
module can always be unloaded directly upon its arrival, as it does not depend
on any predecessor. In this case, sequencing times can be determined solely
based on their arrival times and path lengths. Due to the predefined unloading
sequences, this restricts the sequencing times of all succeeding transport units
assigned to the same output module. Thus, we can deduce the sequencing times
of all transport units by combining their arrival times, path lengths as well as the
sequencing time of their corresponding direct predecessors within the unloading
sequence at the assigned output module to obtain the overall sequencing time.
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7.2.2 Formal Description

We derive a lower bound HLB of the minimum sequencing time H∗ for a
given sequencing problem using the specified recursive dependencies (cf. Sec-
tion 7.2.1). It results from the lower bound of the sequencing times hbLB of
all transport units. These are at the minimum limited by the earliest possible
unloading times ubmin. The time required for unloading a transport unit at its
assigned output module follows from (cf. Figure 7.5)

• its arrival time at the system,

• its waiting time until it is introduced into the system, and

• its processing time within the system until unloading.
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Figure 7.5: Time components until unloading a transport unit.
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We denote by

• ab the arrival time of transport unit b at the system,

• ebmin the earliest possible time for introducing transport unit b into the
system at its assigned input module ib,

• tbmin the minimum time required to transfer transport unit b from its
assigned input module ib to its assigned output module ob,

• lib the loading delay at input module ib, and

• lob the unloading delay at output module ob.

The arrival times of all transport units are defined by the given sequencing
problem.

The earliest possible time for introducing a transport unit results from the arrival
characteristics of the set of all transport units assigned to the same input module
including its loading delay. Let Qbib be the set of predecessors of transport unit
b within the queue of arriving transport units at input module ib, then

ebmin =


ab if Qbib = ∅

max

{
ab, max

q∈Qb
ib

{
eqmin

}
+ lib

}
if Qbib 6= ∅

(7.28)

with

lib =


tconv if |Nib ∩ C| > 1

2 · tconv if |Nib ∩ C| = 1

∞ if |Nib ∩ C| = 0.2
(7.29)

2 This case represents an invalid sequencing network (cf. Section 3.2.2), but is included here for
reasons of completeness.
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For all transport units arriving first at their assigned input module, Qbib = ∅
holds such that these may be introduced immediately. The introducing rate at
each input module is limited by the physical transfer time tconv between two
adjacent modules (cf. Figure 7.6). Additionally, the connectivity of the input
modules within the network is relevant, as introducing an arriving transport
unit requires an empty sequencing module adjacent to the corresponding input
module (cf. Figure 7.7). Since we do not restrict the number of conveyor
modules adjacent to input or output modules within the conveyor networks
under consideration, both constellations need to be included when defining the
loading delay.
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Figure 7.6: Loading delay of tconv with more than one adjacent sequencing module – Introducing
is possible at time t, t + tconv , and t + 2 · tconv .
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Figure 7.7: Loading delay of 2 · tconv with one adjacent sequencing module – Introducing is
possible at time t and t + 2 · tconv .
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The processing time of a transport unit results from its path through the conveyor
network. At minimum, it corresponds to the shortest distance between its
assigned input and output module. Therefore, we set

tbmin = d∗ibob · tconv, (7.30)

where d∗ibob represents the minimum number of modules forming a path from
input module ib to output module ob. This gives the earliest possible unloading
time of transport unit b at the assigned output module:

ubmin = ebmin + tbmin (7.31)

= max

{
ab, max

q∈Qb
ib

{
eqmin

}
+ lib

}
+ d∗ibob · tconv.

Including the recursive dependencies (cf. Section 7.2.1), the lower bound of the
sequencing time hbLB follows as

hbLB =


ubmin if P bob = ∅

max

{
ubmin, max

p∈P b
ob

{
hpLB

}
+ lob

}
if P bob 6= ∅,

(7.32)

where

lob =


tconv if |Nob ∩ C| > 1

2 · tconv if |Nob ∩ C| = 1

∞ if |Nob ∩ C| = 0.3
(7.33)

As with the loading delay, the physical transfer time of transport units induces
an unloading delay depending on the connectivity of the corresponding output
module within the network (cf. Figures 7.8 and 7.9).

3 This case represents an invalid sequencing network (cf. Section 3.2.2), but is included here for
reasons of completeness.
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Figure 7.8: Unloading delay of tconv with more than one adjacent sequencing module – Unloading
is possible at time t, t + tconv , and t + 2 · tconv .
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Figure 7.9: Unloading delay of 2 · tconv with one adjacent sequencing module – Unloading is
possible at time t and t + 2 · tconv .

For partially defined unloading sequences, we can define an ordering beq(1) , beq(2) ,
. . . , beq

(n) within a set of equally ranked transport units based on their minimum
unloading times at the assigned output module. This implies

ub
eq(1)

min ≤ ub
eq(2)

min ≤ . . . ≤ ubeq
(n)

min . (7.34)
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Combined with the set of direct predecessors P bob within their unloading se-
quence at the output module, we obtain

hb
eq(1)

LB = max

{
ub
eq(1)

min , max
p∈P b

ob

{
hpLB

}
+ lob

}
(7.35)

hb
eq(2)

LB = max

{
ub
eq(2)

min , hb
eq(1)

LB + lob

}
...

hb
eq(n)

LB = max

{
ub
eq(n)

min , hb
eq(n−1)

LB + lob

}
.

By analogy with equation (7.23), the lower bound of the overall sequencing
problem follows as

HLB = max
b∈B

hbLB , (7.36)

where

HLB ≤ H∗. (7.37)

This enables providing benchmark values for problem settings of arbitrary size
to assess the quality of the obtained decentralized solutions (cf. Chapter 8).

7.3 Decentralized Solution Deficit

Weassess the quality of the decentralized sequencing algorithmby comparing its
solutions to the results of the presented centralized approaches. The evaluations
are based on the design of experiments defined in Section 7.3.1. We present the
numerical results in Section 7.3.2. These yield the implications of Section 7.3.3.
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7.3.1 Design of Experiments

The design of experiments comprises the problem settings specified in Sec-
tion 7.3.1.1. The obtained decentralized and optimal solutions result from the
parameterization given in Section 7.3.1.2.

7.3.1.1 Problem Setting

We use a square 4×4 arrangement of sequencing modules to compromise be-
tween solvable problem sizes using the optimization models and available net-
work capacity (cf. Section 3.2.1.1). This allows investigating sequencing prob-
lems with a batch size of up to 15 transport units per batch without restricting
the arrival sequence within a single batch. For introducing and unloading, there
are four input and four output modules at the top and bottom of the network,
respectively (cf. Figure 7.10).

I I I I I

O O O O O

I I I I

O O O O

I I I

O O O

Figure 7.10: Reference network to compare centralized and decentralized solutions.

As part of these evaluations, we aim to define a set of sequencing problems
usable for future sequencing approaches and systems to establish a common
basis for comparing different solution methods. To ensure that all specified
sequencing problems can be identically replicated, all parameters related to the
network inflow (cf. Section 4.3.1.3) are set deterministically.

We investigate batches of 5, 10 and 15 transport units with completely defined
unloading sequence, i.e., s = 1. Regarding their arrival sequence at the system,
we consider best-case (b-c), worst-case (w-c) and average-case (a-c) situations.
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These result from comparing the positions of the transport units within the
unloading sequence of a batch in contrast to the arrival sequence. We denote by
σb the position of transport unit b within the arrival sequence of its batch. The
best-case arrival sequence of a batch is given if for all of its transport units b
together with their direct successors sbob within the unloading sequence at their
output module

σb < σs
b

ob (7.38)

applies (cf. Figure 7.11 (a)). Analogously, for the worst-case arrival sequence

σb > σs
b

ob (7.39)

holds (cf. Figure 7.11 (b)).
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Figure 7.11: Deterministic batch arrival sequences for batch size 5.4

Concerning the average case, a subset of the transport units of a batch needs to
satisfy equation (7.38), while for the remaining ones equation (7.39) is true. We
select an alternating allocation depending on whether the position of a transport

4 The black numbers refer to the rank of a transport unit within the unloading sequence at the
output module, while the white numbers indicate its position within the arrival sequence of its
batch at the input module.
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unit within the arrival sequence is even or odd. Even positions correspond to a
best-case arrival sequence, while odd positions are associated with a worst-case
arrival sequence (cf. Figure 7.11 (c)). Note that the defined arrival sequences
apply at batch level excluding dependencies that may arise between several
batches.

The input-output assignment is organized from left to right, i.e., the first batch
is assigned to the leftmost output module, the second to the one right next to it,
and so on, starting again from the left after |O| batches are assigned. Likewise,
the first arriving transport unit of the first batch is assigned to the leftmost
input module, the second to the one right next to it, and so on, starting again
from the left as soon as |I| transport units have been assigned. Batch sizes
are irrelevant in this case, i.e. the first transport unit of a subsequent batch
continues the assignment depending on the last transport unit of the preceding
batch. To eliminate interarrival delays of transport units when evaluating dif-
ferent solutions to sequencing problems, we assume that all transport units of a
sequencing problem are initially available in front of the assigned input module
according to their arrival sequence. The design of experiments for comparing
optimal and decentralized solutions using the conveyor network of Figure 7.10
is summarized in Table 7.3.

Table 7.3: Design of experiments to assess the quality of decentralized solutions.

Parameter Values

Batch size 5; 10; 15
Arrival sequence best-case; average-case; worst-case
Sequencing rate 1
Input-output assignment deterministic
Arrival rate ∞

As the presented optimization models do not include delays for switching a
conveyor module between its orthogonal transport axes, we exclude switching
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times within the decentralized solutions accordingly. Likewise, we neglect
delays when sending messages within the decentralized conveyor network to
measure the effective conveying time for sequencing. Thus, for these evalua-
tions, tmsg = tswitch = 0.0 s applies.

7.3.1.2 Model Parameterization

Due to extensive computation times as problem size increases, we apply a time
limit of 3600 s (per iteration) for calculating optimal solutions. The number of
batches within the specified problem settings (cf. Section 7.3.1.1) is iteratively
increased as long as an optimal solution can be calculated within this time limit.
To determine the time frame for the iterative segmented optimization model,
we set the time split factor l ∈ {2, . . . , 10} and determine the minimum value,
where an optimal solution can be calculated within the given time limit for each
iteration. The smaller l, the less the compound partially optimal solution of
the iterative segmented optimization deviates from the global optimum of the
overall problem.

To generate decentralized solutions, we parameterize the decentralized sequenc-
ing algorithm with pb = 1 and pc = 0. Based on the results of Fleischmann
and Furmans (2023), it achieves the best performance for 0 < pb ≤ 2. pc is set
to neglect directional changes as switching delays between orthogonal transport
axes of conveyor modules are not captured within the optimization models (cf.
Section 7.3.1.1).

7.3.2 Numerical Results

In Tables 7.4 and 7.5, we summarize the problem settings for which we obtained
an optimal solution within the given time limit for the single stage optimization
model and all iterations of the iterative segmented optimization model, respec-
tively. For solving, we applied Gurobi Optimizer version 9.5.0 with its Java
interface. All results of this section were conducted using a desktop computer
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with 3.60GHz Intel Core i7-4790 CPU, 16.0GB of RAM and Windows 10
Enterprise LTSC (version 1809).

Generally, the single stage optimization model could be solved for problem
settings with a maximum of 15 transport units arriving at the given conveyor
network (cf. Figure 7.10). Applying the iterative segmented optimization
model yields solutions for problem settings of up to 35 transport units, i.e.,
seven batches of size five, enabling a more comprehensive quality assessment of
decentralized solutions. As the investigated batch size increases, fewer problem
settings are solved. Larger batches require a sufficiently long time frame Tk
per iteration for pre-sequencing. The number of transport units assigned to the
same output module increases such that observing the predefined predecessor-
successor dependencies becomes more complex. But enlarging the time frame
Tk induces excessive computation time.

Table 7.4: Solved problem settings using the single stage optimization model.

Batches Arrival sequence
size number best-case average-

case
worst-case

5 1 X X X
2 X X X

10 1 X X X
15 1 X

Figure 7.12 shows the deficit of the decentralized solutions compared to the
globally optimal solutions for the problem settings solved with the single stage
optimization model. Using x|y|z, we identify a problem setting with batch size
x, where y batches arrive in sequence z. Illustrated error bars describe the length
of the 95%-confidence interval for the decentralized sequencing time resulting
from the underlying simulation experiment (cf. Section 7.1.4). For the best-case
arrival sequence and one batch, i.e. x|1|b-c, the decentralized solution deviates
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Table 7.5: Solved problem settings using the iterative segmented optimization model – Indicated
values denote the minimum possible time split factor the calculation is based on.

Batches Arrival sequence
size number best-case average-

case
worst-case

5

3 3 3 4
4 4 4 7
5 4 7 7
6 6 8
7 8 9

10 2 4 6
3 6

15 1 4

from the optimal solution by a maximum of 3.7% for all investigated batch
sizes. The deficit increases with the number of transport units to be sequenced.
Additionally, average-case and worst-case arrival sequences complicate batch
processing such that we observe a deficit of up to 40.4% for problem setting
10|1|w-c. Overall, the comparison of decentralized solutions to all available
globally optimal solutions yields an average deficit in sequencing time of 19.8%,
where the decentralized number ofmovements exceeds the optimal one by 4.6%
on average.

In seven of the ten solvable problem settings, we obtain identical results for
the global optimal sequencing time compared to the approximation using the
lower bound approach. For the remaining problem settings, the underestimation
averages 5.9%, resulting in an overall deviation between the optimal solutions
and the lower bound estimate of 1.8% on average.

Figure 7.13 shows the deficit of the decentralized solutions compared to the
partially optimal solutions for the problem settings solved with the iterative seg-
mented optimization model. The mean relative deviation from partially optimal
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Figure 7.12: Deficit of decentralized solutions for the problem settings solved by the single stage
optimization model.5

to decentralized sequencing time is significantly negatively linearly correlated
with the number of partial solutions an overall solution is composed of within
the iterative segmented optimization (p-value of 0.0018). This indicates that the
sub-optimality of iteratively calculated solutions expands with the number of it-
erations increasing the effective deficit compared to globally optimal solutions.
The deficit of the decentralized solutions compared to all available partially
optimal solutions averages 19.9%. For the problem setting 10|2|b-c the de-
centralized solution outperforms the partially optimal solution by 1.7%, which
again underlines the non-global optimality. The maximum deficit observed
amounts to 35.2%. The partially optimal number of movements exceeds that
of the decentralized solutions by 14.2% on average, as the system arrangement
is always only locally optimized for each given iteration. Upcoming movements
in later iterations are not included.

Comparing the partially optimal sequencing time to the approximation using
the lower bound approach yields a deviation of 35.8% on average. The mean

5 The bars of the optimal and decentralized results represent the additional sequencing time
incurred within the respective solutions.
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Figure 7.13: Deficit of decentralized solutions for the problem settings solved by the iterative
segmented optimization model – The given numbers indicate the number of partial
solutions the overall solution is composed of.6

deficit is significantly positively linearly correlated with the number of partial
solutions an overall solution is composed of within the iterative segmented
optimization (p-value of 1.08E-06). This supports the stated interdependencies
between level of sub-optimality and number of iterations outlined above. The
deficit of the decentralized solutions compared to the results of the lower bound
approach averages 49.6%. However, this might overestimate the actual deficit
compared to an optimal solution, as the lower bound represents a theoretical,
underestimating limit.

We provide all numerical results of these evaluations for further use in the
attached research data (Fleischmann 2023).

6 The bars of the partially optimal and decentralized results represent the additional sequencing
time incurred within the respective solutions.
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7.3.3 Implications

The developed centralized optimization models differ from the presented de-
centralized algorithm in terms of the available information for decision making.
Decentralized solutions are composed of local decisions based on the locally
available information at module level. The system arrangement can never be
analyzed in its entirety, as each module can only access its own state, i.e.
whether it is currently occupied or not. Furthermore, the set of transport units,
including their arrival characteristics, are not known in advance. A transport
unit is not registered within the system until it is physically positioned at its
input module. Using the optimization models, the arrangement of transport
units is optimized to minimize the required time for sequencing based on global
system information. Arrival locations, i.e., the input modules where transport
units are introduced into the system, arrival sequences, i.e., the positions within
the permutation of the required unloading sequences at the assigned output
modules, and arrival times, i.e., the physical times when transport units reach
the system, are incorporated when calculating optimal solutions. Reordering
transport units can consider the predefined predecessor-successor dependencies
even before introducing transport units.

Despite this incomplete information, we obtain a decentralized solution deficit
of less than 20% on average for all solvable problem settings. The decentralized
system design guarantees flexibility, robustness, scalability, as well as runtime
efficiency, i.e., it is not limited in terms of the problem sizes to be solved.
Due to missing comparative benchmarks of existing decentralized systems (cf.
Section 2.2) and especially the additional benefits of the system design, we
classify the developed algorithm based on the obtained results as relevant for
practical use. Furthermore, we suppose that the lower bound approach is capable
of providing reasonable estimates of the optimal sequencing time. Therefore,
it will be used for further quality assessment of the achieved decentralized
solutions within the performance evaluations of Chapter 8.
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7.4 Chapter Conclusion

In this chapter, we assess the quality of the decentralized sequencing algorithm
by evaluating its deficit compared to optimal solutions. Overall, this responds
to the fifth research question:

How do decentralized solutions for sequencing problems com-
pare to optimal solutions?

We present two optimization models to the problem of sequencing in highest-
density conveyor networks based on mixed-integer programming. The single
stage optimization model provides globally optimal solutions, while the it-
erative segmented optimization model provides partially optimal solutions by
splitting the overall sequencing problem into smaller sub-problems. This allows
increasing solvable problem sizes.

Due to NP-hardness, both optimization models suffer from extensive compu-
tation times which prevents evaluating the decentralized solution deficit for
real-world problem settings. Therefore, we provide a lower bound approach for
approximating the minimum sequencing time for a given sequencing problem.
It underestimates the true optimal result but enables assessing the quality of
decentralized solutions without limitation in terms of solvable problem sizes.

Based on the obtained numerical results, we conclude that the decentralized
sequencing algorithm is able to provide valuable solutions for use in practical
applications. The decentralized solution deficit is less than 20% on average
for all problem settings that could be solved using the presented optimization
models. Additionally, the decentralized system design guarantees flexibility,
robustness, scalability, as well as runtime efficiency. By comparing the results
of the lower bound approach to the obtained optimal results we found that the
former is capable of providing reasonable estimates of the optimal sequencing
time.
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Due to the modular design, installed sequencing systems can be flexibly cus-
tomized. Additionally, the flow of arriving transport units highly depends
on the underlying practical requirements. We provide recommendations for
real-world sequencing applications within a comprehensive parameter analysis
using simulation studies. Section 8.1 presents the preliminary assumptions
these evaluations are based on. To capture the impacts of the various problem
parameters, we subdivide the investigations according to the batch character-
istics (cf. Section 8.2) and the installed conveyor network (cf. Section 8.3).
All numerical results of these evaluations are available for further use in the
attached research data (Fleischmann 2023). By summarizing the results of this
chapter, Section 8.4 provides an answer to the sixth research question of this
dissertation.

The simulated systems within these evaluations intend to represent material
flow systems processing transport units arriving continuously over time as in
practical applications. To obtain results that relate to stable system operation,
we start recording the performance indicators after a warm-up phase, which we
determine according to theMSER-5method (for details seeAppendix B.1). The
stopping criterion is calculated using an admissible deviation range based on the
mean system throughput of the overall simulation run time in steady-state (for
details see Appendix B.2). To represent fluctuating order demands, the network
inflow (cf. Section 4.3.1.3) is parameterized stochastically. We perform several
replications for each parameter setting to provide reliable results based on a
95%-confidence interval related to the average throughput result (for details see
Appendix B.3).
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8.1 Preliminaries

We present the general principles the obtained simulation results are based on
starting with the selected parameterization of the decentralized sequencing al-
gorithm (cf. Section 8.1.1). Section 8.1.2 outlines the investigated performance
indicators used to define stable sequencing systems within their operating pro-
cesses (cf. Section 8.1.3). These requirements yield the numerical results
shown in Sections 8.2 and 8.3, respectively.

8.1.1 Algorithm Parameterization

The decentralized sequencing algorithm is parameterized by the relocation
penalty pb and the directional change penalty pc guiding the decentralized
A* search for path selection (cf. Section 4.2.2.2). Within the simulation studies
of this chapter, we consistently set pb = 1 and pc = 0.1 for all simulation runs.

The relocation penalty determines whether path selection for active routes fa-
vors buffer modules inducing a relocation route or detours circumventing the
blocking buffered transport unit. From the results of Fleischmann and Furmans
(2023), we conclude that preferring relocations instead of detours improves
system throughput. While a detour increases solely the transport time of the
transport unit on the active route, active and passive routes can be executed
simultaneously. That means that scheduled relocations can already be executed
before the transport unit of the active route moves towards the blocking buffered
transport unit. This requires pb to be set greater than 0 and smaller than the dif-
ference between the shortest path and the shortest detour path between all pairs
of modules. Distances within the conveyor network are measured in module
lengths. Due to the underlying module characteristics, transport units can only
be transferred via one of its four edges. Thus, a detour between two modules
takes at least two module lengths compared to a shortest path, as each step
leads either towards the path destination or away from it. A detour moving one
module length away from the destination needs to be compensated accordingly
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to reach the destination. The chosen parameterization satisfies all of these
requirements.

In Section 4.2.2.2, we derive the upper bound of the directional change penalty
pc according to equation (4.14) to generally guarantee optimality. This covers
all possible combinations of two sub-paths ṕ and p∗, of which some may be
highly infrequent. The precise value for the upper bound of pc depends on the
corresponding conveyor network and cannot be determined without applying
additional optimization methods. The results of Fleischmann and Furmans
(2023) indicate that pc < pb represents a sufficient requirement within practical
use cases, as throughput is increased for these parameter constellations. Using
the chosen parameterization, this is satisfied.

8.1.2 Performance Indicators

The sequencing system can be evaluated regarding different performance in-
dicators. These either relate to the system or single modules and transport
units:

• System-related performance indicators:

– Throughput [TU/h]1: average number of transport units being un-
loaded according to the predefined sequence at the assigned output
module

– Share of lower bound [%]: ratio of the sequencing time of the lower
bound solution to that of the decentralized solution

– Density [%]: average share of sequencing modules occupied by a
transport unit

• Transport unit-related performance indicators:

1 TU within units implies transport unit(s) for all specified performance indicators.
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– Cycle time [s/TU]: average time for processing a transport unit, i.e.
from introducing at the input module to unloading at the output
module

– Sojourn time [s/TU]: average time for handling a transport unit, i.e.
from arriving at the system to unloading at the output module

– Waiting time [s/TU]: average time a transport unit waits for being
processed, i.e. from arriving at the system to introducing at the
input module

– Waiting time queue [s/TU]: average time a transport unit spends in
the queue in front of the input module, i.e. from arriving at the
system to reaching the input module

– Waiting time input [s/TU]: average time a transport unit positioned
at the input module is prevented from being introduced due to the
defined inflow constraints

– Path length [#modules]: average number ofmodules a transport unit
passes from the input to the output module when being processed

• Module-related performance indicators:

– Message processing [#msg/module/s]: average number of messages
initiated to be processed by a recipient

– Message transmission [#msg/module/s]: average number of mes-
sages being forwarded to an adjacent module due to the decentral-
ized system setup

Unless otherwise stated, we present average values within steady-state of a sim-
ulation experiment for all described indicators. Illustrated error bars describe
the length of the 95%-confidence interval for the respective indicator resulting
from the underlying simulation experiment.
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In practical applications, system throughput is mainly relevant, as this is deci-
sive for operational suitability in industrial processes. Therefore, the numerical
results of these simulation studies (cf. Sections 8.2.2, 8.3.1.2, and 8.3.2.2)
focus on illustrating system throughput results measured in transport units per
hour. All other performance indicators are included in the attached research
data (Fleischmann 2023). We apply the presented lower bound approach (cf.
Section 7.2) to benchmark the obtained decentralized results within these eval-
uations. It refers to the theoretically minimum possible sequencing time for a
given sequencing problem the sequencing time of the decentralized algorithm
is compared to. As throughput and sequencing time are inversely related, this
indicates a maximum possible system performance in terms of throughput.2

8.1.3 Stability Requirements

To provide reasonable simulation results in terms of the presented performance
indicators, the sequencing system needs to be stable. A stable system is able to
continuously process the incoming flow of materials such that there is no over-
load. Using principles from queuing theory, we define a stability criterion for
the presented sequencing system. Based on the requirements of a simple queu-
ing system (cf. Section 8.1.3.1), we derive the time components involved when
handling a transport unit within the sequencing system (cf. Section 8.1.3.2).
This yields the adapted stability criterion (cf. Section 8.1.3.3).

2 For the evaluations of Section 7.3, we use the sequencing time as key performance indicator
due to the limited problem size. However, when simulating continuous material flow systems
of practical applications, steady-state system throughput is more meaningful.
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8.1.3.1 Principles of Queuing Theory

Considering a simple queuing system composed of one arrival stream, one
processing station, and one departure stream (cf. Figure 8.1). The arrival rate
λ results from the expected interarrival time E(ta) of the arriving items, i.e.,

λ =
1

E (ta)
. (8.1)

Equally, the processing rate µ results from the expected processing time of the
system E(tp). So,

µ =
1

E (tp)
. (8.2)

λ µ

arrival
stream

waiting
queue

processing
station

departure
stream

Figure 8.1: Simple queuing system.

System stability is expressed using the system utilization ρ. The system is stable
if

ρ =
λ

µ

!
< 1. (8.3)

Otherwise, the arrival stream of the system will exceed its departure stream
creating a continuously increasing waiting queue in front of it. (Arnold and
Furmans 2019, p. 114ff.)
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8.1.3.2 Time Components in Sequencing

We formalize the time components involved when handling a transport unit for
sequencing such that reorganizing transport units within the system as well as
the defined inflow constraints (cf. Section 3.2.1.2) can be represented. This
serves to specify the adapted stability criterion (cf. Section 8.1.3.3).

Generally, the sojourn time tbs of a transport unit b for sequencing is defined by
its arrival time ab within the queue of arriving transport units at the assigned
input module and its unloading time ub at the assigned output module. This
implies

tbs = ub − ab. (8.4)

This sojourn time comprises the waiting time tbw until transport unit b is intro-
duced into the system at time eb together with its processing time for sequencing
tbp. Therefore,

tbs = tbw + tbp (8.5)

with

tbw = eb − ab and tbp = ub − eb (8.6)

applies.

Due to the defined inflow constraints which prevent congesting the sequencing
system in an (m : n) setting, unlike with common queuing systems, the waiting
time tbw consists of

• thewaiting timewithin the queue of transport units in front of the assigned
input module tbwq and
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• the waiting time on the assigned input module until the necessary re-
quirements for introducing the transport unit according to the inflow
constraints are met tbwe .

Thus,

tbw = tbwq + tbwe . (8.7)

Overall, this gives

ub = ab + tbs (8.8)
= ab + tbw + tbp

= ab + tbwq + tbwe + tbp.

8.1.3.3 Adapted Stability Criterion

In contrast to simple queuing systems (cf. Figure 8.1), the presented sequencing
system provides multiple input and output modules for simultaneously intro-
ducing and unloading transport units. Furthermore, multiple transport units are
present within the system for being processed. This yields a queuing model
with multiple arrival and departure streams and parallel processing.

To evaluate system stability, we define the arrival and processing rate at system
level such that equation (8.3) can be applied. These can be derived from the
interarrival and processing times of the single transport units, respectively. We
denote byE(tai) the expected interarrival time of the transport units arriving at
input module iwhileE(tbp) denotes the expected processing time for sequencing
a single transport unit b within the system.

Basically, the arrival rate λi at a single input module i is determined by the
expected interarrival time E(tai). However, a transport unit arriving on its
assigned input module might need to wait until a sufficient number of other
transport units have been unloaded due to the defined inflow constraints (cf.
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condition (I3)). Processing a transport unit is on average delayed byE
(
tbiwe
)
for

each transport unit bi assigned to input module i. This requires adjusting the
arrival rate considering the expected delay when introducing to represent the
arrival process appropriately. We define the expected delayed interarrival time
E(tdi) at input module i as

E (tdi) = E (tai) + E
(
tbiwe
)
. (8.9)

From this follows the delayed arrival rate λ̌i at input module i

λ̌i =
1

E (tdi)
. (8.10)

We obtain the delayed arrival rate λ̌ of the system based on the expected delayed
interarrival time E(td) at system level as

λ̌ =
∑
i∈I

λ̌i =
1

E (td)
, (8.11)

where

E (td) =
1∑

i∈I
1

E(tdi)

. (8.12)

The processing rate of the system µ depends on the expected processing time
for sequencing a single transport unit E(tbp) together with the expected number
of transport units E(nb) which are simultaneously within the system for being
sequenced. This can be derived from the average density δ related to the total
number of sequencing modules |C| observed for this simulation run, i.e.,

E
(
nb
)

= δ · |C|. (8.13)

155



8 Performance Evaluation

This results in the expected processing time of the system

E (tp) =
E
(
tbp
)

E (nb)
=
E
(
tbp
)

δ · |C| (8.14)

and thus,

µ =
1

E (tp)
=
δ · |C|
E
(
tbp
) . (8.15)

With equations (8.11) and (8.15), we are able to describe the arrival and pro-
cessing rate at system level based on the parallel arrival and processing rates at
module level. Using equation (8.3), the stability criterion for the multi-batch
sequencing system results as

ρ =
λ̌

µ
=
E (tp)

E (td)
=
∑
i∈I

1

E (tai) + E
(
tbiwe
) · E (tbp)

δ · |C|
!
< 1. (8.16)

If equation (8.16) holds, we denote the system as stable when processing the
stream of arriving transport units. The limiting throughput γ of the system
results from the highest possible arrival rate λγ satisfying equation (8.16).

All simulation results within these evaluations are based on limiting throughput
simulation experiments. We incrementally increase the expected interarrival
time at system level in steps of 0.05 s as long as equation (8.16) holds. This yields
the simulation experiment of the limiting throughput for the given parameter
setting.

8.2 Impact of Batch Characteristics

Analyzing the impact of batch characteristics is based on the design of ex-
periments defined in Section 8.2.1. We present the numerical results in Sec-
tion 8.2.2. These yield the implications of Section 8.2.3.
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8.2.1 Design of Experiments

We apply a reference network comprising a square 7×7 arrangement of se-
quencing modules including five input and five output modules for introducing
and unloading at the top and bottom, respectively (cf. Figure 8.2).

Figure 8.2: Reference network to evaluate batch characteristics.

Batch sizes are normally distributed, i.e., k ∼ N (µ, σ2), with mean values
µ ∈ [1, 45] and a fixed standard deviation of σ = 2. Note that the maximum
processable batch size of the conveyor network in Figure 8.2 is 48 according to
the specifications given in Section 4.3.1.3. As arrival sequence and sequencing
rate apply at batch level, these need to be analyzed depending on the corre-
sponding batch size. To examine the impact of different batch sizes in isolation,
we investigate batches with completely defined unloading sequence (s = 1).
These arrive at the system according to randomly generated permutations of
their unloading sequence.

For analyzing different batch arrival sequences and sequencing rates, we fo-
cus on mean batch sizes of µ ∈ [5, 20] transport units. Based on discussions
with practitioners, we deduce that these are most relevant for real-world appli-
cations. By investigating best-case and worst-case arrival sequences, we can
estimate upper and lower bounds of the expected throughput achieved in practi-
cal operation. For the best case, the arrival and unloading sequences of batches
are equal, while for the worst case, batches arrive in reverse order as they are
unloaded at their output modules. Random arrival sequences are intended to
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represent general circumstances of practical applications. The sequencing rate
is varied in steps of 0.25.

Batches are randomly assigned to output modules. Likewise, arriving transport
units of these batches are randomly assigned to input modules. The arrival
rate is set to provide the limiting system throughput (cf. Section 8.1.3). Ta-
ble 8.1 summarizes the design of experiments for analyzing the impact of batch
characteristics for the given conveyor network of Figure 8.2.

Table 8.1: Design of experiments to evaluate the impact of batch characteristics.

Parameter Values

Batch size µ 13; 5; 10; 15; 20; 253; 303; 353; 403; 453

σ 2
Arrival sequence random; best-case; worst-case
Sequencing rate 0; 0.25; 0.5; 0.75; 1
Input-output assignment random
Arrival rate λγ

8.2.2 Numerical Results

Figure 8.3 shows the limiting throughput results for the specified normally
distributed batch sizes. We observe a significant negative linear correlation
between limiting throughput and batch size related to their mean values (p-
value of 2.20E-09). Compared to a mean batch size of 1, increasing the mean
batch size decreases the limiting system throughput by up to 58.0% for a mean
batch size of 45 transport units. Thus, the limiting throughput is reduced by
1.3% on average for each increase in mean batch size by one transport unit per
batch. Due to the strong linear correlation, we assume that the trend line in

3 only with sequencing rate 1 and random arrival sequence
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Figure 8.3 can be used to approximate the limiting throughput results for all
further mean batch sizes ranging from 1 to 45 transport units per batch.
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Figure 8.3: Limiting throughput depending on batch size (s = 1, random arrival sequence).

The solution deficit of the decentralized solutions averages 25.7% compared
to the analytically calculated lower bound. For mean batch sizes of up to 25
transport units, the decentralized solutions and the results of the lower bound
approach differ by less than 20%. With increasing mean batch sizes, the deficit
of the decentralized solutions increases to a maximum of 49.6% at mean batch
size 45. The analytically calculated lower bound is prone to underestimate in
case of larger batch sizes. These increase the average time a transport unit is
buffered within the system until all necessary predecessors are available, which
is not captured when estimating its processing time using tbmin.

Best-case and worst-case arrival sequences change the limiting throughput by
an average of +3.9% and -2.9%, respectively, compared to random arrival
sequences for the selected mean batch sizes between 5 and 20 (cf. Figure 8.4).
The effects are amplified with increasing mean batch size as more transport
units arrive already observing the unloading sequence in the best case or need
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to be reordered in the worst case. Thus, for a mean batch size of 20 transport
units, the limiting throughput is improved by up to 6.7% and reduced by up to
5.2% for the best- and worst-case arrival sequence, respectively.
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Figure 8.4: Limiting throughput depending on arrival sequence for selected batch sizes (s = 1).

The average deficit of the decentralized solutions compared to the results of the
lower bound approach amounts to 14.8% for these evaluations with a minimum
of 10.9% and a maximum of 24.9%.

Partially defined unloading sequences imply less predefined predecessor-successor
dependencies and enable increasing system throughput (cf. Figure 8.5). Com-
pared to a completely defined unloading sequence (s = 1), the limiting through-
put is improved by an average of 30.0% at sequencing rate 0 for the selected
mean batch sizes between 5 and 20. The number of transport units of non-equal
rank within a batch increases with the mean batch size at a given sequencing
rate. Therefore, the differences between partially defined unloading sequences
with s > 0 decrease with increasing batch size. This yields a maximum in-
crease of 42.2% for mean batch size 20, while the minimum increase amounts
to 17.4% at mean batch size 5.
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Figure 8.5: Limiting throughput depending on sequencing rate for selected batch sizes (random
arrival sequence).

For these evaluations, the average deficit of the decentralized solutions com-
pared to the results of the lower bound approach amounts to 13.8% with a
minimum of 10.9% and a maximum of 17.3%.

8.2.3 Implications

Sequencing becomes increasingly sophisticated themore arriving transport units
need to be reordered within the system. Increased batch sizes and higher
sequencing rates imply more predefined predecessor-successor dependencies
within each batch to be observed at the output modules. This reduces the
number of transport units already requested upon their arrival such that they
can be routed directly from the input to the output module. Buffering non-
requested transport units within the system increases their processing time,
which decreases system throughput. These effects are intensified or diminished
by the arrival sequences of batches. If batches arrive at the system in reverse
order compared to the predefined unloading sequence, i.e. a worst-case arrival
sequence, buffering becomes more likely. The opposite is true the more the
arrival sequence of batches follows their predefined unloading sequence as
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with a best-case arrival sequence. Due to the defined inflow constraints (cf.
Section 3.2.1.2), the number of batches which can be processed simultaneously
within the system decreases with increasing batch size. Therefore, higher
mean batch sizes reduce the number of transport units requested next within
the unloading sequences. This limits the outflow of transport units from the
system.

Overall, system throughput in sequencing is enhanced

• by reducing the size of the batches to be processed,

• by matching their arrival sequences with the predefined unloading se-
quences, and

• by reducing the predefined predecessor-successor dependencies such that
there are more transport units of equal rank within each batch.

8.3 Network Analysis

A conveyor network is characterized by the number and arrangement of its
sequencing, input, and output modules. Input and output modules provide the
inflow and outflow of the system, while sequencing modules specify available
paths within the network as well as its buffering capacity. The buffer capacity
of the network determines the inflow constraints at its input modules (cf. Sec-
tion 3.2.1.2). For reasons of comparability, we assume similar buffer capacity
for all conveyor networks studied in the following. The decentralized system
design offers scalability such that much larger networks than those simulated in
this dissertation are feasible. As these do not reveal essentially further findings,
we focus on network sizes where the structural impact can be comprehensibly
demonstrated within our evaluations. In Section 8.3.1, we analyze how inflow
and outflow capacity of a network affect system throughput. Different arrange-
ments of sequencing modules are examined in Section 8.3.2. All evaluations
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regarding the network analysis are based on a network inflow parameterization
as given in Table 8.2.

Table 8.2: Network inflow parameterization for investigated conveyor networks.

Parameter Value

Batch size µ 5
σ 2

Arrival sequence random
Sequencing rate 1
Input-output assignment random
Arrival rate λγ

8.3.1 Inflow and Outflow Capacity

Analyzing the impact of network inflow and outflow capacity is based on the
design of experiments defined in Section 8.3.1.1. We present the numerical
results in Section 8.3.1.2. These yield the implications of Section 8.3.1.3.

8.3.1.1 Design of Experiments

The necessary inflow and outflow capacity of a sequencing network depend
on the upstream and downstream process of the underlying application. Each
arrival and departure stream requires an input and output module to be installed
within the sequencing network. Based on the number and arrangement of input
and output modules, we define the following system level material flow types
(cf. Figure 8.6):

• Line with |I| = |O|,

• Single Merge with |I| > |O|,
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• Multi Merge with |I| >> |O|,

• Single Branch with |I| < |O|,

• Multi Branch with |I| << |O|, and

• Cross with |I| = |O|.

sequencing
system

(a) Line.

sequencing
system

(b) Single Merge.

sequencing
system

(c) Multi Merge.

sequencing
system

(d) Single Branch.

sequencing
system

(e) Multi Branch.

sequencing
system

(f) Cross.

Figure 8.6: System level material flow types.

To reduce the total number of possibilities, we exploit symmetries and fix the top
and bottomof the sequencing system for introducing and unloading, respectively.
This defines the system level material flow of linear networks, where we assume
an equal number of input and output modules. For merging networks, one
or both remaining system sides are additionally used for introducing transport
units, increasing its inflow capacity. The opposite holds for branching networks.
Crossing networks result from combining branching and merging networks,
where the number of input and output modules is equal but exceeds that of linear
networks. More complex constellations in which, for instance, one or more
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system sides simultaneously provide introducing and unloading can be handled
using the presented sequencing algorithm, but are not further investigated in
this context due to their lack of practical relevance.

We use a 7×7 square arrangement of sequencing modules as reference network
and set the number of input and output modules to five modules per system
edge used for introducing and unloading, respectively. Combined with the
system level material flow types according to Figure 8.6, this results in the six
sequencing networks as shown in Figure 8.7.

(a) Line. (b) Single Merge. (c) Multi Merge.

(d) Single Branch. (e) Multi Branch. (f) Cross.

Figure 8.7: Reference networks to evaluate inflow and outflow capacity.

8.3.1.2 Numerical Results

We apply the input/output ratio |I|/|O|, which relates the inflow and outflow
capacity of a sequencing network, to analyze their impact on system throughput
for these evaluations. Figure 8.8 shows the limiting throughput results for the
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six sequencing networks of Figure 8.7. We observe a significant negative linear
correlation between mean limiting throughput values and input/output ratio
(p-value of 0.0083).
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Figure 8.8: Limiting throughput depending on input/output ratio.

In merging networks, the limiting throughput is reduced by up to 23.3% com-
pared to the network of flow type Line when tripling the inflow capacity up to
the Multi Merge network. Branching networks increase the limiting throughput
by up to 11.5% compared to the network of the flow type Line when tripling the
outflow capacity up to the Multi Branch network. Thus, the impact of changing
the inflow capacity exceeds that of analogously changing the outflow capacity,
as the predefined unloading sequences additionally need to be observed when
unloading transport units at the output modules. This can also be seen by com-
paring the networks of the flow types Cross and Line. Despite equal inflow and
outflow capacity in each network, doubling both capacities within the Cross
network reduces the limiting throughput by 9.0%.

For these evaluations, the average deficit of the decentralized solutions com-
pared to the results of the lower bound approach amounts to 20.0%. The
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minimum of 7.7% is achieved at the smallest input/output ratio within the
Multi Branch network, while the maximum of 33.1% occurs at the highest
input/output ratio within the Multi Merge network. The lower bound is prone
to underestimate in case of increased inflow capacity, as it does not incorporate
inflow constraints to avoid congesting the system. Introducing times are cal-
culated solely based on the arrival characteristics of the transport units. When
reducing the inflow capacity of the network, sequencing times of transport units
become more dependent on the arrival times of missing predecessors. This
yields a solution deficit of the decentralized algorithm of at most 15.5% for the
Line, Single Branch, and Multi Branch network compared to the lower bound
solutions.

8.3.1.3 Implications

Additional outflow capacity within the sequencing network enhances system
throughput, while it is reduced by additional inflow capacity. As the number of
input modules increases, more transport units can be introduced into the sys-
tem simultaneously such that system density increases. In case of insufficient
outflow capacity for unloading, this creates a bottleneck at the output mod-
ules. Higher system density requires more relocations or detours within active
routes increasing the processing times of transport units. As the number of
output modules increases, more transport units are requested next within their
unloading sequences simultaneously. This facilitates unloading, as the flow of
transport units out of the system becomes less restrictive. To enable efficient
sequencing, sufficient outflow capacity is essential within the sequencing net-
work to prevent the output modules from becoming the bottleneck of the system
when unloading sequenced transport units.
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8.3.2 Arrangement of Sequencing Capacity

The developed decentralized sequencing algorithm not necessarily requires rect-
angular and compact network structures such as inHao (2020), Gue et al. (2014),
or Uludağ (2014). It is capable of operating in networks with notches, holes, or
input and output modules positioned inside the system, as long as the require-
ments specified in Section 3.2 are satisfied. We denote a conveyor network as
compact if the shape defined by the outermost system border of its arrange-
ment of sequencing modules is completely covered with sequencing modules.
Otherwise, it is non-compact. A system border is formed by a set of adjacent se-
quencing modules each of which is connected to less than four other sequencing
modules.

Analyzing different network arrangements is based on the design of experiments
defined in Section 8.3.2.1. We present the numerical results in Section 8.3.2.2.
These yield the implications of Section 8.3.2.3.

8.3.2.1 Design of Experiments

Industrial environments usually evolved over time and are limited in terms of
available space. Structural elements or other permanently installed objects
restrict the range of feasible options for setting up new systems. Due to the
modular and decentralized system definition, the presented sequencing system
can be adapted to comply with application-specific requirements.

To cover the needs of practical applications, we classify the five scenarios
Greenfield Planning, Brownfield Planning, Vertical In- or Outflow, Investment
Minimization, and Defective Elements. Each of them incorporates certain
constraints regarding the arrangement of its sequencing modules. For reasons
of comparability, all investigated conveyor networks include five input and five
output modules each with an system level material flow based on type Line (cf.
Figure 8.6 (a)).
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Greenfield Planning using Network Type Rectangle The least complex
network structure is rectangular- or even square-shaped. It is easy to set up
if the available space has few or no restrictions, such as in new buildings.
However, the length and width of the rectangle modify distances between input
and output modules. We define the five conveyor networks shown in Figure 8.9
for investigating how the length-to-width ratio in rectangular, compact networks
affects system throughput.

(a) 7×7. (b) 6×8. (c) 5×10.

(d) 8×6. (e) 10×5.

Figure 8.9: Investigated conveyor networks of type Rectangle.

Brownfield Planning using Network Type Notch When adding new
installations within existing applications, the available space is usually limited
by other stationary resources or structural elements. These may represent
immovable obstacles and restrict feasible setup options, as the network needs to
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integrate them. Using the network type Notch, we investigate how rectangular
notches at outer system edges of initially rectangular networks influence system
throughput. For this, we define the five compact conveyor networks shown in
Figure 8.10.

(a) Corner Inflow. (b) Corner Outflow. (c) Edge Nonflow.

(d) Edge Inflow. (e) Edge Outflow.

Figure 8.10: Investigated conveyor networks of type Notch.

Vertical In- or Outflow using Network Type Hub-&-Spoke In practical
applications, the flow of materials is often not only guided in two dimensions
on a flat surface but also upwards or downwards in vertical directions to better
exploit available space. Therefore, introducing or unloading transport units
is not necessarily restricted to the outer system borders, but is also possible
using input and output modules located inside the network. This creates non-
compact networks which enable shortening transport distances between input
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and output modules compared to a compact setup. Using the network type
Hub-&-Spoke, we investigate the throughput of networks where transport units
are sequenced from the center to the edges and vice versa. We define the four
conveyor networks shown in Figure 8.11 for investigating an inner system inflow.
The corresponding networks with inner system outflow result analogously by
interchanging the positions of input and output modules.

(a) Separate Line. (b) Separate Rectangle.

(c) Scattered Points. (d) Linear Points.

Figure 8.11: Investigated conveyor networks of type Hub-&-Spoke.

Investment Minimization using Network Type Fringe Monetary factors
are crucial when designing a new system. The investment costs of the presented
decentralized sequencing system can mainly be influenced by the number of
sequencing modules installed within the conveyor network. Removing the out-
ermost corner modules of rectangular sequencing module arrangements creates
circular or elliptical compact networks with reduced investment costs. Based
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on the 7×7 square arrangement of sequencing modules, we define the five con-
veyor networks shown in Figure 8.12 to investigate how these modifications
affect system throughput.

(a) Single Sym. (b) Double Single Asym. (c) Double Sym.

(d) Triple Single Asym. (e) Triple Double Asym.

Figure 8.12: Investigated conveyor networks of type Fringe.

Defective Elements using Network Type Hole Modules may fail during
operation such that they are no longer available for sequencing. Due to the
decentralized setup, the system is still operable as long as a feasible conveyor
network, meeting the specified requirements for sequencing capability (cf. Sec-
tion 3.2.2), is created from the remaining modules. The non-compact network
type Hole serves to investigate the impact of reduced system capacity due to
defective sequencing modules. We assume that the failure is already present
when configuring the system, but it runs without the defectivemodules. Starting
from the 7×7 square arrangement of sequencing modules, we define the eight
conveyor networks shown in Figure 8.13. Holes intend to represent defective
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sequencing modules. Particularly, we focus on defects within the system center,
where we suppose major impacts on system performance.

(a) 2%. (b) 10%. (c) 16%. (d) 20%.

(e) 27%. (f) 33%. (g) 41%. (h) 51%.

Figure 8.13: Investigated conveyor networks of type Hole.

8.3.2.2 Numerical Results

Figure 8.14 shows the limiting throughput results for network type Rectangle.
The square 7×7 arrangement outperforms all other rectangular arrangements
with a limiting throughput of 1185.4 TU/h. It decreases by up to 15.7% for
the 10×5 network when modifying the length-to-width ratio. More square-
like arrangements, where input and output modules are placed along the two
shorter system edges, yield a smaller reduction in throughput. This can be
illustrated by comparing the throughput heat maps of the 7×7, 5×10, and
10×5 networks (cf. Figure 8.15). Generally, the vertical path from the input
to the output module in the network center is used most frequently. The wider
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the rectangular network arrangement within the investigated conveyor networks
of Figure 8.9, the more workload is distributed among the parallel vertical
paths. Sequenced unloading requires sufficient space between input and output
modules for reordering transport units within the system. However, excessive
distances cause unnecessarily long transport paths. The 7×7 arrangement
resolves this trade-off most effectively. Its limiting throughput result is also
taken as a reference for the further investigations concerning the networks of
the other application scenarios.
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Figure 8.14: Limiting throughput results for application scenario Greenfield Planning.

(a) 7×7. (b) 10×5. (c) 5×10.

Figure 8.15: Network heat maps of type Rectangle – numbers and shading indicate throughput per
hour and module.4
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For the evaluations concerning network type Rectangle, the average deficit of
the decentralized solutions compared to the results of the lower bound approach
amounts to 14.3% with a minimum of 12.9% and a maximum of 16.6%.

Figure 8.16 shows the limiting throughput results for network type Notch.
Compared to the 7×7 square arrangement, it decreases by 27.5% on average.
Networks containing a corner notch outperform those containing an edge notch.
In both corner notch networks, a bottleneck occurs where the input or output
modules are densely spaced as illustrated in Figure 8.17. As at the output
modules the predefined unloading sequences need to be observed additionally,
the Corner Inflownetwork achieves the smallest throughput reduction of 13.3%.
Edge notches cut into the horizontal path in the center of the system, which is
used most frequently in rectangular networks (cf. Figure 8.15). Compared to
the 7×7 square arrangement, the limiting throughput is reduced by up to 41.4%
for the Edge Outflow network. The Edge Nonflow network outperforms the
Edge Inflow and Edge Outflow network. Notches at the edge of the input and
output modules, as with both latter networks, divide the material flow around
the notch into two separate flows. Reordering of transport units is primarily
accomplished at the bottom or top of the system, which is not affected by the
notch. The lateral edge notch within the Edge Nonflow network merely narrows
the network around the notch, while the entire length of the network can be
used for reordering transport units.

For the evaluations concerning network type Notch, the average deficit of the
decentralized solutions compared to the results of the lower bound approach
amounts to 18.4% with a minimum of 7.0% and a maximum of 25.0%.

Figure 8.18 shows the limiting throughput results for network type Hub-&-
Spoke. Although all investigated networks of this type provide a smaller average
distance between input and output modules than the 7×7 square arrangement,
none of them achieves an equivalent limiting throughput. The average limiting

4 Shading range is linear from light gray to black based on theminimumandmaximum throughput
values over all networks of type Rectangle.
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Figure 8.16: Limiting throughput results for application scenario Brownfield Planning.

(a) Corner Inflow. (b) Corner Outflow.

Figure 8.17: Network heat maps of type Notch – numbers and shading indicate throughput per
hour and module.5

throughput reduction amounts to 16.0%. Nevertheless, we observe a significant
negative linear correlation betweenmean limiting throughput values and average
input-output distance within the network for the investigated Hub-&-Spoke net-
works (p-value of 1.96E-06). Within the Separate Rectangle networks, several
paths from input to output modules include the detour around the rectangular
area in the network center increasing the average input-output distance. These
networks yield the highest limiting throughput reduction of 29.8% and 30.4%,

5 Shading range is linear from light gray to black based on theminimumandmaximum throughput
values over all networks of type Notch.
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respectively. Scattering input and output modules within the network, as in
the Scattered Points and Linear Points networks, increases their connectivity to
sequencing modules. However, these also represent obstacles which need to be
bypassed when routing transport units within the network. Due to the densely
spaced inner input and output modules and the closest average input-output
distance, the Separate Line networks yield the smallest throughput reduction of
9.0% and 5.1%, respectively, compared to the 7×7 square arrangement.
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Figure 8.18: Limiting throughput results for application scenario Vertical In- or Outflow.

For the evaluations concerning network type Hub-&-Spoke, the average deficit
of the decentralized solutions compared to the results of the lower bound ap-
proach amounts to 11.2% with a minimum of 7.0% and a maximum of 15.4%.

Before presenting the evaluation results for network types Fringe and Hole, we
would initially like to remark that reducing available sequencing capacity within
a network always implies increasingly restrictive inflow constraints to prevent
congesting the system (cf. Section 3.2.1.2). Thus, when reducing monetary
investments or accepting defective modules within the network, enhanced in-
flow control is required during running system operation. The network inflow
parameterization (cf. Table 8.2) allows for these smaller capacities of network
types Fringe and Hole, as k << (|C| − 1) holds (cf. Section 4.3.1.3).
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Figure 8.19 shows the limiting throughput results for network type Fringe. They
outperform the limiting throughput of the 7×7 square arrangement by 10.0%
on average due to two benefits: First, replacing sequencing modules at the
system corners by input or output modules decreases the average input-output
distance within the network. Second, the fringed system edges allow input
and output modules to be positioned such that they can introduce and unload
transport units from two directions. This reduces bottlenecks at input and
output modules and enables routes to be planned more efficiently based on the
current system occupation. Comparing the heat maps of the Single Sym and
Double Sym network (cf. Figure 8.20 (a) and (b)) shows that horizontal paths
are used more frequently as the system edges become more frayed. System
workload can better be balanced among available sequencing modules. The
limiting throughput increases by up to 14.3% for the Double Sym network,
while the Triple Single Asym network provides the least improvement of 7.1%
compared to the 7×7 square arrangement. Within asymmetrically fringed
networks, horizontal paths contain additional directional changes. A higher
amount of workload occurs at vertical paths (cf. Figure 8.20 (c)), such that
symmetric fringing should be preferred to asymmetric fringing.
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Figure 8.19: Limiting throughput results for application scenario Investment Minimization.

For the evaluations concerning network type Fringe, the average deficit of the
decentralized solutions compared to the results of the lower bound approach
amounts to 14.4% with a minimum of 11.3% and a maximum of 16.3%.
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(a) Single Sym. (b) Double Sym. (c) Triple Single Asym.

Figure 8.20: Network heat maps of type Fringe – numbers and shading indicate throughput per
hour and module.6

Figure 8.21 shows the limiting throughput results for network typeHole. We ob-
serve a significant negative linear correlation between mean limiting throughput
values and network perforation (p-value of 6.03E-06). While the 2% network
achieves 98.1% of the limiting throughput of the compact 7×7 square arrange-
ment, it is reduced by up to 59.9% for the 51% network. Defective modules
represent obstacles when routing transport units within the system such that the
flow of materials is increasingly displaced towards the intact horizontal paths
(cf. Figure 8.22 (a) and (b)). Extending the network perforation limits possible
paths between input and output modules. Reordering transport units is con-
centrated in front of the output modules creating a bottleneck when unloading
them according to their predefined sequences (cf. Figure 8.22 (c)).

However, even if single modules fail, system functionality is maintained by the
remaining operational ones. The presented sequencing system is still capable of
processing arriving transport units due to its decentralized setup. Centralized
controlled systems cannot guarantee such robustness, as they are inoperative in
case a centralized component fails.

6 Shading range is linear from light gray to black based on theminimumandmaximum throughput
values over all networks of type Fringe.
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Figure 8.21: Limiting throughput results for application scenario Defective Elements.

(a) 2%. (b) 20%. (c) 51%.

Figure 8.22: Network heat maps of type Hole – numbers and shading indicate throughput per hour
and module.7

For the evaluations concerning network type Hole, the average deficit of the
decentralized solutions compared to the results of the lower bound approach
amounts to 20.4%. It increases from 13.3% for the 2% network to up to 29.4%
for the 51% network. As network perforation increases, the number of possible
input-output paths decreases. Detours or relocations occur more frequently
which is not captured when estimating the processing time of a transport unit
using tbmin.

7 Shading range is linear from light gray to black based on theminimumandmaximum throughput
values over all networks of type Hole.
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8.3.2.3 Implications

The decentralized system design enables to flexibly adapt installed sequenc-
ing systems to the individual spatial requirements of practical applications.
Modifying the network structure affects the achieved system throughput during
operation. If most frequently used paths of compact networks are obstructed,
rearranging the transport units becomes more complex which reduces system
throughput. A suitable network design enables workload balancing between
the sequencing modules. This allows to improve system performance, as the
flow of materials is distributed more evenly. System throughput decreases if
workload is concentrated at certain parts of the system – especially in front of
the output modules.

Based on the results of the investigated application scenarios, we recommend
setting up conveyor networks for sequencing such that

• the installed conveyor modules form a compact network (cf. network
type Rectangle, Fringe, Hub-&-Spoke, Hole),

• the length corresponds to the width of the system (cf. network type
Rectangle, Fringe),

• the connectivity of input and output modules to sequencing modules
within the system is increased (cf. network type Fringe, Hub-&-Spoke),

• rearranging transport units is not restricted to certain areas within the
system (cf. network type Notch8, Hole),

• paths from input to output modules are straight and without obstacles (cf.
network type Rectangle, Notch, Hole),

• bottlenecks are avoided (cf. network type Notch9, Hole), and

8 specifically investigated edge notch networks
9 specifically investigated corner notch networks
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• input-output distances are reduced (cf. network type Hub-&-Spoke).

Moreover, the presented decentralized sequencing algorithm shows consistent
performance regarding the lower bound reference throughout all investigated
application scenarios. This indicates robust and scalable solutions.

8.4 Chapter Conclusion

This chapter evaluates the performance of the presented decentralized sequenc-
ing algorithmwithin a comprehensive parameter analysis using simulation stud-
ies. Overall, this responds to the sixth research question:

What throughput predictions and recommendations can we de-
rive for sequencing in practical applications?

We focus on the limiting system throughput as key performance indicator for
these evaluations to derive recommendations for design and operation of se-
quencing systems running in real-world applications.

Due to the modular design, installed sequencing systems can be flexibly cus-
tomized. We describe a conveyor network by the number and arrangement of
its sequencing, input, and output modules. Input and output modules provide
the inflow and outflow of the system, while sequencing modules specify the
paths within the network as well as its buffering capacity. Additional outflow
capacity within the sequencing network enhances system throughput, while it
is reduced by additional inflow capacity.

Modifying the network structure affects the achieved system throughput dur-
ing operation. Based on the results obtained, we deduce compact network
structures, straight paths from input to output modules, reduced input-output
distances, increased connectivity within the network – especially for input and
output modules – and continuous sequencing areas as drivers for high system
throughput.
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Concerning the batch characteristics within the flow of arriving transport units,
system throughput in sequencing can be improved by decreasing batch sizes,
reducing predecessor-successor dependencies as well as pre-sequenced arrival
characteristics.

Benchmarking the obtained decentralized solutions within these evaluations
against the presented lower bound approach (cf. Section 7.2) shows that the
presented algorithm is valuable for practical use.
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9 Conclusion

To conclude this dissertation, we summarize its main achievements (cf. Sec-
tion 9.1). This provides a new scientific contribution in the field of autonomous
material handling systems from which future research opportunities can be
derived (cf. Section 9.2).

9.1 Achievements

In this dissertation, we present a decentralized algorithm for multi-batch se-
quencing using highest-density conveyor networks. In contrast to existing sys-
tems of current research, we enable

• an entirely decentralized system setup,

• parallel processing of multiple batches within an (m : n) setting,

• highest-density space utilization, as well as

• arbitrary network structures.

This offers a valuable contribution to enhance various production and material
handling applications by sequenced supply of physical objects within dynamic,
uncertain, and complex industrial environments.

Decentralized sequencing applies within a network of identical, autonomous
input and output nodes for introducing and unloading physical objects together
with sequencing nodes for processing them. Transferring physical objects as

185



9 Conclusion

well as exchanging data for communication occurs between each pair of adjacent
nodes.

Sequencing physical objects at highest density imposes capacity and structural
requirements on the underlying network. To consider the spatial dimensions
of the physical objects being processed, node capacity is set to a minimum of
one. Based on that, the defined inflow constraints comprising conditions (I1)
to (I3) prevent congesting the system during operation. If the given network of
sequencing nodes satisfies at least 2-connectivity, we can guarantee a feasible
relocation path between each pair of distinct sequencing nodes for each highest-
density arrangement.

To observe the predefined unloading sequences at the output nodes, sequencing
nodes are used to buffer physical objects, which are not yet requested when be-
ing introduced at their input nodes. Highest-density system operation requires
a dynamic buffering approach, where allocated buffer nodes can be switched.
The overall routes of physical objects from input to output nodes are specified
using active routes for introducing arriving and/or unloading requested phys-
ical objects as well as passive routes for relocating buffered physical objects
interfering with active routes. To achieve efficient sequencing, we develop the
unloading sequence-based buffer selection rule for buffer allocation on active
routes, while for passive routes the distance-based buffer selection rule applies.

Active routes are crucial to proceed in sequencing and are initiated based on the
scheduled reservations at the output nodes. Using an offline route planning ap-
proach, all routes are scheduled entirely from the start node to the (intermediate)
destination node before being executed. Route planning comprises:

• the decentralized authorization concept, which avoids conflicts and en-
ables deadlock-free system operation, as all active routes are planned
sequentially,

• path selection of active routes using the adapted decentralizedA* algorithm,
which considers distances, buffer nodes, and directional changes,
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• route reservation of active routes as well as all induced passive routes
based on the concept of logical time according to the defined reservation
conditions (R1) to (R6),

• relocation as sub-process during active route reservation, where buffered
physical objects are successively moved to an adjacent node such that the
occupied node of the active route can be accessed.

Transport execution follows the series of reserved logical time windows in
ascending order at each network node. After completing a transfer, the involved
nodes forward their logical clocks accordingly.

For demonstration within a practical showcase system, we apply rectangular
conveyor modules providing transportation in the four cardinal directions. Each
of them has its own control unit and offers an interface for connecting an adja-
cent module at each of its edges. The system processes transport units, which
are organized in batches. Each batch entails an ordering of its transport units
specifying its unloading sequence. The decentralized communication is real-
ized via messages sent between adjacent modules, incorporating a transmission
mechanism to enable exchanging information between non-adjacent modules.
Using an agent-based simulation model, we implement the presented decentral-
ized sequencing algorithm. This allows assessing the behavior of the physical,
decentralized conveyor network for real-world sequencing applications.

The developed decentralized sequencing algorithm ensures system liveliness at
any point in time by generally preventing deadlocks, livelocks, and starvation
within algorithmic operations as well as resource allocation.

From the complexity analysis, we obtain the algorithmic complexity –measured
in the required communication effort – of order O(n3) at network level which
reduces to O(n2) at node level, both scaling with the number of nodes n.

To assess the quality of the presented sequencing algorithm, we use a single
stage optimization model providing globally optimal solutions as well as an
iterative segmented optimization model providing partially optimal solutions
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to the problem of sequencing in highest-density conveyor networks. Due to
NP-hardness, solvable problem sizes are limited. To compensate for bigger and
more realistic systems, we present a lower bound approach, which analytically
approximates the minimum sequencing time for a given sequencing problem.
Despite incomplete local information for decision making, the solution deficit
of the decentralized sequencing algorithm is less than 20% on average for all
problem settings that could be solved using the presented optimization models.
Based on all benchmark results of the lower bound approach, the algorithmic
quality level is maintained throughout the system variations with larger problem
sizes.

The performance evaluations demonstrate that system throughput can be gen-
erally improved by decreasing batch sizes, reducing predecessor-successor de-
pendencies as well as pre-sequenced arrival characteristics of physical objects.
When designing sequencing systems running in real-world applications, suffi-
cient outflow capacity within the sequencing network is essential. Additionally,
compact network structures with straight paths from input to output nodes en-
able increasing system throughput. To prevent bottlenecks when introducing
and unloading physical objects, we recommend increasing the connectivity of
input and output nodes to sequencing nodes within the network.

9.2 Outlook

In this dissertation, we provide the basis for establishing a physical decentralized
sequencing system used in practical applications. Reliable system operation
under real-time conditions requires a suitable communication protocol to ensure
that all messages reach their corresponding recipient. Continuous automated
functional diagnostics at module level help updating available network parts as
well as system capacity information. In case of failures, recovery strategies can
be used to restore the system to a state from which it can continue processing.
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9.2 Outlook

The presented sequencing system consists of identical autonomous entities.
However, this does not constitute a necessary requirement for applying the de-
veloped decentralized sequencing algorithm. As long as the relevant network
structures are given, we can imagine that the presented ideas and concepts are
transferable to applications with heterogeneous entities. Thus, complex pro-
duction systems or even entire supply chains can be modeled, where the flow of
materials satisfies sequenced supply at the points of consumption. Moreover,
Industry 4.0 environments increasingly incorporate intelligence encapsulated at
the level of physical objects. These are able to communicate themselves such
that information between handling as well as handled units can be exchanged
directly. This creates an intertwined communication network with highly in-
creased number of participants. Complexity aspects will be crucial to restrain
the communication effort incurred. The network expansions need to be inte-
grated into the algorithmic operations using suitable methods and concepts to
foster system efficiency and further enhance industrial processes.

All in all, this dissertation represents one important step in the field of au-
tonomous material handling systems. A variety of unresolved questions remain
and we are excited to see what the scientific communities will achieve in the
future.
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A Weighting Factors of the
Objective Functions

We define the multi-criteria weighted objective functions (7.2) and (7.16) of
the developed optimization models when assessing the quality of decentralized
solutions (cf. Chapter 7). Their weights are set such that the optimization
prioritizes a primary objective using a secondary objective as further decision
criterion. Section A.1 details the underlying calculations concerning the sin-
gle stage optimization model, while in Section A.2 the iterative segmented
optimization model is discussed.

A.1 Single Stage Optimization Model

Themulti-criteria objective function (7.2) of the single stage optimizationmodel
(cf. Section 7.1.2) aims at minimizing

• the sequencing time of the given set of transport units and

• the movements required for sequencing the set of transport units to their
assigned output modules.

Themain objective is tominimize the sequencing time using aminimumnumber
of movements as secondary objective. Therefore, we need to ensure that the
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amount of sequencing time within the objective function value always exceeds
that of the necessary movements. This implies∣∣∣∣∣−∑

t∈T

∑
b∈B

xbtob

∣∣∣∣∣ !
≥
∑
t∈T

∑
b∈B

∑
m∈M

∑
ḿ∈Nm

ybtmḿ. (A.1)

We specify a lower and upper bound for the terms of sequencing time and
movement minimization, respectively, to generally satisfy equation (A.1).

Assuming a sufficiently large time frame T to sequence the given set of transport
units from their starting positions at the assigned input modules to the required
output modules, all transport units are positioned at their output modules at
least for the last time point t ∈ T . Thus,∣∣∣∣∣−∑

t∈T

∑
b∈B

xbtob

∣∣∣∣∣ ≥ |B| (A.2)

holds for the lower bound of the sequencing time minimization term.

To determine an upper bound of the movement minimization term, we consider
the requirements for moving transport units (cf. constraints (7.9) and (7.10)).
Generally, transferring a transport unit between two adjacent modules m and
ḿ takes tconv = 2 ·∆t and consists of the following steps (cf. Figure 7.1):

• occupying modulem at time t,

• moving from modulem to module ḿ at time t+ ∆t, and

• occupying module ḿ at time t+ 2 ·∆t.
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A.1 Single Stage Optimization Model

Assuming that a transport unit is continuously moving, the maximum number
of movements it can perform within the given time frame T cannot exceed⌈
|T |
2

⌉
. From this follows

∑
t∈T

∑
b∈B

∑
m∈M

∑
ḿ∈Nm

ybtmḿ ≤
⌈ |T |

2

⌉
· |B| . (A.3)

Combining equations (A.1), (A.2) and (A.3) we obtain

|B|
!
≥
⌈ |T |

2

⌉
· |B| (A.4)

⇔ 1
!
≥
⌈ |T |

2

⌉
which is a contradiction, as |T | > 2 is required for any transport unit move-
ment. Thus, we apply a weighting factor ω ∈ N ensuring that sequencing time
minimization is generally prioritized. Based on equations (A.1) and (A.4), this
gives

ω ·
∣∣∣∣∣−∑

t∈T

∑
b∈B

xbtob

∣∣∣∣∣ !
≥
∑
t∈T

∑
b∈B

∑
m∈M

∑
ḿ∈Nm

ybtmḿ (A.5)

and therefore,

ω · |B|
!
≥
⌈ |T |

2

⌉
· |B| (A.6)

⇔ ω
!
≥
⌈ |T |

2

⌉
.

Setting ω = |T | generally satisfies equation (A.6) and results in the formulation
given in the objective function of the single stage optimization model (7.2).
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A.2 Iterative Segmented Optimization Model

The multi-criteria objective function (7.16) of the iterative segmented optimiza-
tion model (cf. Section 7.1.3) minimizes in each iteration

• the pre-sequenced arrangement of the system at the end of the given time
frame and

• the required movements to reach the corresponding positions of the trans-
port units.

The main objective relates to pre-sequencing using a minimum number of
movements as secondary objective. Therefore, we need to ensure that the
amount of pre-sequencing within the objective function value always exceeds
that of the necessary movements. This implies

∑
b∈B

zb(t
k
0+(|Tk|−1)·∆t) !

≥
∑
t∈Tk

∑
b∈B

∑
m∈M

∑
ḿ∈Nm

(
t− tk0

)
· ybtmḿ. (A.7)

We specify a lower and upper bound for the terms of pre-sequencing and
movement minimization, respectively, to generally satisfy equation (A.7).

Based on constraints (7.17), (7.18) and (7.22),
∑
b∈B z

bt = 0 holds if and only
if at time t all transport units of set B are positioned at their assigned output
modules. Thus, a valid lower bound for the pre-sequencing term is given by∑

b∈B

zb(t
k
0+(|Tk|−1)·∆t) ≥ 0. (A.8)

By analogy with equation (A.3), an upper bound of the movement minimiza-
tion term is based on the the requirements for moving transport units (cf.
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constraints (7.9) and (7.10)) while additionally including the time-dependent
weighting factor

(
t− tk0

)
. Let

Ψ = max

(∑
t∈Tk

∑
m∈M

∑
ḿ∈Nm

(
t− tk0

)
· ybtmḿ

)
(A.9)

be the maximum possible sum of weighted movements any transport unit is
able to perform within the given time frame Tk, then∑

t∈Tk

∑
b∈B

∑
m∈M

∑
ḿ∈Nm

(
t− tk0

)
· ybtmḿ ≤ Ψ · |B| (A.10)

holds. Assuming a transport unit is continuously moving within the given time
frame Tk, Ψ results from the sum of every second element within the integer
sequence {0,∆t, 2 ·∆t, . . . , (|Tk| − 1) ·∆t}. Thus,

Ψ =

{
Ψeven if |Tk| mod 2 = 1

Ψodd if |Tk| mod 2 = 0,
(A.11)

where

Ψeven =

⌊
|Tk|−1

2

⌋∑
i=0

2 · i ·∆t (A.12)

= 2 ·∆t ·

⌊
|Tk|−1

2

⌋∑
i=0

i
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represents the case of summing all even-indexed elements 2 · i ·∆t and

Ψodd =

⌈
|Tk|−1

2

⌉
−1∑

i=0

(2 · i+ 1) ·∆t (A.13)

= 2 ·∆t ·

⌈
|Tk|−1

2

⌉
−1∑

i=0

i+

⌈ |Tk| − 1

2

⌉
·∆t

represents the case of summing all odd-indexed elements (2 · i+ 1) ·∆t.

Using the Gaussian summation theorem,

n∑
i=0

i =
n · (n+ 1)

2
, (A.14)

yields

Ψeven =

⌊ |Tk| − 1

2

⌋
·
(⌊ |Tk| − 1

2

⌋
+ 1

)
·∆t (A.15)

and

Ψodd =

(⌈ |Tk| − 1

2

⌉
− 1

)
·
⌈ |Tk| − 1

2

⌉
·∆t+

⌈ |Tk| − 1

2

⌉
·∆t. (A.16)

With
⌊
|Tk|−1

2

⌋
≤ |Tk|−1

2 and
⌈
|Tk|−1

2

⌉
≤ |Tk|−1

2 + 1, we obtain

Ψeven ≤
|Tk| − 1

2
·
( |Tk| − 1

2
+ 1

)
·∆t (A.17)

and

Ψodd ≤
|Tk| − 1

2
·
( |Tk| − 1

2
+ 1

)
·∆t+

( |Tk| − 1

2
+ 1

)
·∆t. (A.18)
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This gives

Ψ ≤
(

(|Tk| − 1)
2

4
+ |Tk|

)
·∆t. (A.19)

Therefore, we can deduce an upper bound of the termofmovementminimization
as

∑
t∈Tk

∑
b∈B

∑
m∈M

∑
ḿ∈Nm

(
t− tk0

)
· ybtmḿ ≤

(
(|Tk| − 1)

2

4
+ |Tk|

)
·∆t · |B| .

(A.20)

From equations (A.7), (A.8) and (A.20) follows

0
!
≥
(

(|Tk| − 1)
2

4
+ |Tk|

)
·∆t · |B| (A.21)

which is a contradiction. To generally satisfy equation (A.7), the pre-sequencing
term of the objective function additionally requires a weighting factor ω ∈ N as
well as a constant ς ∈ N such that equation (A.7) becomes

ω ·
∑
b∈B

(
zb(t

k
0+(|Tk|−1)·∆t) + ς

) !
≥
∑
t∈Tk

∑
b∈B

∑
m∈M

∑
ḿ∈Nm

(
t− tk0

)
· ybtmḿ.

(A.22)

Using the upper and lower bound of equations (A.8) and (A.20) yields

ω · ς · |B|
!
≥
(

(|Tk| − 1)
2

4
+ |Tk|

)
·∆t · |B| (A.23)

⇔ ω · ς
!
≥
(

(|Tk| − 1)
2

4
+ |Tk|

)
·∆t
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As |Tk| 6= ∅, setting ς = ∆t and ω = |Tk|2 generally satisfies equation (A.23)
and results in the formulation given in the objective function of the iterative
segmented optimization model (7.16).
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B Simulation Study

As associated terminology is not used unambiguously in the literature (cf. Lorig
2019, Law 2015, Lawson 2015), we define the following terms to describe our
simulative evaluations. A simulation study comprises different parameter set-
tings to deduce the influence of relevant input parameters on system behavior.
Each parameter setting represents a set of input parameters for which the sys-
tem is simulated to evaluate specified performance indicators. Investigating
stochastic systems requires several replications of a simulation run with differ-
ent random seeds per parameter setting to obtain reliable results. A simulation
run captures system behavior during an uninterrupted period of time. All repli-
cations referring to the same parameter setting are aggregated to a simulation
experiment. The average values of all performance indicators of all replications
of a simulation experiment represent the simulation result for the corresponding
parameter setting. The simulation time is measured in seconds, i.e., recording
system behavior occurs at each integer multiple of 1 s.

Within the simulation studies ofChapter 8, we aim to achieve practically relevant
results relating to stable system operation. We determine the warm-up period
and stopping criteria for each simulation run as described in Sections B.1 and
B.2, respectively. The number of replications per parameter setting follows
from the requirements given in Section B.3.
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B Simulation Study

B.1 Warm-up Period

Every simulation run suffers from the problem of initial transient behavior, as
it starts at time t = 0 with an empty system. Recorded performance indicators
at the beginning of the simulation run do not necessarily represent the expected
system behavior during operation. The average value of a performance indica-
tor based on the total run time of the simulation run corresponds to a biased
estimator of its value in steady-state. The warm-up period of a simulation
run is defined as the duration until it reaches a steady-state behavior. There-
fore, all observations obtained during the warm-up period are neglected such
that performance indicators are recorded based on the remaining steady-state
observations. (Law 2015, p. 511f.)

Based on the extensive comparisons and recommendations of methods for
determining the end of the warm-up period given in Hoad et al. (2010), we use
the Marginal Standard Error Rule (MSER) introduced byWhite (1997). It aims
to select the end of the warm-up period – the so-called truncation point τ –
minimizing the length of the marginal confidence interval about the truncated
sample mean. White et al. (2000) discuss a variant of MSER, which is called
MSER-k, used more commonly as it relies on smoother data.

To determine the truncation point of each simulation run within our simula-
tion studies, we refer to the absolute system throughput per second, as system
throughput represents the key performance indicator of the sequencing system.
Let t be the duration of a simulation run in seconds generating the set of n = btc
throughput observations Γ, where γi represents the i-th of the n observations.
For smoothing these observations, we aggregate each k successive observations
which yields

γ̃j =

∑k
i=1 γ(j−1)k+i

k
j = 1, 2, . . .

⌊n
k

⌋
. (B.1)
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Withm =
⌊
n
k

⌋
,

Γ̃ (m, θ) =

∑m
j=θ+1 γ̃j

m− θ (B.2)

represents the average of the last (m− θ) k-aggregated observations. Based on
MSER-k, the truncation point τ is defined as

τ = arg min
0≤θ<m

 1

(m− θ)2 ·
m∑

j=θ+1

(
γ̃j − Γ̃ (m, θ)

)2

 , (B.3)

where a valid truncation point is given if

τ >
m

2
(B.4)

holds (Hoad and Robinson 2011). The k-aggregated observations 1, . . . , τ are
associated with the warm-up period, while the remaining ones (τ + 1), . . . ,m

refer to the system in the steady-state. Thus, recording performance indicators
starts at a simulation time of (τ + 1) · k seconds. Based on White et al. (2000),
k was consistently set to 5 when determining the warm-up period within all
simulation runs of this dissertation.

B.2 Stopping Criterion

The stopping criterion determines the length of a simulation run for each repli-
cation ι. Within a defined minimum and maximum simulation duration tsmin
and tsmax, we aim to terminate the simulation run as soon as the obtained results
are stable. We calculate an admissible deviation range Iεr using the mean sys-
tem throughput of the overall simulation run time in steady-state. The stopping
criterion is satisfied if all observations of the currently last time interval of
length ν of the simulation run are included in this range.
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During simulation, the key figures of the system are steadily recorded. Let
Γιτ be the set of current throughput observations of simulation replication ι in
steady-state, i.e., after the truncation point τ . This gives nιτ = |Γιτ | steady-state
throughput observations γιτ within this replication. Based on these currently
available observations, we obtain the throughput result γ̄ι of replication ι as

γ̄ι =

∑
γιτ∈Γιτ

γιτ

nιτ
. (B.5)

The admissible deviation range is specified by the required precision εr of a
simulation replication, i.e.,

Iεr =
[
γ̄ι · (1− εr) ; γ̄ι · (1 + εr)

]
. (B.6)

Replication ι stops at a current simulation time tι with tsmin < tι < tsmax if, ret-
rospectively, the absolute throughput result of all observations recorded within
the simulation time from (tι − ν) to tι respects the admissible deviation range.

We consistently set ν = 100 s, tsmin = 1, 000 s, tsmax = 20, 000 s, and εr = 1‰
within all simulation runs of this dissertation.

B.3 Number of Replications

We generate a set of seeds to initialize the pseudorandom number generators
used in all simulation experiments of this dissertation. Thus, the replications
of a simulation experiment are independent and identically distributed, as each
simulation run relies on a new random seed (Law 2015, p. 489). We de-
termine the number of replications N for a simulation experiment using the
Replication/Deletion Approach (cf. Law 2015, p. 523f.). Additionally, we set a
minimum and maximum number of replications Nmin and Nmax.
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B.3 Number of Replications

During a simulation experiment, the results of the single replications differ
due to stochastic parametrization. This variation can be described by the
(1− α)-confidence interval Kί where ί denotes the number of currently sim-
ulated replications. Let t(ί−1),(1−α2 ) be the (1 − α

2 )-quantile of t-distribution
with (ί− 1) degrees of freedom, then Kί follows as

Kί =

[
Φί − t(ί−1),(1−α2 ) ·

Sί√
ί

; Φί + t(ί−1),(1−α2 ) ·
Sί√
ί

]
, (B.7)

where Φί denotes the mean and Sί the standard deviation of the throughput
results of replications 1 . . . ί with

Φί =
1

ί
·

ί∑
j=1

γ̄j (B.8)

and

Sί =

√√√√ 1

ί− 1
·

ί∑
j=1

(γ̄j − Φί)
2
. (B.9)

The simulation experiment terminates with a number of sufficient replications
N ∈ Nmin . . .Nmax − 1 if the 95%-confidence interval KN related to the
mean throughput result ΦN satisfies a specified precision εe, i.e.,

t(N−1),(1−α2 ) ·
SN√
N

ΦN
< εe. (B.10)

Otherwise N equals Nmax.

We consistently set α = 0.05, εe = 0.025, Nmin = 10, and Nmax = 30 when
determining the number of replications of a simulation experiment within this
dissertation.
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Glossary of Notation

Sequencing Network

C Set of sequencing nodes/modules

d∗mḿ Length of a shortest path of modules from module m to module
ḿ

d~nmḿ Directional distance frommodulem to module ḿ via the adjacent
module n

δ Average density

E Set of edges

e Single edge

G Graph

I Set of input modules

i Single input module

ib Input module transport unit b is assigned to

k Connectivity of a network

κv Capacity of node v

li Loading delay at input module i

lo Unloading delay at output module o
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Glossary of Notation

λ System arrival rate

λγ System arrival rate of limiting throughput

λi Arrival rate at input module i

λ̌ Delayed system arrival rate

λ̌i Delayed arrival rate at input module i

M Set of conveyor modules

m Single conveyor module

µ System processing rate

m : n Multiple input to multiple output relation

Nm Set of modules adjacent to modulem

E(nb) Expected number of transport units within the system

F Number of movements

Fdec Decentralized number of movements

F ∗ Optimal number of movements

H Sequencing time of overall problem

Hdec Decentralized sequencing time of overall problem

HLB Lower bound of sequencing time of overall problem

H∗ Minimum sequencing time of overall problem

H∗real Minimum actual sequencing time of overall problem

O Set of output modules

o Single output module

ob Output module transport unit b is assigned to
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Glossary of Notation

Om Order of algorithmic complexity at module level

On Order of algorithmic complexity at network level

ϕv Space provided by a node

ϕuo Space required by physical object u

ρ System utilization

tconv Transfer time of a transport unit between two adjacent modules

tijmsg Message sending delay between module i and j

tmḿmsg Message sending delay between two adjacent modules

tswitch Switching time of modules between orthogonal conveying direc-
tions

E(ta) Expected system interarrival time

E(tai) Expected interarrival time at input module i

E(td) Expected delayed system interarrival time

E(tdi) Expected delayed interarrival time at input module i

E(tp) Expected system processing time

ϑ Positive integer greater than 1

U Set of physical objects

Ur Set of released physical objects

u Single physical object

V Set of nodes

Ve Set of unoccupied nodes

v Single node
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Glossary of Notation

w Edge weight function

Physical Objects

ab Arrival time of transport unit b at the system

B Set of transport units

Bi Set of transport units arriving at input module i

Bo Set of transport units unloaded at output module o

Beq Set of equally ranked transport units

beq
(i) Ordering of equally ranked transport units

b Single transport unit

eb Introducing time of transport unit b

ebmin Minimum introducing time of transport unit b

f bi Direct successor of transport unit b within the queue of arriving
transport units at input module i

k Batch size

hb Sequencing time of transport unit b

hb
∗ Optimal sequencing time of transport unit b

hbLB Lower bound of the sequencing time of transport unit b

P bo Set of direct predecessors of transport unit bwithin the unloading
sequence at output module o

pb Direct predecessor of transport unit b within its batch

πbi Position of transport unit b within the queue of arriving transport
units at input module i
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Qbi Set of predecessors of transport unit bwithin the queue of arriving
transport units at input module i

qbi Direct predecessor of transport unit bwithin the queue of arriving
transport units at input module i

rb Rank of transport unit b within its batch

% [0, 1)-uniformly distributed random number

s Sequencing rate

sbo Direct successor of transport units b within the unloading se-
quence at output module o

σb Position of transport unit bwithin the arrival sequence of its batch

tbmin Minimum transfer time of transport unit b from its input to its
output module

tbp Processing time of transport unit b

E(tbp) Expected processing time of transport unit b

tbs Sojourn time of a transport unit b

tbw Waiting time of transport unit b

tbwe Waiting time of transport unit b on its input module

E
(
tbwe
)

Expected waiting time of transport unit b on its input module

tbwq Waiting time of transport unit b in front of its input module

ub Unloading time of transport unit b

ubmin Minimum unloading time of transport unit b
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Glossary of Notation

Decentralized Algorithm

Ci Logical clock of module i

Cq Logical clock of process q

Cq〈ei〉 Logical time of event ei within process q

c̃m Estimated path cost of modulem

c̃p Estimated cost for (sub-)path p

ei Single event

ε Small positive number

dp Distance of (sub-)path p

npb Number of buffer modules on (sub-)path p

npc Number of directional changes on (sub-)path p

Pa Process of transport unit a

pb Buffer penalty

pc Directional change penalty

p∗ Sub-path of an optimal solution

ṕ Sub-path of a non-optimal solution

q Single process

Ri Resource, i.e., conveyor module i

sa Successor process of process Pa within their unloading sequence

Tin Incoming transfer

Tout Outgoing transfer
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Glossary of Notation

→ Happened before relation

Complexity Analysis

C Number of messages for a sequencing problem

Ca Average number of messages per active route

CEa Average number of messages per active route for execution

CIa Average number of messages per active route for initiation

CPa Average number of messages per active route for planning

Cb Average number of messages per transport unit

Cm Messaging effort at module level

Ĉ Upper bound of the messaging effort for a sequencing problem

Ĉa Upper bound of the messaging effort per active route

ĈAa Upper bound of the messaging effort per active route for autho-
rization

ĈBa Upper bound of the messaging effort per active route for identi-
fying non-buffering modules

ĈEa Upper bound of the messaging effort per active route for transport
execution

ĈIa Upper bound of the messaging effort per active route for initiation

ĈPa Upper bound of the messaging effort per active route for planning

ĈRaa Upper bound of the messaging effort per active route for negoti-
ating reservations
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Glossary of Notation

ĈRra Upper bound of the messaging effort per active route for planning
relocations

ĈSa Upper bound of the messaging effort per active route for path
selection

ĈUa Upper bound of the messaging effort per active route for updating
output modules

n System size

ξ Positive linear scaling factor

ξX Positive linear scaling factor for an algorithmic component

Optimization Models

K Set of iterations

k Single iteration

L Large positive number

l Time split factor

ω Positive weighting factor

Ψ Upper bound of weighted movement term per transport unit

Ψeven Upper bound of weighted movement term per transport unit re-
stricted to even time points

Ψodd Upper bound of weighted movement term per transport unit re-
stricted to odd time points

ς Positive constant

T Set of time points of an overall sequencing problem
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Glossary of Notation

Tk Set of time points for iteration k

t Single time point

tk0 Initial time point of iteration k

∆t Incremental length of successive time points

Wit Objective function of the iterative segmented optimization model

Wss Objective function of the single stage optimization model

Xk
0 Set of non-zero x-variables defining the system arrangement iter-

ation k starts from

xbtm Binary decision variable defining the occupation of modulem by
transport unit b at time t

Y k0 Set of non-zero y-variables defining the system arrangement iter-
ation k starts from

ybtmḿ Binary decision variable defining the movement of transport unit
b from modulem to an adjacent module ḿ at time t

zbt Positive continuous decision variable defining the pre-sequenced
arrangement of transport unit b at time t

Simulation Study

α Confidence level

εe Precision of a simulation experiment

εr Precision of a replication

Γ Set of throughput observations of a simulation run

Γιτ Set of current steady-state throughput observations of replication
ι
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Glossary of Notation

Γ̃ (m, τ) Average of the last (m−τ) k-aggregated throughput observations

γi i-th throughput observation

γιτ Single steady-state throughput observation of replication ι

γ̄ι Throughput result of replication ι

γ̃j j-th k-aggregated throughput observation

Iεr Admissible deviation range

ι Single simulation replication

ί Number of simulated replications

Kί 95%-confidence interval of throughput results at replication ι

k Smoothing factor

m Number of k-aggregated throughput observations

N Number of replications of a simulation experiment

Nmin Minimum number of replications of a simulation experiment

Nmax Maximum number of replications of a simulation experiment

n Number of throughput observations of a simulation run

nιτ Number of steady-state throughput observations of replication ι

ν Time duration of deviation range

Φί Mean throughput result at replication ί

Sί Standard deviation of throughput result at replication ί

t Duration of a simulation run

tι Current simulation time of replication ι

tsmin Minimum simulation duration
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Glossary of Notation

tsmax Maximum simulation duration

t(i−1),(1−α2 ) (1− α
2 )-quantile of t-distribution with (i−1) degrees of freedom

τ Truncation point

θ Number of k-aggregated throughput observations within warm-
up period
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