KIT | KIT-Bibliothek | Impressum | Datenschutz

CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

The CoNIC Challenge Consortium; Graham, Simon; Vu, Quoc Dang; Jahanifar, Mostafa; Weigert, Martin; Schmidt, Uwe; Zhang, Wenhua; Zhang, Jun; Yang, Sen; Xiang, Jinxi; Wang, Xiyue; Rumberger, Josef Lorenz; Baumann, Elias; Hirsch, Peter; Liu, Lihao; Hong, Chenyang; Aviles-Rivero, Angelica I.; Jain, Ayushi; Ahn, Heeyoung; ... mehr

Abstract:

Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.


Volltext §
DOI: 10.5445/IR/1000162356
Veröffentlicht am 20.09.2023
Originalveröffentlichung
DOI: 10.48550/arXiv.2303.06274
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000162356
HGF-Programm 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Weitere HGF-Programme 43.31.02 (POF IV, LK 01) Devices and Applications
Verlag arxiv
Umfang 14 S.
Schlagwörter Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG)
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page