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1. Introduction

Ten years after the discovery of the Higgs boson, there are impressive achievements concerning
the investigation of its properties, for example the measurement of its mass with per-mille accuracy,
or the measurement of its couplings to vector bosons and quarks of the third generation [1, 2].
Nonetheless, many open questions remain to be answered, for example whether the form of the
Higgs potential is as assumed in the Standard Model (SM), why the masses of the fermions are so
different, or where additional sources of CP-violation could come from. Questions ranging from
the pattern of particle masses to cosmology are related to the Higgs sector, therefore the Higgs
boson could serve as a guide towards possible answers. As a consequence, a primary task of LHC
physics consists in exploring the many facets of the Higgs sector with highest possible precision, in
a joint effort of both experimentalists and theorists.

These proceedings pick some topics illustrating the recent progress in high precision theory
predictions in the Higgs sector. More detailed reviews can be found e.g. in Refs. [3–6].

2. Precision highlights in the Higgs sector

2.1 Higgs boson production in gluon fusion

For the gluon fusion channel, impressive calculations have been performed to decrease the
theoretical uncertainties, both at fixed order and beyond. The uncertainty budget for the total cross
section that has been put together a few years ago [6, 7] has shrunk considerably since: NNLO
corrections with full top-quark mass dependence have become available [8–10], the uncertainties
due to mixed QCD-electroweak corrections have been reduced to about 0.6% [11–15], the threshold
approximation has been overcome since quite some time now [16], the QCD corrections in the heavy
top limit (HTL) are available up to N3LO [17–19], even fully differentially [17], and N4LO results
exist in the soft-virtual approximation [20]. Resummed N3LO+N3LL′ results have been achieved
for the Higgs-pT spectrum and for the total cross section with fiducial cuts [18], in Ref. [21] also
including transverse recoil effects. Publicly available programs such as n3loxs [19], HTurbo [22],
iHixs2 [7], ggHiggs [23] or SusHi [24] allow us to make detailed studies of theory uncertainties,
as performed for example in Ref. [19] for scale and PDF uncertainties. A lesson learnt from the
availability of N3LO results for Higgs- and vector boson production is that 7-point scale variations
at NNLO often do not capture the central value of the N3LO result, thus suggesting that global scale
variations alone can be a too naive uncertainty estimate at the level of precision expected at such
high perturbative orders. A related problem consists in the fact that there is a mismatch between
the perturbative order of the matrix elements (N3LO) and the PDF sets, which are not available at
N3LO. For progress towards approximate N3LO PDFs see Ref. [25].

2.2 Higgs boson production in association with a jet

The transverse momentum distribution of the Higgs boson is one of the most interesting
observables to study at the LHC, for example due to its sensitivity to unknown particles circulating
in the loop already at the leading order. Heavy new particles would influence the tail of the pH

T

distribution [26, 27], therefore it is important to include the quark mass dependence in the SM
calculation for reliable predictions. NLO predictions with full top-quark mass dependence have

2



P
o
S
(
L
H
C
P
2
0
2
2
)
0
2
6

High precision theory predictions in the Higgs sector Gudrun Heinrich

been calculated first in Refs. [28, 29], with mass renormalisation in the on-shell scheme. Recently,
results with both top- and bottom-quark mass dependence have been presented in Ref. [30], see
also Ref. [31] for earlier approximate results. In Fig. 1 (left), the approximations “HTL” (heavy
top limit) and “FTapprox” (where only the 2-loop virtual corrections are in the heavy top limit)
are compared to the full NLO calculation (NLOSM, orange). Fig. 1 (right) shows the influence of
including massive b-quark loops and the on-shell versus the MS scheme on the ratio NLO/LO for
the Higgs boson transverse momentum distribution.
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Figure 1: Left: Transverse momentum distribution of the Higgs boson in the full SM, in the heavy top limit
(HTL) and in the “approximate full theory” (NLOFTapprox). The first ratio plot shows corrections relative to
LO SM, while the second ratio plot shows NLO results normalised to the respective LO prediction. Shaded
bands denote scale uncertainties, error bars indicate integration uncertainties. Figure from Ref. [29]. Right:
NLO/LO ratio for the transverse momentum distribution of the Higgs boson, with and without massive
bottom loops and comparing on-shell and MS schemes. Figure from Ref. [30].

2.3 ZH production

Higgs boson production in association with a Z boson is an interesting process as it probes both
the Higgs boson coupling to Z bosons as well as to fermions. Theory predictions for this process
have been advanced in several respects recently. The loop-induced gluon channel formally enters
at NNLO with respect to the pp→ ZH process, and at its leading order accounts for about 6% of
the total cross section, thereby also introducing a relatively large scale uncertainty into the NNLO
cross section. The NLO corrections to the gluon channel increase the gluon-fusion cross section by
about a factor of two, and reduce the scale dependence [32–34]. In Refs. [33, 34], the dependence
of the results on the top-quark mass renormalisation scheme at high energies has also been studied,
as shown in Fig. 2 for the mZH invariant mass, finding scheme uncertainties that exceed the scale
uncertainties in the tail of the distribution.

Recent updates for pp→ ZH production also include NNLO+PS results with H → bb̄, in the
SM [35] as well as including anomalous Yukawa couplings [36]. NNLO results with NNLO Higgs
boson decays to massive b-quarks, including anomalous HVV couplings, have been calculated in
Ref. [37]. Results for VH+jet production at order α3

s are also available [38]. The latter in addition
represent a step towards a fully differential N3LO calculation of pp→ VH.
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Figure 2: Left: Comparison of results at large values of the invariant mass mZH using the on-shell or MS
scheme for the top quark mass at LO (dashed) and NLO (solid), figure from Ref. [33]. Right: Comparison
in the range 200GeV≤ mZH ≤ 800GeV, figure from Ref. [34].

3. Effective Field Theory and precision

The parametrisation of New Physics residing at higher energy scales in terms of Effective Field
Theory (EFT) descriptions is a vast subject, treated in more detail elsewhere in these proceedings.
The combination of higher order (mostly QCD) corrections with EFT expansions is important
to extract reliable constraints on anomalous couplings from the data. However, as EFTs are also
expansions that need to be truncated at a certain order, additional uncertainties have to be considered.
For example, in Standard Model Effective Field Theory (SMEFT) [39–41], differences between the
inclusion of linearised dimension-6 terms at cross section level (σSM + σSM×dim6) or the square of
amplitude-level dimension-6 terms (σ(SM+dim6)×(SM+dim6)) can be larger than the NLO QCD scale
uncertainties. An example for the case of Higgs boson pair production is shown in Fig. 3. Results
of global fits also show differing patterns depending on the choice of the “linearised” or “quadratic”
inclusion of dimension-6 operators, see e.g. Ref. [42] and related discussions [27, 43–46]. Another
issue is the change of K-factors as a function of the anomalous couplings, an example is shown
in Fig. 3 (right). Furthermore, it has been shown that the correlations between different Wilson
coefficients can change considerably with the energy scale if renormalisation group running effects
are taken into account [27, 47].

4. Outlook

Great progress has been achieved with regards to the availability of theoretical predictions for
important observables in the Higgs sector at high orders in perturbative QCD, on the fixed order as
well as on the resummation and parton shower side. In view of the shrinking scale uncertainties,
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Figure 3: Left: Invariant mass distribution of the Higgs-boson pair for different truncation options in the
SMEFT expansion at cross section level, for a benchmark point with CH ,kin = 0.56, CH = 3.8, CuH = 2.2,
CHG = 0.0387 at Λ = 1TeV. Figure from Ref. [48]. Right: K-factor NNLO′/LO relative to the SM K-factor
in the ctt − chhh plane for Higgs-boson pair production, where chhh denotes the trilinear Higgs self-coupling
and ctt denotes an effective tt̄hh coupling. Figure from Ref. [49].

other uncertainties such as mass effects, renormalisation scheme differences, electroweak correc-
tions, PDF+αs-uncertainties and other non-perturbative uncertainties gain in relative importance
and are relevant for the LHC precision program. Within EFT parametrisations of New Physics, the
quest for precise predictions poses additional challenges, starting already with the choice of the EFT
framework (HEFT or SMEFT), and requiring an assessment of truncation options and the validity
range. Nonetheless, making the step from “anomalies” in the data to established manifestations of
physics beyond the Standard Model is in the cards of the LHC if we pursue the road of precision
physics.
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