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Abstract—Some challenges of high penetration of renewable
energy sources (RES), such as frequency variation and voltage
deviation, can be minimized using an energy storage system
(ESS). Some ESS have complementary features that make them
desirable to use in a hybrid mode. While hybridizing differ-
ent ESS, their power-sharing control plays a crucial role in
exploiting the supportive characteristics of each other. Among
various control strategies, a low pass filter is widely used to
separate the low and high-frequency signals in a Hybrid Energy
Storage System (HESS). This paper proposes a Multi-Objective
optimization model for a battery and flywheel HESS based on two
variables of total cost and the life loss costs of the battery. The
cost function is obtained by the different costs of the power and
energy for the battery and the flywheel. In contrast, the life loss
cost of the battery is obtained by cycle counting of the battery’s
energy profile using the rainflow cycle counting (RFC) algorithm.
To solve the optimization model, a genetic algorithm is employed
to obtain the Pareto front. VlseKriterijumska Optimizacija I
Kompromisno Resenje (VIKOR) technique is applied to select
the optimal solution from Pareto solutions.

Index Terms—hybrid energy storage, filter, multi-objective,
optimization, battery, flywheel, Pareto, VIKOR, rainflow

I. INTRODUCTION

Climate change is often addressed as the most critical
concern in the 21st century. Among available solutions to
mitigate this issue, using renewable energy systems (RES)
is widely accepted as the best substitute for conventional
energy resources based on fossil fuels. However, using RES
brings up some challenges due to their low inertia and unpre-
dictability as voltage instability, frequency fluctuation, poor
power quality, and load-following [1]. These challenges can
be alleviated using energy storage systems (ESS) [2]. Several
countries have already started investing in ESS technologies.
As an example, Germany expects a considerable deployment
of ESS as a result of lower costs of batteries in the near
future [3]. Thanks to the advancement in ESS technologies,
there are a variety of these systems, like compressed air
energy storage (CAES), supercapacitors (SC), superconducting
magnetic energy storage (SMES), flywheels, pumped hydro
storage, hydrogen tanks, and different batteries to facilitate the
stable operation of the grid. Although there are various ESS
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in the market, every ESS has limitations restricting its range
of applications. For instance, each ESS is limited by its power
or energy density, while an ideal application simultaneously
demands both features. Therefore, it makes sense to build a
system with a combination of two ESS that can overcome the
disadvantages of a single one by combining the advantages
of both [4]. By hybridization, more benefits can be obtained.
However, the importance of controlling the functionality of
both systems working together is inevitable in this case.
Due to the complexity of a HESS, some challenges such as
estimating the internal state of the system accurately, extending
the battery life, and realizing the coordinated and optimized
control of power and energy in the system have been addressed
in various research from the fields of materials, information,
energy, control, and artificial intelligence [5].
Among widely used storage systems, Lithium-ion (Li-ion)
batteries have been the most predominant source in different
scales, from phones and laptops to electric vehicles and grid-
energy storage [6], [7]. However, if Li-ion batteries are used in
a fast transient with a large power force, the degradation of the
battery would be faster, and the life of the battery decreases
[8]. On the other hand, fast-dynamic ESSs such as a Flywheel
Energy Storage System (FESS) can quickly react to power
changes without any visible impact on their lifetime [9]. Thus
the combination of these two systems is worth to be studied
for HESS applications. The structure of a HESS in the power
system with solar energy as RES and battery and flywheel as
storage systems can be seen in Fig. 1. The connection of the
single ESS units can occur either on the AC side or at the
DC level. In this work, the DC connection is preferred due to
the simpler control approach and the higher efficiency of the
system.
Various strategies to control a HESS are mostly catego-
rized into three big groups. Rule-based controllers (RBCs),
filtration-based controllers (FBCs), and optimization-based
controllers. FBCs, such as a Low-Pass Filter (LPF), are the
most frequently used controllers for HESS, mainly separating
the power demand into high and low-frequency components.
This benefits the batteries by reducing their power and energy
variations [10]. Choosing the cut-off frequency while design-
ing the LPF directly affects the sizing of the HESS. On the
other hand, the project’s cost, which includes the total capital
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Fig. 1. Separating Signals in a Hybrid Energy Storage Systems Using a
Low-Pass Filter

cost, replacement cost, operation, and maintenance (O&M)
cost, can be reduced significantly by optimizing the sizing
and the lifespan of ES [11], [12]. Thus, it is essential to
optimize the cut-off frequency of the LPF while considering
the battery’s life and the HESS’s cost.
This paper analyzes the effect of different cut-off frequencies
on the HESS cost and life loss of the battery based on its
number of cycles. More precisely, this study helps to optimally
size the HESS by finding the optimal cut-off frequency of the
LPF, considering costs and the life of the battery. The optimal
cut-off frequency for the LPF is obtained by solving a multi-
objective optimization using Pareto analysis and VlseKriteri-
jumska Optimizacija I Kompromisno Resenje (VIKOR).
Section II of this paper describes the HESS model using an
LPF. In section III, the two different optimization functions
based on the total cost of the HESS and the battery’s degra-
dation cost are defined. The Pareto analysis and obtaining the
optimal value using VIKOR for a study case is explained in
IV. In the last section V, the work of this paper is concluded.

II. MODEL: HYBRID ENERGY STORAGE USING A FILTER

Figure 2 shows the power control approach implemented
in this work. A LPF is used to dispatch the power between
the battery and the flywheel, splitting the low and the high-
frequency signals based on (1).

Filter =
1

1 + Ts·
(1)

with T = 1
wf

where wf is the cut-off frequency of the filter.
With this approach, the fast power variations are destined for
the flywheel, while the battery can focus on slower but more
energy-needed power swings.

However, it must be noted that the filter’s cut-off frequency
determines how much each ESS contributes to compensating
for the input power. Thus, this value is an important factor in
how large (and expensive) the whole system is going to be
and how much the battery is going to be involved in high-
frequency power compensation.
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Fig. 2. Separating Signals in a Hybrid Energy Storage Systems Using a 
Low-Pass Filter

III. OPTIMAL CUT-OFF FREQUENCY UNDER DIFFERENT
OBJECTIVE FUNCTIONS

A. Cost Objective Function

Since the two ESS are responsible for either the high energy
or high power signals, it makes sense to allocate a different
cost for their energy and power. Therefore, the first objective
of the defined hybrid system is the total cost reduction as
below:

Cost Objective Function = Total costs (2)

Where:

Total costs = Battery costs + Flywheel costs (3)

Battery costs = a · Pnbattery
+ b · EnBattery

(4)

Flywheel costs = c · PnFlywheel
+ d · EnFlywheel

(5)

Weighting Coefficients a, b, c and d are based on the costs
obtained from [18], [19] presented in the table I.

TABLE I
COST OF BATTERY AND FLYWHEEL ENERGY AND POWER

Cost E ($/kWh) Cost P ($/kW)
b-Battery d-Flywheel a-Battery c-Flywheel

350 1800 1400 120

The nominal power Pn is calculated by applying the one-
way efficiency η of the ESS while considering both charging
and discharging modes by the sgn function. The nominal
energy En is estimated by integrating over the power profile
as well [13].
The corresponding equations are shown in (6) and (7).

Pn = max |R(t)| where R(t) = ηsgn(P (t))P (t) (6)

En =
maxE(t)−minE(t)

SOCmax − SOCmin
where

E(t) = ηsgn(P (t))

∫ t

0

P (τ)dτ

(7)

As a result of the optimization, the cut-off frequency of the
filter determines the ESS power and energy ratings, respec-
tively. Thus, the HESS cost is affected by changing this value.
This impact can be seen in Fig. 3, where the HESS costs are
plotted under different filter’s cut-off frequencies. A higher



cut-off frequency means the battery is responsible for more
part of the power compensation. Due to the higher cost of the
flywheel energy density, a higher cut-off frequency shows a
lower price.
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Fig. 3. The effect of different cut-off frequency on the cost of HESS

B. Life Loss Cost of the Battery Using Rainflow Algorithm

One of the primary reasons to use a HESS is to maintain
the battery’s health for a longer period. To consider this
factor, the second objective function is defined based on the
life loss of the battery, which is related to the number and
depth of the cycles.

1) Rainflow Cycle Counting Algorithm: The Rainflow Cy-
cle Counting (RFC) method is widely used in literature to
estimate the degradation modeling of the battery in the form of
cycle identification [14], [15]. The cycle counting using RFC
in this paper is based on [16] where the energy profile of the
battery is taken as input, the local extreme points are identified.
Then the depth of all cycles is counted based on local extreme
sequences. Moreover, the life loss cost is defined based on
[17] where the cycle aging of electrochemical battery cells is
evaluated based on stress cycles and the battery degradation
cost is modeled based on the RFC method. The algorithm is
explained in the steps below:
Step 1: The energy profile of the battery is used as an input.
Step 2: The profile is plotted vertically downward and the

lines connecting the profile peaks are referred as to
a series of pagoda roofs. Half cycles are counted
between the most positive maximum and the most
negative minimum based on some rules:

• Half cycles are counted between the most posi-
tive maximum and the most negative minimum
occurring before it in history and between this
minimum and the most positive maximum occur-
ring before it.

• After the most negative minimum in history,
half cycles are counted which terminate at the
most positive maximum occurring subsequently
in history, the most negative minimum occurring
after this maximum.

This process continues till the beginning or the end
of the time history of the input profile depending on

the extrema. The flowchart of the first iteration of the
process of choosing the half cycle is shown in Fig. 4.
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Fig. 4. Flowchart of counting the cycles based on rainflow algorithm

Step 3: The rest are counted as full cycles.
Step 4: The depth of the cycle is obtained from its range.
The total number of cycles is counted by summing the full
cycles and considering two half cycles as one cycle. Figure. 5
shows how the number of cycles by RFC changes by changing
the cut-off frequency.
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Fig. 5. Effect of cut-off frequency on the number of cycles by RFC

2) Battery Degradation Cost: with u = [u1, u2, ...uN ] as
a cycle depth vector and X = [x1, x2, .., xT ] as the battery
energy profile of length T , we can define:

u = Rainflow(X) (8)

The life loss of the battery is modeled after counting the cycles
with a cycle depth stress function Q(u), which is obtained by
the depth of each cycle in the rainflow algorithm.
Cycle aging is a cumulative fatigue process. Thus, total life



loss (∆L) is defined as the sum of the life loss from all cycles
as below:

∆L(X) =

{
Q(ui)

2 ui is a half cycle
Q(ui) ui is a full cycle

(9)

For optimizing the size of the battery, the life loss function is
converted to a cost function by considering the cost of energy
in the battery as shown in (10):

Life Loss Cost Function = ∆L · b · EnBattery
(10)

Where b and EnBattery
are obtained as in subsection III-A.

IV. CASE STUDY

The optimal cut-off frequency of the optimization analyses
in this work is used to size a HESS for a power profile obtained
from [10]. The power profile is obtained from an improved
motif discovery algorithm to find the most recurring daily
consumption patterns within the time series of interest. The
input data was recorded in South Germany over the summer
of 2018 at four different 10/0.4 kV substations.

A. Pareto Analysis of Genetic Algorithm

Two objective functions are solved by a genetic algorithm
using Matlab. Pareto analysis is used for obtaining multi-
objective optimization since this work aims to simultaneously
minimize the total cost of the HESS and battery degradation.
VlseKriterijumska Optimizacija I Kompromisno ResenjeEV
electric vehicle (VIKOR) Method is used to obtain the optimal
cut-off frequency of the filter, which is explained in detail in
IV-B.
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Fig. 6. Pareto front analysis of the total cost of the system and life loss cost 
of the battery

B. VlseKriterijumska Optimizacija I Kompromisno ResenjeEV
Electric Vehicle (VIKOR) Method

The decision-making is inspired by [13] a multi-criteria 
decision-making method that can choose the optimal solution 
based on the distance concerning the ideal solution for each 
objective. The steps to find the most optimal value are as 
follows:

Step 1: Establish a matrix of criteria and alternatives. For
Npop being the population size and Nobj being the
number of objectives, the values can be defined as:

rij where i = 1, .., Npop; j, .., Nobj (11)

Step 2: Determine the best and the worst values:

r+i = max(rij) and r−i = min(rij) (12)

Step 3: With wi being the weight of the corresponding objec-
tive, compute the values of Sj and Rj as bellow:

Sj =
∑[

wi(r
+
i − rij)

r+i − r−i

]
(13)

Rj = max

[
wi(r

+
i − rij)

r+i − r−i

]
(14)

Step 4: Compute Qj for utility function:

Qj = v
Sj − S+

S− − S+
+ (1− v)

Rj −R+

R− −R+
(15)

Where :

S+ = max(Sj) and S− = min(Sj) (16)

R+ = max(Rj) and R− = min(Rj) (17)

And v is the group utility maximization coefficient
which is considered 0.5 for the balance in evaluating
the alternatives.

Step 5: Rank alternatives by sorting Qj to obtain the most
optimal value.

Figure 6 depicts the Pareto front analysis of the two objec-
tive functions of the total cost and the life loss cost based on
the number of cycles gained by the rainflow counting method.
The optimal frequency, where both objective functions are
minimized, gained by the VIKOR analysis is also shown in this
figure. The VIKOR analysis resulted in the optimal frequency
of 88.4mHz.
The filter uses the cut-off frequency to obtain each ESS’s
power profile. The result of this power contribution is shown in
Fig. 7. The comparison between the cost, number of cycles,
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Fig. 7. Power allocation for the battery and flywheel storage systems with
the optimal cut-off frequency of 88.4mHz



and life loss of a single battery with an optimal HESS are
shown in table II. While with only the battery storage system
compensating for the input power, the number of cycles by
RFC for the battery’s energy profile is 219, using an optimal
HESS leads to 11 rainflow cycles, and the life loss of the
battery decreases by the cost slightly increasing with the
additional energy storage. This is due to the fact that using
a HESS reduces the stress on the battery, which results in a
longer life of it, while the cost of the system is optimized by
the proper choice of the controller.

TABLE II
COMPARISON OF THE OPTIMAL HESS WITH A SINGLE BATTERY

Total Cost RFC Cycle Life Loss
Single Battery 25.74e+07 219 1.28e+09
Optimal HESS 25.72e+07 11 1.27e+09

V. CONCLUSION

The power control strategy is essential in the planning
and operating HESS, where an appropriate cut-off frequency
plays an important role. While the cost of the HESS is
an important factor in choosing the cut-off frequency and
battery contribution, the importance of the battery degradation
should not be underestimated. This paper provides a more in-
depth analysis of how the cost and degradation of the battery
change by choosing a different cut-off frequency for the power
controller dispatching filter. A multi-objective optimization
model is defined for solving the two cost functions using a
genetic algorithm and Pareto front analysis, with whom the
optimal cut-off frequency for sizing the HESS is obtained.
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