KIT | KIT-Bibliothek | Impressum | Datenschutz

On dense totipotent free subgroups in full groups

Carderi, Alessandro 1; Gaboriau, Damien; Le Maître, François
1 Institut für Algebra und Geometrie (IAG), Karlsruher Institut für Technologie (KIT)

Abstract:

We study probability measure preserving (p.m.p.) nonfree actions of free groups and the associated IRSs. The perfect kernel of a countable group Γ is the largest closed subspace of the space of subgroups of Γ without isolated points. We introduce the class of totipotent ergodic p.m.p. actions of Γ: those for which almost every point-stabilizer has dense conjugacy class in the perfect kernel. Equivalently, the support of the associated IRS is as large as possible, namely it is equal to the whole perfect kernel. We prove that every ergodic p.m.p. equivalence relation $\mathcal{R}$ of cost <$r$ can be realized by the orbits of an action of the free group $F_r$ on $r$ generators that is totipotent and such that the image in the full group $[\mathcal{R}]$ is dense. We explain why these actions have no minimal models. This also provides a continuum of pairwise orbit inequivalent invariant random subgroups of $F_r$, all of whose supports are equal to the whole space of infinite-index subgroups. We are led to introduce a property of topologically generating pairs for full groups (which we call evanescence) and establish a genericity result about their existence. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000162423
Veröffentlicht am 22.09.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 25.08.2023
Sprache Englisch
Identifikator ISSN: 1364-0380, 1465-3060
KITopen-ID: 1000162423
Erschienen in Geometry and Topology
Verlag Mathematical Sciences Publishers (MSP)
Band 27
Heft 6
Seiten 2297 – 2318
Schlagwörter measurable group actions, nonfree actions, free groups, transitive actions of countable groups, IRS, space of subgroups, ergodic equivalence relations, orbit equivalence
Nachgewiesen in Scopus
Dimensions
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page