KIT | KIT-Bibliothek | Impressum | Datenschutz

Unravelling densification during sintering by multiscale modelling of grain motion

Seiz, Marco ORCID iD icon 1,2; Hierl, Henrik 2; Nestler, Britta 1,2
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

The resulting microstructure after the sintering process determines many materials properties of interest. In order to understand the microstructural evolution, simulations are often employed. One such simulation method is the phase-field method, which has garnered much interest in recent decades. However, the method lacks a complete model for sintering, as previous works could show unphysical effects and the inability to reach representative volume elements. Thus the present paper aims to close this gap by employing molecular dynamics and determining rules of motion which can be translated to a phase-field model. The key realization is that vacancy absorption induced motion of grains travels through a grain structure without resistance. Hence the total displacement field of a green body is simply the superposition of all grains reacting in isolation to local vacancy absorption events. The resulting phase-field model is shown to be representative starting from particle counts between 97 and 262 and contains the qualitative correct dependence of sintering rate on particle size.


Verlagsausgabe §
DOI: 10.5445/IR/1000162426
Veröffentlicht am 22.09.2023
Originalveröffentlichung
DOI: 10.1007/s10853-023-08859-9
Scopus
Zitationen: 3
Web of Science
Zitationen: 1
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2023
Sprache Englisch
Identifikator ISSN: 0022-2461, 1573-4803
KITopen-ID: 1000162426
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Journal of Materials Science
Verlag Springer
Band 58
Heft 35
Seiten 14051–14071
Vorab online veröffentlicht am 11.09.2023
Nachgewiesen in Scopus
Dimensions
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page