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Data-Driven Virtual Material Analysis and Synthesis for
Solid Electrolyte Interphases

Deepalaxmi Rajagopal,* Arnd Koeppe,* Meysam Esmaeilpour, Michael Selzer,
Wolfgang Wenzel, Helge Stein, and Britta Nestler

Solid electrolyte interphases (SEIs) form as reduction products at the
electrodes and strongly affect battery performance and safety. Because SEI
formation poses a highly nonlinear, complex multi-physics problem over
various lengths and time scales, traditional modeling approaches struggle to
characterize SEI evolution solely with existing physical properties. To improve
the characterization of SEIs, it proposes a data-driven strategy for a virtual
material design that learns to represent and characterize SEI formation with
physical and data-driven properties from kinetic Monte Carlo simulations. A
Variational AutoEncoder with a property regressor learns data-driven
properties, which represent SEI configurations and correlate with physical
target properties. This new neural network design encodes the
high-dimensional structural and reaction spaces into a lower-dimensional
latent space, while the property regressor orders the latent space by physical
target properties. The model achieves high correlation scores between target
and predicted properties from latent representations, thereby proving that the
data-driven properties enrich the expressiveness of SEI characterizations.

1. Introduction

Over the past decades, lithium-ion batteries (LIBs) have become
part of daily life.[1] The applications of LIBs are very diverse, rang-
ing from portable devices like smartphones, smartwatches, and
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laptops to heavy-duty ones like electric
vehicles, large-scale utility storage, and
space exploration. Even though the LIB
has made remarkable advancements, a
better understanding of the solid elec-
trolyte interphase (SEI) formed during
the initial cycles of the lithium-ion bat-
tery is required.[2] The SEI is a pas-
sivation layer formed on the electrode
surfaces as a result of the decompo-
sition of the electrolyte. This passiva-
tion layer blocks electrons from the fur-
ther decomposition of the electrolyte
and allows Li+transport. The forma-
tion of thick and stable SEI plays an
important role in the battery’s perfor-
mance as it deals with the consump-
tion of active Li metal and electrolytes,
which results in capacity fading, reduced
power density, and increased resistance.

On the other hand, preventing electron
tunneling improves the electrochemical

stability of the battery, which is responsible for the battery life
and safety.[3] Due to the importance of the SEI, numerous stud-
ies were conducted to understand its chemistry, physical prop-
erties, and formation process. To study the interphasial chem-
istry and morphology of the SEI, ex situ techniques like X-ray
photo spectroscopy (XPS), Fourier transform infrared, or Raman
spectroscopy are used. However, these techniques significantly
damaged the sensitive SEI due to environmental exposure and
high-energy beams.[4–7] In situ characterization techniques like
secondary ion mass spectroscopy and atomic force microscopy
(AFM) offer a way to obtain information about the evolution of
SEI under realistic battery operating conditions. With the de-
velopment of these in situ characterization techniques over the
years, the structure and formation of SEI have been studied in
detail. In situ transmission electron microscopy (TEM) and scan-
ning electron microscopy (SEM) are used to study the morpho-
logical evolution of the SEI, such as volume expansion and crack
formation. However, due to their complex heterogeneous struc-
ture and the lack of reliable in situ characterization techniques,
the formation and growth mechanisms of this passivation layer
remain elusive, and the probes used in the characterization tech-
nique struggle to reach the specific SEI locations due to the high
sensitivity of SEI.[8]

Because SEI growth involves effects interconnected across
different time and length scales, evolution cannot be modeled
using methods limited to certain length scales. The quantum
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Figure 1. a) The architecture of the proposed prVAE model with mean and variance represents the parameters of the encoded distribution learned
during training, and ϵ represents the small noise added to reparametrize the model for backpropagation during training; b) the randomly selected SEI
configuration of the test dataset; c) the corresponding prediction of the SEI configuration of the selected sample of the test dataset. The prVAE model
shows consistent prediction accuracy among the test dataset; d) Loss curves during model training. P̂ shows the prediction of chosen physical properties
for training such as volume fraction, thickness, porosity, and density of the SEI.

chemical (QC)[3,9] and molecular dynamic (MD)[10,11] approaches
are widely used to understand the initial electrolyte reduction re-
action and decomposition mechanisms. But these methods cover
only the early stages of SEI formation. The continuum models
are used beyond the atomic scale to cover the growth of SEI on
a larger scale.[12] Due to the lack of microscopical understanding
of the growth of SEI on the mesoscale, certain aspects of SEI,
such as the electronically insulating extent of SEI and the struc-
ture of the evolving SEI layer, are still unclear. To overcome this
problem, the bottom-up multiscale approach was formulated to
understand the system-specific characterization of microscopic
SEI formation processes.

The Kinetic Monte Carlo (KMC) protocol uses reaction rates
obtained from quantitative chemical calculations to determine
the magnitude of the SEI in a mesoscopic model with molecu-
lar resolution.[13] The above-described proposed model includes
spatial and temporal information about the evolving SEI, gov-
erned by a series of chemical reactions, diffusion, and ag-
gregation mechanisms, with kinetic data obtained for specific
electrolyte-anode reactions. The process for synthesizing such
an SEI configuration will be discussed in detail in the follow-
ing sections. By combining the KMC protocol with active learn-
ing, the configuration-property linkage can be understood for
further optimization of SEI configurations, and the generation
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Figure 2. Principal Component Analysis on latent space of the vanilla VAE and prVAE with the selected physical property such as volume fraction,
porosity, thickness, and density of the SEI configurations. Compared to the vanilla VAE model (Left), the prVAE (Right) shows ordered information-rich
reduced dimensional space.
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Figure 3. Prediction of selected properties of the SEI by the property regressor. The property regressor trained along with VAE achieved a good R2 score
for each selected property and high prediction accuracy.

of SEI configuration and its corresponding property prediction
can be made faster than a simulation method with numerous
computations.[14,15]

The conventional trial-and-error-based optimization of mate-
rials starts from known material configurations and requires hu-
man effort to direct the material optimization for better perfor-
mance. In contrast, the inverse material design allows the defini-
tion of the system’s desired performance targets to determine the
material configuration that meets these targets.[16] So far, the pi-
oneering battery interphase design has been very unidirectional,
starting from known structure to known properties, resulting in a
lack of mapping between structure and system performance. The
main challenges in battery phase design are incorporating differ-
ent lengths, time scales, and complex chemical structures.[17] The
inverse design of materials helps to overcome this challenge by
taking advantage of deep generative models. These deep gener-
ative models allow the incorporation of different domains and
time scales without any restrictions, as in MD simulations.

Deep generative models can discover new reliable material
configurations by learning the underlying essential informa-
tion obtained from large datasets.[16] Variational Auto Encoder
(VAE)[18] and Generative Adversarial Neural networks (GAN)[19]

are the most widely used deep generative models that use an un-
supervised learning approach to understand the unique repre-

sentation of the data. Besides learning the underlying key fea-
tures of the input battery interphase data, these models can gen-
erate reliable battery systems by utilizing their updated prior
knowledge.[20,21] The semi-supervised VAEs are used to boost
the representational learning and classification of the input data.
Conditional VAEs[22] with proper training can be used to generate
favorable SEI compositions for better battery performance.

Batteries are interphasial systems with numerous phases that
require optimization of several properties.[23] These observed
properties are controlled by the battery interphase configurations
at different lengths and timescales.[24] Therefore, training a gen-
erative model with a multitask setting is required to extract latent
representations for each considered data at multiple scales.[25,26]

We propose a data-driven strategy for virtual material analy-
sis and synthesis that learns to represent, characterize, and gen-
erate SEI configurations with physical and data-driven proper-
ties from kinetic Monte Carlo simulations. A VAE model with
a property predictor is established to learn the key features of 2D
SEI configurations of 50000 samples obtained at the end of the
KMC simulation. The key features known from the SEI config-
uration are studied at the bottleneck of the VAE to understand
the influence of observable properties of the SEI, such as thick-
ness, porosity, density, and volume fraction, on the learned data-
driven properties. To further improve the classification of 2D SEI

Adv. Energy Mater. 2023, 2301985 2301985 (4 of 11) © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH

 16146840, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aenm

.202301985 by K
arlsruher Institution F. T

echnologie, W
iley O

nline L
ibrary on [22/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.advenergymat.de

Figure 4. Heatmap showing the correlation between different target physi-
cal properties. The low variance and weak correlation of porosity with other
properties explain the low R2 score in predicting the porosity information
of SEI configurations.

configurations concerning their influential properties, the inputs
to the variational autoencoder model were conditioned with a re-
action barrier set responsible for specific SEI conditions. There-
fore, this data-driven strategy generates SEI configurations with
tailored physical properties for given reaction barrier sets.

2. Data-Driven Strategy for Virtual SEI Analysis and
Synthesis

2.1. Data Generation

The virtual SEI configurational data utilized for our study is
obtained through a 2D KMC scheme from Esmaeilpour et al.
2023.[13] This KMC formulation follows a rejection-free algo-
rithm called the BKL algorithm.[27] This new formulation of KMC
simulations developed by Esmaeilpour et al. follows a bottom-up
multiscale approach to simulate SEI’s growth based on system-
specific characterizations of microscopic processes that lead to
the formation of SEI. The current data-driven study uses the re-
sults based on this new formulation of KMC simulation. Kinetic
Monte Carlo (KMC) simulations can model the growth of solid
electrolyte interphase on the spatial scale of nanometers and on a
time scale of microseconds with a molecular resolution of ≈1nm.
KMC is a variant of Monte Carlo simulations that captures the
evolution of mesoscale processes where the considered system
is spatially and temporally discretized according to a set of re-
actions. The results of a 2D model on a square lattice in which
space is discretized at a scale proportional to the size of the molec-
ular components, such as Li2EDC, Li2CO3, and C2H4OCOOLi
are used to generate meta solid electrolyte interphase configu-
ration. The simulations are based on a variation of the rejection-
free KMC algorithm,[27] which selects a reaction from the gath-
ered reaction sets of the previous state to the next state according
to the transition state theory. The KMC algorithm simulates SEI
growth on a mesoscopic scale.[13] The SEI formation is governed
by a series of reactions that start with electron reduction to gen-
erate inorganic or organic components, followed by an aggrega-

tion of inorganic components to form the inorganic part of the
SEI and diffusion of organic components to form SEI cluster or
organic part of the SEI. The reaction rates used to generate the
SEI configurations are sampled using Latin hypercube sampling
by randomly selecting the initial reaction rate set adopted from
published literature[28-30] on the rates of SEI growth. Fifteen pos-
sible reaction rates responsible for SEI growth are considered,
and 50000 15D reaction rate vectors are sampled using Latin hy-
percube sampling.[31,32] Each 15D reaction rate vector generates a
spatiotemporal SEI configuration. The components formed dur-
ing the SEI growth simulation for the given input reaction rates
are color-coded. The color coding of the final snapshot of the SEI
growth simulation is used to identify the inorganic, organic, and
intermediate precursor components of the SEI. This study de-
fines the volume fraction, thickness, density, and porosity as ob-
servables of the SEI. Each simulation takes up to 30 min of CPU
hours on a single core. The sequential dependence of the reac-
tions makes it challenging to implement the KMC algorithm in
parallel. The computational cost of the simulation depends on the
size of the lattice for the constant list of reactions; that is, the CPU
hours increase with an increase in lattice size. To accelerate the
time-consuming process of Monte Carlo simulations, surrogate
models can learn to sample additional large datasets from smaller
initial subsets of data.[33,34] In the following, we propose a deep
generative model to replace the additional sampling by directly
predicting tailored SEI configuration and observables through
screening the corresponding reaction barrier space. Thus, the
deep generative model can support the KMC simulation in terms
of computational cost and faster discovery.

2.2. Preprocessing

The source dataset for training consists of 50000 2D SEI config-
urations obtained at the last step of KMC simulations,[13] along
with its observable/physical properties such as volume fraction,
thickness, density, and porosity, and the corresponding reaction
barrier of the 15D vector. The 2D SEI configurations are cate-
gorically encoded, followed by one-hot encoding according to the
color codes for each reaction product in the considered configura-
tion. The physical properties or observable of the SEI configura-
tion and reaction barrier set are preprocessed to the normalized
range for better performance and stability of the implemented
machine learning model. The preprocessed data of each SEI con-
figuration is written as a TFRecord file[35] for effective serializa-
tion of structured data and to prepare the data for the machine
learning study.

2.3. Deep Generative Models

Recent developments in deep generative models have provided
access to efficient representation learning of large datasets and
the discovery of new material configurations in the material sci-
ence field. VAE[18] and GAN[19] are two widely used deep gen-
erative models for understanding the underlying structure of a
high-dimensional dataset by sampling over lower-dimensional
latent space. The GAN is identified by training a pair of compet-
ing neural networks, namely, the generator and discriminator,
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to generate new samples similar to the observed data. In con-
trast, VAE uses parametric data encoding to a normal distribu-
tion over a continuous latent space, and each point in the latent
space is decoded back into the input data space. VAE adds ran-
domness to its encoded samples to create a generalized latent
space. This forces the decoder to decode a wide range of points,
resulting in robust representations. In contrast, standard autoen-
coders often have discontinuous and irregularly bounded distri-
butions in their learned latent representations, which are unsuit-
able for generation and optimization applications. As opposed to
GANs, the trained VAE allows continuous mapping of the latent
space from the input data, which is tractable. Therefore, the VAE
can produce meaningful latent-space representations.[36,37] The
encoder component of VAE transforms each input sample into a
normal distribution across the continuous latent space using the
statistical mean and variance of the data. The normal distribu-
tion used in this context is defined by two parameters: the mean
and the variance (logvar). Each data point is mapped to a vector
consisting of a mean and variance, which define a multivariate
normal distribution around that point. A random point is then
sampled from this distribution and returned as the latent vari-
ables, which form the sampling layer of VAE. The decoder uses
this latent variable to generate the output. The encoding and de-
coding components of the VAE are represented as neural net-
works trained to optimize the lower bound on the likelihood of
the input samples. This is achieved by minimizing a loss func-
tion that has two terms: a reconstruction term that pushes the
decoder to correctly rebuild the input given its latent representa-
tion and a regularization term that is the Kullback-Leiber diver-
gence function (KL) between the conditional distribution defined
by the encoder and the defined prior of the dataset. During train-
ing, updating the parameters of VAE using backpropagation can
be challenging due to the stochastic nature of the sampling layer.
One way to overcome this is to compute the gradient of the sam-
pling layer during backpropagation with respect to the mean and
log-variance vectors. In addition, maintaining the stochasticity of
the model is possible by multiplying an extra parameter called
epsilon (ϵ) as follows: z = 𝜇 + 𝜎*ϵ, where 𝜖 ≈  (0, I) and 𝜎 =
elogvar/2. The epsilon variable remains a random variable sampled
from a standard normal distribution with a very low value, en-
suring that the model does not shift away from the true distri-
bution. This reparameterizes the model for end-to-end training.
Designing a desirable material configuration involves optimiz-
ing various properties correlated with each other. Optimizing de
novo material configurations concerning a single target property
can cause undesirable changes in other properties. To avoid this,
the Conditional Variational AutoEncoder (CVAE) model offers a
way to generate material configurations by manipulating a given
set of target properties. The prime difference between the VAE
and CVAE can be observed in their objective functions.[38] The
objective function of the VAE and CVAE are as follows:

E
[
logP(X|z)

]
− DKL

[
Q(z|X) ∥ P(z)

]
(1)

E[logP(X|z, c)] − DKL[Q(z|X, c) ∥ P(z|c)] (2)

where P(z) is the prior distribution of latent variables, P(X|z) is
the approximated distribution of X (input material configuration)
conditioned on latent variables z by the decoder part, Q(z|X) is the

approximated distribution of the latent variables z conditioned
on input variable X and c is the conditioning vector. The struc-
ture of the conditional VAE can be improved by using the con-
ditional vector only on the decoder network to allow the encoder
network of conditional VAE to initialize the network parameters.
The evidence lower bound or objective function of this improved
conditional VAE is given by:

E[logP(X|z, c)] − DKL[Q(z|X ) ∥ P(z|c)] (3)

As we can see from this equation, the log marginal likelihood is
also given as a function of hidden representation, but the outputs
are also conditioned on input X and latent variable z. Given these
additional conditions over the output distributions, we can train
the model using the backpropagation algorithm used originally
in CVAE.[39,40] This improved CVAE allows the guided generation
of new samples of a specified category.

2.4. Proposed Model Architecture and Training

As discussed in the previous section, the VAE learns the contin-
uous latent space by focusing only on the spatial SEI configu-
ration. To enable the inverse design of SEI configurations and
characterize the SEI growth given its barrier set, the SEI con-
figuration embedded at the bottleneck of the VAE should cor-
respond to the target physical properties of the SEI. Therefore,
as shown in Figure 1, we jointly trained a VAE and property re-
gressor . The property regressor is a deep neural network that
predicts the property of the SEI ( ‚P) propagates the learned phys-
ical information back into the latent space of the encoder net-
work. Figure 1a shows the model architecture used for training.
This type of model architecture introduces regression loss in ad-
dition to the VAE loss terms so that the model trains on SEI spa-
tial configuration and target physical properties. The property re-
gressor uses a series of connected neural networks to analyze
data. The encoder and decoder components of the VAE are de-
fined using convolutional neural network layers. During train-
ing, the decoder receives a latent vector sampled from the ap-
proximated posterior distribution as input, while the property re-
gressor only takes the mean value 𝜇 of the encoded distribution
as input. Figures 1b,c show the ground truth and correspond-
ing prediction of SEI configuration from the test dataset outside
the training dataset. The trained prVAE accurately predicts SEI
configuration even in the test dataset. Furthermore, Figure 1d
demonstrates the model has better generalization between the
training and validation sets.

3. Results and Discussion

3.1. Characterization of SEI in Latent Space

To determine how well prVAE can encode the complex SEI fea-
ture in a reduced-dimensional latent space, we randomly se-
lected 7500 test samples outside the training dataset. The re-
sulting property information-rich latent space is continuous and
decodes into a valid SEI configuration with target properties.
For better visualization, we conducted a dimensional reduction
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Figure 5. Latent space exploration along the first principal component: The first principal component holds the majority of the variational information
of the property thickness and is conditioned by the reaction barrier set. The decoding of minimum (left), mean (middle), and maximum (right) values
of the first principal component to the corresponding SEI configuration is shown here.

using Principal Component Analysis (PCA) analysis on the la-
tent spaces obtained from encoding the test dataset to com-
pare the performance of prVAE and vanilla VAE. As shown
in Figure 2, prVAE performs better than vanilla VAE in accu-
rately capturing the physical information associated with the SEI
feature. The result contains valuable SEI property information,
making exploring, optimizing, and interpolating target SEI con-
figurations easier. The prVAE captures the property informa-
tion into the encoded dimension of latent space; each point in
the latent space decodes into an SEI configuration with valid
physical properties.

3.2. Property Prediction of SEI Configuration

To facilitate the design of SEI with target properties, we jointly
trained fully connected dense neural network layers with VAE.
The VAE as a generative model can generate new data by de-
coding points randomly sampled from the learned lower dimen-
sional latent space. The ability of VAE to generate new data helps
to find a new material configuration better for the application.
The extended VAE with property regressor (prVAE) predicts the
property from the encoded dimension of each SEI configura-
tion. By jointly training the property regressor, the selected prop-
erty values order the encoded distribution as a gradient of the
property. Figure 2 illustrates this representation for each prop-
erty. Figure 3 shows the R2 score between the actual and pre-
dicted values of the selected property values of the randomly se-

lected test dataset outside the training dataset. With high predic-
tion accuracy, the property regressor captured almost all property
information to order the encoded latent space. From Figure 3,
we can see that the R2 score in the case of porosity is less com-
pared to other properties; this explains the low variance and weak
correlation of porosity value (Figure 4) with other selected prop-
erties for the study. The extension VAE model with property
regressor solved not only its primary purpose to order the la-
tent space automatically but also the obtained information-rich
lower dimensional latent space, which can be later used to op-
timize the SEI configurational space with reaction barrier val-
ues and the corresponding properties for better performance of
the battery.

3.3. Guided SEI Generation by Walking the Latent Space

The SEI configurations generated by decoding points on the la-
tent space can be conditioned by adding additional inputs to the
decoder of the prVAE. In our study, we used the reaction bar-
rier space as input to the decoder in addition to sampled latent
vectors from the encoded distribution of lower dimensional la-
tent space. By training this prVAE with conditional inputs at the
decoder, the model learns to generate SEI configurations with
reaction products of SEI growth based on given reaction bar-
rier spaces. Results in Sections 3.1 and 3.2 show that the prVAE
can order its learned latent space based on property values; simi-
larly, prVAE with conditional inputs also automatically organizes
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Figure 6. Latent space exploration along the second principal component: Latent space exploration along the second principal component: The second
principal component does not carry any variational information about the thickness. The explainability of this principal component to describe the SEI
configuration according to SEI configuration is insignificant compared to the first principle component. The decoding of minimum (left), mean (middle),
and maximum (right) values of the second principal component to the corresponding SEI configuration is shown here.

the latent space with property values. For this study, we con-
sidered the latent space learned by the conditional prVAE with
thickness information. When training the prVAE model with a
conditional barrier set, each dimension in the latent space at-
tempts to learn the encoded distribution in an ordered fashion.
Principal component analysis is utilized to evaluate the effec-
tiveness of the learned latent space of conditional prVAE in de-
scribing the SEI configurations and property information. The
information presented in Figure 5 indicates that the first prin-
cipal component effectively captures the variations in thickness
and presents SEI configurations in a well-ordered manner along
its axis. On the other hand, the second and third principal com-
ponents, as shown in Figures 6 and 7, remain almost constant
despite changes in thickness. Here, the rise in purple and red
layers signifies the increase in thickness in the organic and in-
organic SEI layers, respectively, while the orange color repre-
sents the intermediate product required for organic SEI forma-
tion. To explore the learned latent space with property informa-
tion and their effects on SEI configuration, the minimum and
maximum of all latent dimensions and reaction barrier space
are used to interpolate the latent variables.Walking this latent
space along the given interpolation direction, we can generate
SEI configurations for the given reaction barrier space. In this
study, we use Figures 8a,b to demonstrate how SEI configura-
tions can be generated by varying the input barrier or latent vari-
ables while keeping the other constant and vice versa. By having
conditional inputs as reaction barrier set, we can define the re-

action product type to generate the SEI configuration of a cor-
responding thickness (Figure 8a). In other words, the reaction
barrier as conditional inputs control the chemical space required
to form SEI.

4. Conclusion and Outlook

The proposed prVAE model architecture captures the data-driven
properties of the SEI configurations essential for its characteri-
zation. The property regressor added to the standard VAE model
effectively extracts the key features of virtual SEI configurations
to encode a continuous and information-rich latent space. Train-
ing the VAE jointly with the property regressor significantly en-
hances its generation quality. Furthermore, the property regres-
sor demonstrates higher accuracy in predicting the physical prop-
erties. The obtained information-rich continuous latent space
constitutes the data-driven properties organized according to the
physical property values. By walking the encoded latent space, we
can decode the SEI configuration of target physical properties.
Adding the selected reaction barrier set responsible for SEI con-
figurational space as conditional input to the decoder of prVAE,
we can direct the model to generate the SEI configuration of
specific properties and reaction product range–this guided gen-
eration of SEI help to identify the new SEI configurations and
target properties for further optimization. The prVAE architec-
ture allows customization for different applications, such as ex-
ploration, interpolation, and optimization. The obtained contin-

Adv. Energy Mater. 2023, 2301985 2301985 (8 of 11) © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
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Figure 7. Latent space exploration along the third principal component: The third principal component also shows a similar trend to the second principal
component. The decoding of minimum (left), mean (middle), and maximum (right) values of the third principal component to the corresponding SEI
configuration is shown here.

uous latent space can be used as an input optimization model
to identify property combinations and SEI configurational space
with better battery performance and safety. As further work in
this direction, we are extending the model to facilitate the inverse
design of SEI configuration and reaction barrier space by using
predicted properties from the property regressor as input to the
decoder of prVAE.

Figure 8. Latent space exploration of the SEI configuration: a) Guided SEI
generation from the sampled mean of the latent variables while varying
the conditional input barrier; b) SEI generation from the sampled mean of
the input barrier while varying the latent variables.

5. Tools and Methods

5.1. Data Handling

The implemented machine learning workflow in this work is
defined and handled with the help of an open-source data plat-
form called Kadi4Mat (Karlsruhe Data Infrastructure for Materi-
als Science).[41] Kadi4Mat functions as both a communal repos-
itory and Electronic Lab Notebook (ELN).[42] Here, the data plat-
form collects and organizes the data and metadata from the
source simulation. The ELN of Kadi4Mat provides access to a
wide range of tools to handle, preprocess, and analyze data.
For our data-driven study, we used KadiAI and CIDS (Compu-
tational Intelligence and Data Science tools)[43] extension of the
Kadi4Mat ecosystem to define and execute machine learning
processes.

5.2. Model Hyperparameters

For the proposed prVAE architecture, the encoder used 2D convo-
lution layers of filter sizes 32, 64, and 128, respectively, followed
by a fully connected dense layer of size 100. The decoder used 2D
deconvolutional layers with 128, 64, 32, and 23 filter sizes. Every
convolutional layer has a batch normalization layer following it
to stabilize the activation values and improve the model perfor-
mance. After some trials, the latent dimension or the bottleneck
of prVAE is set to 50. The stride values for the convolutional layer
network are two and one. The activation function used by the

Adv. Energy Mater. 2023, 2301985 2301985 (9 of 11) © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
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convolutional layers is the rectified linear unit. The property re-
gressor uses two fully connected dense layers of 200 neurons for
predicting SEI properties from the VAE bottleneck.

5.3. Training Hyperparameters

After the necessary preprocessing, the dataset is split into train-
ing, validation, and test samples to generalize the model knowl-
edge. The split ratio is 0.7 for training, 0.15 for validation, and
0.15 for testing. The model’s training involved 250 epochs, with
a learning rate of 3e−6 and a batch size of 64. ADAM opti-
mizer is used to minimize the loss function of the model during
training.
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