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Abstract

Forecast evaluation is essential for the development of predictive epidemic models and can

inform their use for public health decision-making. Common scores to evaluate epidemiolog-

ical forecasts are the Continuous Ranked Probability Score (CRPS) and the Weighted Inter-

val Score (WIS), which can be seen as measures of the absolute distance between the

forecast distribution and the observation. However, applying these scores directly to pre-

dicted and observed incidence counts may not be the most appropriate due to the exponen-

tial nature of epidemic processes and the varying magnitudes of observed values across

space and time. In this paper, we argue that transforming counts before applying scores

such as the CRPS or WIS can effectively mitigate these difficulties and yield epidemiologi-

cally meaningful and easily interpretable results. Using the CRPS on log-transformed values

as an example, we list three attractive properties: Firstly, it can be interpreted as a probabi-

listic version of a relative error. Secondly, it reflects how well models predicted the time-vary-

ing epidemic growth rate. And lastly, using arguments on variance-stabilizing

transformations, it can be shown that under the assumption of a quadratic mean-variance

relationship, the logarithmic transformation leads to expected CRPS values which are inde-

pendent of the order of magnitude of the predicted quantity. Applying a transformation of log

(x + 1) to data and forecasts from the European COVID-19 Forecast Hub, we find that it

changes model rankings regardless of stratification by forecast date, location or target

types. Situations in which models missed the beginning of upward swings are more strongly

emphasised while failing to predict a downturn following a peak is less severely penalised

when scoring transformed forecasts as opposed to untransformed ones. We conclude that

appropriate transformations, of which the natural logarithm is only one particularly attractive

option, should be considered when assessing the performance of different models in the

context of infectious disease incidence.
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Author summary

Scores like the Continuous Ranked Probability Score (CRPS) or the Weighted Interval

Score (WIS) are commonly used to evaluate epidemiological forecasts and are a measure

of absolute distance between forecast and observation. Due to the exponential nature of

epidemic processes, evaluating the absolute distance between forecast and observation

may not be ideal. We argue that transforming counts before applying the CRPS or WIS

can yield more meaningful results. The natural logarithm is a particularly attractive

transformation in epidemiological settings. Scores computed on log-transformed values

can be interpreted as a probabilistic version of a relative error and reflect how well fore-

casters predict the time-varying epidemic growth rate. If the data-generating process has

a quadratic mean-variance relationship, the logarithmic transformation also leads to

expected CRPS values which are independent of the order of magnitude of the predicted

quantity. We illustrate these properties using data from the European COVID-19 Fore-

cast Hub and find that scoring transformed counts changes model rankings. Stronger

emphasis is given to situations in which forecasters missed the beginning of upward

swings, while failing to predict a downturn following a peak is less severely penalised.

We generally recommend including evaluations of transformed counts when assessing

forecaster performance.

Introduction

Probabilistic forecasts [1] play an important role in decision-making in epidemiology and pub-

lic health [2], as well as other areas as diverse as economics [3] or meteorology [4]. Forecasts

based on epidemiological modelling in particular have received widespread attention during

the COVID-19 pandemic. Evaluations of forecasts can provide feedback for researchers to

improve their models and train ensembles. They moreover help decision-makers distinguish

good from bad predictions and choose forecasters and models that are best suited to inform

future decisions.

Probabilistic forecasts are usually evaluated using so-called (strictly) proper scoring rules

[5], which return a numerical score as a function of the forecast and the observed data.

Proper scoring rules are constructed such that they encourage honest forecasting and cannot

be ‘gamed’ or ‘cheated’. Assuming that the forecaster’s actual best judgement corresponds to

a predictive distribution F, a proper score is constructed such that if F was the data-generat-

ing process, no other distribution G would yield a better expected score. A scoring rule is

called strictly proper if there is no other distribution that under F achieves the same expected

score as F, meaning that any deviation from F leads to a worsening of expected scores. Fore-

casters (anyone or anything that issues a forecast) are thus incentivised to report their true

belief F about the future. Common proper scoring rules are the logarithmic or log score [6]

and the continuous ranked probability score (CRPS, [5]). The log score is the predictive log

density or probability mass evaluated at the observed value. It is supported by the likelihood

principle [7] and has many desirable theoretical properties; however, the particularly severe

penalties it assigns to occasional misguided forecasts make it little robust [8]. Moreover, it is

not easily applied to forecasts reported as samples or quantiles, as used in many recent dis-

ease forecasting efforts. It is nonetheless occasionally used in epidemiology (see e.g., [1, 9]),

but in recent years the CRPS and the weighted interval score (WIS, [8]) have become increas-

ingly popular.
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The CRPS measures the distance of the predictive distribution to the observed data as

CRPSðF; yÞ ¼
Z 1

� 1

ðFðxÞ � 1ðx � yÞÞ2 dx; ð1Þ

where y is the true observed value, F is the cumulative distribution function (CDF) of the pre-

dictive distribution, and 1() is the indicator function. The CRPS can be understood as a gener-

alisation of the absolute error to predictive distributions, and interpreted on the natural scale

of the data. The WIS is an approximation of the CRPS for predictive distributions represented

by a set of predictive quantiles and is currently used to assess forecasts in the so-called

COVID-19 Forecast Hubs in the US [10, 11], Europe [12] and Germany and Poland [13, 14],

as well as the US FluSight project on influenza forecasting [15]. The WIS is defined as

WISðF; yÞ ¼
1

K
�
XK

k¼1

2� 1ðy � qtkÞ � tk
h i

� ðqtk � yÞ; ð2Þ

where qτ is the τ quantile of the forecast F, y is the observed outcome and K is the number of

(roughly equally spaced) predictive quantiles provided. The WIS can be decomposed into

three components, dispersion, underprediction and overprediction, which reflect the spread of

the forecast and whether it was centred above or below the observed value. We show an alter-

native definition based on central prediction intervals in S1 Text which illustrates this

decomposition.

The notion of absolute distance encoded by the CRPS and WIS provides a straightforward

interpretation, but may not always be the most useful perspective in the context of infectious

disease spread. Especially in their early phase, outbreaks are best conceived as exponential pro-

cesses, characterized by potentially time varying reproduction numbers Rt [16] or epidemic

growth rates rt [17]. If the true modelling task revolves around estimating and forecasting

these quantities, then evaluating forecasts based on the absolute distance between forecasted

and observed incidence values penalises underprediction (of the reproduction number or

growth rate) less than overprediction by the same amount. For illustration, consider an inci-

dence forecast issued at time 0 and referring to time t that misses the correct average growth

rate �rt by either −� or + �. Then the ratio of the resulting absolute errors on the scale of

observed incidences yt is

jy0 exp½ð�rt � �Þ � t� � y0 expð�rttÞj
jy0 exp½ð�rt þ �Þ � t� � y0 expð�rttÞj

¼ expð� �tÞ < 1: ð3Þ

If one is to measure the ability to forecast the underlying infection dynamics, it may thus be

more desirable to evaluate errors on the scale of the growth rate directly.

Another argument against using notions of absolute distance between predicted and

observed incidence values is that forecast consumers may find errors on a relative scale easier

to interpret and more useful in order to track predictive performance across targets of different

orders of magnitude. [18] have proposed the scaled CRPS (SCRPS) which is locally scale

invariant; however, it does not correspond to a relative error measure and lacks a straightfor-

ward interpretation as available for the CRPS.

Lastly, it may be considered desirable to give all forecast targets similar weight in an overall

performance evaluation. As the CRPS typically scales with the order of magnitude of the quan-

tity to be predicted, this is not the case for the CRPS, which will typically assign higher scores

to forecast targets with high expected values (e.g., in large locations or around the peak of an

epidemic). Bracher et al. [8] have argued that this is a desirable feature, directing attention to

situations of particular public health relevance. An evaluation based on absolute errors,
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however, will assign little weight to other potentially important aspects, such as the ability to

correctly predict future upswings while observed numbers are still low.

In many fields, it is common practice to forecast transformed quantities (see e.g. [19] in

finance, [20] in macroeconomics, [21] in hydrology or [22] in meteorology). While the goal of

the transformations is often to improve the accuracy of the predictions, they can also be used

to enhance and complement the evaluation process. In this paper, we argue that the aforemen-

tioned issues with evaluating epidemic forecasts based on measures of absolute error on the

natural scale can be addressed by transforming the forecasts and observations prior to scoring

using some strictly monotonic transformation. Strictly monotonic transformations can shift

the focus of the evaluation in a way that may be more appropriate for epidemiological fore-

casts, while guaranteeing that the score remains proper. Many different transformations may

be appropriate and useful, depending on the exact context, the desired focus of the evaluation,

and specific aspects forecast consumers care most about (see Discussion).

For conceptual clarity and to allow for a more in-depth discussion, we focus mostly on the

natural logarithm as a particularly attractive transformation in the context of epidemic phe-

nomena. We refer to this transformation as ‘log-transformation’ and to scores that have been

computed from log-transformed forecasts and observations as scores ‘on the log scale’ (as

opposed to scores ‘on the natural scale’, which involve no transformation). In the theoretical

part of the paper, ‘log-transformation’ and ‘log scale’ generally refer to a transformation of

loge(x). For practical applications in the later sections we also use these terms to describe a

transformation of loge(x + a) with a small a> 0 in order to keep the terminology and notation

simple. For a prediction target with strictly positive support, the CRPS after applying a log-

transformation is given by

CRPSðFlog; log yÞ ¼
Z 1

� 1

ðFlogðxÞ � 1ðx � log yÞÞ2dx: ð4Þ

Here, y is again the observed outcome and Flog is the predictive CDF of the log-transformed

outcome, i.e.,

FlogðxÞ ¼ FðexpðxÞÞ; ð5Þ

with F the CDF on the original scale. Instead of a score representing the magnitude of absolute

errors, applying a log-transformation prior to the CRPS yields a score which a) measures rela-

tive error, b) provides a measure for how well a forecast captures the exponential growth rate

of the target quantity and c) is less dependent on the expected order of magnitude of the quan-

tity to be predicted). We therefore argue that such evaluations on the logarithmic scale should

complement the prevailing evaluations on the natural scale. Other transformations may like-

wise be of interest. We briefly explore the square root transformation as an alternative trans-

formation. Our analysis mostly focuses on the CRPS (or WIS) as an evaluation metric for

probabilistic forecasts, given its widespread use throughout the COVID-19 pandemic. We

note that the logarithmic score has scale invariance properties which imply that score differ-

ences between different forecasts are invariant to strictly monotonic transformations (see [23]

on corresponding properties of likelihood ratios and [24]). The question of the right scale to

evaluate forecasts on does therefore not arise for the log score.

The remainder of the article is structured as follows. First, we provide some mathematical

intuition on applying the log-transformation prior to evaluating the CRPS, highlighting the

connections to relative error measures, the epidemic growth rate and variance stabilizing

transformations. We then discuss the effect of the log-transformation on forecast rankings as

well as practical considerations for applying transformations in general and the log-
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transformation in particular. To analyse the real-world implications of the log-transformation

we use forecasts submitted to the European COVID-19 Forecast Hub [12, 25]. Finally, we pro-

vide scoring recommendations, discuss alternative transformations that may be useful in dif-

ferent contexts, and suggest further research avenues).

Logarithmic transformation of forecasts and observations

Interpretation as a relative error

To illustrate the effect of applying the natural logarithm prior to evaluating forecasts we con-

sider the absolute error, which the CRPS and WIS generalize to probabilistic forecasts. We

assume strictly positive support (meaning that no specific handling of zero values is needed), a

restriction we will address when applying this transformation in practice. When considering a

point forecast ŷ for a quantity of interest y, such that

y ¼ ŷ þ ε; ð6Þ

the absolute error is given by |ε|. When taking the logarithm of the forecast and the observa-

tion first, thus considering

log y ¼ log ŷ þ ε∗; ð7Þ

the resulting absolute error |ε*| can be interpreted as an approximation of various common

relative error measures. Using that log(a)� a − 1 if a is close to 1, we get

jε∗j ¼ jlog ŷ � log yj ¼
�
�
�
�log

ŷ
y

� ��
�
�
� �

if ŷ � y
�
�
�
�
ŷ
y
� 1

�
�
�
� ¼

�
�
�
�
ŷ � y
y

�
�
�
�: ð8Þ

The absolute error after log transforming is thus an approximation of the absolute percent-
age error (APE, [26]) as long as forecast and observation are close. As we assumed that ŷ � y,

we can also interpret it as an approximation of the relative error (RE, [26])

�
�
�
�
ŷ � y
ŷ

�
�
�
� ð9Þ

and the symmetric absolute percentage error (SAPE; see e.g., [27])

�
�
�
�

ŷ � y
y=2þ ŷ=2

�
�
�
�: ð10Þ

As Fig 1 shows, the alignment with the SAPE is in fact the closest and holds quite well even

if predicted and observed value differ by a factor of two or three. Generalising to probabilistic

forecasts, the CRPS applied to log-transformed forecasts and outcomes can thus be seen as a

probabilistic counterpart to the symmetric absolute percentage error, which offers an appeal-

ing intuitive interpretation.

Interpretation as scoring the exponential growth rate

Another interpretation for the log-transform is possible if the generative process is framed as

exponential with a time-varying growth rate r(t) (see e.g. [28]), i.e.

d
dt
yðtÞ ¼ rðtÞyðtÞ ð11Þ
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which is solved by

yðtÞ ¼ y0 exp
�Z t

0

rðt0Þdt0
�

¼ y0 expð�rt tÞ ð12Þ

where y0 is an initial data point and �rt is the mean of the growth rate between the initial time

point 0 and time t.
If a forecast ŷðtÞ for the value of the time series at time t is issued at time 0 based on the data

point y0 then the absolute error after log transformation is

�∗ ¼ jlog ½ŷðtÞ� � log ½yðtÞ�j

¼ jlog ½y0 expð �̂rt tÞ� � log ½y0 expð�rt tÞ�j

¼ tj �̂rt � �rt j

ð13Þ

where �rt is the true mean growth rate and �̂rt is the forecast mean growth rate. We thus evaluate

the error in the mean exponential growth rate, scaled by the length of the time period consid-

ered. Again generalising this to the CRPS and WIS implies a probabilistic evaluation of fore-

casts of the epidemic growth rate.

Interpretation as a variance-stabilising transformation

When evaluating models across sets of forecasting tasks, it may be desirable for each target to

have a similar impact on the overall results. This could be motivated by the assumption that

forecasts from different geographical units and time periods provide similar amounts of infor-

mation about how well a forecaster performs. One would then like the resulting scores to be

independent of the order of magnitude of the target to predict. CRPS values on the natural

scale, however, typically scale with the order of magnitude of the quantity to be predicted.

Average scores are then dominated by the results achieved for targets with high expected out-

comes in a way that does not necessarily reflect the underlying predictive ability well.

Fig 1. Numerical comparison of different measures of relative error: Absolute percentage error (APE), relative error (RE), symmetric absolute

percentage error (SAPE) and the absolute error applied to log-transformed predictions and observations. We denote the predicted value by ŷ and

display errors as a function of the ratio of observed and predicted value. A: x-axis shown on a linear scale. B: x-axis shown on a logarithmic scale.

https://doi.org/10.1371/journal.pcbi.1011393.g001
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If the predictive distribution for the quantity Y equals the true data-generating process F
(an ideal forecast), the expected CRPS is given by [5]

E½CRPSðF; yÞ� ¼ 0:5� EjY � Y 0j; ð14Þ

where Y and Y0 are independent samples from F. This corresponds to half the mean absolute
difference, which is a measure of dispersion. If F is well-approximated by a normal distribution

N(μ, σ2), the approximation

EF½CRPSðF; yÞ� �
s
ffiffiffi
p
p ð15Þ

can be used. This means that the expected CRPS scales roughly with the standard deviation,

which in turn typically increases with the mean in epidemiological forecasting. In order to

make the expected CRPS independent of the expected outcome, a variance-stabilising transfor-
mation (VST, [29, 30]) can be employed. The choice of this transformation depends on the

mean-variance relationship of the underlying process.

If the mean-variance relationship of the data-generating distribution is quadratic with σ2 =

c × μ2, the natural logarithm can serve as the VST. Denoting by Flog the predictive distribution

for log(Y), we can use the delta method (a first-order Taylor approximation, see e.g., [30]), to

show that

EF½CRPSfFlog; logðyÞg� �
s=m
ffiffiffi
p
p ¼

ffiffi
c
p

ffiffiffi
p
p : ð16Þ

As σ and μ are linked through the quadratic mean-variance relationship (or linear mean-

standard deviation relationship, s ¼
ffiffi
c
p
� m), the expected CRPS thus stays constant regard-

less of the expected value of the data-generating distribution μ. The assumption of a quadratic

mean-variance relationship is closely linked to the aspects discussed earlier. It implies that rela-

tive errors have constant variance and can thus be meaningfully compared across different tar-

gets. Also, it arises naturally if we assume that our capacity to predict the epidemic growth rate

does not depend on the expected outcome, i.e. does not depend on the current phase of the

epidemic or the order of magnitude of current observations.

If the mean-variance relationship is linear with σ2 = c × μ, as with a Poisson-distributed var-

iable, the square root is known to be a VST [30]. Denoting by F ffiffip the predictive distribution

for
ffiffiffiffi
Y
p

, the delta method can again be used to show that

EF½CRPSfF ffiffip ;
ffiffiffiyp g� �

s=
ffiffiffi
m
p

2
ffiffiffi
p
p ¼

ffiffi
c
p

2
ffiffiffi
p
p : ð17Þ

We note that while standard in the derivation of variance-stabilizing transformations, the

application of the delta method in Eqs (16) and (17) requires the probability mass of F to be

tightly distributed. If this is not the case, the approximation and thus the variance stabilization

may be less accurate.

To strengthen our intuition on how transforming outcomes prior to applying the CRPS

shifts the emphasis between targets with high and low expected outcomes, Fig 2 shows the

expected CRPS of ideal forecasters under different mean-variance relationships and transfor-

mations. We consider a Poisson distribution where σ2 = μ, a negative binomial distribution

with size parameter θ = 10 and thus σ2 = μ + μ2/10, and a truncated normal distribution with

practically constant variance. We see that when applying the CRPS on the natural scale, the

expected CRPS grows monotonically as the variance of the predictive distribution (which is

equal to the data-generating distribution for the ideal forecaster) increases. The expected
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CRPS is constant only for the distribution with constant variance, and grows in μ for the other

two. When applying a log-transformation first, the expected CRPS is almost independent of μ
for the negative binomial distribution and large μ, while smaller targets have higher expected

CRPS in case of the Poisson distribution and the normal distribution with constant variance.

When applying a square-root-transformation, the expected CRPS is independent of the mean

for the Poisson-distribution, but not for the other two (with a positive relationship in the nor-

mal case and a negative one for the negative binomial). As can be seen in Fig 2 and S3 Fig, the

approximations presented in Eqs (16) and (17) work quite well for our simulated example.

Effects on model rankings

Rankings between different forecasters based on the CRPS may change when making use of a

transformation, both in terms of aggregate and individual scores. We illustrate this in Fig 3

with two forecasters, A and B, issuing two different distributions with different dispersion.

When showing the obtained CRPS as a function of the observed value, it can be seen that the

ranking between the two forecasters may change when scoring the forecast on the logarithmic,

rather than the natural scale. In particular, on the natural scale, forecaster A, who issues a

more uncertain distribution, receives a better score than forecaster B for observed values far

away from the centre of the respective predictive distribution. On the log scale, however,

Fig 2. Expected CRPS scores as a function of the mean and variance of the forecast quantity. We computed expected CRPS values for three different

distributions, assuming an ideal forecaster with predictive distribution equal to the true underlying (data-generating) distribution. These expected

CRPS values were computed for different predictive means based on 10,000 samples each and are represented by dots. Solid lines show the

corresponding approximations of the expected CRPS from Eqs (16) and (17). S3 Fig shows the quality of the approximation in more detail. The first

distribution (red) is a truncated normal distribution with constant variance (we chose σ = 1 in order to only obtain positive samples). The second

(green) is a negative binomial distribution with variance θ = 10 and variance σ2 = μ + 0.1μ2. The third (blue) is a Poisson distribution with σ2 = μ. To

make the scores for the different distributions comparable, scores were normalised to one, meaning that the mean score for every distribution (red,

green, blue) is one. A: Normalised expected CRPS for ideal forecasts with increasing means for three distribution with different relationships between

mean and variance. Expected CRPS was computed on the natural scale (left), after applying a square-root transformation (middle), and after adding one

and applying a log-transformation to the data (right). B: A but with x and y axes on the log scale.

https://doi.org/10.1371/journal.pcbi.1011393.g002
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forecaster A receives a lower score for large observed values, being more heavily penalised for

assigning large probability to small values (which, in relative terms, are far away from the

actual observation). We note that the chosen example involving a geometric forecast distribu-

tion is somewhat constructed; as illustrated in our practical example, rankings between models

in practice stay quite stable for a single forecast.

Overall model rankings would be expected to differ more when scores are averaged across

multiple forecasts or targets. The change in rankings of aggregate scores usually is mainly

driven by the order of magnitude of scores for different forecast targets across time, location

and target type and less so by the kind of changes in model rankings for single forecasts dis-

cussed above. Large observations will dominate average CRPS values when evaluation is done

on the natural scale, but much less so after log transformation. Depending on how different

models perform across targets of different orders of magnitude, rankings in terms of average

scores may change when applying a transformation.

Practical considerations and other transformations

In practice, one issue with the log transform is that it is not readily applicable to negative or

zero values, which need to be removed or otherwise handled. One common approach to this

end is to add a small positive quantity, such as a = 1, to all observations and predictions before

taking the logarithm [31]. This still represents a strictly monotonic transformation, but the

choice of a does influence scores and rankings (measures of relative errors shrink the larger

the chosen value a). As a rule of thumb, if if x> 5a, the difference between log (x + a) and log

(x) is small, and it becomes negligible if x> 50a. Choosing a suitable offset a thus balances two

competing concerns: on the one hand, choosing a small a makes sure that the transformation

is as close to a natural logarithm as possible and scores can be interpreted as outlined in the

previous sections. On the other hand, choosing a larger a can help stabilise scores for forecasts

and observations close to zero, avoiding giving excessive weight to forecasts of small quantities.

For increasing a, less relative weight is given to smaller forecast targets. For very large values of

a, log(x + a) is roughly linear in x, so that using a very large a implies similar relative weighting

as applying no transformation at all. In practice, a user could explore the effect of different

Fig 3. Illustration of the effect of the log-transformation of the ranking for a single forecast. Shown are CRPS (or WIS, respectively) values as a

function of the observed value for two forecasters. Model A issues a geometric distribution (a negative binomial distribution with size parameter θ = 1)

with mean μ = 10 and variance σ2 = μ + μ2 = 110), while Model B issues a Poisson distribution with mean and variance equal to 10. Zeroes in this

illustrative example were handled by adding one before applying the natural logarithm.

https://doi.org/10.1371/journal.pcbi.1011393.g003
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values of a graphically and choose a such that the relative weightings of times and regions with

high and low incidence correspond to their preferences.

A related issue occurs when the predictive distribution has a large probability mass on zero

(or on very small values), as this can translate into an excessively wide forecast in relative

terms. In our applied example this is illustrated in S7 Fig. In such instances, the dispersion

component of the WIS is inflated for scores obtained after applying the natural logarithm

because forecasts contained zero in its prediction intervals. To deal with this issue one could

choose to use a higher a value when applying a transformation log(x + a), for example a = 10

instead of the a = 1 that we chose to use.

A natural question is which other transformations could be applied and whether resulting

scores remain (strictly) proper. In principle, any transformation function can be applied

simultaneously to forecasts and observations as long as the definition of the transformation is

independent of the forecasts and any quantities unknown at the time of forecasting, including

the observed value. This simply corresponds to a re-definition of the forecasting target. How-

ever, applying non-invertible transformations leads to a loss in information conveyed by fore-

casts, which we consider undesirable. The resulting score will be proper, but it may not be

strictly proper anymore (as forecasts differing from the forecaster’s true belief on the original

scale may be identical on the transformed scale). When using the CRPS or the WIS, it seems

most appropriate to use only strictly monotonic transformations such as the natural logarithm

or the square root as otherwise the encoded notion of distance may become meaningless.

Some other strictly monotonic transformations that can be applied are scaling by the popu-

lation size or scaling by past observations. The latter is similar to applying a log-transforma-

tion, but corresponds to evaluating a forecast of multiplicative, rather than exponential growth

rates. The arising issue of dividing by zero can again be solved by adding a small offset a. Scal-

ing a forecast by the later observed value (as opposed to scaling by past observations) is gener-

ally not permissible as it can result in improper scores (see [32] on the closely related topic of

weighting scores with a function of the observed value). Similarly, scaling forecasts and obser-

vations by a function of the predictive distribution (like the predictive mean) may lead to

improper scores; however, we are unaware of existing theoretical arguments on this.

When applying a transformation, the order of the operations matters, and applying a trans-

formation after scores have been computed generally does not guarantee that the score

remains proper. In the case of log transforms, taking the logarithm of the CRPS values, rather

than scoring the log-transformed forecasts and data, results in an improper score. We illustrate

this point using simulated data in S1 Fig, where it can be seen that in the example overconfi-

dent models perform best in terms of the log WIS. We note that strictly speaking, re-scaling

average scores by the average score of a baseline model or average scores across different mod-

els to obtain skill scores likewise leads to improper scores [5]. The application of such skill

scores, however, is established practice and considered largely unproblematic.

We note that in the practical evaluation of operational forecasting systems several addi-

tional challenges arise, which we do not study in detail. These concern e.g., the removal of out-

lying observations and forecasts and the handling of missing forecasts. The solutions we

employed in practice are detailed below.

Empirical example: The European Forecast Hub

Setting

As an empirical comparison of evaluating forecasts on the natural and on the log scale, we use

forecasts from the European Forecast Hub [12, 25]. The European COVID-19 Forecast Hub is

one of several COVID-19 Forecast Hubs [11, 13] which have been systematically collecting,
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aggregating and evaluating forecasts of several COVID-19 targets created by different teams

every week. Forecasts are made one to four weeks ahead into the future and follow a quantile-

based format with a set of 23 quantiles (0.01, 0.025, 0.05, . . ., 0.5, . . .0.95, 0.975, 0.99).

The forecasts used for the purpose of this illustration are forecasts submitted between the

8th of March 2021 and the 5th of December 2022 for reported cases and deaths from COVID-

19. Target dates range from the 13th of March 2021 to the 10th of December 2022, for a total

of 92 weeks. See [12] for a more thorough description of the data. We filtered all forecasts sub-

mitted to the Hub to only include the seven models which have submitted forecasts for both

deaths and cases for 4 horizons in 32 locations on at least 46 forecast dates (see S4 Fig). We

removed all observations marked as data anomalies by the European Forecast Hub [12] as well

as all remaining negative observed values. These anomalies made up a relevant fraction of all

observations. On average across locations, 12.1 out of 92 (13.2%) observations were removed

for cases and 12.4 out of 92 (13.5%) for deaths. S5 Fig displays the number of anomalies

removed for each location. In addition, we filtered out a small number of erroneous forecasts

that were in extremely poor agreement with the observed data, as defined by any of the condi-

tions listed in S2 Table. S6 Fig shows the percentage of forecasts removed for each model.

Those few (less than 0.2% of forecasts for each model) erroneous outlier forecasts had excessive

influence on average scores and relative skill scores in a way that was not representative of nor-

mal model behaviour. We removed them here in order to better illustrate the effects of the log-

transformation on scores that one would expect in a well-behaved scenario. In a regular fore-

cast evaluation such erroneous forecasts should usually not be removed and would count

towards overall model scores.

All predictive quantiles were truncated at 0. We applied the log-transformation after adding

a constant a = 1 to all predictions and observed values. The choice of a = 1 in part reflects con-

vention, but also represents a suitable choice as it avoids giving excessive weight to forecasts

close to zero, while at the same time ensuring that scores for observations >5 can be inter-

preted reasonably. S2 Fig illustrates the effect of adding a small quantity before taking the loga-

rithm. The analysis was conducted in R [33], using the scoringutils package [34] for

forecast evaluation. All code is available on GitHub (https://github.com/epiforecasts/

transformation-forecast-evaluation). Where not otherwise stated, we report results for a two-

week-ahead forecast horizon.

In addition to the WIS we use pairwise comparisons [11] to evaluate the relative perfor-

mance of models across countries in the presence of missing forecasts. In the first step, score

ratios are computed for all pairs of models by taking the set of overlapping forecasts between

the two models and dividing the score of one model by the score achieved by the other model.

The relative skill for a given model compared to others is then obtained by taking the geomet-

ric mean of all score ratios which involve that model. Low values are better, and the “average”

model receives a relative skill score of 1.

Illustration and qualitative observations

When comparing examples of forecasts on the natural scale with those on the log scale (see Fig

4, S7 and S8 Figs) a few interesting patterns emerge. Missing the peak, i.e. predicting increas-

ing numbers while actual observations are already falling, tends to contribute a lot to overall

scores on the natural scale (see forecasts during the peak in May 2022 in Fig 4A and 4B). On

the log scale, these have less of an influence, as errors are smaller in relative terms (see Fig 4C

and 4D). Conversely, failure to predict an upswing while numbers are still low, is less severely

penalised on the natural scale (see forecasts in July 2021 and to a lesser extent in July 2022 in

Fig 4A and 4B), as overall absolute errors are low. On the log scale, missing lower inflection
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points tends to lead to more severe penalties (see Fig 4C and 4D). One can also observe that on

the natural scale, scores tend to track the overall level of the target quantity (compare for exam-

ple forecasts for March-July with forecasts for September-October in Fig 4E and 4F). On the

log scale, scores do not exhibit this behaviour and rather increase whenever forecasts are far

away from the truth in relative terms, regardless of the overall level of observations.

Across the dataset, the average number of observed cases and deaths varied considerably by

location and target type (see Fig 5A and 5B). On the natural scale, scores show a pattern quite

similar to the observations across targets (see Fig 5D) and locations (see Fig 5C). On the log

scale, scores were more evenly distributed between targets (see Fig 5D) and locations (see Fig

5C). Both on the natural scale as well on the log scale, scores increased considerably with

increasing forecast horizon (see Fig 5E). This reflects the increasing difficulty of forecasts fur-

ther into the future and, for the log scale, corresponds with our expectations based on the theo-

retical considerations detailed above.

Fig 4. Forecasts and scores for two-week-ahead predictions from the EuroCOVIDhub-ensemble made in Germany. Missing values are due to data

anomalies that were removed. A, E: 50% and 90% prediction intervals and observed values for cases and deaths on the natural scale. B, F:

Corresponding scores. C, G: Forecasts and observations on the log scale. D, H: Corresponding scores.

https://doi.org/10.1371/journal.pcbi.1011393.g004
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To assess the impact of the choice of offset value a we extend the display from Fig 5C by

results obtained under different specifications. Results are shown in Fig 6, where for com-

pleteness we also added the square root transformation. Smaller values of a increase the rel-

ative weight of smaller locations in the overall evaluation. In the most extreme considered

Fig 5. Observations and scores across locations and forecast horizons for the European COVID-19 Forecast Hub data. Locations are sorted

according to the mean observed value in that location. A: Average (across all time points) of observed cases and deaths for different locations. B:

Corresponding boxplot (y-axis on log-scale) of all cases and deaths. C: Scores for two-week-ahead forecasts from the EuroCOVIDhub-ensemble

(averaged across all forecast dates) for different locations, evaluated on the natural scale as well as after transforming counts by adding one and applying

the natural logarithm. D: Corresponding boxplots of all individual scores of the EuroCOVIDhub-ensemble for two-week-ahead predictions. E: Boxplots

for the relative change of scores for the EuroCOVIDhub-ensemble across forecast horizons. For any given forecast date and location, forecasts were

made for four different forecast horizons, resulting in four scores. All scores were divided by the score for forecast horizon one. To enhance

interpretability, the range of visible relative changes in scores (relative to horizon = 1) was restricted to [0.1, 10].

https://doi.org/10.1371/journal.pcbi.1011393.g005
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case a = 0.001, the smallest locations in fact receive the largest weight both for deaths

and cases. For very large values (see the third row of Fig 6), the relative weights strongly

resemble those of the evaluation on the natural scale. We recommend using displays of this

type to get an intuition for the role different locations may play for overall evaluation

results.

Fig 6. Mean WIS in different locations for different transformations applied before scoring. Locations are sorted according to the mean observed

value in that location. Shown are scores for two-week-ahead forecasts of the EuroCOVIDhub-ensemble. On the natural scale (with no transformation

prior to applying the WIS), scores correlate strongly with the average number of observed values in a given location. The same is true for scores

obtained after applying a square-root transformation, or after applying a log-transformation with a large offset a. For illustrative purposes, a was chosen

to be 101630 for cases and 530 for deaths, 10 times the respective median observed value. For large values of a, log(x + a) grows roughly linearly in x,

meaning that we expect to observe the same patterns as in the case with no transformation. For decreasing values of a, we give more relative weight to

scores in small locations.

https://doi.org/10.1371/journal.pcbi.1011393.g006
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Regression analysis to determine the variance-stabilizing transformation

As argued above, the mean-variance, or mean-CRPS, relationship determines which transfor-

mation can serve as a VST. We can analyse this relationship empirically by running a regres-

sion that explains the WIS (which approximates the CRPS) as a function of the central

estimate of the predictive distribution. We ran the regression

log½WISðF; yÞ� ¼ aþ b� log½medianðFÞ�; ð18Þ

where the predictive distribution F and the observation y are on the natural scale. This is equiv-

alent to

WISðF; yÞ ¼ expðaÞ �medianðFÞb; ð19Þ

meaning that we estimate a polynomial relationship between the predictive median and

achieved WIS. Note that we are using predictive medians rather than means as only the former

are available in the European COVID-19 Forecast Hub. As (under the simplifying assumption

of normality; see the previous theoretical discussion on the mean-variance relationship) the

WIS/CRPS of an ideal forecaster scales with the standard deviation, a value of β = 1 would

imply a quadratic median-variance relationship; the natural logarithm could then serve as a

VST. A value of β = 0.5 would imply a linear median-variance relationship, suggesting the

square root as a VST. We applied the regression to case and death forecasts, stratified for one

through four-week-ahead forecasts. Results are provided in Table 1. It can be seen that the esti-

mates of β always take a value somewhat below 1, implying a slightly sub-quadratic mean-vari-

ance relationship. The logarithmic transformation should thus approximately stabilize the

variance (and WIS), possibly leading to somewhat higher scores for smaller forecast targets.

The square-root transformation, on the other hand, can be expected to still lead to higher WIS

values for targets of higher orders of magnitude.

To check the relationship after the transformation, we ran the regressions

WISðFlog; log yÞ ¼ alog þ blog � log ðmedianðFÞÞ; ð20Þ

where Flog is the predictive distribution for log(y), and

WISðF ffiffip ; ffiffiffiyp Þ ¼ a ffiffip þ b ffiffip �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medianðFÞ

p
; ð21Þ

where F ffiffip is the predictive distribution on the square-root scale. A value of βlog = 0 (or

b ffiffip ¼ 0, respectively) would imply that scores are linearly independent of the median

Table 1. Coefficients of three regressions for the effect of the magnitude of the median forecast on expected scores. The first regression was log[WIS(F, y)] = α + β ×
log[median(F)], where F is the predictive distribution and y the observed value.The second one was WIS(Flog, log y) = αlog + βlog � log (median(F)), where Flog is the predic-

tive distribution for log y. The third one was WISðF ffiffiffip ;
ffiffiffiyp Þ ¼ a ffiffiffip þ b ffiffiffip �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmedianðFÞÞ

p
; where F ffiffiffip is the predictive distribution for

ffiffiffiyp .

Horizon Target α β a ffiffip b ffiffip αlog βlog

1 Cases -0.862 0.876 0.790 0.087 0.433 -0.024

2 Cases -0.243 0.877 0.959 0.162 0.660 -0.031

3 Cases 0.372 0.855 1.109 0.238 0.882 -0.037

4 Cases 0.816 0.837 1.645 0.296 1.009 -0.036

1 Deaths -1.146 0.832 0.457 0.048 0.376 -0.035

2 Deaths -0.981 0.867 0.443 0.084 0.416 -0.028

3 Deaths -0.807 0.885 0.349 0.131 0.453 -0.019

4 Deaths -0.602 0.891 0.125 0.194 0.501 -0.011

https://doi.org/10.1371/journal.pcbi.1011393.t001
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prediction after the transformation. A value smaller (larger) than 0 would imply that smaller

(larger) targets lead to higher scores. As can be seen from Table 1, the results indeed indicate

that small targets lead to larger average WIS when using the log transform (βlog < 0), while the

opposite is true for the square-root transform (b ffiffip > 0). The results of the three regressions

are also displayed in Fig 7. In this empirical example, the log transformation thus helps (albeit

not perfectly), to stabilise WIS values, and it does so more successfully than the square-root

transformation. As can be seen from Fig 7, the expected WIS scores for case targets with medi-

ans of 10 and 100,000 differ by more then a factor of ten for the square root transformation,

but only a factor of around 2 for the logarithm.

Fig 7. Relationship between median forecasts and scores. Black dots represent WIS values for two-week ahead predictions of the EuroCOVIDhub-

ensemble. Drawn in red are the regression lines as discussed in the main text and shown in Table 1. A: WIS for two-week-ahead predictions of the

EuroCOVIDhub-ensemble against median predicted values. B: Same as A, with scores obtained after applying a square-root-transformation to the data.

C: Same as A, with scores obtained after applying a log-transformation to the data.

https://doi.org/10.1371/journal.pcbi.1011393.g007
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Impact of logarithmic transformation on model rankings

For individual forecasts, rankings between models for single forecasts are mostly preserved,

with differences increasing across forecast horizons (see Fig 8A). While rankings between fore-

casters remain similar for a single forecast, this is not true anymore when looking at rankings

obtained after averaging scores across multiple forecasts made at different times or in different

locations. As discussed earlier, scores on the natural and on the log scale penalise errors very

differently, e.g. when looking at performance during peaks or troughs. When evaluating per-

formance averaged across different forecasts and forecast targets, relative skill scores of the

models therefore change considerably (Fig 8B). The correlation between relative skill scores

also decreases noticeably with increasing forecast horizon.

Fig 9 shows the changes in the ranking between different forecasting models. Encouragingly

for the European Forecast Hub, the Hub ensemble, which is the forecast the organisers suggest

forecast consumers make use of, remains the top model across scoring schemes. For cases, the

ILM-EKF model and the Forecast Hub baseline model exhibit the largest change in relative

skill scores. For the ILM-EKF model the relative proportion of the score that is due to overpre-

diction is reduced when applying a log-transformation before scoring (see Fig 9E. Instances

where the model has overshot are penalised less heavily on the log scale, leading to an overall

better score. For the Forecast Hub baseline model, the fact that it often puts relevant probabil-

ity mass on zero (see S7 Fig), leads to worse scores after applying log-transformation due to

large dispersion penalties. For deaths, the baseline model seems to get similarly penalised for

its in relative terms highly dispersed forecasts. The performance of other models changes as

well, but patterns are less discernible on this aggregate level.

Discussion

In this paper, we proposed the use of transformations, with a particular focus on the natural log-

arithmic transformation, when evaluating forecasts in an epidemiological setting. These

Fig 8. Correlations of rankings on the natural and logarithmic scale. A: Average Spearman rank correlation of scores for individual forecasts. For

every individual target (defined by a combination of forecast date, target type, horizon, location), one score was obtained per model. Then, for every

forecast target, the Spearman rank correlation was computed between scores on the natural scale and on the log scale for all the models that had made a

forecast for that specific target. These individual rank correlations were then averaged across locations and time and are displayed stratified by horizon

and target types, representing average accordance of model ranks for a single forecast target on the natural and on the log scale. B: Correlation between

relative skill scores. For every forecast horizon and target type, a separate relative skill score was computed per model using pairwise comparisons, which

is a measure of performance of a model relative to the others for a given horizon and target type that accounts for missing values. The plot shows the

correlation between the relative skill scores on the natural vs. on the log scale, representing accordance of overall model performance as judged by scores

on the natural and on the log scale.

https://doi.org/10.1371/journal.pcbi.1011393.g008
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transformations can address issues that arise when evaluating epidemiological forecasts based

on measures of absolute error and their probabilistic generalisations (i.e CRPS and WIS). We

showed that scores obtained after log-transforming both forecasts and observations can be inter-

preted as a) a measure of relative prediction errors, as well as b) a score for a forecast of the expo-

nential growth rate of the target quantity and c) as variance stabilising transformation in some

settings. When applying this approach to forecasts from the European COVID-19 Forecast

Hub, we found overall scores on the log scale to be more equal across, time, location and target

type (cases, deaths) than scores on the natural scale. Scores on the log scale were much less influ-

enced by the overall incidence level in a country and showed a slight tendency to be higher in

locations with very low incidences. We found that model rankings changed noticeably.

On the natural scale, missing the peak and overshooting was more severely penalised than

missing the nadir and the following upswing in numbers. Both failure modes tended to be

more equally penalised on the log scale (with undershooting receiving slightly higher penalties

in our example).

Applying a log-transformation prior to the WIS means that forecasts are evaluated in terms

of relative errors and errors on the exponential growth rate, rather than absolute errors. The

most important strength of this approach is that the evaluation better accommodates the expo-

nential nature of the epidemiological process and the types of errors forecasters who accurately

model those processes are expected to make. The log-transformation also helps avoid issues

with scores being strongly influenced by the order of magnitude of the forecast quantity, which

can be an issue when evaluating forecasts on the natural scale. A potential downside is that

forecast evaluation is unreliable in situations where observed values are zero or very small. One

Fig 9. Changes in model ratings as measured by relative skill for two-week-ahead predictions for cases (top row) and deaths (bottom row). A:

Relative skill scores for case forecasts from different models submitted to the European COVID-19 Forecast Hub computed on the natural scale. B:

Change in rankings as determined by relative skill scores when moving from an evaluation on the natural scale to one on the logarithmic scale. Red

arrows indicate that the relative skill scores deteriorated when moving from the natural to the log scale, green arrows indicate they improved. C:

Relative skill scores based on scores on the log scale. D: Difference in relative skill scores computed on the natural and on the logarithmic scale, ordered

as in C. E: Relative contributions of the different WIS components (overprediction, underprediction, and dispersion) to overall model scores on the

natural and the logarithmic scale. F, G, H, I, J: Analogously for deaths.

https://doi.org/10.1371/journal.pcbi.1011393.g009
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could argue that this correctly reflect inherent uncertainty about the future course of an epi-

demic when numbers are small. Users nevertheless need to be aware that this can pose issues

in practice. Including very small values in prediction intervals (see S7 Fig for an example) can

lead to excessive dispersion values on the log scale. Similarly, locations with lower incidences

may get disproportionate weight (i.e. high scores) when evaluating forecasts on the log scale.

[8] argue that it is desirable to give large weight to forecasts for locations with high incidences,

as this reflects performance on the targets we should care about most. On the other hand, scor-

ing forecasts on the log scale may be less influenced by outliers and better reflect consistent

performance across time, space, and forecast targets. Furthermore, decision makers may spe-

cifically care about situations in which numbers start to rise from a previously low level.

The log-transformation is only one of many transformations that may be useful and appro-

priate in an epidemiological context. One obvious option is to apply a population standardiza-

tion to obtain incidence forecasts e.g., per 100,000 population [35]. We suggested using the

natural logarithm as a variance-stabilising transformation (VST). This is appropriate for vari-

ables that are approximately normally distributed and have a quadratic mean-variance relation-

ship with σ2 = c × μ2 (this is e.g. approximately true for the negative binomoial distribution and

large μ). Alternatively, the square-root transformation can be appropriate in the case of a Pois-

son distributed variable [30]. Other VST like the Box-Cox [36] are conceivable as well. If one is

interested in multiplicative, rather than exponential growth rates, one could, instead of applying

a log transformation, convert forecasts into forecasts for the multiplicative growth rate by divid-

ing numbers by the last value that was observed at the time the forecast was made. Forecasters

would then implicitly predict a separate multiplicative growth rate from today to horizon 1, 2,

etc. Instead of dividing by the last observed value, another promising transformation would be

to divide each forecast by the forecast of the previous week (and analogously for observations),

in order to obtain forecasts for week-to-week growth rates. Alternatively, one could also take

first differences of values on the log scale. This approach would be akin to evaluating the shape

of the predicted trajectory against the shape of the observed trajectory (for a different approach

to evaluating the shape of a forecast, see [37]). Dividing values by the previous value, unfortu-

nately, is not feasible under the current quantile-based format of the Forecast Hubs, as the

growth rate of the α-quantile may be different from the α-quantile of the growth-rate. However,

it may be an interesting approach if predictive samples are available or if quantiles for weekwise

growth rates have been collected. Potentially, the variance stabilising time-series forecasting lit-

erature may be a useful source of other transformations for various forecast settings.

It is possible to go beyond choosing a single transformation by constructing composite

scores as a weighted sum of scores based on different transformations. This would make it pos-

sible to create custom scores and allow forecast consumers to choose and assign explicit

weights to different qualities of the forecasts they might care about.

Exploring transformations is a promising avenue for future work that could help bridge the

gap between modellers and policymakers by providing scoring rules that better reflect what

forecast consumers care about. In this paper, we did not make any particular assumptions

about policy makers’ priorities and preferences. Rather, we aimed to enable users to make an

informed choice by showing how different transformations lead to different relative weights

for the kinds of prediction errors forecast consumers may care about, such as absolute vs. rela-

tive errors or the size of penalties for over- vs. underprediction. In practice, engagement with

decision makers is important to determine what their priorities are and how different ways to

measure predictive importance should be weighed.

We have shown that the natural logarithm transformation can lead to significant changes in

the relative rankings of models against each other, with potentially important implications for

decision-makers who rely on the knowledge of past performance to make a judgement about
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which forecasts should inform future decisions. While it is commonly accepted that multiple

proper scoring rules should usually be considered when comparing forecasts, we think this

should be supplemented by considering different transformations of the data to obtain a richer

picture of model performance. More work needs to be done to better understand the effects of

applying transformations in different contexts, and how they may impact decision-making.

Supporting information

S1 Text. Alternative Formulation of the WIS.

(PDF)

S1 Table. Summary statistics for observations and scores for forecasts from the ECDC

data set.

(PDF)

S2 Table. Criteria for removing forecasts. Any forecast that met one of the listed criteria (rep-

resented by a row in the table), was removed. Those forecasts were removed in order to be bet-

ter able to illustrate the effects of the log-transformation on scores and eliminating distortions

caused by outlier forecasters. When evaluating models against each other (rather than illustrat-

ing the effect of a transformation), one would prefer not to condition on the outcome when

deciding whether a forecast should be taken into account.

(PDF)

S1 Fig. Illustration of the effect of applying a transformation after scoring. We assume Y�
LogNormal(0, 1) and evaluate the expected CRPS for predictive distributions LogNormal(0, σ)

with varying values of σ 2 [0.1, 2]. For the regular CRPS (left) and CRPS applied to log-trans-

formed outcomes (middle), the lowest expectation is achieved for the true value σ = 1. For the

log-transformed CRPS, the optimal value is 0.9, i.e. there is an incentive to report a forecast

that is too sharp. The score is therefore no longer proper.

(TIF)

S2 Fig. Illustration of the effect of adding a small quantity to a value before taking the nat-

ural logarithm. For increasing x, all lines eventually approach the black line (representing a

transformation with no offset applied). For a given solid line, the dashed line of the same col-

our marks the x-value that is equal to 5 times the corresponding offset. It can be seen that for a
values smaller than one fifth of the transformed quantity, the effect of adding an offset is gener-

ally small. When choosing a suitable a, the trade-off is between staying close to the interpreta-

tion of a pure log-transformation (choosing a small a) and not giving excessive weights to

small observations (by choosing a larger a, see Fig 6).

(TIF)

S3 Fig. Visualisation of expected CRPS values against approximated scores. This is using

the approximation detailed in theoretical discussion on model rankings (see also Fig 2).

Expected CRPS scores are shown for three different distributions once on the natural scale

(top row) and once scored on the log scale (bottom row).

(TIF)

S4 Fig. Number of forecasts available from different models for each forecast date.

(TIF)

S5 Fig. Number of observed values that were removed as anomalous. The values were

marked as anomalous by the European Forecast Hub team.

(TIF)

PLOS COMPUTATIONAL BIOLOGY Scoring epidemiological forecasts on transformed scales

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011393 August 29, 2023 20 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011393.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011393.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011393.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011393.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011393.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011393.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011393.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011393.s008
https://doi.org/10.1371/journal.pcbi.1011393


S6 Fig. Number of forecasts marked as erroneous and removed. Forecasts that were in

extremely poor agreement with the observed values were removed from the analysis according

to the criteria shown in S2 Table.

(TIF)

S7 Fig. Forecasts and scores for two-week-ahead predictions from the EuroCOVIDhub-

baseline made in Germany. The model had zero included in some of its 50 percent inter-

vals (e.g. for case forecasts in July 2021), leading to excessive dispersion values on the log

scale. One could argue that including zero in the prediction intervals constituted an unrea-

sonable forecast that was rightly penalised, but in general care has to be taken with small

numbers. One potential way to do deal with this could be to use a higher a value when

applying a transformation log(x + a), for example a = 10 instead of a = 1. A, E: 50% and

90% prediction intervals and observed values for cases and deaths on the natural scale. B, F:

Corresponding scores. C, G: Forecasts and observations on the log scale. D, H: Correspond-

ing scores.

(TIF)

S8 Fig. Forecasts and scores for two-week-ahead predictions from the epiforecasts-Epi-

Now2 model made in Germany. A, E: 50% and 90% prediction intervals and observed values

for cases and deaths on the natural scale from the EpiNow2 model [38]. B, F: Corresponding

scores. C, G: Forecasts and observations on the log scale. D, H: Corresponding scores.

(TIF)
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