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Intersections of Poisson k-flats

in constant curvature spaces

Carina Betkena, Daniel Hugb and Christoph Thälec

Abstract

Poisson processes in the space of k-dimensional totally geodesic subspaces (k-flats) in a d-
dimensional standard space of constant curvature κ ∈ {−1, 0, 1} are studied, whose distribu-
tions are invariant under the isometries of the space. We consider the intersection processes of
order m together with their (d−m(d− k))-dimensional Hausdorff measure within a geodesic
ball of radius r. Asymptotic normality for fixed r is shown as the intensity of the underlying
Poisson process tends to infinity for all m satisfying d −m(d − k) ≥ 0. For κ ∈ {−1, 0} the
problem is also approached in the set-up where the intensity is fixed and r tends to infinity.
Again, if 2k ≤ d+ 1 a central limit theorem is shown for all possible values of m. However,
while for κ = 0 asymptotic normality still holds if 2k > d + 1, we prove for κ = −1 con-
vergence to a non-Gaussian infinitely divisible limit distribution in the special case m = 1.
The proof of asymptotic normality is based on the analysis of variances and general bounds
available from the Malliavin–Stein method. We also show for general κ ∈ {−1, 0, 1} that,
roughly speaking, the variances within a general observation window W are maximal if and
only if W is a geodesic ball having the same volume as W . Along the way we derive a new
integral-geometric formula of Blaschke–Petkantschin type in a standard space of constant
curvature.

Keywords. Blaschke–Petkantschin formula, central limit theorem, constant curvature space,
Malliavin–Stein method, integral geometry, stochastic geometry, Poisson k-flat process, ran-
dom measure, U-statistic.
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1 Introduction and statement of the results

Stochastic geometry deals with the development and the probabilistic and geometric analysis of
models for complex spatial random structures, typically in a Euclidean space R

d of dimension
d ≥ 2. However, in recent years also stochastic geometry in non-Euclidean and especially in
spherical and hyperbolic spaces has become an active field of research. The aim of this branch
of stochastic geometry is to distinguish those properties of a random geometric system which are
universal to some extent from the ones which are sensitive to the underlying geometry, especially
to the curvature of the underlying space. We mention by way of example the studies [6, 7, 20]
on random convex hulls, the papers [5, 21, 22, 26, 27, 29, 30, 32] on random tessellations as well
as the works [4, 8, 15, 16, 17, 18, 40] on geometric random graphs and networks. The present
paper continues this line of research and naturally connects to the articles [26, 32]. We shall now
explain our framework as well as our results.

In this paper we deal with a d-dimensional standard space M
d
κ of constant curvature κ ∈

{−1, 0, 1}. For k ∈ {0, 1, . . . , d− 1} we denote by Aκ(d, k) the space of k-flats, that is, the space
of k-dimensional totally geodesic submanifolds, of M

d
κ. Each of the spaces Aκ(d, k) carries a

suitably normalized isometry invariant measure µk,κ; the reader may consult Section 2.1 for a
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detailed description. Next, for t > 0 we let ηt,κ be a Poisson process on Aκ(d, k) with intensity
measure tµk,κ and refer to ηt,κ as a Poisson process of k-flats in M

d
κ of intensity t. To

introduce the volume functional of intersection processes associated with ηt,κ, let m ∈ N be such
that d−m(d− k) ≥ 0 and for a Borel set W ⊂ M

d
κ define

F
(m)
W,t,κ : =

1

m!

∑

(E1,...,Em)∈ηm
t,κ, 6=

Hd−m(d−k)
κ (E1 ∩ . . . ∩ Em ∩W )

× 1{dim(E1 ∩ . . . ∩ Em) = d−m(d− k)}. (1.1)

Here, Hs
κ for s ≥ 0 denotes the s-dimensional Hausdorff measure with respect to the intrinsic

metric dκ of Md
κ, and we write ηmt,κ, 6= for the collection of all m-tuples of distinct k-flats in the

support of ηt,κ. For example, F
(1)
W,t,κ measures the total Hk

κ-volume in W of the trace of all k-flats

from ηt,κ, while if m = d
d−k is an integer, then F

(m)
W,t,κ counts the number of points in W that

arise as intersection points of m-tuples of k-flats from ηt,κ. In classical stochastic geometry in
Euclidean space, that is, for κ = 0, central limit theorems for the centred and normalized versions
of these random variables have been derived in [24, 28, 36] on different levels of generality. In

fact, there are two basic set-ups for which one can study the fluctuations of F
(m)
W,t,κ:

(i) For a fixed Borel set W ⊂ M
d
κ with Hd

κ(W ) ∈ (0,∞), define

F̂
(m)
W,t,κ :=

F
(m)
W,t,κ − EF

(m)
W,t,κ√

VarF
(m)
W,t,κ

, (1.2)

and consider the asymptotics as t→ ∞.

(ii) For κ ∈ {−1, 0} and for each r ≥ 1, let Bd
r,κ be a geodesic ball in M

d
κ, define

F̃
(m)
r,t,κ :=

F
(m)

Bd
r,κ,t,κ

− EF
(m)

Bd
r,κ,t,κ√

VarF
(m)

Bd
r,κ,t,κ

, (1.3)

and for fixed t > 0 consider the asymptotics as r → ∞.

We start by considering the set-up described in (i). To measure the speed of convergence in
the central limit theorem, we write dW (X,Y ) for the Wasserstein distance and dK(X,Y ) for the
Kolmogorov distance between two random variables X and Y , which are given by

d♦(X,Y ) := sup
h∈F♦

|Eh(X) − Eh(Y )|, ♦ ∈ {W,K},

where FW is the class of Lipschitz functions on R with Lipschitz constant ≤ 1 and FK is the class
of indicator functions of intervals of the form (−∞, x], x ∈ R. The constants C,C1, C2, . . . in the
forthcoming theorems depend on the dimension d only (further dependence on m,k ≤ d− 1, for
instance, can be subsumed under the dependence on d).

Theorem 1.1 (Central limit theorem for large intensities). Let κ ∈ {−1, 0, 1} and consider a

Poisson process of k-flats in M
d
κ with d ≥ 2 and k ∈ {0, 1, . . . , d − 1}. Let m ∈ N be such that

d−m(d− k) ≥ 0. Let N be a standard Gaussian random variable, ♦ ∈ {K,W} and let W ⊂ M
d
κ

be a Borel set with Hd
κ(W ) ∈ (0,∞). Then there is a constant C ∈ (0,∞) such that

d♦(F̂
(m)
W,t,κ, N) ≤ C t−1/2

for all t ≥ 1. In particular, F̂
(m)
W,t,κ satisfies a central limit theorem, as t→ ∞.
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In fact, Theorem 1.1 is a direct consequence of the general quantitative central limit theorem
for Poisson U-statistics in [45, Theorem 4.7] and [50, Theorem 4.2], see also [14, Example 4.12]
and Section 3.2 for an argument.

It is an important observation that in Euclidean space, that is, for κ = 0, and if we take for
W a ball of radius r > 0, the set-up considered in Theorem 1.1 is – up to rescaling – equivalent
to considering a fixed intensity t and letting r grow to infinity at an appropriate speed. However,
the equivalence breaks down for κ = −1. In fact, it was already shown in [26] for d ≥ 4 and
k = d−1 that in hyperbolic space no central limit theorem holds, and an extension of this finding
is stated as Theorem 1.4 of the present paper. Since in the Euclidean case κ = 0 we have for all
k ∈ {1, . . . , d− 1} and m ∈ N with d−m(d− k) ≥ 0 that

d♦(F̃
(m)
r,t,0, N) ≤ C r−

d−k
2

for r ≥ 1, where C ∈ (0,∞) is a constant, depending only on d, k and t, we can from now on
restrict our attention to the case κ = −1 of hyperbolic space. In fact, by the compactness of
the spherical space M

d
1, spherical caps are bounded, which is the reason why in set-up (ii) we

have restricted ourselves to the two non-compact space forms corresponding to κ ∈ {−1, 0}. For

simplicity of notation, let us assume that t = 1 in what follows. Moreover we write F̃
(m)
r for

F̃
(m)
r,1,−1, H

d for Md
−1, Ah(d, k) instead of A−1(d, k), and µk for µk,−1. We are now in the position

to formulate a quantitative central limit theorem for F̃
(m)
r , as r → ∞, for particular choices of

the parameters d, k and m.

Theorem 1.2 (Central limit theorem for large radii and κ = −1). Consider a Poisson process of

k-flats in H
d with d ≥ 2 and k ∈ {0, 1, . . . , d−1}. Let N be a standard Gaussian random variable

and ♦ ∈ {K,W}. For m ∈ {1, 2, 3} let F̃
(m)
r be the random variable defined at (1.3). Then there

exist constants C1, C2, C3 ∈ (0,∞) such that the following assertions are true for any r ≥ 1.

(i) If 2k < d, then m = 1 and

d♦(F̃
(m)
r , N) ≤ C1

{
e−

r
2
(d−2k+1) : for k ≥ 1,

e−
r
2
(d−1) : for k = 0.

(1.4)

(ii) If 2k = d, then m ∈ {1, 2} and

d♦(F̃
(m)
r , N) ≤ C2

{
e−

r
2 : for d ≥ 4,

rm−1e−
r
2 : for d = 2.

(1.5)

(iii) If 2k = d+ 1, then m ∈ {1, 2, 3} and

d♦(F̃
(m)
r , N) ≤ C3

{
r−1 : for m = 1,

r−
1
2 : for m ∈ {2, 3}.

(1.6)

In particular, under each of the assumptions (i), (ii) or (iii) the random variables F̃
(m)
r satisfy a

central limit theorem, as r → ∞.

Remark 1.3. For 2k ≤ d+ 1, the intersection order m can be at most 2 for all d ∈ {2, 4, 5, . . .},
since d −m(d − k) ≥ 0. Only in the exceptional case d = 3 we can have the intersection order
m = 3. Thus, dealing only with m ∈ {1, 2, 3} in Theorem 1.2 covers all possible cases, provided
that 2k ≤ d+ 1.
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The probabilistic analysis of the fluctuations of F̃
(m)
r in the special case k = d − 1 has been

carried out in [26, 32]. It has been shown there that in this case a central limit theorem for

F̃
(m)
r holds for the space dimensions d = 2 and d = 3; Theorem 1.2 recovers this result, but our

argument is partly based on the previous work [26]. In addition, it has also been shown in [26]
that there is no asymptotic normality for d ≥ 4 if m = 1 or d ≥ 7 for arbitrary admissible m.
In the special case m = 1 the infinitely divisible non-Gaussian limit distribution for dimensions
d ≥ 4 has been identified in [32, Theorem 2.1]. The following conjecture appears now natural in
the light of Theorem 1.2 and the results just described.

Conjecture. Consider a Poisson process of k-flats in H
d, d ≥ 4, with k ∈ {0, 1, . . . , d− 1}. For

r > 0 and m ∈ N such that d−m(d − k) ≥ 0, let F̃
(m)
r be the random variable defined at (1.3).

If 2k > d+ 1, then the family of random variables F̃
(m)
r does not satisfy a central limit theorem,

as r → ∞.

While we are not able to fully verify this conjecture, even not in the case k = d−1 as explained
in [26], we have the following partial result for m = 1 which strongly supports the conjecture.

In the following, we write
D
−−→ to indicate convergence in distribution. For integers ℓ ≥ 1, we

set ωℓ := 2πℓ/2/Γ(ℓ/2) for the surface measure of the Euclidean unit sphere of dimension ℓ − 1.

Similarly as before, we write F
(m)
r for F

(m)
W,1,−1 with W = Bd

r,−1.
In the following theorem, ζ denotes an inhomogeneous Poisson process on [0,∞) with intensity

function given by s 7→ ωd−k cosh
k s sinhd−k−1 s.

Theorem 1.4 (Non-Gaussian fluctuations for m = 1 and κ = −1). Consider a Poisson process

of k-flats in H
d, where d ≥ 4 and k ∈ {3, . . . , d− 1}. If 2k > d+ 1, then

F
(1)
r − EF

(1)
r

er(k−1)

D
−−→

ωk

(k − 1)2k−2
Z as r → ∞,

where Z is the infinitely divisible, centred random variable given by

Z := lim
T→∞

( ∑

s∈ζ∩[0,T ]

cosh−(k−1) s−
ωd−k

d− k
sinhd−k T

)
(1.7)

and ζ is an inhomogeneous Poisson process on [0,∞) with intensity function given above.

Remark 1.5. (i) By Proposition 3.1 below, the rescaling er(k−1) in the previous theorem is of

the same order as

√
VarF

(1)
r as r → ∞, up to a multiplicative constant.

(ii) As in [32, Remark 2.3] one shows by means of a martingale argument that the limit in
(1.7) exists almost surely and in L2. The fact that Z is infinitely divisible follows from the
Lévi–Khinchin formula and the explicit representation (4.2) of the characteristic function
of Z, which we establish in the course of the proof of Theorem 1.4. The latter also shows
that Z has no Gaussian component. To explain the centering in (1.7), we consider

YT :=

∫
1{s ∈ [0, T ]} cosh−(k−1) s ζ(ds).

Then

EYT = ωd−k

∫ T

0
cosh s sinhd−k−1 s ds =

ωd−k

d− k
sinhd−k T

and

VarYT = ωd−k

∫ T

0
cosh2−k s sinhd−k−1 s ds.

4



If 2k > d + 1, then lim
T→∞

Var YT < ∞ which justifies the martingale argument mentioned

above.

The Lévy measure of Z is concentrated on (0, 1) and arises as the image measure of the
Lebesgue measure on (0,∞) with density s 7→ ωd−k cosh

k s sinhd−k−1 s under the mapping
s 7→ cosh−(k−1) s. Its Lebesgue density equals

ρ(y) =
ωd−k

k − 1
y−

d+k−2
k−1

(
1− y

2
k−1

) d−k
2

−1
, y ∈ (0, 1).

Clearly, ρ has a singularity at 0 and the Lebesgue integral of ρ over (0, 1) is infinite.
Moreover, the integrability of the function y 7→ y2ρ(y) on (0, 1) can be seen from

2−
d+ k − 2

k − 1
> −1 if and only if d+ 1 < 2k.

These findings are consistent with the results obtained in [32] in the case where k = d− 1.

Bounds for the growth of the variances as functions of the radius of a geodesic ball play
an important role in the proof of Theorem 1.2 and especially Theorem 1.4, see Proposition 3.1

below. Since we have explicit and unified formulas for the variances of the functionals F
(m)
W,t,κ in

an arbitrary observation window W ⊂ M
d
κ and for general κ ∈ {−1, 0, 1}, it is natural to ask in

this generality for which shapes W the variances are maximal. The answer is given by Theorem
1.6, which states that the variances are maximal if W is a geodesic ball in M

d
κ which has the

same volume as W . It seems that this result is new even in the Euclidean case κ = 0.

Theorem 1.6 (Variance inequality and maximal variances). Consider a Poisson process of k-
flats in M

d
κ with κ ∈ {−1, 0, 1}, d ≥ 2, and k ∈ {1, . . . , d − 1}. Let W ⊂ M

d
κ be a Borel set with

Hd
κ(W ) ∈ (0,∞), let t > 0, and let m ∈ N be such that d −m(d − k) ≥ 0. In addition, suppose

that W is contained in a spherical cap of radius π/4 if κ = 1. If BW ⊂ M
d
κ is a geodesic ball with

Hd
κ(W ) = Hd

κ(BW ), then

VarF
(m)
W,t,κ ≤ VarF

(m)
BW ,t,κ.

Equality holds if and only if there is an isometry ϕ of Md
κ such that W = ϕ(BW ), up to sets of

Hd
κ-measure zero.

Remark 1.7. (i) We remark that the lower bound for VarF
(m)
W,t,κ in Euclidean space is zero.

For d = 2 this can be checked by taking in [24, Lemma 6.1] a rectangle with side lengths
a = n and b = 1/n, and then letting n → ∞. Similar examples are possible in higher
dimensions as well.

(ii) A corresponding inequality also holds for the covariances between F
(m1)
W,t,κ and F

(m2)
W,t,κ, where

m1,m2 ∈ N satisfy d−mi(d− k) ≥ 0 for i ∈ {1, 2}.

(iii) If k = 0, then m = 1 and VarF
(1)
W,t,κ = tHd

κ(W ). For this reason Theorem 1.6 only deals
with the case k ≥ 1.

(iv) For κ = 0 and the volumes (in the appropriate dimensions) of the intersection processes of a
Poisson hyperplane process, Heinrich has asked for the shape of an observation window (of
given volume) such that the asymptotic variance under homothetic scaling of the window is
maximal (see [24, Section 6]). Theorem 1.6 and its proof answers this question in generalized
form. Some related chord power integrals are discussed in [25].

A crucial tool in the proof of Theorem 1.6 is a general sharp Riesz rearrangement inequality
from [12] and the following integral-geometric transformation formula of Blaschke–Petkantschin
type for constant curvature spaces, which is of independent interest and which we could not locate
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in the existing literature. To present it, we need the modified sine function snκ : [0,∞) → [0,∞),
for κ ∈ {−1, 0, 1}, which is defined as

snκ(r) :=





sin r, κ = 1,

r, κ = 0,

sinh r, κ = −1,

(1.8)

for r ≥ 0. Recall that dκ denotes the intrinsic metric of Md
κ.

Theorem 1.8 (Blaschke–Petkantschin type formula). Let κ ∈ {−1, 0, 1}, d ≥ 2, and k ∈
{1, . . . , d− 1}. If f : Md

κ ×M
d
κ → [0,∞] is a measurable function, then

∫

Aκ(d,k)

∫

E

∫

E
f(x, y) snd−k

κ dκ(x, y)H
k
κ(dx)H

k
κ(dy)µk,κ(dE)

=
ωk

ωd

∫

Md
κ

∫

Md
κ

f(x, y)Hd
κ(dx)H

d
κ(dy). (1.9)

The Euclidean case κ = 0 of Theorem 1.8 is known in more general form, see [19, Lemma
5.5], where priority is given to [46]. The approach in [19] (for which help by Eva Vedel Jensen
is acknowledged, see also [52]) is different from the present argument, also in the Euclidean case.
We derive the result for k ≥ 2 from the special case k = 1 by another basic integral-geometric
relation. For the case k = 1 we provide a completely new approach in hyperbolic space (κ = −1)
which allows us to deduce the result from the Euclidean Blaschke–Petkantschin formula via a
suitable model of hyperbolic space (compare [47, Equation (18.2)] for an approach via differential
forms in the special case k = 1). The current argument has the advantage of working in the same
way in all three space forms simultaneously.

2 Preliminaries and preparations

2.1 The standard spaces of constant curvature

In this paper, we work in a d-dimensional standard space of constant curvature M
d
κ with κ ∈

{−1, 0, 1} and intrinsic metric dκ. An arbitrarily fixed reference point in M
d
κ (the “origin”) will

be denoted by p. As the canonical model space for M
d
0, we use the Euclidean space R

d with
Euclidean scalar product • and norm ‖ · ‖, and we choose p = o. The Euclidean unit sphere
S
d in the Euclidean space R

d+1 will be the model space for M
d
1, and often it is convenient to

choose an orthogonal coordinate system (o, e1, . . . , en+1) of Rn+1 such that p = en+1 (the “north
pole”). Instead of M

d
−1 we prefer to write H

d if only the hyperbolic space is considered. The
Beltrami–Klein model (sometimes also called projective ball model), based on the open Euclidean
unit ball Bd in R

d, will be a useful model space for the hyperbolic space H
d. For this model space

the choice p = o is convenient. For more specific information on the Beltrami–Klein model, we
refer to [44, Chapter 6].

Recall that for k ∈ {0, 1, . . . , d − 1} Aκ(d, k) denotes the space of k-dimensional totally
geodesic submanifolds of Md

κ, which we call k-geodesics or k-flats, for short. We write Gκ(d, k)
for the space of those elements of Aκ(d, k) that pass through the previously fixed origin p of Md

κ.
In particular, we write Ah(d, k) for A−1(d, k) and Gh(d, k) for G−1(d, k) when we are working
in the hyperbolic space only. In the model space R

d of Md
0 the k-flats are k-dimensional affine

subspaces of Rd. In the model space S
d of Md

1, the k-flats are k-dimensional great subspheres
of S

d, which arise as intersections of the d-dimensional unit sphere S
d ⊂ R

d+1 with (k + 1)-
dimensional linear subspaces of Rd+1, that is elements of G0(d+1, k+1). In the Beltrami–Klein
model for M

d
−1, the k-flats are the non-empty intersections of k-dimensional affine subspaces of

R
d with the d-dimensional open unit ball Bd.

6



Since the isometry group I(Md
κ) of Md

κ is unimodular (for κ = −1, see [2, Proposition C.4.11]
or [23, Chapter X, Proposition 1.4] together with the fact that I(Md

κ) is semi-simple as a Lie
group) and Aκ(d, k) is a homogeneous I(Md

κ)-space, there exists an I(Md
κ)-invariant measure on

Aκ(d, k), which is unique up to a constant factor. We write µk,κ for this measure and use the
abbreviation µk if κ = −1. The normalization of µk,0 is chosen as in [49] and the normalization
(and parametrization) of µk will be as in [26, Equation (6)]. More precisely, if we denote by dh
the intrinsic metric of Hd, then

µk(B) =

∫

Gh(d,d−k)

∫

L
coshk dh(x, p) 1{H(L, x) ∈ B} Hd−k(dx) νd−k,h(dL) (2.1)

for a Borel set B ⊂ Ah(d, k), where H(L, x) denotes the k-flat passing through x ∈ L that
is orthogonal to L at x, νd−k,h is the Borel probability measure on the space Gh(d, d − k),
which is invariant under all isometries that fix the origin p, and Hd−k = Hd−k

−1 stands for the
Hausdorff measure on L induced by the hyperbolic distance (see also the discussion below). If
k = 0, then (2.1) specializes to µ0 = Hd. Since A1(d, k) is a compact space, the measure
µk,1 is often normalized as a probability measure. Instead we choose the normalization so that
µk,1(A1(d, k)) = ωd+1/ωk+1. These choices ensure that the Crofton formula [26, Lemma 2] (see
also [9]) holds in all three space forms with the same constants, provided that the normalization
of the Hausdorff measures is chosen in a natural way. Namely, Hausdorff measures Hs

κ, for s ≥ 0,
are defined (in each case) with respect to the underlying Riemannian metric (or the intrinsic
metric) dκ and for s = d they yield the natural volume measure on M

d
κ. If a Hausdorff measure

Hk
κ is applied on a k-flat E (with the induced Riemannian metric), we do not indicate E in our

notation (in particular if E is clear from the context), since we always have Hk
κ = Hk

E,κ, where

Hk
E,κ denotes the respective Hausdorff measure within E.

We are now prepared to present the Crofton formula for the standard spaces M
d
κ. For the

notion of Hausdorff rectifiability we refer to [26, Lemma 9, Remark 8] (and the literature cited
there) and remark that, for example, all compact (geodesically) convex sets having the appropriate
dimension satisfy this property.

Lemma 2.1 (Crofton formula). Let 0 ≤ i ≤ k ≤ d − 1, and let W ⊂ M
d
κ with κ ∈ {−1, 0, 1} be

a Borel set which is Hausdorff (d+ i− k)-rectifiable. Then

∫

Aκ(d,k)
Hi

κ(W ∩E)µk,κ(dE) =
ωd+1ωi+1

ωk+1ωd−k+i+1
Hd+i−k

κ (W ). (2.2)

2.2 Representation as Poisson U-statistics

Let η be a Poisson process on a measurable space X with a non-atomic intensity measure. We
then call a functional F = F (η) a Poisson U-statistic of order m ∈ N if F can be represented as

F (η) =
1

m!

∑

(x1,...,xm)∈ηm6=

f(x1, . . . , xm),

with some measurable function f : Xm → [0,∞], which is symmetric in its arguments and where
ηm6= denotes the set of all m-tuples of distinct points in the support of η. We call f a kernel
function for F . Poisson U-statistics have a variety of applications in stochastic geometry and we
refer to [35, 36, 45] for further background material.

We now fix a Borel set W ⊂ M
d
κ and consider the Poisson U-statistic F

(m)
W,t,κ of order m on

the space Aκ(d, k) with kernel fκ : Aκ(d, k)
m → [0,∞] given by

fκ(E1, . . . , Em) := Hd−m(d−k)
κ (E1 ∩ . . . ∩ Em ∩W ) 1{dim(E1 ∩ . . . ∩ Em) = d−m(d− k)},

7



while the underlying Poisson process ηt,κ on Aκ(d, k) has intensity measure tµk,κ. The Poisson

U-statistic F
(m)
W,t,κ admits the Wiener–Itô chaos decomposition

F
(m)
W,t,κ = E[F

(m)
W,t,κ] + I1(f

(m)
W,t,κ,1) + . . . + Im(f

(m)
W,t,κ,m) (2.3)

with functions f
(m)
W,t,κ,i : Aκ(d, k)

i → R, i ∈ {1, . . . ,m}, given by

f
(m)
W,t,κ,i(E1, . . . , Ei)

=

(
m

i

)
tm−i

m!

∫

Aκ(d,k)m−i

Hd−m(d−k)
κ (E1 ∩ . . . ∩ Ei ∩ Ei+1 ∩ . . . ∩ Em ∩W )

× 1{dim(E1 ∩ . . . ∩ Em) = d−m(d− k)} µm−i
k,κ (d(Ei+1, . . . , Em)), (2.4)

where Ii( · ) stands for the Wiener–Itô integral with respect to the compensated Poisson process
ηt,κ − µk,κ, see [35, Chapter 12] for further details. Note that for κ = −1 and t = 1 the choice
W = Bd

r,−1 =: Bd
r yields

F (m)
r = F

(m)

Bd
r ,1,−1

and F̃ (m)
r =

F
(m)
r − EF

(m)
r√

VarF
(m)
r

, (2.5)

for the functionals F
(m)
r and F̃

(m)
r involved in Theorem 1.2.

The following lemma (roughly speaking) shows that generically the indicator on the right-
hand side of (2.4) is one if κ = −1 and the intersection of the k-flats E1, . . . , Em is non-empty,
while for κ ∈ {0, 1} this is always the case. For convenience, we assign to the empty set the
dimension −1.

Lemma 2.2. Let κ ∈ {−1, 0, 1}. Let d ≥ 2, k ∈ {0, 1, . . . , d − 1} and r ∈ {1, . . . , ⌊ d
d−k ⌋}. Then,

for µrk,κ-almost all (E1, . . . , Er) ∈ Aκ(d, k)
r,

dim(E1 ∩ . . . ∩Er)

{
∈ {−1, d − r(d− k)}, if κ = −1,

= d− r(d− k), if κ ∈ {0, 1}.

Proof. If k = 0, then r = 1, E1 is a point and the assertion holds with dim(E1) = 0 for each
κ ∈ {−1, 0, 1}. We can thus assume that k ≥ 1. We first consider the case κ = 1. With
Ei ∈ A1(d, k) we associate the linear subspace Ui ∈ G0(d + 1, k + 1) spanned by Ei. Then, [49,
Lemma 13.2.1] (or [48, Lemma 4.4.1]) and an induction argument yield that

dim(U1 ∩ . . . ∩ Ur) = (k + 1)r − (r − 1)(d+ 1) = d− r(d− k) + 1

for almost all (U1, . . . , Ur) ∈ G0(d+ 1, k + 1)r with respect to the r-fold product measure of the
Haar measure on G0(d+1, k+1). Hence the assertion follows from the fact that E1 ∩ . . .∩Er =
U1 ∩ . . . ∩ Ur ∩ S

d.

For κ = −1 and k = d−1, the assertion has been proven in [26]. We now extend the argument
to the remaining cases k ∈ {1, . . . , d− 2}. For each j ∈ {1, . . . , r} we obtain a “random uniform”

k-flat Ej as the intersection of d−k “independent random uniform” hyperplanes H
(j)
1 , . . . ,H

(j)
d−k ∈

Ah(d, d − 1), that is, for j ∈ {1, . . . , r} there are hyperplanes H
(j)
1 , . . . ,H

(j)
d−k (all “independent”)

such that

E1 ∩ . . . ∩ Er =

r⋂

j=1

(H
(j)
1 ∩ . . . ∩H

(j)
d−k).
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More explicitly, by an r-fold application of [26, Lemma 4] we obtain that

∫

Ah(d,k)r
1{dim(E1 ∩ . . . ∩ Er) /∈ {−1, d − r(d− k)}}µrk(d(E1, . . . , Er))

= c(d, k)−r

∫

Ah(d,d−1)r(d−k)

1

{
dim(

r⋂

j=1

(H
(j)
1 ∩ . . . ∩H

(j)
d−k)) /∈ {−1, d− r(d− k)}

}

× µ
r(d−k)
d−1 (d(H

(1)
1 , . . . ,H

(r)
d−k)), (2.6)

where

c(d, k) =
ωk+1

ωd+1

(ωd+1

ωd

)d−k
.

It follows from [26, Lemma 3] that the right-hand side of (2.6) vanishes, which implies that the
integrand on the left side must vanish as well, for µrk-almost all (E1, . . . , Er) ∈ Ah(d, k)

r . This
proves the claim.

Finally, for κ = 0 the proof (first for k = d− 1, but then for all k ∈ {1, . . . , d− 1}) essentially
follows in the same way as in the case κ = −1. We only have to observe that if dim(E1∩. . .∩Er) 6=
d− r(d− k), then by basic facts of linear algebra we have dim(E1 ∩ . . . ∩ Er) > d− r(d− k), in
particular E1 ∩ . . . ∩ Er 6= ∅.

The next lemma extends Lemma 4 in [26]. We write A
∗
κ(d, k)

r for the set of all (E1, . . . , Er) ∈
Aκ(d, k)

r with E1 ∩ . . . ∩ Er 6= ∅ if κ = −1 and set A
∗
κ(d, k)

r := Aκ(d, k)
r if κ ∈ {0, 1}.

Lemma 2.3. Let κ ∈ {−1, 0, 1}. Let d ≥ 2, k ∈ {0, 1, . . . , d − 1} and r ∈ {1, . . . , ⌊ d
d−k ⌋}. If

f : A∗
κ(d, k)

r → R is a nonnegative, measurable function, then

∫

A
∗
κ(d,k)

r

f(E1 ∩ . . . ∩ Er)µ
r
k,κ(d(E1, . . . , Er))

=
ωd−r(d−k)+1

ωd+1

(
ωd+1

ωk+1

)r ∫

Aκ(d,d−r(d−k))
f(E)µd−r(d−k),κ(dE).

Proof. In the proof, we can proceed as in the proof of Lemma 4 in [26]. We first observe that both
sides of the asserted equation define isometry invariant Haar measures. Then we apply Lemma
2.1 r + 1 times to see that the constant is chosen correctly.

Alternatively, observing first that Lemma 4 in [26] holds for κ ∈ {−1, 0, 1}, we can apply this
lemma r+1 times to obtain the assertion. Proceeding in this way, the constant on the right side
is

c(d, d − r(d− k))

c(d, k)r
,

which equals the constant given in the statement of the lemma.

A consequence of the representation for F
(m)
W,t,κ as given in (2.3), is the following exact expres-

sion for its variance in terms of the functions f
(m)
W,t,κ,i. From [35, Proposition 12.12] we obtain

VarF
(m)
W,t,κ =

m∑

i=1

i! t2m−iA
(m)
W,κ,i, (2.7)
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where A
(m)
W,κ,i for i ∈ {1, . . . ,m} is given by

A
(m)
W,κ,i :=

(
m

i

)2 ∫

Aκ(d,k)i

(
1

m!

∫

Aκ(d,k)m−i

Hd−m(d−k)
κ (E1 ∩ . . . ∩ Ei ∩ Ei+1 ∩ . . . ∩Em ∩W )

× 1{dim(E1 ∩ . . . ∩ Em) = d−m(d− k)}µm−i
k,κ (d(Ei+1, . . . , Em))

)2

× µik,κ(d(E1, . . . , Ei)).

Note that in this formula we can restrict the integration to m-tuples of flats with non-empty
intersections. Then Lemma 2.2 shows that the indicator function can be replaced by 1. Moreover,
Aκ(d, k)

m−i can be replaced by A
∗
κ(d, k)

m−i and Aκ(d, k)
i by A

∗
κ(d, k)

i. Then, for µik,κ-almost

all (E1, . . . , Ei) ∈ A
∗
κ(d, k)

i, we have dim(E1 ∩ . . .∩Ei) = d− i(d− k). Applying first Lemma 2.3
to the integrations with respect to (Ei+1, . . . , Em) and to (E1, . . . , Ei), and then Lemma 2.1 with
respect to F = Ei+1 ∩ . . . ∩Em and the (d− i(d− k))-rectifiable set E ∩W = E1 ∩ . . .∩Ei ∩W ,
we obtain

A
(m)
W,κ,i =

(
m

i

)2 1

(m!)2
c(d, d − (m− i)(d − k))2

c(d, k)2(m−i)

c(d, d − i(d− k))

c(d, k)i

×

∫

Aκ(d,d−i(d−k))

(∫

Aκ(d,d−(m−i)(d−k))
Hd−m(d−k)

κ (E ∩W ∩ F )µd−(m−i)(d−k),κ(dF )

)2

× µd−i(d−k),κ(dE)

=

(
m

i

)2 1

(m!)2
c(d, d − (m− i)(d − k))2c(d, d − i(d− k))

c(d, k)2(m−i)c(d, k)i

(
ωd+1ωd−m(d−k)+1

ωd−(m−i)(d−k)+1ωd−i(d−k)+1

)2

×

∫

Aκ(d,d−i(d−k))
Hd−i(d−k)

κ (E ∩W )2 µd−i(d−k),κ(dE).

After simplification of the constants, we finally get

A
(m)
W,κ,i =

(
m

i

)2 1

(m!)2

(ωd+1

ωk+1

)2m−i ω2
d−m(d−k)+1

ωd+1ωd−i(d−k)+1

×

∫

Aκ(d,d−i(d−k))
Hd−i(d−k)

κ (E ∩W )2 µd−i(d−k),κ(dE) (2.8)

for i ∈ {1, . . . ,m}.
The same reasoning also shows that (2.4) simplifies to

f
(m)
W,t,κ,i(E1, . . . , Ei) =

(
m

i

)
tm−i

m!

(
ωd+1

ωk+1

)m−i ωd−m(d−k)+1

ωd−i(d−k)+1
Hd−i(d−k)

κ (E1 ∩ . . . ∩ Ei ∩W ) (2.9)

for µik,κ-almost all (E1, . . . , Ei) ∈ Aκ(d, k)
i. Thus we have

t2m−iA
(m)
W,κ,i =

∫

Aκ(d,k)i
f
(m)
W,t,κ,i(E1, . . . , Ei)

2 (tµk,κ)
i(d(E1, . . . , Ei)),

which is consistent with (2.3) and the isometry property of the Wiener–Itô integrals.
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2.3 Integral asymptotics in the hyperbolic case

In this paper we already have and below will further encounter integral expressions of the form
∫

Ah(d,k)
Hk(E ∩Bd

r )
ℓ µk(dE), (2.10)

where Bd
r = Bd

r,−1 is a d-dimensional hyperbolic ball of radius r > 0, k ∈ {0, 1, . . . , d − 1} and
ℓ ∈ N. Note that in this section we restrict ourselves to the case of the hyperbolic space with
κ = −1 and use the notation introduced in Section 2.1. In particular, we will have to deal with
the asymptotics of integrals of the form (2.10), as r → ∞. Such an asymptotic analysis was
already carried out in [26, Lemma 16] and we recall the result here for completeness and in order
to keep this paper self-contained.

Lemma 2.4. Let r ≥ 1 and k ∈ {0, 1, . . . , d − 1}. For any ℓ ∈ N there exist constants c, C > 0,
depending only on k, ℓ and d, such that

c g(k, ℓ, d, r) ≤

∫

Ah(d,k)
Hk(E ∩Bd

r )
ℓ µk(dE) ≤ C g(k, ℓ, d, r)

with

g(k, ℓ, d, r) :=





er(d−1) : ℓ(k − 1) < d− 1,

rer(d−1) : ℓ(k − 1) = d− 1,

eℓr(k−1) : ℓ(k − 1) > d− 1.

The previous lemma allows us to obtain the following asymptotic result for the quantities

A
(m)
r,i := A

(m)

Bd
r ,−1,i

(2.11)

for which we derived in (2.8) a simplified representation in terms of an integral of the form (2.10)
with ℓ = 2.

In order to improve the readability of the subsequent arguments and results, we introduce
the following notations: Let X be a set. We write f(x) . g(x) (f(x) & g(x)) for functions
f, g : X → R if there exists a constant C > 0 such that f(x) ≤ Cg(x) (f(x) ≥ Cg(x)) for all
x ∈ X and f(x) ≍ g(x) if there exist constants c, C > 0 such that c f(x) ≤ g(x) ≤ Cf(x) for
all x ∈ X. For a family of functions depending on some parameter r we write fr(x) ∼ f(x) if
fr(x)/f(x) → 1 as r → ∞ for each x ∈ X. If we work in a d-dimensional standard space of
constant curvature M

d
κ, κ ∈ {−1, 0, 1}, the occurring constants may depend on the dimension d

(any dependence on other parameters can be subsumed under the dependence on d).

The following result deals again with the hyperbolic case.

Lemma 2.5. For all r ≥ 1, k ∈ {0, 1, . . . , d− 1} and i ∈ {1, . . . ,m},

A
(m)
r,i ≍





er(d−1) : 2i(d − k) > d− 1,

rer(d−1) : 2i(d − k) = d− 1,

e2r(d−i(d−k)−1) : 2i(d − k) < d− 1.

In particular, if 2k < d+ 1, then

A
(m)
r,i ≍ er(d−1) for i ∈ {1, . . . ,m}, (2.12)

and if 2k = d+ 1, then

A
(m)
r,1 ≍ rer(d−1) and A

(m)
r,i ≍ er(d−1) for i ∈ {2, . . . ,m}. (2.13)
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Proof. Following Lemma 2.4 we have
∫

Ah(d,d−i(d−k))
Hd−i(d−k)(E ∩Bd

r )
2 µd−i(d−k)(dE) ≍ g(d − i(d − k), 2, d, r),

so that

A
(m)
r,i ≍





er(d−1) : 2(d − i(d− k)− 1) < d− 1,

rer(d−1) : 2(d − i(d− k)− 1) = d− 1,

e2r(d−i(d−k)−1) : 2(d − i(d− k)− 1) > d− 1.

Now, 2(d − i(d − k) − 1) < d − 1 if and only if 2i(d − k) > d − 1. Consequently, the condition
2(d − i(d − k)− 1) > d− 1 is equivalent to 2i(d − k) < d− 1 and 2(d − i(d − k) − 1) = d− 1 is
equivalent to 2i(d − k) = d− 1, respectively. From here it is easy to see that if 2k < d+ 1, then
we have d − 1 < 2(d − k), and if 2k = d + 1, then d − 1 = 2(d − k), yielding (2.12) and (2.13),
respectively.

3 Proofs of Theorems 1.1 and 1.2

3.1 Asymptotic variance

A crucial ingredient in the proof of Theorem 1.2 is an asymptotic analysis of the variance of

the random variables F
(m)
r . It turns out that the precise growth of Var(F

(m)
r ) depends on the

dimension parameter k relative to the space dimension d, as the following result shows.

Proposition 3.1. Let F
(m)
r be the random variable defined at (2.5), for an underlying Poisson

process on Ah(d, k) with k ∈ {0, 1, . . . , d− 1} and intensity 1. Then, as r → ∞,

VarF (m)
r ≍





er(d−1) : 2k < d+ 1,

rer(d−1) : 2k = d+ 1,

e2r(k−1) : 2k > d+ 1.

Proof. Recalling (2.7), (2.8) and (2.11) we need to determine the order of A
(m)
r,i for i ∈ {1, . . . ,m}.

We have to distinguish three cases. For 2k < d+ 1 the claim directly follows from (2.12) and for
2k = d+ 1 from (2.13), respectively. If 2k > d + 1, then d − 1 > 2(d − k) and it follows from

Lemma 2.5 that the term A
(m)
r,1 is of the order e2r(k−1). Moreover, since 2(k− 1) > d− 1 the term

A
(m)
r,i is of lower order for i ≥ 2.

3.2 Proofs of Theorem 1.1 and Theorem 1.2

To prove Theorems 1.1 and 1.2, we use the following general quantitative central limit theorem
for Poisson U-statistics that can be found in [45, Theorem 4.7] and [50, Theorem 4.2]. Denoting
by d♦( · , · ) either the Wasserstein (♦ = W ) or the Kolmogorov (♦ = K) distance, this result
states in our situation that there exists a constant cm,♦ ∈ (0,∞) (one can choose cm,W = 2m7/2

and cm,K = 19m5), such that

d♦

(
F

(m)
r,t,κ − EF

(m)
r,t,κ√

VarF
(m)
r,t,κ

, N

)
≤ cm,♦

m∑

u,v=1

√
Mu,v

VarF
(m)
r,t,κ

, (3.1)

where

Mu,v =
∑

σ∈Πcon
≥2 (u,u,v,v)

J(σ) (3.2)
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Figure 1: Example for a partition in Πcon
≥2 (4, 4, 5, 5).

with

J(σ) :=

∫

Ah(d,k)|σ|

(f
(m)
r,t,κ,u ⊗ f

(m)
r,t,κ,u ⊗ f

(m)
r,t,κ,v ⊗ f

(m)
r,t,κ,v)σ d(tµk)

|σ|, (3.3)

and where f
(m)
r,t,κ,u and f

(m)
r,t,κ,v are defined by (2.4), but with W = Bd

r . Let us explain the notation
in (3.2). For n = 2u+ 2v and a partition σ of [n] = {1, . . . , n} into non-empty (disjoint) subsets

(called blocks), (f
(m)
r,t,κ,u⊗f

(m)
r,t,κ,u⊗f

(m)
r,t,κ,v⊗f

(m)
r,t,κ,v)σ stands for the tensor product of these functions

in which all variables belonging to the same block of σ have been identified. Also, |σ| denotes
the number of blocks of σ. The set of partitions Πcon

≥2 (u, u, v, v) in (3.2) is defined as follows.
We visualize the elements of [2u + 2v] = {1, . . . , 2u + 2v} by a diagram of points arranged in 4
rows, where row i has precisely u elements for i ∈ {1, 2} and precisely v elements for i ∈ {3, 4},
respectively, representing the arguments of the i-th function in the tensor product. The blocks
of a partition σ are indicated by closed curves, where the elements enclosed by a curve indicate
that these elements belong to the same block of σ. That a partition σ of [2u+2v] belongs to the
set Πcon

≥2 (u, u, v, v) means that

(a) all blocks of σ have at least two elements;

(b) each block of σ contains at most one element from each row;

(c) the diagram representing σ is connected, meaning that the rows cannot be divided into two
subsets each defining a separate diagram.

We refer to Figure 1 for an illustration and to [26, 36, 42] for further background material on
partitions.

We start by proving Theorem 1.1.

Proof of Theorem 1.1. The relations (3.1), (3.2), and (3.3) hold in fact for a general observation
window W ⊂ M

d
κ satisfying Hd

κ(W ) ∈ (0,∞), for general t > 0 and κ ∈ {−1, 0, 1}. It follows from

(2.7) that Var(F
(m)
W,t,κ) & t2m−1. Moreover, in order to bound Mu,v in (3.2) for u, v ∈ {1, . . . ,m}

from above, we count in (3.3) the powers of the intensity t. First, from (2.9) it follows that

each of the functions f
(m)
r,t,κ,u and f

(m)
r,t,κ,v contributes a power tm−u and tm−v, respectively. Finally,

the integration with respect to (tµk)
|σ| gives the factor t|σ|, while all other terms are constants

independent of t. Thus, J(σ) . t2(m−u)+2(m−v)+|σ| and

√
Mu,v . max

σ∈Πcon
≥2 (u,u,v,v)

(
t2(m−u)+2(m−v)+|σ|

) 1
2
≤
(
t2(m−u)+2(m−v)+2(u+v)−3

) 1
2
= t2m− 3

2 ,

since |σ| ≤ 2(u + v) − 3 for σ ∈ Πcon
≥2 (u, u, v, v). Plugging this bound into (3.1), the proof of

Theorem 1.1 is completed.
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σ1 σ2 σ3σ1

Figure 2: Left: The only possible partition in Πcon
≥2 (1, 1, 1, 1). Right: The partitions in

Πcon
≥2 (1, 1, 2, 2).

We now turn to the proof of Theorem 1.2, which basically follows the same line of arguments
as the proof of [26, Theorem 5], but needs a suitable adaption to our situation. To simplify
notation we set t = 1 and omit the indices t = 1 and κ = −1 in all expressions.

Proof of Theorem 1.2. In the following, we repeatedly use that

f
(m)
r,i (E1, . . . , Ei) ≍ Hd−i(d−k)(E1 ∩ . . . ∩Ei ∩B

d
r ).

for µik-almost all (E1, . . . , Ei) ∈ Ah(d, k)
i.

Case 1: m = 1. In order to bound the right-hand side of (3.1) in this case, we only need to
deal with

M1,1 =
∑

σ∈Πcon
≥2 (1,1,1,1)

J(σ) .

∫

Ah(d,k)
Hk(E ∩Bd

r )
4 µk(dE),

since there is only one possible partition in Πcon
≥2 (1, 1, 1, 1), as depicted in the left panel of Figure 2.

Sub-case 1.1: k ∈ {2, . . . , ⌊d
2
⌋}. According to [26, Lemma 7], we then have

Hk(E ∩Bd
r ) . er(k−1) (3.4)

for µk-almost all E ∈ Ah(d, k), so that

M1,1 . e2r(k−1)

∫

Ah(d,k)
Hk(E ∩Bd

r )
2µk(dE) . e2r(k−1) g(k, 2, d, r) . er(2k+d−3) (3.5)

by Lemma 2.4.

Sub-case 1.2: k ∈ {0,1}. In this situation, Lemma 2.4 implies that

M1,1 .

∫

Ah(d,k)
Hk(E ∩Bd

r )
4 µk(dE) . g(k, 4, d, r) ≍ er(d−1).

Combining these results with the lower bound on Var(F
(1)
r ) in Proposition 3.1, we get (1.4) as

well as (1.5) in the case m = 1.
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Sub-case 1.3: 2k = d+ 1. To establish (1.6) in this case, note that

M1,1 .

∫

Ah(d,k)
Hk(E ∩Bd

r )
4 µk(dE) . g(k, 4, d, r) ≍ e4r(k−1) = e2r(d−1),

which in combination with Proposition 3.1 yields (1.6) for m = 1 as well.

Case 2: m = 2. Since d− 2(d − k) = 2k − d < 0 if 2k < d, this case can only occur if d = 2k
or d = 2k − 1. In these cases, it remains to bound M1,2 and M2,2.

Sub-case 2.1: 2k = d. The proof of [26, Theorem 5 (a)] shows that in order to bound M1,2

we only have to deal with the partitions depicted in the right panel of Figure 2 (up to relabelling
of the elements). Before we present our estimates, note that the case d = 2 and k = 1 was covered
by [26, Theorem 5(a)], so that we can assume d ≥ 4 and thus k ≥ 2. First, for σ1 as shown on
the right in Figure 2 we have

J(σ1) .

∫

Ah(d,k)2
Hk(E1 ∩B

d
r )

2 H0(E1 ∩ E2 ∩B
d
r )

2 µ2k(d(E1, E2))

. er(k−1)

∫

Ah(d,k)2
Hk(E1 ∩B

d
r )H

0(E1 ∩ E2 ∩B
d
r )µ

2
k(d(E1, E2)),

where we used (3.4) (recall that k ≥ 2) and bounded H0(E1 ∩ E2 ∩B
d
r ) by 1. An application of

the Crofton formula (2.2) for the integration with respect to E2 shows that

J(σ1) . er(k−1)

∫

Ah(d,k)
Hk(E1 ∩B

d
r )

2 µk(dE1) . er(k−1)g(k, 2, d, r) . er(d+k−2)

by Lemma 2.4. Similarly, for σ2 we have

J(σ2) .

∫

Ah(d,k)2
Hk(E1 ∩B

d
r )H

k(E2 ∩B
d
r )H

0(E1 ∩ E2 ∩B
d
r )

2 µ2k(d(E1, E2))

. er(k−1)

∫

Ah(d,k)
Hk(E1 ∩B

d
r )

2µk(dE1) . er(d+k−2),

and for σ3 we obtain

J(σ3) .

∫

Ah(d,k)3
Hk(E1 ∩B

d
r )H

k(E2 ∩B
d
r )H

0(E1 ∩ E3 ∩B
d
r )

×H0(E2 ∩ E3 ∩B
d
r )µ

3
k(d(E1, E2, E3))

. e2r(k−1)

∫

Ah(d,k)
Hk(E3 ∩B

d
r )

2 µk(dE3) . er(2(k−1)+(d−1)) = er(d+2k−3),

where we used (3.4) twice, applied the Crofton formula (2.2) for the integration with respect to
E1 and E2 and bounded the last integral with the help of Lemma 2.4. Combining the bounds on
J(σ1), J(σ2) and J(σ3), we now obtain

M1,2 . er(d+k−2) + er(d+2k−3) ≍ er(d+2k−3). (3.6)

To bound the remaining term M2,2, we first note that the partitions in Πcon
≥2 (2, 2, 2, 2) are (up

to reordering of the elements in the diagram) given in Figure 3 (see the proof of [26, Theorem
5(a)]). For σ1 we have
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σ1 σ2 σ3 σ4

Figure 3: The four possible partitions in Πcon
≥2 (2, 2, 2, 2).

J(σ1) .

∫

Ah(d,k)2
H0(E1 ∩ E2 ∩B

d
r )

4 µ2k(d(E1, E2))

≤

∫

Ah(d,k)2
H0(E1 ∩ E2 ∩B

d
r )µ

2
k(d(E1, E2))

. Hd(Bd
r ) . er(d−1),

where we used the trivial bound H0(E1 ∩ E2 ∩ Bd
r ) ≤ 1 and applied Crofton’s formula (2.2)

afterwards. For σ2 we compute

J(σ2) .

∫

Ah(d,k)3
H0(E1 ∩ E2 ∩B

d
r )

2 H0(E1 ∩E3 ∩B
d
r )

2 µ3k(d(E1, E2, E3))

≤

∫

Ah(d,k)3
H0(E1 ∩ E2 ∩B

d
r )H

0(E1 ∩ E3 ∩B
d
r )µ

3
k(d(E1, E2, E3))

.

∫

Ah(d,k)
Hk(E1 ∩B

d
r )

2 µk(dE1) . er(d−1),

where we bounded H0(E1 ∩ E2 ∩ B
d
r ) and H0(E1 ∩ E3 ∩ B

d
r ) by 1, applied the Crofton formula

(2.2) for the integration with respect to E2 and E3 and used Lemma 2.4 afterwards. Similarly,
for σ3 we find that

J(σ3) .

∫

Ah(d,k)3
H0(E1 ∩ E2 ∩B

d
r )H

0(E1 ∩ E3 ∩B
d
r )

2 H0(E2 ∩ E3 ∩B
d
r )µ

3
k(d(E1, E2, E3))

≤

∫

Ah(d,k)3
H0(E1 ∩ E2 ∩B

d
r )H

0(E2 ∩ E3 ∩B
d
r )µ

3
k(d(E1, E2, E3))

.

∫

Ah(d,k)
Hk(E2 ∩B

d
r )

2 µk(dE2) . er(d−1),
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where we first bounded the quadratic term by 1, applied the Crofton formula (2.2) for the integ-
ration with respect to E1 and E3 and used Lemma 2.4. For the last partition σ4 we have

J(σ4) .

∫

Ah(d,k)4
H0(E1 ∩E2 ∩B

d
r )H

0(E1 ∩ E3 ∩B
d
r )H

0(E4 ∩ E3 ∩B
d
r )

×H0(E4 ∩ E2 ∩B
d
r )µ

4
k(d(E1, E2, E3, E4))

≤

∫

Ah(d,k)4
H0(E1 ∩E3 ∩B

d
r )H

0(E4 ∩ E3 ∩B
d
r )H

0(E4 ∩E2 ∩B
d
r )µ

4
k(d(E1, E2, E3, E4))

.

∫

Ah(d,k)2
Hk(E3 ∩B

d
r )H

0(E3 ∩ E4 ∩B
d
r )H

k(E4 ∩B
d
r )µ

2
k(d(E3, E4)),

where, similarly to the preceding cases, we first bounded H0(E1 ∩ E2 ∩ B
d
r ) by one and applied

(2.2) for the integration with respect to E2 and E1. Using (3.4) to bound Hk(E3∩B
d
r ), Crofton’s

formula (2.2) and Lemma 2.4 again, we obtain

J(σ4) . er(k−1)

∫

Ah(d,k)
Hk(E4 ∩B

d
r )

2 µk(dE4) . er(d+k−2).

As a consequence, we deduce the bound

M2,2 . er(d−1) + er(d+k−2) . er(d+k−2). (3.7)

Combination of the estimates (3.5) for M1,1, (3.6) for M1,2 and (3.7) for M2,2 with Proposition 3.1
yields

d
(
F̃ (m)
r , N

)
. e−r(d−1)

(
e

r
2
(2d−3) + e

r
2
(2d−3) + e

r
2
( 3
2
d−2)

)
. e−

r
2

in the case 2k = d, which proves (1.5) for m = 2.

Sub-case 2.2: 2k = d+ 1. In this case we have k ≥ 2. We first consider M1,2. Starting
with the first group of partitions of the form σ1 in the right panel of Figure 2 we obtain

J(σ1) .

∫

Ah(d,k)2
Hk(E1 ∩B

d
r )

2 H1(E1 ∩ E2 ∩B
d
r )

2 µ2k(d(E1, E2))

. r

∫

Ah(d,k)
Hk(E1 ∩B

d
r )

3 µk(dE1) . re3r(k−1),

where we bounded H1(E1 ∩ E2 ∩ B
d
r ) by 2r, used Crofton’s formula (2.2) and Lemma 2.4. Pro-

ceeding in a similar way for the two other partitions, we get

J(σ2) .

∫

Ah(d,k)2
Hk(E1 ∩B

d
r )H

k(E2 ∩B
d
r )H

1(E1 ∩ E2 ∩B
d
r )

2 µ2k(d(E1, E2))

. rer(k−1)

∫

Ah(d,k)
Hk(E1 ∩B

d
r )

2µk(dE1) ≍ r2er(d+k−2)

by (3.4), the bound H1(E1∩E2∩B
d
r ) ≤ 2r, Crofton’s formula (2.2) and Lemma 2.4. Furthermore,

J(σ3) .

∫

Ah(d,k)3
Hk(E1 ∩B

d
r )H

k(E2 ∩B
d
r )H

1(E1 ∩ E3 ∩B
d
r )

×H1(E2 ∩ E3 ∩B
d
r )µ

3
k(d(E1, E2, E3))

. e2r(k−1)

∫

Ah(d,k)
Hk(E3 ∩B

d
r )

2 µk(dE3) ≍ rer(2k−2+d−1) = re2r(d−1),
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where we used (3.4) twice, applied (2.2) for the integration with respect to E1 and E2 and bounded
the last integral with the help of Lemma 2.4. Combining the bounds on J(σ1), J(σ2) and J(σ3),
we arrive at

M1,2 . r(e3r(k−1) + rer(d+k−2) + er(2d−2)) ≍ re2r(d−1). (3.8)

To derive an upper bound for M2,2, we again consider the partitions depicted in Figure 3. Before
we start, we need to introduce some additional notation. For E ∈ Ah(d, k) we denote by L1(E) ∈
Ah(d, 1) an arbitrary 1-flat which satisfies L1(E) ⊂ E and dh(L1(E), p) = dh(E, p). For σ1 we
now have

J(σ1) .

∫

Ah(d,k)2
H1(E1 ∩ E2 ∩B

d
r )

4 µ2k(d(E1, E2))

≤

∫

Ah(d,k)2
H1(E1 ∩ E2 ∩B

d
r )H

1(L1(E1) ∩B
d
r )

3 µ2k(d(E1, E2))

.

∫

Ah(d,k)
H1(L1(E1) ∩B

d
r )

3 Hk(E1 ∩B
d
r )µk(dE1),

where we used Crofton’s formula (2.2). Moreover, note that L1(E1) ∩B
d
r is a 1-dimensional ball

of radius arcosh(cosh(r)/ cosh(dh(E1, p))), and thus in particular

H1(L1(E1) ∩B
d
r ) ≤ 2r (3.9)

for µ1-almost all E1 ∈ Ah(d, 1) which intersect Bd
r . Using (3.9) and (2.2), we see that

J(σ1) . r3Hd(Bd
r ) ≍ r3 er(d−1).

With similar considerations for σ2, we compute

J(σ2) .

∫

Ah(d,k)3
H1(E1 ∩ E2 ∩B

d
r )

2 H1(E1 ∩E3 ∩B
d
r )

2 µ3k(d(E1, E2, E3))

.

∫

Ah(d,k)3
H1(L1(E1) ∩B

d
r )

2 H1(E1 ∩ E2 ∩B
d
r )H

1(E1 ∩ E3 ∩B
d
r ) µ

3
k(d(E1, E2, E3))

. r2
∫

Ah(d,k)
Hk(E1 ∩B

d
r )

2 µk(dE1) ≍ r2g(k, 2, d, r) ≍ r3er(d−1),

where we applied (2.2) for the integration with respect to E2 and E3, bounded H1(L1(E1)∩B
d
r )

2

by 4r2 and used Lemma 2.4 afterwards. Similarly, for σ3 we find that

J(σ3) .

∫

Ah(d,k)3
H1(E1 ∩ E2 ∩B

d
r )H

1(E1 ∩ E3 ∩B
d
r )

2 H1(E2 ∩ E3 ∩B
d
r )µ

3
k(d(E1, E2, E3))

≤

∫

Ah(d,k)3
H1(E1 ∩ E2 ∩B

d
r )H

1(E2 ∩ E3 ∩B
d
r )H

1(L1(E1) ∩B
d
r )

2 µ3k(d(E1, E2, E3))

. r2
∫

Ah(d,k)
Hk(E2 ∩B

d
r )

2 µk(dE2) . r3er(d−1),
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where we first bounded the quadratic term by a 4r2 according to (3.9), applied (2.2) for the
integration with respect to E1 and E3 and used Lemma 2.4. For the last partition σ4 we have

J(σ4) .

∫

Ah(d,k)4
H1(E1 ∩ E2 ∩B

d
r )H

1(E1 ∩ E3 ∩B
d
r )H

1(E4 ∩ E3 ∩B
d
r )

×H1(E4 ∩ E2 ∩B
d
r )µ

4
k(d(E1, E2, E3, E4))

≤

∫

Ah(d,k)4
H1(L1(E1) ∩B

d
r )H

1(E1 ∩E3 ∩B
d
r )H

1(E4 ∩E3 ∩B
d
r )

×H1(E4 ∩ E2 ∩B
d
r )µ

4
k(d(E1, E2, E3, E4))

. r

∫

Ah(d,k)2
Hk(E3 ∩B

d
r )H

1(E3 ∩ E4 ∩B
d
r )H

k(E4 ∩B
d
r )µ

2
k(d(E3, E4))

. rer(k−1)

∫

Ah(d,k)
Hk(E4 ∩B

d
r )

2 µk(dE4) ≍ r2er(k+d−2),

where, similarly to the preceding cases, we first used (3.9) to bound H1(L1(E1) ∩ B
d
r ), applied

(2.2) for the integration with respect to E2 and E1 and then used (3.4) and Lemma 2.4. As a
consequence, we deduce the bound

M2,2 . r3er(d−1) + r2er(d+k−2) . r2er(d+k−2). (3.10)

Combining (3.5), (3.8) and (3.10) with Proposition 3.1, we finally get

d
(
F̃ (m)
r , N

)
. (re−r(d−1))−1

(
er(d−1) + r

1
2 er(d−1) + re

r
2
( 3
2
d− 3

2
)
)
. r−

1
2

in the case 2k = d+ 1, which completes the proof of (1.6) also for m = 2.

Case 3: m = 3 As noted before, the case m = 3 can only occur in dimension d = 3 and for
k = 2. This situation has already been treated in [26, Theorem 5 (b)], where it was shown that

F̃
(3)
r converges in distribution towards a standard Gaussian random variable at rate r−

1
2 for both

the Wasserstein and the Kolmogorov distance. This finishes the proof of Theorem 1.2.

4 Proof of Theorem 1.4

We fix k ∈ {2, . . . , d−1} and proceed analogously to the proof of Theorem 2.1 in [32]. In the proof,

we write Fr instead of F
(1)
r for short. To derive the result, we show that the characteristic function

of the random variable Fr−EFr

er(k−1) converges towards the characteristic function of ωk

(k−1)2k−2Z, as

r → ∞, where Z is the random variable defined in the statement of the theorem.
We start with some preparations. For s ≥ 0 choose any L0 ∈ Gh(d, d − k) and x0 ∈ L0 with

dh(x0, p) = s. Then we define fr(s) := Hk(H(L0, x0) ∩ B
d
r ), where H(L0, x0) was introduced at

(2.1). The definition of the function fr : [0,∞) → [0,∞) is independent of the particular choices
of L0 and x0. Since p is fixed, we shortly write dh(E) = dh(E, p) for the distance of E from p.
Then we get

Hk(E ∩Bd
r ) = fr ◦ dh(E), E ∈ Ah(d, k).

Let η denote a hyperbolic k-flat process in H
d with intensity measure µk with µk as introduced

in Section 2.1 . For the image measure dh♯µk of µk under dh, we get

dh♯µk = ωd−k

∫ ∞

0
1{s ∈ ·} coshk s sinhd−k−1 s ds,
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see [13, Sections 3.4-5] for the required transformation in hyperbolic space. Note that since

Fr =

∫
fr ◦ dh(E) η(dE),

and since the characteristic function of Fr can be read off from the Laplace functional of a Poisson
process and derived in essentially the same way (see, for instance, [33, Lemma 15.2]), we obtain
for ξ ∈ R,

E[eiξFr ] = exp

(∫

Ah(d,k)
(eiξ(fr◦dh)(E) − 1)µk(dE)

)

= exp

(∫ r

0
(eiξfr(s) − 1) (dh♯µk)(ds)

)

= exp

(
ωd−k

∫ r

0
(eiξfr(s) − 1) coshk s sinhd−k−1 s ds

)
.

From this we can conclude that

ψr(ξ) := E

[
exp

(
iξ Fr−E[Fr]

er(k−1)

)]
= exp

(
ωd−k

∫ r

0
(eiξgr(s) − 1− iξgr(s)) cosh

k s sinhd−k−1 s ds

)

with gr(s) := fr(s)/e
r(k−1).

The following lemma determines the asymptotic behaviour of gr(s), as r → ∞, and provides
a slight generalization of [32, Lemma 3.1].

Lemma 4.1. Let s ∈ [0,∞). Then gr(s) ∼ g(s) := ωk

(k−1)2k−1 cosh
−(k−1) s, as r → ∞.

Proof. According to [44, Theorem 3.5.3] it holds that

gr(s) = e−r(k−1)ωk

∫ arcosh( cosh r
cosh s

)

0
sinhk−1 udu. (4.1)

Denoting by o(1) a sequence which converges to zero as z → ∞, we have

arcosh z = log(z +
√
z2 − 1) = log(2z) + o(1), as z → ∞.

Thus, for any fixed s ≥ 0 and as r → ∞, we obtain

arcosh
(cosh r
cosh s

)
= log(2 cosh r)− log(cosh s) + o(1) = r − log(cosh s) + o(1).

Next we observe that
∫ z

0
sinhk−1 udu ∼

e(k−1)z

(k − 1)2k−1
, as z → ∞.

Combining this relation for z = r − log(cosh s) + o(1) with (4.1), as r → ∞, we obtain for any
fixed s ≥ 0 that

gr(s) ∼ e−r(k−1) ωk

(k − 1)2k−1
e(k−1)(r−log(cosh s)+o(1))

=
ωk

(k − 1)2k−1
e(k−1)(− log(cosh s)+o(1))

∼
ωk

(k − 1)2k−1
cosh−(k−1) s,

which completes the proof of the lemma.
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In order to conclude that

lim
r→∞

ψr(ξ) = ψ(ξ) := exp

(
ωd−k

∫ ∞

0
(eiξg(s) − 1− iξg(s)) coshk s sinhd−k−1 s ds

)
(4.2)

we will use the dominated convergence theorem. To apply it, we need to find an integrable upper
bound for the absolute value of the integrand (eiξgr(s) − 1 − iξgr(s)) cosh

k s sinhd−k−1 s. Note
that for any s, ξ ≥ 0 we have that

|eiξgr(s) − 1− iξgr(s)| ≤
1

2
ξ2gr(s)

2,

(see, e.g., [33, Lemma 6.15]). Using in addition that cosh s ≤ es and sinh s ≤ es for s ≥ 0 we get

|
(
eiξgr(s) − 1− iξgr(s)

)
coshk s sinhd−k−1 s| ≤

1

2
ξ2gr(s)

2es(d−1).

Furthermore, [26, Lemma 7] provides the upper bound gr(s) ≤
ωk

k−1e
−s(k−1), so that we obtain

|
(
eiξgr(s) − 1− iξgr(s)

)
coshk s sinhd−k−1 s| ≤

1

2
ξ2

ω2
k

(k − 1)2
e−s(2k−(d+1)).

In fact, the right-hand side provides an integrable function of s ≥ 0, independent of r > 0,
for 2k > d + 1. Thus, (4.2) proves that, as r → ∞, the random variables Fr−EFr

er(k−1) converge in
distribution to a random variable Y with characteristic function ψ.

As in the introduction, for T > 0 define the random variable

YT :=
∑

s∈ζ∩[0,T ]

h(s)

with h(s) := cosh−(k−1) s, s ≥ 0. Using once again [33, Lemma 15.2], we conclude that YT has
characteristic function

ψYT
(ξ) = exp

(
ωd−k

∫ T

0
(eiξh(s) − 1) coshk s sinhd−k−1 s ds

)
, ξ ∈ R.

Moreover, EYT = ωd−k

∫ T
0 h(s) coshk s sinhd−k−1 s ds =

ωd−k

d−k sinhd−k T , which implies that the
characteristic function of the centred random variable YT − EYT is

ψYT−EYT
(ξ) = exp

(
ωd−k

∫ T

0
(eiξh(s) − iξh(s)− 1) coshk s sinhd−k−1 s ds

)
.

Taking T → ∞ and using the dominated convergence theorem once again, we conclude by
comparing the definitions of the functions g(s) and h(s) that ψYT−EYT

(ξ) converges to ψ(ξ/ck)
with ck = ωk

(k−1)2k−1 . This eventually proves convergence in distribution of YT −EYT to Z, where

Z is as in the statement of Theorem 1.4. The proof is thus complete.

Remark 4.2. It follows from (4.2) that the ℓ-th order cumulant cumℓ(Z) of Z equals

cumℓ(Z) : = (−i)ℓ
∂ℓ

∂ξℓ
logE [exp (iξZ)]

∣∣∣
ξ=0

= ωd−k

∫ ∞

0
coshk−ℓ(k−1) s sinhd−k−1 s ds ∈ (0,∞)

for ℓ ∈ N with ℓ ≥ 2. Note that k − ℓ(k − 1) + d − k − 1 = d + 1 − 2k − (ℓ − 2)(k − 1) < 0 for
2k > d + 1. The integral can be expressed in terms of Gamma functions. For this note that for
−a > b > −1, ∫ ∞

0
cosha s sinhb s ds =

1

2

Γ
(
−a+b

2

)
Γ
(
b+1
2

)

Γ
(
1−a
2

) ,

which can be obtained by the substitution cosh s = v−1 which transforms the integral into the
integral representation of the Beta function.
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5 Proof of Theorem 1.8

For the proof, we will first consider the special case k = 1, and then we derive the general result
by a basic integral-geometric relation and by applying twice the special case already established.

For κ = 0, the case k = 1 of Theorem 1.9 is a special case of the Euclidean affine Blaschke-
Petkantschin formula [49, Theorem 7.2.7] (with d = k and k = 1 there).

For κ = 1, the case k = 1 of Theorem (1.9) is a special case of [27, Lemma 5.3] (with q = 2
there) if the different normalization of the measure µ1,1 and the relation sin d1(x, y) = ∇2(x, y)
is taken into account, where we recall that d1 stands for the geodesic distance on M

d
1 = S

d .
For κ = −1, the case k = 1 of Theorem (1.9) is stated in [47, Equation (18.2)] in a different

language (using the classical calculus of differential forms). In the following, we provide a different
argument and additional information which should be useful for other purposes as well. More
specifically, we apply a special case of the affine Blaschke–Petkantschin formula in Euclidean
space and use the Beltrami–Klein model. We write dB for the intrinsic distance function and
AB(d, k) for the k-flats in this model. If E is a k-flat in R

d or its intersection with B
d, then we

write τ(E) for the Euclidean orthogonal projection of the origin o ∈ R
d to E. Clearly, if k = d,

then τ(E) = o.
The following lemma relates the volume element of a k-flat E in the Beltrami–Klein model to

Euclidean quantities. Recall that G0(d, k) is the linear Grassmannian of Euclidean space R
d, that

is, the set of all k-dimensional linear subspaces of Rd. We write L⊥ for the Euclidean orthogonal
complement of a linear subspace L ∈ G0(d, k). The rotation invariant (Haar) probability measure
on G0(d, k) is denoted by νk,0. The restriction of a measure µ to a µ-measurable set A is denoted
by µxA.

Lemma 5.1. Let k ∈ {1, . . . , d} and E ∈ AB(d, k). Let L ∈ G0(d, k) be the unique linear

subspace such that E = (L + τ(E)) ∩ B
d. Then the restriction Hk

B
xE of the k-dimensional

Hausdorff measure Hk
B

in the Beltrami–Klein model to E satisfies

Hk
BxE =

∫
1{x ∈ ·}

√
1− ‖τ(E)‖2

(1− ‖x‖2)
k+1
2

(Hk
0xE)(dx).

Proof. Recall from [44, Theorem 6.1.5] that the Riemannian metric of the Beltrami–Klein model
at x ∈ B is given by

gx(u, v) =
(1− ‖x‖2)u • v + (x • u)(x • v)

(1− ‖x‖2)2
, u, v ∈ TxB, (5.1)

where the tangent space TxB of B at x is identified with R
d. Let u1, . . . , uk ∈ L be a Euclidean

orthonormal basis of L. Let Ik denote the k× k identity matrix. Then the determinant GL(x) of

the Gram matrix
(
gx(ui, uj)

k
i,j=1

)
is independent of the chosen orthonormal basis of L and given

by

GL(x) =
1

(1− ‖x‖2)2k
det
(
(1− ‖x‖2)Ik + ((x • ui)(x • uj))

k
i,j=1

)

=
1

(1− ‖x‖2)2k
(1− ‖x‖2)k−1

(
1− ‖x‖2 +

k∑

i=1

(x • ui)
2

)

=
1− ‖τ(E)‖2

(1− ‖x‖2)k+1
.

For the (almost effortless) calculation of the determinant (second equality) one can use that the
linear map ψ : Rk → R

k given by ψ(z) = αz + (a • z)a for given α ∈ R and a ∈ R
k has the

eigenvalues α (with multiplicity k − 1) and α+ ‖a‖2.
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Remark 5.2. Note that for k = d with τ(E) = o the preceding lemma relates the corresponding
volume forms.

Note that the non-empty intersections E ∩ B
d with E ∈ A0(d, k) are precisely the k-flats

in AB(d, k) (see [44, Theorem 6.1.4]). In the following, we write µk,0 for the restriction of the
Euclidean isometry invariant measure on A0(d, k) to the k-flats in AB(d, k), by identifying a k-flat
from A0(d, k) and its intersection with B

d. The next lemma expresses the Haar measure µk,B on
AB(d, k) in terms of Euclidean quantities, that is, we provide the density of µk,B with respect
to the Haar measure µk,0. In the following, we write νd−k,0 for the Haar (rotation invariant)
probability measure on G0(d, d − k). In the case k = 0, the next lemma recovers the known
relation for the corresponding volume forms.

Lemma 5.3. Let k ∈ {0, 1, . . . , d− 1}. Then

µk,B =

∫

A0(d,k)
1

{
E ∩ B

d ∈ ·
} (

1− ‖τ(E)‖2
)− d+1

2 µk,0(dE)

=

∫

G0(d,d−k)

∫

L∩Bd

1

{
(L⊥ + x) ∩ B

d ∈ ·
} (

1− ‖x‖2
)− d+1

2 Hd−k
0 (dx) νd−k,0(dL).

Proof. We start from the general expression for the measure µk, applied in the Beltrami–Klein
model. Then we express the arising distance dB(o, x) by means of [44, Theorem 6.1.1] and use
the relation for the Hausdorff measures which is available from a special case of Lemma 5.1 (see
also [44, Theorem 6.1.6]).

Let GB(d, d − k) := {L ∈ AB(d, d − k) : o ∈ L} and write νd−k,B for the isometry invariant
probability measure on GB(d, d − k). Recall that for L ∈ GB(d, d − k) and x ∈ L, we write
H(L, x) for the k-flat through x which is orthogonal to L in x (here orthogonality refers to the
Riemannian metric gx as given at (5.1)). If U ∈ G0(d, d − k), L = U ∩ B

d and x ∈ L, then
H(L, x) = (U⊥ + x)∩ B

d, where U⊥ is the Euclidean orthogonal complement of U in R
d. To see

this, it suffices to observe that x ∈ (U⊥ + x) ∩ B
d ∈ AB(d, k) and U⊥ = (TxL)

⊥, where (TxL)
⊥

means the orthogonal complement of TxL in TxB
d with respect to the Riemannian metric gx.

In fact, if v ∈ U⊥ and u ∈ TxL = U , then u • v = 0 and x • v = 0 (since x ∈ L ⊂ U), hence
gx(u, v) = 0, which yields U⊥ ⊂ (TxL)

⊥ and therefore U⊥ = (TxL)
⊥ (since both subspaces have

the same dimension). Thus,

µk,B =

∫

GB(d,d−k)

∫

L
1{H(L, x) ∈ ·} coshk dB(o, x)H

d−k
B

(dx) νd−k,B(dL)

=

∫

G0(d,d−k)

∫

U∩Bd

1{(U⊥ + x) ∩ B
d ∈ ·}

(
1− ‖x‖2

)− k
2

×
(
1− ‖x‖2

)− d−k+1
2 Hd−k

0 (dx) νd−k,0(dU)

=

∫

G0(d,d−k)

∫

U∩Bd

1{(U⊥ + x) ∩ B
d ∈ ·}

(
1− ‖x‖2

)− d+1
2 Hd−k

0 (dx) νd−k,0(dU)

=

∫

G0(d,k)

∫

U⊥∩Bd

1{(U + x) ∩ B
d ∈ ·}

(
1− ‖x‖2

)− d+1
2 Hd−k

0 (dx) νk,0(dU)

=

∫

A0(d,k)
1

{
E ∩ B

d ∈ ·
} (

1− ‖τ(E)‖2
)− d+1

2 µk,0(dE),

which yields the assertion.

Finally, we prepare the proof of Theorem 1.8 by providing another basic relation. Note that
here it is crucial that E ∈ AB(d, k) with k = 1. Hence, for x, y ∈ E ∈ AB(d, 1), [44, Theorem
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6.1.1] yields

sinh dB(x, y) =

√
cosh2 dB(x, y)− 1

=

√
(1− x • y)2 − (1− ‖x‖2)(1 − ‖y‖2)√

1− ‖x‖2
√

1− ‖y‖2

=

√
‖x− y‖2 + (x • y)2 − ‖x‖2‖y‖2√

1− ‖x‖2
√

1− ‖y‖2

=
‖x− y‖

√
1− ‖τ(E)‖2√

1− ‖x‖2
√

1− ‖y‖2
, (5.2)

where we used the fact that ‖x‖2‖y‖2 − (x • y)2 = ‖x− y‖2‖τ(E)‖2.

Now we are prepared for the proof of the following special case of Theorem 1.8.

Lemma 5.4. Theorem 1.8 holds for κ = −1 and k = 1.

Proof. First, we express the integration in

I :=

∫

Hd

∫

Hd

f(x, y)Hd(dx)Hd(dy)

in the Beltrami–Klein model by an integration with respect to Euclidean Hausdorff measures and
densities given by the volume form in [44, Theorem 6.1.6]. In other words, there is an isometry
ϕ : Bd → H

d such that

I =

∫

Bd

∫

Bd

f(ϕ(x), ϕ(y))
1

(1 − ‖x‖2)
d+1
2

1

(1− ‖y‖2)
d+1
2

Hd
0(dx)H

d
0(dy).

From the Euclidean affine Blaschke–Petkantschin formula (with k = 1, see above), we deduce
that

I =
ωd

2

∫

A0(d,1)

∫

Bd∩E

∫

Bd∩E
f(ϕ(x), ϕ(y))

‖x− y‖d−1

(1 − ‖x‖2)
d+1
2 (1− ‖y‖2)

d+1
2

H1
0(dx)H

1
0(dy)µ1,0(dE).

This can be rewritten in the form

I =
ωd

2

∫

A0(d,1)

∫

Bd∩E

∫

Bd∩E
f(ϕ(x), ϕ(y))

‖x − y‖d−1
(
1− ‖τ(E)‖2

) d−1
2

(1− ‖x‖2)
d−1
2 (1− ‖y‖2)

d−1
2

×

√
1− ‖τ(E)‖2

1− ‖x‖2

√
1− ‖τ(E)‖2

1− ‖y‖2
(
1− ‖τ(E)‖2

)− d+1
2 H1

0(dx)H
1
0(dy)µ1,0(dE).

Next we apply (5.2), Lemma 5.1 (twice) and Lemma 5.3 with k = 1 to get

I =
ωd

2

∫

AB(d,1)

∫

Bd∩E

∫

Bd∩E
f(ϕ(x), ϕ(y)) sinhd−1 dB(x, y)H

1
B(dx)H

1
B(dy)µ1,B(dE).

Since ϕ : Bd → M
d
−1 is an isometry, we finally obtain

I =
ωd

2

∫

Ah(d,1)

∫

Hd∩G

∫

Hd∩G
f(x, y) sinhd−1 dh(x, y)H

1(dx)H1(dy)µ1(dG),

as asserted.

24



In order to deduce Theorem 1.8 for general k from the case where k = 1, the following simple
lemma will be useful. For E ∈ Aκ(d, k) we write Aκ(E, 1) for the 1-flats of Md

κ lying in E (which
then are also 1-flats of E), where E is considered as a k-dimensional hyperbolic space. In this
case, we write µE1,κ for the consistently normalized invariant measure on Aκ(E, 1), where the
invariance refers to isometries of E. In particular, the normalization is independent of E, that is

µE1,κ({G ∈ Aκ(E, 1) : G ∩BE
κ (1) 6= ∅})

is independent of E and the choice of a geodesic ball BE
κ (1) of radius 1 in E. The following

auxiliary result is stated in [51, Equation (2.5)] in the language of differential forms, the Euclidean
and the spherical case are established in [49, Section 7.1]. We argue in a different way.

Lemma 5.5. Let g : Aκ(d, 1) → [0,∞] and k ∈ {2, . . . , d− 1}. Then

∫

Aκ(d,k)

∫

Aκ(E,1)
g(G)µE1,κ(dG)µk,κ(dE) =

∫

Aκ(d,1)
g(G)µ1,κ(dG).

Proof. Both sides define isometry invariant measures on Aκ(d, 1) (if g is chosen as the indicator
function of a measurable set). For the right side, this is clear by construction. To see this also
for the left side, we argue as follows. Let E ∈ Aκ(d, k) be fixed (for the moment) and let ϕ be
an isometry of Md

κ. For a measurable set A ⊂ Aκ(ϕ(E), 1), we define

µ(A) :=

∫

Aκ(E,1)
1{ϕ(G) ∈ A}µE1,κ(dG).

Since the isometry ϕ maps 1-flats of E bijectively to 1-flats of ϕ(E), it is easy to see that µ is a
locally finite measure on the Borel sets of Aκ(ϕ(E), 1). Let ι : ϕ(E) → ϕ(E) be an isometry of
ϕ(E). Then ϕ−1 ◦ ι−1 ◦ ϕ : E → E is an isometry of E. Moreover,

µ(ι(A)) =

∫

Aκ(E,1)
1{ϕ(G) ∈ ι(A)}µE1,κ(dG)

=

∫

Aκ(E,1)
1{ϕ((ϕ−1 ◦ ι−1 ◦ ϕ)(G)) ∈ A}µE1,κ(dG)

=

∫

Aκ(E,1)
1{ϕ(G) ∈ A}µE1,κ(dG)

= µ(A),

where in the second to last step we used that µE1,κ is invariant with respect to isometries of E. If

BE
κ (1) is a geodesic ball of radius 1 in E, then ϕ(BE

κ (1)) is a geodesic ball of radius 1 in ϕ(E)
and

µ({G ∈ Aκ(E, 1) : G ∩ ϕ(BE
κ (1)) 6= ∅}) =

∫

Aκ(E,1)
1{G ∩BE

κ (1) 6= ∅}µE1,κ(dG).

Hence µ is the consistently normalized Haar measure on Aκ(ϕ(E), 1). In particular, for each
E ∈ Aκ(d, k) and each isometry ϕ of Md

κ, we have

∫

Aκ(E,1)
g(ϕ(G))µE1,κ(dG) =

∫

Aκ(ϕE,1)
g(G)µ

ϕ(E)
1,κ (dG)

for each measurable function g : Aκ(E, 1) → [0,∞].
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Now let ϕ be an isometry of Md
κ. Using first the isometry invariance of µk,κ and then the

preceding considerations, we obtain
∫

Aκ(d,k)

∫

Aκ(E,1)
g(ϕ(G))µE1,κ(dG)µk,κ(dE)

=

∫

Aκ(d,k)

∫

Aκ(ϕ−1(E),1)
g(ϕ(G))µ

ϕ−1(E)
1,κ (dG)µk,κ(dE)

=

∫

Aκ(d,k)

∫

Aκ(E,1)
g(ϕ(ϕ−1(G)))µE1,κ(dG)µk,κ(dE)

=

∫

Aκ(d,k)

∫

Aκ(E,1)
g(G)µE1,κ(dG)µk,κ(dE),

which confirms the isometry invariance of the left side.
Since up to a scalar multiple there is only one Haar measure on Aκ(d, 1), it remains to show

that this multiple is 1. For this, we choose g(G) := H1
κ(G∩Bd

1,κ), where Bd
1,κ is a geodesic ball of

radius 1 centred at an arbitrary point of Md
κ. Then the right side is Hd

κ(B
d
1,κ) by a straightforward

application of the Crofton formula (2.2).
If we first apply the Crofton formula (2.2) within E to the inner integral on the left side, we

get
∫

Aκ(E,1)
H1

κ(G ∩Bd
1,κ)µ

E
1,κ(dG) =

∫

Aκ(E,1)
H1

κ(G ∩ (E ∩Bd
1,κ))µ

E
1,κ(dG)

= Hk
κ(E ∩Bd

1,κ).

Then another application of the Crofton formula (2.2) also yields Hd
κ(B

d
1,κ) for the double integral

on the left-hand side.

Remark 5.6. By the same reasoning, we also get a corresponding result for integrals over flags
(E,G) ∈ Aκ(d, k)×Aκ(d, p) with G ⊂ E (and fixed p < k).

Proof of Theorem 1.8. The assertion in the case k = 1 has already been established. Let k ∈
{2, . . . , d− 1}. Then by the case k = 1 and by Lemma 5.5, we get

∫

Md
κ

∫

Md
κ

f(x, y)Hd
κ(dx)H

d
κ(dy)

=
ωd

2

∫

Aκ(d,1)

∫

Md
κ∩G

∫

Md
κ∩G

f(x, y) snd−k
κ dκ(x, y) sn

k−1
κ dκ(x, y)H

1
κ(dx)H

1
κ(dy)µ1,κ(dG)

=
ωd

2

∫

Aκ(d,k)

∫

Aκ(E,1)

∫

Md
κ∩G

∫

Md
κ∩G

g(x, y)

× sn
k−1
κ dκ(x, y)H

1
κ(dx)H

1
κ(dy)µ

E
1,κ(dG)µk,κ(dE), (5.3)

where g(x, y) := f(x, y) snd−k
κ dκ(x, y). Since M

d
κ ∩ E is a k-flat and a k-dimensional space of

constant curvature M
E
κ , we can apply the result that has already been proved to the integrand

of the integration over Aκ(d, k) for each fixed E ∈ Aκ(d, k). This implies that

ωk

2

∫

Aκ(E,1)

∫

Md
k
∩G

∫

Md
k
∩G

g(x, y) snk−1
κ dκ(x, y)H

1
κ(dx)H

1
κ(dy)µ

E
1,κ(dG)

=

∫

Md
κ∩E

∫

Md
κ∩E

g(x, y)Hk
κ(dx)H

k
κ(dy). (5.4)

Substituting (5.4) into (5.3), we get the asserted equation.
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Corollary 5.7. Let A ⊂ M
d
κ be a measurable set. If k ∈ {1, . . . , d− 1}, then

∫

Aκ(d,k)
Hk

κ(A ∩ E)2 µk,κ(dE) =
ωk

ωd

∫

A

∫

A
sn

−(d−k)
κ dκ(x, y)H

d
κ(dx)H

d
κ(dy).

Proof. We apply Theorem 1.8 with

f(x, y) := 1{x 6= y}1A(x)1A(y) sn
−(d−k)
κ dκ(x, y), x, y ∈ M

d
κ,

where by definition f(x, y) = 0 if x = y. Thus we get
∫

Aκ(d,k)

∫

E∩A

∫

E∩A
1{x 6= y}Hk

κ(dx)H
k
κ(dy)µk,κ(dE)

=
ωk

ωd

∫

A

∫

A
1{x 6= y} sn−(d−k)

κ dκ(x, y)H
d
κ(dx)H

d
κ(dy), (5.5)

where 1{x 6= y} sn
−(d−k)
κ dκ(x, y) = 0 if x = y (by definition). On the left side of this equation,

for µk,κ-almost every E ∈ Aκ(d, k) such that E ∩A 6= ∅, the indicator function is not equal to 1
only on a set of (x, y) ∈ (E ∩A)2 of (Hk

κ)
2-measure zero. Similarly, the indicator function on the

right side is not equal to 1 only on a set of (x, y) ∈ A2 of (Hd
κ)

2-measure zero. Since the integral
of a function with values in [0,∞] over a set of measure zero is zero, we can omit the indicator
functions on both sides of (5.5), and the asserted equation follows.

6 Proof of Theorem 1.6

The proof of Theorem 1.6 relies on the sharp Riesz rearrangement inequality [12, Theorem 2].
To keep our paper self-contained, we rephrase here a special case of this inequality in a slightly
more general setting to which the statement and proof of [12, Theorem 2] (see also [11, Theorem
2]) can be extended. For an integrable function f : Md

κ → [0,∞) we denote by f∗ the symmetric
decreasing rearrangement of f with respect to the fixed origin p of Md

κ. (By decreasing we mean
non-increasing.) To recall the definition of f∗, we write {f > s} := f−1((s,∞)) for s > 0 and
denote by {f > s}∗ the open geodesic ball with center at p such that Hd

κ({f > s}∗) = Hd
κ({f >

s}) <∞. Then f∗ : Md
κ → [0,∞), defined by

f∗(x) :=

∫ ∞

0
1{f>s}∗(x)ds, x ∈ M

d
κ,

is a decreasing function of the geodesic distance to p, invariant under isometries fixing p, lower
semicontinuous, and {f∗ > t} = {f > t}∗, that is, f and f∗ are equidistributed (equimeasurable)
in the sense that

Hd
κ({f > t}) = Hd

κ({f
∗ > t})

for t > 0. In the following, we say that f is non-zero if Hd
κ({f > 0}) > 0.

Lemma 6.1 (Sharp Riesz rearrangement inequality). Let f, g : Md
κ → [0,∞) be Hd

κ-integrable

functions and K : [0,∞) → [0,∞] be a decreasing function. Define

IK(f, g) :=

∫

Md
κ

∫

Md
κ

f(x)g(y)K(dκ(x, y))H
d
κ(dx)H

d
κ(dy).

Then

IK(f, g) ≤ IK(f∗, g∗). (6.1)

Moreover, if K is strictly decreasing, f and g are non-zero, and IK(f∗, g∗) <∞, then equality in

(6.1) holds if and only if there is some isometry ϕ ∈ I(Md
κ) such that f = f∗ ◦ ϕ and g = g∗ ◦ ϕ

Hd
κ-almost everywhere.

27



We can now proceed to the proof of Theorem 1.6.

Proof of Theorem 1.6. From (2.7) we have that

VarF
(m)
W,t,κ =

m∑

i=1

i! t2m−i A
(m)
W,κ,i

with A
(m)
W,κ,i given by (2.8). That is,

VarF
(m)
W,t,κ =

m∑

i=1

cit
2m−i

∫

Aκ(d,d−i(d−k))
Hd−i(d−k)

κ (E ∩W )2 µd−i(d−k),κ(dE) (6.2)

with the constants ci, i ∈ {1, . . . ,m}, given by

ci :=

(
m

i

)2 i!

(m!)2

(ωd+1

ωk+1

)2m−i ω2
d−m(d−k)+1

ωd+1ωd−i(d−k)+1
.

Now, Corollary 5.7 can be applied to each of the integrals on the right side of (6.2) for which
i(d−k) ≤ d−1. Since k ≥ 1, this condition is satisfied at least for i = 1. Moreover, ifm(d−k) = d,
then the corresponding summand is cmt

mHd
κ(W ) = cmt

mHd
κ(BW ). For i(d− k) ≤ d− 1 we get

∫

Aκ(d,d−i(d−k))
Hd−i(d−k)

κ (E ∩W )2 µd−i(d−k),κ(dE)

=
ωd−i(d−k)

ωd

∫

W

∫

W

1

sni(d−k) dκ(x, y)
Hd

κ(dx)H
d
κ(dy).

Our goal is to apply the sharp Riesz rearrangement inequality in Lemma 6.1 with f = g = 1W

and K(s) = sn
−i(d−k) s for s ≥ 0. For this, we first note that f and g are both Hd

κ-integrable and
non-zero, since W is a Borel set with Hd

κ(W ) ∈ (0,∞), and that the function r 7→ sn
−i(d−k) r is

strictly decreasing on [0,∞) if κ ∈ {−1, 0} and on [0, π/2] if κ = 1. Thus, Lemma 6.1 together
with the additional assumption on W in the case κ = 1 and the fact that f∗ = g∗ = 1BW

show
that for i(d− k) ≤ d− 1 we have

ωd−i(d−k)

ωd

∫

W

∫

W

1

sni(d−k) dκ(x, y)
Hd

κ(dx)H
d
κ(dy)

≤
ωd−i(d−k)

ωd

∫

BW

∫

BW

1

sni(d−k) dκ(x, y)
Hd

κ(dx)H
d
κ(dy) (6.3)

=

∫

Aκ(d,d−i(d−k))
Hd−i(d−k)

κ (E ∩BW )2 µd−i(d−k),κ(dE),

where we applied backwards Corollary 5.7 in the last step. Altogether we arrive at

VarF
(m)
W,t,κ =

m∑

i=1

cit
2m−i

∫

Aκ(d,d−i(d−k))
Hd−i(d−k)

κ (E ∩W )2 µd−i(d−k),κ(dE)

≤
m∑

i=1

cit
2m−i

∫

Aκ(d,d−i(d−k))
Hd−i(d−k)

κ (E ∩BW )2 µd−i(d−k),κ(dE)

= VarF
(m)
BW ,t,κ.

The discussion of the equality case also follows from Lemma 6.1. This completes the proof of
Theorem 1.6.
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Remark 6.2. (i) For compact setsW and in Euclidean space, a result by Pfiefer [43, Theorems
1 and 2] (stated in [49, Theorem 8.6.5] for convex bodies only) could alternatively be used
at (6.3).

(ii) Morpurgo [39, Theorems 3.5 and 3.6] provides a detailed proof of general Riesz rearrange-
ment inequalities in Euclidean space, similar as in [12], but an investigation of the hyperbolic
case is not included. The arguments extend to the spherical case, as pointed out in [39,
page 518].

(iii) In the Euclidean setting, the inequality needed at (6.3) is also provided in [38, Theorems
3.7 and 3.9], [37, Lemma 3] or [1, Corollary 2.19], the spherical case is covered by Corollary
7.1 and Theorem 7.3 in [1]. In the special case where f, g are indicator functions (as in
our application) and for κ = 0 (Euclidean space), the required inequality and the equality
discussion can be derived from [10, Theorem 1].
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