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Abstract
Yao graphs are geometric spanners that connect each point of a given point set to its nearest neighbor
in each of k cones drawn around it. Yao graphs were introduced to construct minimum spanning
trees in d dimensional spaces. Moreover, they are used for instance in topology control in wireless
networks. An optimal O(n log n)-time algorithm to construct Yao graphs for a given point set has
been proposed in the literature but – to the best of our knowledge – never been implemented. Instead,
algorithms with a quadratic complexity are used in popular packages to construct these graphs. In
this paper we present the first implementation of the optimal Yao graph algorithm. We engineer the
data structures required to achieve the O(n log n) time bound and detail algorithmic adaptations
necessary to take the original algorithm from theory to practice. We propose a priority queue data
structure that separates static and dynamic events and might be of independent interest for other
sweepline algorithms. Additionally, we propose a new Yao graph algorithm based on a uniform grid
data structure that performs well for medium-sized inputs. We evaluate our implementations on a
wide variety of synthetic and real-world datasets and show that our implementation outperforms
current publicly available implementations by at least an order of magnitude.
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1 Introduction

Yao graphs are geometric spanners that connect each point of a given point set to its nearest
neighbor in each of k cones, refer to Figure 1 for an example. A t-spanner is a weighted
graph, where for any pair of vertices there exists a t-path between them, which is a path
with weight at most t times their spatial distance. The parameter t is known as the stretch
factor of the spanner. Upper bounds on the stretch factor of Yao graphs have been the
subject of extensive research. While the stretch factor of Yao graphs with k ≤ 3 cones is
proofed to be unbounded, bounds have been established for all graphs with k ≥ 4 cones [3].
Whereas for k ≥ 7 cones the stretch factor is proofed to be bounded by the general formula(

1+
√

2−2 cos(2π/k)
)
/(2 cos(2π/k)−1), bounds on Yao graphs with 4 to 6 cones require complex

individual arguments [3, 8].
Yao introduced this kind of graphs to construct minimum spanning trees in d-dimensional

space [17]. Moreover, they are used for instance in topology control in wireless networks
[14, 18]. Chang et al. [6] present an optimal algorithm to construct these graphs in O(n log n)
time. Due to the intricate nature of their algorithm and the reliance on expensive geometric
constructions, to the best of our knowledge, there is no implementation of their algorithm
available. Instead, an algorithm with an inferior O

(
n2) time bound is used in the cone-based

spanners package of the popular CGAL library [15].
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20:2 Efficient Yao Graph Construction

Figure 1 Yao graph for ten points and k = 5 cones. The five cones are illustrated as red dashed
lines around four example points.

Contribution. In this paper we present the first publicly available implementation of Chang
et al.’s optimal algorithm for Yao graph construction. We take their algorithm from theory
to practice by engineering the data structures required to achieve the O(n log n) time bound
and provide detailed descriptions of all operations of the algorithm that are missing in the
original paper, such as input point ordering, handling of composite boundaries and enclosing
region search. In our event queue, we separate static (input point) events and dynamic
(intersection point) events. This greatly improves the efficiency of priority queue operations
and might be a useful technique for other sweepline algorithms. We test our algorithm
on a wide range of synthetic and real-world datasets. We show that, despite the intricate
nature of the algorithm and the use of expensive geometric constructions, our implementation
achieves a speedup of an order of magnitude over other currently available implementations.
Additionally, we develop a new Yao graph algorithm based on a uniform grid data structure
that is simple to implement, easy to parallelize, and performs well for medium-sized inputs.

Outline. In Section 2 we review related work on the construction of Yao graphs. Section 3
presents the optimal algorithm of Chang et al. and algorithmic adaptions necessary for its
implementation. Further implementation details such as data structures and geometric
operations are described in Section 4. We evaluate our implementation and compare against
its competitors in Section 5. Section 6 summarizes our paper and presents an outlook on
future work.

Definitions. Given a set P of points in two-dimensional Euclidean space and an integer
parameter k > 1, the Yao graph Gk = (P, E) is a directed graph, connecting every point
p ∈ P with its nearest neighbor in each of k cones [17]. Every cone Ci = (θL, θR), 0 ≤ i < k,
is defined by its two limiting rays with angles θL = 2iπ

k and θR = 2(i+1)π
k . We denote the cone

Ci with apex at point p as Cp
i . We furthermore define, that the left – or counterclockwise –

boundary ray with angle θL belongs to a cone C, whereas the right one does not, i. e. for a given
point p ∈ P and cone Cp

i we define the set of points P∩Cp
i := {q ∈ P : ∢(p, q) ∈ [θL, θR)}, with

∢(p, q) denoting the angle between p and q. Then the edge set E of the Yao graph Gk = (P, E)
can be formally defined as E := {(p, q) : ∀i ∈ [0, k),∀p ∈ P, q = arg minv∈P∩Cp

i
(d(p, v))},

with d(·, ·) denoting the Euclidean distance function.
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2 Related Work

Yao presents an O
(
n5/3 log n

)
-time algorithm to compute a solution to the Eight-Neighbors

Problem – a Yao graph with k = 8. It is based on a tessellation of the Euclidean space into
cells. For a given point and cone, each cell of the tessellation is characterized whether it can
contain nearest neighbor candidates to reduce the number of necessary distance computations.
The problem is solved optimally by Chang et al., who present a O(n log n)-time algorithm
for constructing the Yao graph of a given point set and parameter k [6]. Their algorithm
follows the same structure as Fortune’s algorithm for constructing the Voronoi diagram
of a point set [10], using the sweepline technique originally introduced by Bentley and
Ottmann for computing line-segement intersections [4]. However, even though there are
many implementations of Fortune’s algorithm available, there is no implementation of Chang
et al.’s Yao graph algorithm that we are aware of. Instead, for instance the CGAL library’s
cone-based spanners package implements a less efficient O

(
n2)-time algorithm [15]. Their

algorithm is an adaption of a sweepline algorithm for constructing Θ-graphs [13]. Θ-graphs
are defined similarly to Yao graphs, except that the nearest neighbor in each cone is not
defined by Euclidean distance but by the projection distance onto the cone’s internal angle
bisector. This allows for a O(n log n)-time sweepline algorithm, that uses a balanced search
tree as sweepline data structure to answer one-dimensional range queries [13]. For Yao
graphs, such a reduction in dimensionality is not possible, thus, CGAL’s algorithm employs
linear search within the sweepline data structure to find the nearest neighbor, leading to
the O

(
n2) time bound. However, CGAL’s algorithm is much simpler to implement than

the optimal algorithm proposed by [6] and does not require geometric constructions, just
predicates. Table 1 in Section 4 provides an overview of the required geometric operations
by both algorithms.

3 Algorithm

In their 1990 paper, Chang et al. present an O(n log n)-time sweepline algorithm to compute
the oriented Voronoi diagram (OVD) of a point set. Through a small modification, their
algorithm can compute the geographic neighborhood graph – or Yao graph – of a point set
within the same, optimal, bound [6, Theorem 3.2, Theorem 4.1].1 To construct the Yao graph
Gk = (P, E) with k cones for point set P, k sweepline passes are required, each considering
a specific cone C = (θL, θR). The sweepline for a cone C proceeds in direction τ = θL+θR

2 + π,
i. e. opposite to the cone’s internal angle bisector. Input points are swept in the order of
their projection onto τ – represented as blue dashed line in Figure 2 – given by sorting

ρτ (p) :=
(

x

y

)
·
(

cos τ

sin τ

)
∀p =

(
x y

)T ∈ P. (1)

All input points are inserted into an event priority queue Q with priority ρτ (p) and event
type input point. Each input point p is the origin of a cone Cp with boundary rays BL

and BR. Cone Cp defines the region Rp of the plane, where point p is the nearest neighbor
with respect to cone Cp for any point being swept after p. The invariant of the algorithm
is that once a point has been swept, its nearest neighbor in cone C has been determined.
For instance, in Figure 2 p2 is in the region of p1, therefore p1 is the nearest neighbor for
p2 with respect to cone C. A boundary ray B□ always separates the regions of two input

1 Our implementation computes the Yao graph but can easily be modified to compute the OVD.
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20:4 Efficient Yao Graph Construction

Algorithm 1 Sweepline algorithm for cone defined by (θL, θR). L(p, θ, Ra, Rb) and L(←→pv , Ra, Rb)
denote the ray originating at p with angle θ and the line segment from p to v, respectively, both
separating regions Ra and Rb.

Input: points P = {p1, . . . , pn} with pi ∈ R2, cone (θL, θR)
Output: GNG G = (V, E)

1: τ ← θL+θR

2 + π ▷ opposite of cone’s internal angle bisector
2: Q← {(ρτ (p) , p, I) : p ∈ P} ▷ initialize PQ with input points
3: SL← ∅
4: G = (V, E)← (P, ∅)

5: while p← popMin(Q) do
6: if p is input point then
7: BL, BR ← findRegion(p, SL) ▷ BL and BR enclose p

8: E ∪= (p, Br
L) ▷ assert

(
Br

L == Bl
R

)
9: if BL ∩BR = v then delete v from Q

10: B∗
L ← L (p, θL + π, Br

L, Rp)
11: B∗

R ← L
(
p, θR + π, Rp, Bl

R

)
12: insert [B∗

L, B∗
R] into SL between BL and BR

13: if BL ∩B∗
L = v then Q ∪= (ρτ (v) , v)

14: if BR ∩B∗
R = v then Q ∪= (ρτ (v) , v)

15: if p is intersection then
16: BL, BR ← intersecting rays at p

17: a← Bl
L b← Br

R

18: if BL ∩ prev(BL) = v then delete v from Q ▷ left neighbor boundary on SL

19: if BR ∩ succ(BR) = v then delete v from Q ▷ right neighbor boundary on SL

20: LBS ← L( a⃗+b⃗
2 ,∢(a, b) + π

2 , Ra, Rb) ▷ bisector of line segment
←→
ab

21: LL ← L(p, θL + π, Ra, Rb)
22: LR ← L(p, θR + π, Ra, Rb)
23: if LL ∩ LBS = ∅ = LBS ∩ LR then ▷ bisector intersects no line from p

24: B∗ = L

(
p, π +

{
θL if ρτ (a) < ρτ (b)
θR else

, Ra, Rb

)
25: if LL ∩ LBS = p = LBS ∩ LR then ▷ bisector intersects both lines in p

26: B∗ = L(p,∢(a, b) + π
2 , Ra, Rb)

27: if LL ∩ LBS = v or LBS ∩ LR = v then ▷ bisector intersects one line in v

28: B∗ = L(←→pv , Ra, Rb) + L(v,∢(a, b) + π
2 , Ra, Rb)

29: Q ∪= (ρτ (v) , v) ▷ deletion event
30: replace [BL, BR] in SL with B∗

31: if B∗ ∩ prev(B∗) = v then Q ∪= (ρτ (v) , v)
32: if B∗ ∩ succ(B∗) = v then Q ∪= (ρτ (v) , v)
33: if p is deletion point then
34: B ← ray belonging to p ▷ B = L(←→pv , Ra, Rb) + L(v,∢(a, b) + π

2 , Ra, Rb)
35: replace B in SL with L(v,∢(a, b) + π

2 , Ra, Rb)
36: return G
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Figure 2 Example state of the sweepline algorithm for cone C = (θL, θR) (marked in red). Input
points (circles, bold labels) are numbered in the order they are swept by the sweepline, with their
projections on the cone’s internal angle bisector shown in blue. Rays are labeled with the regions
they are separating. Intersection events are marked with a square. Already determined edges of the
Yao graph are indicated by arrows.

points, thus it is defined by its point of origin Bp
□ and angle Bθ

□ as well as its left and
right region, Bl

□ and Br
□ respectively. The region outside any point‘s cone is labeled with

infinity. Due to intersecting boundary rays, boundaries between regions can also be the
union of a line segment and ray as described in detail in Section 3.2. However, for simplicity
of presentation we still refer to these composite boundaries as boundary rays, unless this
distinction is of relevance. The algorithm maintains an ordered data structure SL of rays
currently intersecting the sweepline. The rays are ordered left-to-right and the data structure
needs to support insert, remove and find operations in O(log n) time, as well as access to the
left and right neighbors of a given ray. In Section 4.2 we describe a balanced binary search
tree that supports these operations and is tuned for our application. Algorithm 1 presents
our algorithm, which is described in detail in the following. An example execution of the
algorithm is depicted in Figure 11 in the appendix.

3.1 Event Types

There are three event types: 1) input points, 2) intersection points, and 3) deletion points.In
the following, we describe how each event is handled by the algorithm. Through the execution
of the algorithm, priority queue Q contains all unprocessed input points, the intersection
points of the boundaries of adjacent regions as well as deletion points for composite boundaries,
ordered according to ρτ (p). If several events coincide, their processing order can be arbitrary.

1) Input points. All points of the given set P are inserted into the event priority queue
at the beginning of the algorithm. For an input point event with associated point p, the
sweepline data structure SL is searched for the region Rq containing p. This region is defined

SEA 2023



20:6 Efficient Yao Graph Construction

by its two bounding rays BL and BR and their associated regions Br
L = Bl

R = Rq.2 We can
then add edge (p, q) to the edge set E of Gk, as proven in [6, Lemma 3.1]. The point p is the
apex of region Rp, bounded to the left by B∗

L = (p, θL + π), separating regions Rq and Rp,
and bounded to the right by B∗

R = (p, θR +π), separating regions Rp and Rq. These new rays
are inserted into SL between BL and BR, forming the sequence [BL, B∗

L, B∗
R, BR]. Lastly,

intersection points of the considered rays need to be addressed. If BL and BR intersect
in point v, its associated intersection point event needs to be removed from the priority
queue Q, as BL and BR are no longer neighboring rays. Instead, possible intersection points
between BL and B∗

L as well as B∗
R and BR are added to Q for future processing.

2) Intersection points. An intersection point v is associated with its two intersecting rays
BL and BR. They separate regions Rp := Bl

L, Br
L = Rm = Bl

R and Br
R =: Rq, refer to

Figure 3. Region Rm terminates at intersection point v and a new boundary B∗ between Rp

and Rq originates at v. The shape of B∗ depends on the configuration of points p and q and
can either be a simple ray or a union of a line segment and a ray. Section 3.2 describes in
more detail how B∗ is determined. B∗ then replaces the sequence [BL, BR] in the sweepline
data structure. Again, intersection points of the considered rays need to be addressed. If
BL has an intersection point with its left neighbor or if BR has an intersection point with
its right neighbor, the associated intersection point events need to be removed from the
event queue Q. Correspondingly, if B∗ intersects its left or right neighbor, the appropriate
intersection point events are added to Q.

3) Deletion event. Deletion events are not part of the original algorithm described by
Chang et al. [6], as the authors do not specify how to handle composite boundaries in their
paper. We use them to implement boundaries consisting of a line segment and a ray. The
deletion event marks the end of the line segment and the beginning of the ray. It does not
change the actual state of the sweepline data structure.

3.2 Boundary Determination
As described in the previous section, at an intersection point event v, the two intersecting
rays BL and BR are merged into a new boundary B∗, separating regions Rp := Br

L and
Rq := Bl

R. The shape of the boundary is determined by the configuration of points p and q.
The determination is based on the number of intersection points between lines

LL = (v, θL + π) (green),
LR = (v, θR + π) (red), and
the bisector LBS of line p⃗q, LBS = ( p⃗+q⃗

2 ,∢(p, q) + π/2) (blue, dashed).
The colors refer to the lines in Figure 3 which illustrates the different cases. If LBS intersects
neither LL nor LR then B∗ = LL = (v, π + θR) if p was swept before q, otherwise B∗ =
LR = (v, π + θR) (Figure 3a). Intuitively, the region of the lower point with respect to the
sweepline direction continues, whereas the upper region stops at intersection point v. If
LBS intersects both lines LL and LR, then the two intersection points must coincide with v

(Figure 3c). In this case, B∗ = (p,∢(p, q) + π/2), i. e. the boundary continues with the angle
of the bisector from point v. Otherwise, i. e. LBS intersects either LL or LR in a point w,
the resulting boundary B∗ will be the union of the line segment v⃗w and ray (w,∢(p, q) + π/2)
(Figure 3b). In this case, a deletion point event is added to the priority queue at point w.

2 Note that Chang et al. [6] explicitly store rays and regions in their sweepline data structure. However,
since a region is identifiable by its two bounding rays, we choose this simpler representation of the
sweepline state.
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(a) LBS intersects neither LL nor LR.
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(d) Input points lying on cone boundaries.

Figure 3 Illustration of the three possible configurations for boundary B∗ following an intersection
point event. In all examples input point p is swept before q. Lines LL, LR and LBS are dotted, the
resulting boundary B∗ is denoted in bold. In Figure d), Yao graph edges are shown as bold arrows.

Input Points Colinear on Cone Boundaries. Chang et al. make the assumption that no line
between two input points is with angle θL or θR. In the following we shall lift this requirement.
Input points sharing a common line with angle θ□ become visible from each other. This
impacts the regions the passing boundary rays are separating. Refer to Figure 3d for a
graphical representation of the following discussion. Recall, that the left – or counterclockwise
– boundary ray with angle θL belongs to a cone C, whereas the right one does not. If a
boundary ray B□ = (p, θ□, Bl

□, Br
□) intersects an input point q then B□ terminates at q and

a new boundary ray B′
□ is formed. If B□ is a left boundary, i. e. θ□ = θL, then edge (p, q) is

added to GK and B′
□ separates regions Bl

□ and Rq. If it is a right boundary then no edge is
added to Gk and B′

□ separates Rq and Br
□. Refer to example points q and w in Figure 3d.

3.3 Analysis

The total number of events processed by the sweepline algorithm is the sum of input point
events Ninput, intersection point events NIE and deletion events NDE. In order to bound the
number of events processed by the sweepline algorithm, we consider the number of rays that
can be present in the sweepline data structure during the execution of the algorithm.

Every input point event adds two rays to the sweepline data structure SL, resulting in
a total of 2n rays. It possibly removes one intersection event from the event queue Q and
may add up to two new such events. Every intersection point event removes two rays from
SL and adds one new ray, thus reducing the sweepline size by one. Therefore, at most 2n

SEA 2023



20:8 Efficient Yao Graph Construction

Table 1 Comparison of geometric predicates used in algorithms for Yao graph construction.

Chang et al. CGAL Naive Grid

Complexity O(n log n) O
(
n2) O

(
n2) O

(
n2)

Predicates
Eucl. distance comp. X X X X
dist. to line comp. X X
oriented side of line X X X
Constructions
cone boundaries X X X X
box construction X
line projection X
ray intersection X

intersection events can be processed before all rays are removed from the sweepline. An
intersection event possibly removes two additional intersection events aside from itself from
Q and may add one new intersection event.3 Additionally, one deletion event may be added
to Q. Therefore, at most 2n deletion events may be processed, each of which leaves the
number of rays and intersections unchanged. In total,

Nevents ≤ Ninput + NIE + NDE

≤ n + 2n + 2n = 5n (2)

With a balanced binary search tree as sweepline data structures each event can be processed
in O(log n) time, yielding the bound of O(n log n).

4 Implementation Details

In this section we highlight some of the design decisions of our implementation of Chang
et al.’s Yao graph algorithm.

4.1 Geometric Kernels
The algorithm by Chang et al. [6] requires many different geometric predicates and construc-
tions. We implement our own version of the required predicates and constructions in an
inexact manner. Additionally, the user can employ kernels provided by the CGAL library.
The EPIC kernel provides exact predicates and inexact constructions, whereas the EPEC
kernel features exact predicates and exact constructions [5].

Table 1 lists the geometric predicates used by the different algorithms for Yao graph
construction presented in this paper, refer to Section 5 for details on the naive and grid
algorithm. Only the sweepline algorithm requires the computation of particularly costly
intersections. The naive as well as grid-based Yao graph algorithm require an oriented side of
line predicate only if cone boundaries are constructed exactly, in order to determine the cone
Cp

I a point q lies in with respect to point p. Additionally, the grid algorithm could construct

3 Technically, B∗ can intersect both its neighbors, leading to two intersection events. However, when the
first – as defined by ρτ (·) – intersection event is processed, it will delete the second event from Q, as
B∗ is removed from SL and a new boundary ray is inserted by the first event.
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the grid data structure using exact computations. However, in our implementation we only
use inexact computations to place the input points into grid cells, as we did not encounter
the need for exact computation in any of our experiments. Note that the determination
whether a grid cell could hold a closer neighbor than the currently found one is done using
the (exact) Euclidean distance comparison predicate.

In order to reduce the number of expensive ray-ray intersection calculations, we store all
found intersection points in a linear probing hash table, with the two intersecting rays as
key, see e. g. Algorithm 1::13. If we need to check whether two rays are intersecting – e. g.
Algorithm 1::9 – we merely require a hash table lookup.

4.2 Sweepline Data Structure
Chang et al. prove an O(n log n)-time complexity for the algorithm [6, Theorem 3.2]. In
order to achieve this bound, the data structure maintaining the rays currently intersected by
the sweepline must provide the following operations: insert, remove and predecessor search
in O(log n) time. Our data structure furthermore provides neighbor access in O(1) time.

In order to support the these operations, we use a doubly linked list of rays, with an AVL
search tree on top [1]. Figure 4 shows a graphical representation of our data structure. As the
order of the rays along the sweepline is known at the time of insertion – see Algorithm 1::12
– the O(log n)-time search phase of a traditional AVL data structure can be omitted and
new rays can be inserted in a bottom-up manner. However, this optimization requires the
need for parent pointers in the tree. As always two neighboring rays are inserted into the
sweepline data structure at the same time, we implement a special insert operation for this
case that only requires one rebalancing operation for both rays. For removal operations, the
position of the ray within the sweepline is known as well – refer to Algorithm 1::30. Thus,
similar to insert operations, no search phase is required for removals and the operation can
be performed in a bottom-up manner. The algorithm always removes the two neighboring
rays BL and BR and and replaces them with B∗. B∗ has the same left neighbor as BL and
the same right neighbor as BR. Therefore, we can simply replace BL with B∗ in the data
structure and just need to remove BR, leading to merely one rebalancing operation.

The search for the enclosing region of a point p – Algorithm 1::7 – is performed by finding
the first ray BR, currently intersecting the sweepline, that has p to its right. This requires the
evaluation of a oriented side of line predicate at each level of the tree. The left neighbor BL

of BR, must have p to its left or on it. Therefore BL and BR enclose p and Br
L = Bl

R = Rq

gives the the region p is contained in. To facilitate searching, each internal node of the
tree needs to refer to the rightmost ray in its subtree. As rays are complex objects, we use
pointers to the corresponding leaf to save memory. Given the expensive search operations,
AVL trees – as strictly height-balancing trees – are preferable to data structures with weaker
balancing guarantees, such as red-black trees [16].

4.3 Priority Queue
The priority queue (PQ) Q is initialized with all input points at the beginning of the algorithm.
During event processing, intersection and deletion events may be added and removed from
Q, therefore requiring an addressable priority queue. The objects are ordered according to
Equation (1), thus keys are (exact) numerical values. Our experiments show that, typically,
for n input points, only about O(

√
n) intersection and deletion events are in Q at any given

step. Using the same PQ for all events would result in expensive dynamic PQ operations.
As input point events are static in Q, we can use a two part data structure as shown in

SEA 2023



20:10 Efficient Yao Graph Construction

Figure 4 The sweepline data structure
is a doubly linked list of rays with an AVL
search tree on top. Additionally, each node
has a pointer to the rightmost ray in its
subtree (dashed).

<

pop & top

insert & remove

Figure 5 The priority queue consists of
a static, sorted array of input points and
a dynamic, addressable PQ for intersection
and deletion events.

Figure 6 Grid-based Yao graph construction algorithm. The cone boundaries are represented by
dashed lines. The algorithm visits grid cells in order of the thick curve. Found edges of the Yao
graph are labeled in red.

Figure 5. Input point events are stored in an array – sorted by priority in Q – with a pointer
to the smallest unprocessed element. Intersection and deletion events are stored in an actual
addressable priority queue. We use an addressable binary heap for this part of the data
structure. The top operation needs to compare the minimum element of the PQ with the
element pointed to in the array and return the minimum of both. Pop either performs a
regular pop on the PQ or moves the pointer of the array to the next larger element. Insert
and remove operations can access the PQ directly, as only this part of the data structure is
dynamic. Thus, the actual dynamic PQ is much smaller resulting in more efficient siftDown
and siftUp operations in the binary heap. The smaller heap size not only reduces the tree
height but also makes the heap more cache friendly.

This optimization might be of interest for other algorithms that initialize their priority
queue with all input points and only have a small number of dynamically added events in
their priority queue at any given time. Note that the total number of processed intersection
and deletion events surpasses the number of input points by far, however only a small number
of these events are in the PQ at the same time.

5 Evaluation

In this section we evaluate our implementation on a variety of datasets against other
algorithms for Yao graph generation.

Competing Algorithms. As mentioned before, we are not aware of any previous implemen-
tations of Chang et al.’s Yao graph algorithm. Therefore, we evaluate our implementation
against other algorithms to construct the Yao graph of a given point set. Our main competitor
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is the Yao graph algorithm from the CGAL library’s cone-based spanners package [15]. As
we are not aware of any other tuned implementations to construct Yao graphs, we implement
two other algorithms ourselves as competition.

First, we implement a naive O
(
n2)-time algorithm that serves as a trivial baseline. The

algorithm compares the distance of all point pairs and determines the closest neighbor in each
of the k cones for a point. It requires only two geometric predicates: distance comparison
and oriented side of line test. For a point pair p and q, the cone Cp

i that q lies in with respect
to p can first be approximated by i = ∢(p,q)/k. Then, two oriented side of line tests suffice to
exactly determine the cone q lies in, independent of the number of cones k.

Second, we implement a grid-based algorithm. The algorithm places all points in a
uniform grid data structure [2] that splits the bounding box of all input points in O(n)
equal-sized cells. For each input point p, the algorithm first visits p’s own grid cell and
computes for each point q in the cell its distance to p and the cone q lies in with respect to p.
The algorithm then visits the grid cells surrounding p’s cell in a spiraling manner, refer to
Figure 6. For each visited cell, the algorithm computes the distances and cones for the points
contained in it with respect to p until all cones of point p are settled. A cone is settled, if
a neighbor v has been found within that cone and no point in adjacent grid cells can be
closer to p than v. Note that some cones may remain unsettled until all grid cells have been
visited if no other input points lie within that cone for point p. While the algorithm still has
a O

(
n2) worst case time complexity, it performs much better in practice.

Experimental Setup. We test all algorithms on a variety of synthetic and real-world datasets.
We use input point sets distributed uniformly and normally in the unit square, as well as
points lying on the circumference of a circle and at the intersections of a grid [12] – the former
being a worst case input for the grid algorithm, the latter being a bad case for numerical
stability. We furthermore use two real-world datasets: intersections in road networks and star
catalogs. As road networks we use graphs from the 9th DIMACS implementation challenge [9].
To generate a road network of a desired size n from the Full USA graph, we use a random
location and grow a rectangular area around it until at least n nodes are within the area. US
cities feature many points on a grid and therefore present a challenge for numerical stability.
We furthermore use the Gaia DR2 star catalog [7], which contains celestial positions for
approximately 1.3 billion stars. We use a similar technique as for road networks to generate
subgraphs of a desired size. Here, we grow a cube around a random starting location until
the desired number of stars fall within it. We then project all stars onto the xy-plane as 2D
input for our experiments. Figure 10 in the appendix shows examples of our input datasets
and resulting Yao graphs.

We implemented all algorithms in our C++ framework YaoGraph, available on Github.4
Our code was compiled using GCC 12.1.0 with CGAL version 5.0.2. All experiments were
run on a server with an Intel Xeon Gold 6314U CPU with 32 cores and 512 GiB of RAM.
For experiments we used three different random seeds and k = 6 unless otherwise specified.

5.1 Algorithmic Metrics
Firstly, we discuss relevant properties of the sweepline algorithm. Figure 7a shows the
number of events processed per input point by the algorithm. Each input point has one input
point event and generates 2.3 intersection and/or deletion events on average, with very little

4 https://github.com/dfunke/YaoGraph
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Figure 7 Statistics for varying input point distribution and point set sizes for k = 6 cones. Error
bands give the variation over the different cones being calculated.

variance with regard to input size and distribution – except for the grid distribution and road
graphs. Both exhibit larger variance, depending on whether the cone’s boundaries coincide
with grid lines or not. Figure 7b shows the maximum number of intersection and deletion
events that are in the priority queue at any given time during the algorithm execution.
This number scales with O(

√
n) for most studied inputs, which motivates our choice of the

two-part priority queue as discussed in Section 4.3. The behavior of the circle distribution
requires further investigation. The maximum number of rays in the sweepline data structure
at any point during algorithm execution shows no clear scaling behavior, refer to Figure 7c.
It scales with O(

√
n) for most synthetic input sets, but approaches a constant fraction of the

input size for the circle (≈10 %), road (≈1 %) and star (≈0.1 %) datasets.

5.2 Runtime Evaluation
Figure 8 shows the results of our runtime experiments. Plots Figure 8a to Figure 8c show
the (scaled) running time of the algorithms, displaying variations due to input distributions
as error bands. Figure 12 in the appendix gives a more detailed picture of the runtime for
the different distributions. Note that only the grid and the sweepline algorithm are sensitive
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Figure 8 Algorithm runtime experiments. Experiments over varying input sizes are performed
with k = 6 cones. Error bands give the runtime variation over the different input point distributions.
For the grid algorithm, the circle distribution is plotted separately with triangular markers. The
gray line represents the time limit of 30 min per algorithm. Experiments over varying number of
cones are with n = 1× 105 uniformly distributed input points.

to the input point distribution. As previously seen in Figure 7a, the number of processed
events by the sweepline algorithm is relatively stable for all distributions. Therefore only
little variation is seen in the runtime of the algorithm. This also shows, that the size of the
sweepline data structure has only negligible influence on the algorithm runtime, as no higher
runtime is observed for the road or circle datasets. Our inexact kernel shows more runtime
variation than CGAL’s highly optimized kernels, mainly due to the grid distribution with
its many points directly on cone boundaries. The sweepline algorithm clearly outperforms
CGAL’s Yao graph implementation. Furthermore, even though the sweepline algorithm
requires much more involved computations, it is superior to the simple grid algorithm for
non-exact constructions. Only for exact constructions, large inputs are required to negate
the more expensive operations of the sweepline algorithm. The exact construction kernel
leads to runtime overhead of 100 compared to the EPIC kernel. However, if points lie directly
on cone boundaries, exact constructions are necessary to obtain correct results, as seen in
Figure 10c in the appendix. The data dependency is more pronounced for the grid algorithm,
which performs well for most datasets but degenerates to the naive algorithm for the circle
distribution, due to the many empty grid cells in the circle’s interior.
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Figure 9 Algorithm runtime experiments. Experiments over varying number of cones are with
n = 1× 105 uniformly distributed input points.

To compute a Yao graph with k cones, the sweepline algorithm requires k passes. This
linear relationship can be seen in Figure 9. The grid algorithm has no dependency on k –
except for the size of the neighborhood of a point. However, our experiments show that the
runtime of the algorithm increases with increasing k. We attribute this to the fact that more
grid cells need to be visited in order to settle all cones of a point p, since with narrower cones,
chances are higher that no points lying in a specific cone of p are within a visited grid cell.
We did not perform these experiments with the naive algorithm or the CGAL algorithm,
due to their long runtimes. CGAL’s algorithm also requires one pass per cone, whereas the
naive algorithm’s runtime dependency on k is negligible.

6 Conclusion

We present the – to the best of our knowledge – first implementation of Chang et al.’s optimal
O(n log n)-time Yao graph algorithm. Our implementation uses carefully engineered data
structures and algorithmic operations and outperforms current publicly available Yao graph
implementations – particularly CGAL’s cone-based spanners package – by at least an order
of magnitude. We furthermore present a very simple grid-based Yao graph algorithm that
also outperforms CGAL’s implementation, but is inferior to Chang et al.’s algorithm for
larger input. However, the algorithm could be further improved by using a precomputed
mapping of the grid neighborhood to cones, in order to only visit grid cells that can contain
points in hitherto unsettled cones. Moreover, the algorithm is trivially parallelizable over
the input points, whereas Chang et al.’s algorithm can only be easily parallelized over the k

cones. The parallelization within one sweepline pass remains for future work.
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A Evaluation

A.1 Input Point Distributions

(a) Uniform distribution.

(b) Gaussian distribution.

EPEC kernel EPIC kernel
(c) Grid distribution.



D. Funke and P. Sanders 20:17

(d) Circle distribution.

(e) Road dataset.

(f) Star dataset.

Figure 10 Input distributions for n = 1000 points and resulting Yao graph for k = 6. For the
grid distribution, the resulting graphs from exact constructions and inexact constructions are shown.
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A.2 Example Execution

Figure 11 Sample execution for n = 6 points and cone C = (4π/3, 5π/3), resulting in τ = π/2

(upward). The currently processed point is marked in red, the sweepline is a dashed, blue line.
All rays currently intersecting the sweepline are blue, except for the left boundary ray BL (cyan)
and right boundary ray BR (green). Intersection points are marked as squares, deletion points as
triangles. For intersection events, the intersecting rays are cyan and the the bisector line is yellow.
Edges of the Yao graph are solid black lines and settled cone boundaries are dashed.
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A.3 Results
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Figure 12 Algorithm runtime experiments. Experiments over varying input sizes are performed
with k = 6 cones. The gray line represents the time limit of 30 min per algorithm.
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