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Abstract: U-Net is the go-to approach for biomedical seg-
mentation applications. However, it is not designed to segment
overlapping objects, a challenge Mask R-CNN has shown to
have great potential in. Yet, Mask R-CNN receives little atten-
tion in biomedicine. Hence, we evaluate both approaches on
a publicly available biomedical dataset. We find that Mask R-
CNN outperforms U-Net in segmenting overlapping cells and
achieves comparable performance if they do not intersect. Our
study provides valuable decision support to practitioners in se-
lecting an appropriate method when solving instance segmen-
tation tasks using deep learning, as well as important insights
into enhancing the accuracy of such approaches in biomedical
image analysis.
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1 Introduction

Instance segmentation is a task that involves delineating in-
dividual objects within an image. It is an essential task in
biomedical research, having crucial roles in all areas from dis-
ease diagnosis over drug discovery to cell behavior analysis. In
recent years, Deep Learning (DL) has emerged as a powerful
tool for image analysis, promising to tackle the most challeng-
ing segmentation tasks. But despite the success and potential
of DL, many challenges are still considered very difficult to
solve. In biology, segmenting overlapping cells is such a de-
manding and recurring challenge [6].

One of the most popular DL architectures for cell segmen-
tation is U-Net [9], which has established itself as the go-to
approach in biomedical applications. It is known for its sim-
plicity and efficiency [7, 8, 11]. However, despite its success,
U-Net still faces challenges, such as learning instance segmen-
tations, which requires significant modifications to the origi-
nal architecture [10]. Alternative approaches exist but have re-
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Fig. 1: Overview. We subdivide a biomedical dataset based on
instance overlap and train U-Net and Mask R-CNN on each split.
After that, we assess the neural networks’ ability to learn from
overlapping instances.

ceived little attention in biomedical applications to date. One
is Mask R-CNN [3], which combines object detection and in-
stance segmentation to produce precise masks around each ob-
jectin an image. It has shown great potential when segmenting
cells [2]. However, there are only a limited number of studies
comparing the performance of Mask R-CNN and U-Net in se-
mantic segmentation [1, 12], and none that focus on instance
segmentation. In this work, we compare Mask R-CNN with U-
Net for cell segmentation. Both approaches are evaluated on a
publicly available biomedical dataset containing cells obtained
from cervical cytology [6]. A visual summary of our work is
given in Fig. 1.

Our study highlights the importance of exploring alterna-
tive approaches to address the challenges of biomedical image
analysis and provides decision support to help practitioners
decide when to use which method. The analysis incorporates
both qualitative evaluations and quantitative metrics, includ-
ing a novel measure that examines the intensity of overlap-
ping instances in a dataset, which can be utilized to further
enhance and simplify the decision process. Moreover, the pa-
per includes a ready-to-use implementation of the discussed
methods, making it easy to replicate the experiments and build
upon the findings. Overall, the paper’s contributions offer im-
portant insights for improving the accuracy and efficiency of
instance segmentation methods in biomedical image analysis.
Our experiment pipeline, the used methods, and metrics are
open-source and available at: https://github.com/Irettenberger/
maskrcnn-vs-unet-for-instance- segmentation.
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2 Method

The main idea of our work is to critically examine the estab-
lished way of segmenting cells in the biomedical field that
usually employs U-Nets, particularly in cases where instances
overlap. To accomplish this, we conduct an experiment that
compares Mask R-CNN [3] with a modified version of the U-
Net architecture for instance segmentation of cells [10]. To ob-
tain expressive results, we employ a biomedical dataset that we
divide into a number of sub-datasets based on the number of
overlapping instances. The results are evaluated, both graphi-
cally as well as by using quantitative metrics, including a novel
measure designed to evaluate performance in relationship with
overlap ratio (for an overview see Fig. 1).

2.1 Dataset

The dataset consists of 945 synthetic cervical cytology im-
ages, which were generated using cells extracted from 16 non-
overlapping field-of-view images obtained from four speci-
mens [6]. The images vary in number of cells present and de-
gree of overlap and are designed to replicate the characteristics
of real cervical cytology images. The masks for each cell in
an image are provided as instance segmentation masks. Fig. 2
displays two samples of the dataset. All samples in the dataset
have the dimension 512 x 512 pixels and are grayscale images.

Tab. 1: The sub-datasets used in this work. © is the amount of
overlap within the cells and #Train / #Test is the number of train
and test samples.
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Fig. 2: Two samples of the dataset used in this work including the
ground truth masks marked in color. The first sample contains
many overlapping cells and the second one almost none.

2.2 Experiment Design

Our conceptual approach uses a dataset D of length M with
different levels of overlapping objects. To accurately assess
the impact of overlap, D is partitioned into n sub-datasets
S = {51,82,...8n} of equal size, each containing different
amounts of instance overlap within the samples. Every ground
truth instance segmentation mask D;, ¢ < M is given as an ar-
ray of binary masks with C instances, height H, and width W.
So the whole dataset has the form shape(D) = [M, C, H, W].
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Sub-Dataset © #Train #Test
S1 0% 131 24
So 1% 131 30
S3 12% 131 28
Sy 19% 131 28
Ss 26% 131 27
Ss 37% 125 28

Let D7 be the class frequency describing for every pixel
coordinate h, w, how many classes overlap at this position

C

D] =D Dicchu- (1)

c=1

Using DS, we calculate the percentage of pixels that belong to
multiple classes (overlaps) relative to the overall area that all
masks take for a segmentation mask D; as

H w
r_ D oh=1 Zw:l[pzf,h,w >1]
(2 H W bl
Zh:l Zw:l[D{,h,w > 0]

where [o] denotes the Iverson bracket [4]. With the overlap cri-
terion I'; we create the n sub-datasets S by sorting D based on

(@)

the overlapping area and creating n equal-sized bins by calcu-
lating the size of each bin as [|D|/(n + 1)], where |D| denotes
the number of samples in D (see Fig. 1).

To evaluate the neural networks based on the intensity of
overlap in a sample, we introduce the novel overlapping mea-
sure © that describes how much overlap is present in an image.
The maximum amount of overlap occurs if all instances are
completely aligned on top of each other, while the minimum
amount happens if there is no overlap at all. The maximum
and minimum possible overlap frequencies DT and DV for
a sample D; are determined as

H W

DT =3"N"[p], ., >0+ 3)
h=1w=1
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D=3 S, > 0l @)
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With DT and D+ we calculate © as
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with © in the range (0.0 < © < 1.0). High © values indicate
high overlap. Tab. 1 shows the resulting splits S when dividing
the dataset (Sec. 2.1) into equal-sized bins after sorting by ©.
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Tab. 2: The results for each sub-dataset. The metric listed is the
Aggregated Jaccard Index (Adl+) [5]. § is the percentage increase
from U-Net to Mask R-CNN, expressed as a percentage of the U-

Net value (relative gap).

Sub-Dataset U-Net Mask R-CNN  §

S 95% + 0.5 90% + 1.0 —5%
Ss 84% + 3.3 87% + 0.7 +3%
S3 78% + 1.5 81% + 0.8 +4%
Sy 64% + 1.9 72% + 0.5 +13%
Ss 54% + 2.3 63% + 0.9 +17%
Ss 41% + 4.3 55% + 1.4 +34%
3 Results

3.1 Architecture, Training, and
Implementation

We use the Dice Loss as the objective function and the Adam
optimizer with a learning rate of 0.002 (U-Net) or 0.0001
(Mask R-CNN) in all experiments, which are values found to
be optimal in a preceding hyperparameter search. We do not
employ data augmentation for training. All sub-datasets are
randomly divided into 80% / 20% splits of training and valida-
tion data. The samples are normalized to be in the range [0, 1].
For the U-Net-based approach, we predict Euclidean distance
maps with subsequent seed-based watershed post-processing
for segmenting instances [10]. Our implementation of Mask
R-CNN follows the original introduction [3] and is config-
ured with two classes: cell and background. Early stopping and
learning rate scheduling are employed. Both, U-Net and Mask
R-CNN are implemented in PyTorch Lightning. We conduct
the training using an NVIDIA GeForce RTX 3090 GPU and
an AMD Ryzen 9 5950X 16-Core 3.40GHz CPU. To avoid
initialization effects and ensure reliable metrics, we repeat all
experiments four times with random seeds and report the mean
results along with their corresponding standard deviation. For
evaluation, we use a test split of the corresponding sub-dataset.

3.2 Experiments

Tab. 2 shows the results of the experiment, split by sub-
datasets. Our findings reveal that U-Net outperforms Mask
R-CNN if the cells do not intersect. However, if there is a
slight overlap between the objects, the performance of U-Net
decreases considerably. With more challenging sub-datasets
Mask R-CNN also generates less fitting masks, but the per-
formance drops less rapidly. With the sub-dataset containing
the largest overlap, this even results in a relative gap of 34%
between U-Net and Mask R-CNN. These results are consistent
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Fig. 3: Two samples from the test data from each sub-dataset with
the ground truth instance segmentation masks, U-Net predictions,
and Mask R-CNN predictions.
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Fig. 4: Scatter plot with © on the x-axis and the AJl+ [5] metric
on the y-axis. The best U-Net and Mask R-CNN model for training
with each sub-dataset is shown. Each point is one sample from
the combined test data, so all samples from all dataset splits. For
both methods, a linear regression line is plotted over the scatter
points.

with what can be seen when looking at the generated instance
segmentation masks. Fig. 3 shows two samples of each sub-
dataset with the ground truth segmentation masks, as well as
the generated ones by U-Net and Mask R-CNN. For S; both
approaches generated precise masks. With Sy the masks still
appear to be fitting, but U-Net already displays some slight in-
accuracies. Looking at S3 similar behavior is apparent. Even
for Sy, the dissimilarities are not yet immediately noticeable.
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But with S5, the strengths of Mask R-CNN become notice-
able. Here, U-Net often does not recognize cells or cannot find
the boundaries correctly. This intensifies even more with Sg.

The scatter plots in Fig. 4 evaluate the best models for
each sub-dataset. Unlike the previous evaluations, all test sets
are merged to evaluate every model across the entire range of
©. The results show that Mask R-CNN improves if trained
on samples with higher ©. Interestingly, even when trained
on S; (no overlap), Mask R-CNN achieves noticeably better
performance than U-Net on samples with high ©. For Sz and
S3 (slight overlap) Mask R-CNN and U-Net were about equal
in performance. However, for S4, S5, and S5, Mask R-CNN
consistently outperforms U-Net. Interestingly, if the networks
are trained on data with high ©, Mask R-CNN maintains good
performance with samples drawn from the entire spectrum of
© which is not the case with U-Net.

4 Discussion

In this study, we observed noticeable differences between
U-Net and Mask R-CNN in their performance in instance
segmentation tasks. Specifically, we found that U-Net ex-
celled in scenarios where the instances were distinct and non-
overlapping. However, if the dataset contains overlapping in-
stances, U-Net’s performance decreases rapidly, making Mask
R-CNN the more suitable solution. With increasing levels
of overlap, Mask R-CNN remains considerably more stable
and provides much more precise segmentation masks. Inter-
estingly, if trained on challenging masks with much overlap,
Mask R-CNN maintains good performance on simple samples
as well. This suggests that Mask R-CNN is capable of learn-
ing spatial correlations from challenging samples that can aid
in identifying objects in more trivial ones. In contrast, U-Net
is not capable of this. We suspect this is a structural problem
as the U-Net is limited to making one prediction per pixel,
which leads to contradictions if several objects are in the same
position. This seems to restrict U-Net in its capabilities so con-
siderably that it’s not capable of segmenting non-overlapping
cells if trained solely on high-overlap samples.

5 Conclusion

We recognize that U-Net, while widely used in biomedical ap-
plications, is not well suited for instance segmentation if the
objects are overlapping. Our study compares U-Net with the
alternative approach of Mask R-CNN on a synthetic cervical
cytology images dataset with many overlapping cells. We ob-
serve that while U-Net had a slight advantage when there is
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no overlap, this advantage diminishes with even slight inter-
sections of objects, and Mask R-CNN’s advantage grows with
increasing overlap. Overall, our findings suggest that Mask R-
CNN is a promising alternative to the widely used U-Net ar-
chitecture, particularly in scenarios with many intersections of
objects. Future research could compare Mask R-CNN and U-
Net on further datasets with different overlap levels and as-
sess other instance segmentation methods to enhance future
biomedical applications.
Acknowledgement

This work was supported by the HoreKa Supercomputer
through the Ministry of Science, Research, and Art, Baden-
Wiirttemberg and by the Helmholtz Association Initiative and
Networking Fund on the HAICORE @KIT partition.

References

[1] Alfaro E, et al. A brief analysis of u-net and mask r-cnn for
skin lesion segmentation. In: Proceedings of the IEEE In-
ternational Work Conference on Bioinspired Intelligence
(IWOBI). 2019, 000123-000126.

Fujita S, et al. Cell detection and segmentation in microscopy
images with improved mask r-cnn. In: Proceedings of the
Asian Conference on Computer Vision. 2020, 58-70.

He K, et al. Mask r-cnn. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. 2017, 2961-2969.
Iverson KE. A programming language. In: Proceedings of the
Spring Joint Computer Conference. 1962, 345-351.

Kumar N, et al. A dataset and a technique for generalized
nuclear segmentation for computational pathology. /EEE
Transactions on Medical Imaging 2017;36:1550—-1560.

Lu Z, et al. Evaluation of three algorithms for the segmenta-
tion of overlapping cervical cells. IEEE Journal of Biomedical
and Health Informatics 2016;21:441-450.

Rettenberger L, et al. Annotation efforts in image segmenta-
tion can be reduced by neural network bootstrapping. Cur-
rent Directions in Biomedical Engineering 2022;8:329-332.
Rettenberger L, et al. Self-supervised learning for annotation
efficient biomedical image segmentation. /EEE Transactions
on Biomedical Engineering 2023;.

Ronneberger O, et al. U-net: Convolutional networks for
biomedical image segmentation. In: 18th International
Conference on Medical Image Computing and Computer-
assisted Intervention (MICCAI). 2015, 234-241.

Scherr T, et al. Cell segmentation and tracking using cnn-
based distance predictions and a graph-based matching
strategy. PLOS ONE 2020;15:€0243219.

Schutera M, et al. Methods for the frugal labeler: Multi-class
semantic segmentation on heterogeneous labels. PLOS
ONE 2022;17:€0263656.

Zhao T, et al. Comparing u-net convolutional network with
mask r-cnn in the performances of pomegranate tree canopy
segmentation. In: Proceedings of the Society of Photo-
Optical Instrumentation Engineers (SPIE), volume 10780.
2018, 210-218.

(2]

(3]
4
(5]

(6]

(7]

(8]

£l

[10]

(1]

[12]



