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Abstract: We introduce a lightweight framework for seman-
tic segmentation that utilizes structured classifiers as an alter-
native to deep learning methods. Biomedical data is known
for being scarce and difficult to label. However, this frame-
work provides a lightweight, easy-to-apply, and fast-to-train
approach that can be adapted to changes in image material
though efficient retraining. Moreover, the framework is able to
adapt to various input sizes making it robust against changes
in resolution and is not tied to specialized hardware, which
allows efficient application on standard laptops or desktops
without GPUs. We benchmark two distinct models, a single
structured classifier and an ensemble of structured classifiers,
against a U-Net, evaluating overall performance and train-
ing speed. The framework is versatile and can be applied to
multi-class semantic segmentation. Our study shows that the
proposed framework can effectively compete with established
deep learning methods on diverse datasets in terms of perfor-
mance while reducing training time immensely.

Keywords: Semantic Segmentation, Structured Classifier,
Structured Random Forest, Deep Learning, Machine Learn-
ing, Benchmark

1 Introduction

Computer vision has become increasingly important in a wide
range of fields, from self-driving cars to medical imaging. One
of the most fundamental tasks in computer vision is semantic
segmentation, which involves labeling each pixel in an image
to identify different objects and regions of interest. In particu-
lar, biomedical image segmentation is widely used to analyze
experimental results or to support the diagnosis of diseases.
While deep learning approaches, such as Convolutional Neu-
ral Networks (CNNs), show state-of-the-art performance on
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a variety of datasets, they are complex and computationally
expensive [9]. These methods often require large amounts of
annotated data to train, which can be a significant hurdle in
biomedical applications where labeling is difficult and time-
consuming [12]. In addition, biomedical data can be highly
variable, with differences in color, resolution, annotator noise
and other modalities between datasets. This variability makes
it challenging for CNNs to generalize across different datasets,
which may require retraining the model for each new dataset.
To address these challenges, we propose a lightweight and thus
fast to train framework for semantic segmentation based on
structured random forests.

Structured random forests are a technique used in com-
puter vision for assigning labels to each pixel in an image to
identify regions of interest [3]. This approach is similar to a
CNN, where a kernel defines the neighborhood for each pixel,
and is used to select features per pixel for the final classifi-
cation. Structured random forests have been used for various
image segmentation tasks, including edge detection [3], brain
tumor segmentation [15], and road crack segmentation [13]. It
is possible to further increase performance by combining mul-
tiple structured classifiers [1].

Our objective is to use this method to enable biomedical
researchers to analyze and interpret their image data, enabling
faster and efficient evaluations of experiments and supporting
diagnoses of diseases.

2 Method

The proposed framework integrates structured segmentation
algorithms as modular components to enable the creation of ef-
ficient and powerful multi-class semantic segmentation mod-
els. We showcase the capabilities of the framework by present-
ing two models designed to compete with a U-Net in terms of
performance while maintaining fast training times.

The first model (SC: Structured Classifier Model) consists
of one structured classifier. The classifier processes the image
at its original resolution classifying each pixel based on is sur-
rounding pixels. This classifier comprises two components: a
kernel and a regular classifier. The kernel determines the pix-
els that are taken into consideration for classification, while the
regular classifier makes the final decision. The kernel gathers
the pixel values surrounding a given pixel and organizes them
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into a single feature vector. The position of each value in the
feature vector corresponds to its relative position to the pixel.
In our case, the kernel considers all pixels within a radius of
5 pixels. This model has a limited capacity since it is not able
to learn features at a large scale. The second structured classi-
fier model (ED: Encoder-Decoder Model) scales the previous
model to enable the model to process larger context in an im-
age. Instead of using a single classifier for segmentation, the
model utilizes six structured classifiers as an ensemble, which
are stacked on top of each other. The concept is depicted in
Fig. 1.

Fig. 1: The ED model is an ensemble of six classifiers, where
each classifier provides it predictions for the next classifiers as
features. Each classifier has its defined image scale and is only
trained on one third of all images.

The predictions from all previous classifiers serve as in-
put for the next one. The classifiers learn features of different
scales by downscaling the image by a factor of two for the
first three classifiers and then increasing its size to the original
resolution for the last three classifiers. Each individual classi-
fier is trained on one-third of the dataset, which is randomly
sampled, to reduce training time and prevent overfitting. Both
proposed models are able to process input images of any size
during training and inference and support colored and gray-
scale images. In our case, both models process gray-scale im-
ages by default to further boost their speed. We use an extra
tree classifier [5] to classify the pixels for all models.

The models are developed to use the same data format
as deep learning-based methods, ensuring compatibility with
various image labeling methods and frameworks specifically
designed for deep learning applications. Moreover, these mod-
els can be easily adjusted to process either gray-scale or color
images.1

Our benchmark model is a U-Net [10] with a
ResNet18 [6] backbone and the encoder pretrained on the
Imagenet dataset [11]. To train the U-Net, we used common
augmentation techniques such as rotation, flipping, cropping,
blurring, salt-and-pepper noise, and brightening. Our proposed
models are not using augmentations techniques to simplify

1 For a more detailed explanation and the implementation, refer to https:
//github.com/FMuenke/structured_segmentation

their training procedure. We split the dataset into training
and validation sets using a 90-10 split, and we selected the
weights that performed best on the validation dataset as our fi-
nal model. If there was no improvement after 100 epochs, we
stopped the training. The U-Net was trained with an ADAM
optimizer, a learning rate of 10−4 and the binary-cross-entropy
loss. The U-Net processes colored images, due to its pretrained
encoder. We score the models by training time in minutes and
the segmentation performance in F1-Score (Dice Coefficient).
Each model was trained three times to validate against effects
of randomness and the average result is used as a representa-
tive value. The training time was measured on a MacBook Pro
(2020) with an 2,3 GHz Quad-Core Intel Core i7 CPU and 16
GB Ram.

3 Datasets

In Tab. 1, we introduce biomedical datasets as general bench-
mark for evaluating semantic segmentation algorithms. In
Fig. 2 we present exemplary images and discuss the diverse
challenges. Each dataset is prepared to present a binary seg-
mentation task to the models separating between foreground
and background.

Dataset Train Test Domain

CryoNuSeg [7] 148 30 Nuclei
LIVECell [4] 2.640 176 Cell

Derma ISIC [2] 2.000 600 Skin Lesion
Seafood [14] 8.550 450 Seafood Types
Sphere [8] 201 38 Tumor Spheroids

Tab. 1: An overview over all benchmark datasets used to show-
case the functionality of the proposed framework and the distribu-
tion of training and test images.

The CryoNuSeg [7] dataset is the first annotated dataset of
Hematoxylin and Eosin (H&E)-stained images for nuclei seg-
mentation from 10 different organs. Its diverse textures make
it a challenging dataset that requires adaptation to the appear-
ance of different organs. The LIVECell [4] dataset is a high-
quality dataset of phase-contrast images for cell segmentation.
Due to time constraints, we use a subset of the original dataset
for training, where the training dataset consists of fixed-size
crops (256px x 256px) while the test set has a different resolu-
tion (704px x 520px). Structural difficulty is common in other
datasets and underscores the importance of input size flexibil-
ity. The Derma ISIC [2] dataset focuses on skin lesion anal-
ysis and melanoma detection, with nine diagnostic categories
and varying image sizes in the training and test datasets. This
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(a) CryoNuSeg [7] (b) LIVECell [4] (c) Derma ISIC [2] (d) Seafood [14] (e) Sphere [8]

Fig. 2: Five examples of images from each benchmark dataset for semantic segmentation, showcasing the variability in object size and
area, textures, and shape features present in the datasets.

dataset poses a difficult challenge due to its varying appear-
ance and large differences in the melanoma scale in the image.
The Seafood [14] dataset comprises nine seafood types, and its
images are heavily augmented with rotation, resulting in the
largest dataset. This dataset is distinct from others due to its
unique combination of color and texture information. Finally,
the Sphere [8] dataset consists of tumor spheroids captured in
a high-throughput Droplet Microarray (DMA). This datasets
poses a unique challenge since there is only one segmentation
target and it often overlaps with the borders of the capturing
setup.

4 Results

We evaluate the models on the introduced datasets. We mea-
sure the performance by computing the F1-Score on the test
dataset, the results are shown in Tab. 2. The training time is
measured in seconds and reported in Tab. 3.

Performance
Model

CryoNuSeg LIVECell ISIC Seafood Sphere

U-Net 59.08 81.97 82.51 92.81 92.52
SC 59.90 92.50 57.44 64.79 79.92
ED 60.77 93.04 69.62 84.55 90.24

ED-c 56.70 92.93 71.65 91.14 83.81

Tab. 2: Summary of the performance in F1-Score on all datasets.
ED-c represents the ED model with color processing enabled.

On the CryoNuSeg dataset, both of our models achieved
better results than the U-Net by approximately 1% and 2%.
However, this dataset is challenging due to its complexity and
diversity, resulting in lower performance across all algorithms.
On the LIVECell dataset, both proposed models outperformed
the U-Net by approximately 11%, and perform similarly to
each other. Although the ED model has the capability to an-

alyze more context, we believe it was not necessary in this
case since the segmentation targets were small in size. The
dataset features a unique characteristic of different resolutions
between the test and training images. Our proposed models
are able to easily accommodate inputs of varying sizes, result-
ing in no impact on their performance. In contrast, the U-Net
was unable to adjust to this variation. On the ISIC dataset, the
U-Net model exceeds the performance of the ED model by
approximately 13% and the SC model by approximately 25%.
The diversity of the ISIC dataset, which includes varying im-
age capture setups and a range of melanoma types, is likely
the reason for the notable differences in performance among
the models. It’s worth noting that the melanomas in the dataset
also vary greatly in scale, which could be another contributing
factor. On the seafood dataset, the U-Net outperformed our
proposed models by approximately 8% and 28%. Since both
proposed models were processing gray-scale images, crucial
information was lost. On the Spheroid dataset, the U-Net again
performed better, outperforming our proposed models by ap-
proximately 2% and 13%. Additionally, we are evaluating the
model ED-c, which is able to process colored images. The re-
sults show a positive impact on the F1-Score for the Seafood
(+6.59%) and ISIC (+2.03%) dataset, while the impact is small
or negative for the datasets CryoNuSeg, LIVECell and Sphere.

We also evaluated the speed of training, the results are
shown in Tab. 3. Both of our proposed models showed notably
faster training times compared to the U-Net, with the simpler
SC model being about 100 times faster and the ED model per-
forming about 10 times as well on all evaluated datasets. Dur-
ing inference the U-Net is able to process an image in 113ms,
while the SC model requires 924ms and the ED model takes
1699ms. While the inference is slower it is still able to process
images with reasonable speed.

When comparing the performance of the SC and ED mod-
els, the ED model outperforms the SC model. Particularly,
the ED model displays superior performance on the last three
datasets, which contain larger objects or require a broader con-
text to identify the primary target against background objects.
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However, the difference in datasets with numerous smaller
objects such as CryoNuSeg and LIVECell was not as pro-
nounced. It is important to note that this improvement comes
at the expense of training speed, as the SC model is 10 times
faster than the ED model. Thus, we recommend using the SC
model for segmenting many small objects, and the ED model
when a larger image context is necessary.

Overall, our proposed models were able to outperform the
U-Net on two out of five datasets and provide competitive per-
formance on the Sphere and Seafood dataset. We also demon-
strated that for complex datasets with important color features,
the performance can be further improved by activating colored
inputs. Additionally, we proof that our framework enables fast
training cycles and is able to quickly adapt to new datasets.

Training Time
Model

CryoNuSeg LIVECell ISIC Seafood Sphere

U-Net 53.5 886.0 702.2 27665.0 71.4
SC 0.5 1.7 4.8 8.1 0.3
ED 5.2 26.4 23.9 79.6 1.3

ED-c 7.3 45.4 43.6 97.0 3.4

Tab. 3: Summary of the training times on all datasets in minutes.
ED-c represents the ED model with color processing enabled.

5 Conclusion

Our paper presents a lightweight framework for semantic seg-
mentation. Biomedical data is notoriously scarce and hard to
label, making it challenging to train deep-learning models that
can generalize to new datasets. Our framework overcomes this
challenge by enabling researchers to quickly generate special-
ized models for each specific dataset. This allows the frame-
work to be easily adapted to any changes in image mate-
rial that may arise. Through our experiments, we evaluated
two different models in terms of training speed and F1-Score
performance. Our findings demonstrate that the framework
can achieve impressive results on four out of five benchmark
datasets with diverse characteristics, and that its fast training
time, up to 100 times faster than the U-Net on a CPU, provides
a feasible alternative to popular deep-learning frameworks in
scenarios where GPU resources are limited or unavailable. We
recommend the use of the ensemble of structured classifiers
model when larger image context is needed and the single
structured classifier model when segmenting many small ob-
jects.

Future works may involve enhancing the framework with
image augmentation techniques, mechanisms for automatic
detection of the need for colored image processing, and quan-
tifying the minimum number of images required for good re-
sults to reduce unnecessary labeling effort.
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