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Abstract: Supervised Neural Networks are used for seg-
mentation in many biological and biomedical applications. To
omit the time-consuming and tiring process of manual label-
ing, unsupervised Generative Adversarial Networks (GANs)
can be used to synthesize labeled data. However, the training
of GANs requires extensive computation and is often unsta-
ble. Due to the lack of established stopping criteria, GANs are
usually trained multiple times for a heuristically fixed num-
ber of epochs. Early stopping and epoch selection can lead to
better synthetic datasets resulting in higher downstream seg-
mentation quality on biological or medical data. This article
examines whether the Fréchet Inception Distance (FID), the
Kernel Inception Distance (KID), or the WeightWatcher tool
can be used for early stopping or epoch selection of unsuper-
vised GANs. The experiments show that the last trained GAN
epoch is not necessarily the best one to synthesize downstream
segmentation data. On complex datasets, FID and KID corre-
late with the downstream segmentation quality, and both can
be used for epoch selection.
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1 Introduction

Image segmentation is a crucial task in many biological and
biomedical applications, and Neural Networks (NNs) are the
state-of-the-art method for cell segmentation [14]. However,
supervised training of NNs requires labeled datasets. Manual
labeling is time-consuming, tedious, prone to errors, and the
inter-observer variability can be high [8]. To overcome these
issues, unsupervised (unpaired) Generative Adversarial Net-
works (GANs) like CycleGAN can be used to synthesize la-
beled datasets without manual labeling [3, 4]. CycleGAN [18]
can be used to transfer images between the unpaired domains
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of synthetic label images 𝒳 and real target microscopy images
𝒴 . Doing so enables creation of synthetic paired training data
for NNs [2, 3, 12]. CycleGAN consists of two generator net-
works: One transfers images from domain 𝒳 to 𝒴 (𝐺𝑋𝑌 ), and
the other one transfers images from domain 𝒴 to 𝒳 (𝐺𝑌 𝑋 ).
Two discriminators try to distinguish the real images from the
synthetic images in each domain. Training GANs for unsu-
pervised image-to-image translation requires extensive com-
putation and is often unstable. As a result, GANs are trained
multiple times for a fixed number of iterations, and the quality
of the output is assessed after training by visible inspection or
metrics like the FID. Enabling early stopping with metrics us-
able during GAN training or selection of the best epoch after
training can enable scientists to get better results faster.

The Fréchet Inception Distance (FID) [7] and the Ker-
nel Inception Distance (KID) [1] are metrics to quantify the
quality of unpaired synthetic images. The FID metric is cal-
culated by extracting features from synthetic images and real
target images acquired e.g. by microscopy. Image features are
usually extracted with an Inception-v3 network trained on Im-
ageNet [7, 16]. Afterwards, multivariate Gaussians are fitted
to the representations of real images and synthetic images in
feature space, and the Fréchet distance is used to quantify the
distance between both feature space representations. A lower
score indicates more similar images. The KID metric measures
the maximum mean discrepancy between the feature space
representations of real and synthetic images using a polyno-
mial kernel. Also, for KID, a lower score refers to synthetic
images being more similar to real images. WeightWatcher
(WW) is used to analyze NN training without data [13]. The
layers of the network are examined based on the theory of
heavy-tailed self-regularization. The analysis is carried out by
performing a singular value decomposition of the weight ma-
trix 𝑊 of a layer and examining the histogram of eigenvalues
afterwards. A power law function with the exponent 𝛼 is fitted
to the tail of the histogram. The mean of 𝛼 over all NN layers
can be used to determine whether a network is well-trained.
A lower mean 𝛼 indicates a better NN. It must be evaluated
whether the 𝛼 metric of the CycleGAN generator 𝐺𝑋𝑌 can
potentially be used as an image quality measure.

To the best of our knowledge, the above metrics have
not been used for early stopping or epoch selection of unsu-
pervised GANs. Therefore, this article derives a workflow to
quantitatively analyze the suitability of metrics available dur-
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Fig. 1: Workflow to assess the correlation between GAN metrics acquired during training and U-Net segmentation quality metrics. The
metrics during GAN training are compared to the downstream U-Net segmentation metrics. The minus sign indicates a split of data.

ing GAN training as stopping criteria and for epoch selection
for downstream segmentation tasks. The workflow is applied
to a biological and a biomedical dataset, and FID, KID, and 𝛼

are compared. FID and KID are widely used to assess the qual-
ity of synthetic images, while 𝛼 could potentially be highly
useful because it does only rely on network weights.

2 Method

To assess whether the selected metrics are a suitable indica-
tor for epoch selection or early stopping of GANs, the scores
of GAN metrics have to be compared to the downstream task
metrics. In addition to standard GAN training, metrics are cal-
culated in a validation step after each epoch.

Therefore, we propose the following workflow shown in
Figure 1: A paired labeled dataset 𝐷 = (𝐷𝑇 , 𝐷𝐿) with target
images 𝑇 and labels 𝐿 is split into training 𝐷train, validation
𝐷val, and test data 𝐷test. The train labels 𝐷𝐿

train are used to syn-
thesize unpaired label images 𝑆𝐿. Synthetic label images for
cell nuclei can, for example, be generated by randomly placing
ellipsoids in an image. The synthetic label images are also split
into training, validation, and test images. The GAN is trained
with the target images 𝐷𝑇

𝑡𝑟𝑎𝑖𝑛, 𝐷𝑇
𝑣𝑎𝑙 and the unpaired synthetic

labels 𝑆𝐿
train and 𝑆𝐿

val. After each epoch during validation, the
GAN metrics 𝑀GAN

𝑖 for FID, KID, and 𝛼 are calculated. FID
and KID are calculated with 𝐷𝑇

val and synthetic target images
𝑆𝑇

val synthesized by the GAN from 𝑆𝐿
val. The 𝛼 metric is cal-

culated from the 𝐺𝑋𝑌 layers without the need for data. For
key epochs 𝐺𝑖, model checkpoints are saved and used to infer
paired synthetic images 𝑆𝑇

test,𝑖 from 𝑆𝐿
test,𝑖. Each paired syn-

thetic dataset 𝑆test,𝑖 is used to train a U-Net for instance seg-
mentation. Afterwards, each U-Net 𝑈𝑖 is evaluated with the
advanced Aggregated Jaccard Index (AJI+, ∈ [0, 1] where 1
is a perfect segmentation) on 𝐷test [10]. The U-Net metrics
𝑀UNet

𝑖 are finally compared to the GAN metrics 𝑀GAN
𝑖 . A

good GAN metric should have a strong correlation with the U-
Net segmentation metric. To evaluate whether the GAN epoch
with the best GAN metric yields a better downstream per-

formance than the last GAN epoch, the downstream metrics
𝑀UNet

𝑖 of both can be compared.

3 Results

Datasets
The experiments are carried out on the BBBC039v1 [11]
and the Lizard dataset [6]. The BBBC039v1 dataset contains
200 images of U2OS cells. The background is monotonous,
and the variation of the cells is limited. Synthetic label im-
ages are created by sampling from Elliptic Fourier Descriptors
(EFDs) and placing the objects randomly in the images [9].
The train/val/test split is 120/40/40. An example target image
with the corresponding label image and an example of a syn-
thetic label image with the preprocessed synthetic label image
is shown in Figure 2. We applied preprocessing to label images
used by the GAN to ease the learning task. For GAN training,
we synthesize 120 training label images and 40 validation la-
bel images, whereas, for the U-Net, we synthesize 480 images
with a train/val split of 360/120 for each GAN key epoch.

Fig. 2: Top row: Images from the BBBC039v1 dataset with a tar-
get image, the corresponding label image, and a synthetic label
image with the corresponding preprocessed synthetic label image.
Bottom row: Images from the Lizard dataset, with target image,
label image, and the corresponding preprocessed label image.

We used the CoNiC Challenge data preprocessing of
the Lizard dataset, which contains 4981 images, and applied
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Fig. 3: Results on the BBBC039v1 dataset. (a) metrics during GAN training normalized to range [0,1], (b) AJI+ on test data, and KID
during GAN training for manually selected key epochs 50, 100, 200, 400, 600 and 800, (c-d) synthetic target images and (e) target im-
age with segmentations (f-g). The quality of the synthetic target image is reduced for early epochs, but it is not relevant for segmenta-
tion.

color normalization according to a training reference im-
age [5, 17]. The spatial distribution and background structures
in histopathological images are complex, and the data is di-
verse because of the variety of patients. Thus, instead of syn-
thesizing label images, the training data 𝐷𝑡𝑟𝑎𝑖𝑛 and the vali-
dation data 𝐷𝑣𝑎𝑙 are each split in half. The label images of the
first half mimic synthetic labels 𝑆𝐿, and the corresponding tar-
get images are discarded. The target images of the second half
are used for GAN training, and the corresponding label images
are discarded. 70% of the dataset is used for GAN training, and
the remaining 30% are used for the U-Net downstream task.
An example target image with the corresponding label image
and a preprocessed label image are shown in Figure 2.

Architecture, Training, and Implementation
We trained for 800 epochs (24000 steps) on the BBBC039v1
dataset and for 400 epochs (135000 steps) on the Lizard
dataset. For the U-Net, we used the implementation from [15].
Each U-Net was trained for a maximum of 200 epochs, while
early stopping was applied when the validation loss did not
improve for 50 epochs. To reduce the variation introduced by
the U-Net, we trained five U-Nets for each synthetic dataset.
The code is available at https://github.com/MoritzBoe/BMT_
GAN_stopping.

Experiments
All GAN metrics for the BBBC039v1 dataset (Figure 3) im-
prove with increasing number of epochs, while FID and KID
yield a Pearson correlation coefficient of r = 0.99. Therefore,

we only consider the KID. Early epochs (c) show checker-
board artifacts within cells, while late epochs (d) do not. How-
ever, the performance of the AJI+ metric for the downstream
task shows comparable performance over all key epochs, with
the lowest AJI+ scores for epoch 200.

For the Lizard dataset (Figure 4), the 𝛼 metric saturates
during training, while KID and FID are strongly correlated
(r = 0.99) but do not saturate. Because of the correlation, we
again focus on the evaluation of the KID. AJI+ varies substan-
tially between epochs. The mean of the AJI+ for each epoch
compared to KID results in r = -0.82. Epoch 45 yields the best
KID metric, which is compared to the last epoch. Furthermore,
the results show that the last epoch is not the best epoch, and
segmentation quality can change quickly during training. In
(g) and (h), example segmentations for the best networks for
epoch 45 (AJI+ = 0.343) and 400 (AJI+ = 0.318) are shown.
Using epoch 45 instead of 400 increases the performance by
8%. The correlation between 𝛼 and the AJI+ is low (r = -0.24).

4 Discussion and Conclusion

KID cannot be used to predict U-Net performance on the sim-
ple BBBC039v1 dataset. We conclude that the U-Net does not
need perfect target images because the difference in brightness
between the foreground and background is large. On the com-
plex Lizard dataset, KID strongly correlates with AJI+ and can
substitute training a U-Net for each GAN epoch. Further, KID
can be used for epoch selection, but since KID varies consider-
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Fig. 4: Results on the Lizard dataset. (a) metrics during GAN training normalized to range [0,1], (b) AJI+ on test data, and KID during
GAN training for manually selected key epochs 50, 100, 200, 250, 300 and 400. Furthermore, the epochs with the best KID metric (45)
and the best 𝛼 metric (169) are selected as key epochs. (c-d) synthetic target images and (e) target image with segmentations (f-h). For
epoch 45, four out of five AJI+ scores are close to 0.34. The last epoch yields a worse segmentation, than earlier epochs.

ably during training, it cannot be used as a stop criterion. Our
results show that instead of using the last epoch, which is state-
of-the-art, it is beneficial to additionally train the downstream
segmentation on the GAN epoch with the best KID. This im-
proved the performance by 8% on the Lizard dataset and came
with low additional computation costs. We recommend includ-
ing validation metrics in the GAN training for biomedical seg-
mentation data in the future. While the WW 𝛼 metric is used to
evaluate the quality of NNs, it was not suitable for early stop-
ping or epoch selection. In the future, it needs to be examined
whether different WW metrics can provide even better insight
into GAN training.
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