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A B S T R A C T

In this work, we investigate the fiber orientation dependent viscosity of fiber suspensions using a compu-
tational homogenization method. To improve computational prediction capabilities for the viscosity of fiber
suspensions, we extend an existing, Fast Fourier Transform based computational approach for fiber suspensions
with linear viscous, i.e., Newtonian, matrix behavior to nonlinear viscous matrix behavior. Specifically, a
Cross-type shear-thinning rheology is assumed for the matrix fluid. We employ composite voxels to lower
resolution requirements and find through resolution studies that the resolution error decreases for certain shear
rates. Furthermore, we conduct a volume element study and find that the representative volume element sizes
for engineering considerations in a specific Newtonian case and the investigated Cross-type case are highly
similar. For shear rates of engineering process interest we visualize the effective suspension viscosity in three
dimensions and study the effects of the fiber volume fraction and the imposed macroscopic shear rate tensor on
the suspension viscosity. We find that the elongational viscosity and the degree of anisotropy of the suspension
viscosity vary stronger with the shear rate for higher fiber volume fractions. In a comparison with an analytical
mean-field model for the suspension viscosity, the deviations between the computational and analytical results
turn out to be substantial.
. Introduction

.1. State of the art

In engineering manufacturing processes of composite parts, such as
njection and compression molding, the anisotropic viscosity of fiber
olymer suspensions has profound influence on the manufacturing
rocess and the material properties of the final part [1]. The effective
uspension viscosity influences the appropriate choice of various pro-
ess parameters, such as screw speed and back pressure in injection
olding [2], as well as press force and mold temperature in com-
ression molding [3]. In addition, the flow field, and thus the final
aterial properties of the finished part also depend on the suspension

iscosity [4].
Even though the suspension viscosity is a quantity of direct engi-

eering interest, it is difficult to determine the full viscosity tensor by
xperimental methods. This is partly because it is challenging to ensure
specific fiber orientation state during rheology experiments [5], and

he suspension viscosity depends strongly on the fiber orientation [6].
urthermore, fibers break during rheometer studies, which also affects
he suspension viscosity [5]. Last but not least, the dependence of

∗ Corresponding author.
E-mail address: thomas.boehlke@kit.edu (T. Böhlke).

the suspension viscosity on shear rate and temperature [7] further
complicates matters. As a result, tensorial and scalar analytical ho-
mogenization methods are commonly used in conjunction with scalar
experiments to understand and predict the local suspension viscosity.

Since Sutherland’s [8] and Einstein’s [9] work on the effective
scalar viscosity of dilute suspensions of spherical particles in Newtonian
fluids, a variety of analytical approaches to model the complete tenso-
rial viscosity of suspensions were suggested. For dilute and semidilute
suspensions of slender rods in Newtonian fluids, models were proposed
among others by Batchelor [10,11], Dinh and Armstrong [12], as well
as Shaqfeh and Frederickson [13]. For an overview of anisotropic mean-
field homogenization models of particle suspensions in Newtonian
fluids we refer the reader to Karl and Böhlke [14]. Various other models
are detailed in Petrie [15].

In the case of suspensions with non-Newtonian matrix behavior,
multiple models [16–19] were developed based on second order fluid
theory. However, these models are restricted to a single suspended
particle. Brunn [19] also applied his single particle model to dilute
suspensions and found that the model could not capture hydrodynamic
particle–particle interactions. In a shear-thinning power law setting,
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Goddard [20,21] developed a model for dilute suspensions, which
was found to be qualitatively promising but quantitatively inaccurate
by himself [22] and Mobuchon et al. [23]. Later, Pipes et al. [24,
25] proposed a model for the concentrated and hyperconcentrated
regime in a power law setting. Even though the results agree well
with experimental data by Binding [5], the model is limited by its
assumption of unidirectional and fixed fiber arrays. The prediction
accuracy of another power-law model by Souloumiac and Vincent [26]
varies strongly with the shear rate and fiber volume fraction, making it
difficult to apply appropriately. Also, more recent models [27–30] have
yet to be established as valid over a wide range of temperatures, shear
rates, fiber-orientation states and fiber aspect ratios. Overall, holistic
theoretical treatment of all physical effects in fiber suspensions proves
to be a difficult task.

As a result, computational methods offer unique insights into the
physics of fiber suspensions. As fiber suspension problems often in-
volve Stokes flow, computational techniques focused on problems in
the Stokes flow regime are of particular interest. Marin et al. [31]
introduced a highly accurate Boundary Element Method (BEM) to treat
confined Stokes flow and successfully applied it to a problem with a
single sphere suspended in a Newtonian fluid. Subsequently, the BEM
based approach used by Marin et al. [31] could also be extended to
different geometries and multiple suspended bodies. To treat complex
particle geometries suspended in Newtonian fluids, Balboa et al. [32]
employed a method where particles are modeled via a rigid collection
of connected spheres called ‘‘multiblob’’. Balboa et al. [32] successfully
applied their multiblob approach to Stokes flow problems near walls
and in channels, involving multiblobs of different geometries such as
spheres and cylinders. Furthermore, Fast Fourier Transform (FFT) based
computational techniques, that were first popularized in solid mechan-
ics [33,34], were also successfully applied to Stokes flow problems
involving Newtonian fluids. In combination with the RVE method [35],
the FFT-based computational approach was used to solve problems in
porous media [36–38], and to compute the effective viscosity of fiber
suspensions with Newtonian matrix behavior [39]. More details regard-
ing FFT-based techniques can be found in recent review articles [40–
42].

Computational methods were also employed to treat suspensions
with non-Newtonian matrix fluids. Domurath et al. [43] used the
Finite Element Method (FEM) to study the effective viscosity of a
dilute suspension with a single spherical particle suspended in a Bird-
Carreau fluid. For non-dilute suspensions, Traxl et al. [44] used a
FEM-based approach to investigate the effective viscosity of suspen-
sions with noncolloidal angular, as well as spherical pores and particles
in generalized-Newtonian fluids. The investigations of Traxl et al. [44]
consider suspensions with spherical, hexahedral, and tetrahedral parti-
cles, as well as matrix fluids with Newtonian, Power-law, Cross-type,
and von Mises-type behavior. Švec et al. [45] studied rheological
properties of suspensions with rigid spherical particles and fibers sus-
pended in Newtonian and non-Newtonian matrix fluids. To do so,
Švec et al. [45] used a computational framework combining the lattice
Boltzmann method for fluid flow, a mass tracking algorithm for free sur-
face representation, and an immersed boundary approach to consider
interactions between the fluid and the particles.

1.2. Contributions

In this article, with regard to the difficult experimental and theoreti-
cal treatment of fiber suspensions with non-Newtonian matrix behavior,
we apply FFT-based computational methods to study the viscosity
of such suspensions. Using FFT-based computational methods allows
us to leverage highly efficient implementations of the Fast Fourier
Transform, powerful non-linear equation solvers, and discretizations
with regular grids. This enables the study of fiber suspensions with
microstructures that are otherwise difficult to discretize and inves-
2

tigate using interface-conforming mesh based approaches. Thus, we t
extend the approach for suspensions with Newtonian matrix behavior
detailed by Bertóti et al. [39] to suspensions with non-Newtonian,
Cross-type [46,47] shear-thinning fluids. In Section 2, we approach the
effective suspension viscosity from a theoretical and a computational
perspective, and make use of an interpolation based matrix equation
to estimate the anisotropic, non-Newtonian suspension viscosity from
a limited number of computational experiments. As the physical basis
for our investigations, we use a Cross-type material law to model the
viscosity behavior of a commercially available PA6, and study sus-
pension microstructures with fibers of aspect ratio ten. In preliminary
investigations to identify the resolution of the discretized suspension
microstructure, we find that the resolution error of the effective stresses
can depend favorably on the shear rate, see Section 3.2. Through a
volume element size study, we find that the necessary volume element
size for engineering considerations are highly similar in a specific New-
tonian case and the investigated non-Newtonian case, see Section 3.3.
As our main contribution, we visualize and discuss in Section 4 how
the shear rate and fiber volume fraction influence the magnitude and
degree of anisotropy of the suspension viscosity. We observe that the
viscosity magnitude decreases with the shear rate until a Cross-type
model intrinsic, minimum viscosity is reached. In contrast, the degree
of anisotropy depends on the degree to which the matrix behaves
nonlinearly. Additionally, we find that the dependence of both the
magnitude and the degree of anisotropy on the shear rate is increased
for higher fiber volume fractions. In a comparison between an analyti-
cal mean-field model and our computational results, we observe large
discrepancies in the predicted viscosities.

2. Computing the effective viscosity of particles suspended in a
nonlinear viscous medium

2.1. The nonlinear viscosity tensor

For an incompressible Newtonian fluid, the strain rate tensor 𝑫 ∈
𝖲𝗒𝗆0 and the non-equilibrium viscous stress tensor 𝝉 ∈ 𝖲𝗒𝗆0 are related
by the constitutive law

𝝉 = 2𝜂𝑫, (2.1)

nvolving a shear viscosity 𝜂. Here, 𝖲𝗒𝗆0(3) denotes the vector space
f symmetric and traceless second-order tensors. More generally, non-
ewtonian models [7] may be considered where the viscosity depends
n the scalar shear rate �̇� =

√

2 ‖𝑫‖ with the norm ‖𝑫‖ =
√

𝑫 ⋅𝑫.
Cross-type [46,47] material models are able to predict the shear-

thinning rheology of polymers accurately [7]. Their viscosity is gov-
erned by an expression of the form

𝜂(�̇�) = 𝜂∞ +
𝜂0 − 𝜂∞
1 + (𝑘�̇�)𝑚

, (2.2)

ith positive material parameters 𝜂0 ≥ 𝜂∞, 𝑘, and 𝑚.
For the shear rate limits �̇� → 0 and �̇� → ∞, the scalar viscosity 𝜂(�̇�)

pproaches the initial viscosity 𝜂0 and the asymptotic viscosity 𝜂∞, re-
pectively. The two material parameters 𝑘 and 𝑚 control the transition
egion between the viscosities 𝜂0 and 𝜂∞.

To describe suspensions of non-spherical particles, it is convenient
o consider more general, anisotropic viscosity tensors V ∈ 𝐿(𝖲𝗒𝗆0(3))
nd constitutive relations of the form [48,49]

= V[𝑫], (2.3)

here 𝐿 refers to the linear transformations on a given vector space,
nd the viscosity tensor V depends on the fiber arrangement and
he fiber orientation distribution. If the suspending fluid is itself non-
ewtonian, the suspension will, in general, be governed by a constitu-

ive relation of the form

= V(𝑫)[𝑫] (2.4)

ith a viscosity tensor V that additionally depends on the shear-rate

ensor 𝑫. By the dissipation inequality, the viscosity tensor V(𝑫) must
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be positive semidefinite for all shear rates 𝑫, while the major symmetry
of the viscosity tensor V(𝑫) is required in the linear case for Onsager’s
elations to be satisfied [50]. Existence of a dissipation potential is
ufficient for the major symmetry of the viscosity tensor V(𝑫) in the

nonlinear case, see Šilhavý [50, Sec. 12.3.1]. For the general formu-
lation of a dissipation potential with temperature and mass density
dependence, also see Šilhavý [50, Sec. 12.3.1].

For the subsequent derivations, we will look at a special case that
is sufficient for our purposes. Assume that for constant temperature
and density a twice continuously differentiable dissipation potential
𝛹 ∶ 𝖲𝗒𝗆0(3) → R is given, which furthermore satisfies the condition
𝜕𝛹
𝜕𝑫

(𝟎) = 𝟎. (2.5)

Then, the non-equilibrium viscous stress 𝝉 is governed by the relation-
ship

𝝉 = 𝜕𝛹
𝜕𝑫

(𝑫), (2.6)

and by the fundamental theorem of calculus, we may write

𝜕𝛹
𝜕𝑫

(𝑫) = ∫

1

0

d
d𝑠

[ 𝜕𝛹
𝜕𝑫

(𝑠𝑫)
]

d𝑠 = ∫

1

0

𝜕2𝛹
𝜕𝑫2

(𝑠𝑫)d𝑠 [𝑫] ≡ V(𝑫)[𝑫]. (2.7)

Thus, the viscosity tensor

V(𝑫) ≡ ∫

1

0

𝜕2𝛹
𝜕𝑫2

(𝑠𝑫)d𝑠 (2.8)

has major symmetries, as a consequence of Schwarz’ theorem on the
commutativity of the second partial derivatives of a twice continuously
differentiable function. Thus, for any given dissipation potential, the
associated viscosity tensor (2.8) automatically has the major symmetry.

It is not difficult to construct dissipation potentials both for the
Newtonian (2.1) and the Cross model (2.2), i.e.,

𝛹 (𝑫) =
(

𝜂∞ + (𝜂0 − 𝜂∞) 2𝐹1

(

1, 2
𝑚
, 2 + 𝑚

𝑚
,−(𝑘�̇�)𝑚

) ) �̇�2

2
(2.9)

involving the hypergeometric function 2𝐹1. In the Newtonian case, it
holds that 𝜂 = 𝜂0 = 𝜂∞, and thus

(𝑫) = 𝜂𝑫 ⋅𝑫 (2.10)

The advantage of using the representation by a dissipation potential
is that this potential form is preserved under a change of scales,
i.e., by homogenization [51,52]. Subsequently, the viscosity tensor is
accessible via a postprocessing step, see Eq. (2.8).

Actually, due to the presence of infinitely viscous inclusions, it is
more convenient to work with the complementary potential 𝛷 which
arises as the Legendre–Fenchel dual

𝛷(𝝉) ∶= sup
{

𝝉 ⋅𝑫 − 𝛹 (𝑫) |𝑫 ∈ 𝖲𝗒𝗆0(3)
}

(2.11)

of the dissipation potential 𝛹 . The potential 𝛹 must grow superlinearly
and be non-negative for 𝛷 to be a proper function, i.e., not infinite ev-
erywhere. Then, as a consequence of the Fenchel–Moreau identity [53,
Eq. (3.8)], the constitutive law (2.6) may be written in dual form

𝑫 = 𝜕𝛷
𝜕𝝉

(𝝉). (2.12)

From this, similar to the viscosity V, the fluidity tensor F follows as

F(𝝉) ≡ ∫

1

0

𝜕2𝛷
𝜕𝝉2

(𝑠𝝉)d𝑠. (2.13)

In the Newtonian case, the viscosity V and the fluidity F constitute
the kinetic coefficients [50]. In addition to the presented context, the
aforementioned potential framework can also be applied in the context
of the rigid-viscoplastic modeling of polycrystals. See, e.g., Böhlke and
Bertram [54] and Böhlke [55], where the viscoplastic behavior of single
3

crystals and polycrystals is modeled via a nonlinear viscous approach. e
2.2. Scale transition in nonlinear viscosity

Locally, the balance of linear momentum

div 𝝉 − ∇𝑝 = 𝟎 (2.14)

results from a split of the stress 𝝈 inside the material into an unknown,
periodic pressure field 𝑝 ∶ 𝑌 → R and the local viscous stress field

𝝉 =  (⋅, �̄� + ∇𝗌𝒗), (2.15)

and needs to be satisfied. Here, the pressure 𝑝 acts as a reaction
stress due to incompressibility. We consider a rectangular volume 𝑌 ⊆
R3, and suppose that a heterogeneous dissipation potential density
𝛹 ∶ 𝑌 × 𝖲𝗒𝗆0(3) → R is given which satisfies the conditions discussed
in the previous section pointwise. The associated stress operator reads

 ∶ 𝑌 × 𝖲𝗒𝗆0(3) → 𝖲𝗒𝗆0(3), (2.16)

(𝒙,𝑫) ↦ 𝜕𝛹
𝜕𝑫

(𝒙,𝑫). (2.17)

he effective dissipation potential is defined as

̄ (�̄�) = inf
⟨

𝛹 (⋅, �̄� + ∇𝗌𝒗)
⟩

𝑌 for �̄� ∈ 𝖲𝗒𝗆0(3), (2.18)

here the infimum is taken over all periodic velocity fields 𝒗 ∶ 𝑌 → R3

with vanishing divergence and the operator ⟨⋅⟩𝑌 denotes the spatial
average

⟨⋅⟩𝑌 ≡ 1
|𝑌 | ∫𝑌

(⋅)d𝒙 with |𝑌 | ≡ ∫𝑌
d𝒙. (2.19)

he effective shear stress �̄� ∈ 𝖲𝗒𝗆0(3) then arises from the relationship

̄ (�̄�) = 𝜕�̄�
𝜕�̄�

(�̄�), (2.20)

which is similar to Eq. (2.6). Equivalently, the effective stress may be
computed by averaging the local shear stress

�̄�(�̄�) =
⟨

 (⋅, �̄� + ∇𝗌𝒗)
⟩

𝑌 , (2.21)

where the periodic velocity field 𝒗 solves the Euler–Lagrange equation
of the variational problem (2.18)

div 𝝉 − ∇𝑝 = 𝟎, (2.22)

which equals the balance of linear momentum (2.14). The described
procedure permits to compute the effective viscosity of a mixture of
viscous materials. However, we are interested in the effective vis-
cosity of a suspension, i.e., of a mixture involving rigid inclusions.
Because the viscosity inside these inclusions is infinite, the differential
Eq. (2.14) is not well defined. To handle this issue, we transfer to a
dual formulation. Inside the infinitely viscous inclusions, the fluidity,
i.e., the inverse of the viscosity, vanishes identically. Consequently, the
associated equations are well defined.

Instead of the effective dissipation potential (2.18) one may con-
sider the effective complementary potential �̄�, a function of the effec-
tive shear stress �̄�, from which the constitutive law

�̄�(�̄�) = 𝜕�̄�
𝜕�̄�

(�̄�), (2.23)

rises dual to the primal relationship (2.20). To obtain the effective
iscosity, a strategy based on the effective complementary potential
equires to invert the effective law (2.23). To avoid this difficulty,
e use mixed ‘‘boundary conditions’’ [56], i.e., we consider the dual
ariational principle, but prescribe the effective shear rate tensor �̄�.
he convex dual of the variational problem (2.18) reads
⟨

𝛷(⋅, 𝝉) − 𝝉 ⋅ �̄�
⟩

𝑌 ⟶ inf , (2.24)

here the infimum is taken over all stress fields 𝝉 ∶ 𝑌 → 𝖲𝗒𝗆0(3) which
atisfy the equilibrium Eq. (2.14) for a suitable pressure field, see Wicht
t al. [57, §4 and Appendix B].
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2.3. Computational aspects and setup

After discussing theoretical aspects in the previous section, this
section is dedicated to selected computational aspects concerning the
fiber suspension microstructure and FFT-based procedure, starting with
a solution scheme for the convex dual variational problem (2.24). The
Euler–Lagrange equation of the convex dual variational problem (2.24)
reads

P

[ 𝜕𝛷
𝜕𝝉

(𝝉𝑘) − �̄�
]

= 𝟎, (2.25)

where P denotes the 𝐿2-projector onto the shear stresses satisfying the
equilibrium Eq. (2.14). In terms of an arbitrary stepsize 𝛼, minimizers
of the Euler–Lagrange equation (2.25) are fixed points of the gradient
descent scheme

𝝉𝑘+1 = 𝝉𝑘 − 𝛼 P

[ 𝜕𝛷
𝜕𝝉

(𝝉𝑘) − �̄�
]

, (2.26)

hich has a unique fixed point, provided the optimization prob-
em (2.24) is convex. For a closed form expression of the action of P
n Fourier space, and an analogous derivation of a fixed point scheme
n the linear case, we refer to Bertóti et al. [39, §2]. Numerical schemes
ased on the gradient descent iteration (2.26) require computing a
train rate 𝑫 resulting from a shear stress 𝝉 at every continuum point 𝒙
nd for every iteration. Treating fibers is particularly simple: the strain
ate 𝑫 vanishes since the inclusions are rigid.

To solve the equation

= 2𝜂(�̇�)𝑫 (2.27)

for the strain rate 𝑫, compare Eq. (2.1), we first take norms on both
sides to arrive at the equation

‖𝝉‖ = 2𝜂(�̇�) ‖𝑫‖ ≡
√

2𝜂(�̇�)�̇� . (2.28)

We use Newton’s method to find a root of the function

𝑔(�̇�) = ‖𝝉‖ −
√

2𝜂(�̇�)�̇� , (2.29)

and thus compute iteratively

�̇�𝗇+𝟣 = �̇�𝗇 − 𝑠𝗇
𝑔(�̇�𝗇)
𝑔′(�̇�𝗇)

. (2.30)

Using backtracking for the step size 𝑠𝗇 to ensure that the Armijo–
Goldstein inequality [58,59] holds. For the Cross fluid (2.2), the deriva-
tive of the function 𝑔 computes as

𝑔′(�̇�) = −
√

2
(

𝜂(�̇�) −
𝑚(𝜂0 − 𝜂∞)(𝑘�̇�)𝑚

(1 + (𝑘�̇�)𝑚)2

)

. (2.31)

Once the scalar shear rate �̇� is identified, we compute the strain rate
tensor 𝑫 via

𝑫 = 𝝉
2𝜂(�̇�)

. (2.32)

The fiber suspension microstructures were generated with the se-
uential addition and migration method [60], and discretized on a
taggered grid [61] to ensure stability for incompressible material
odels. The resulting equation system was solved with the Barzilai–
orwein method [39,62] in the Newtonian case, while a nonlinear
ewton-CG approach [63,64] was used in the Cross-type case. For val-

dation purposes, we compared computational results of the presented
FT-based approach with computational results from literature [44],
ee Section 3.1. For a detailed overview on solvers for the nonlinear
ippmann–Schwinger equation in the closely related case of solid me-
hanics (2.26), see Schneider [65]. For proofs on the existence and
niqueness of solutions to the considered nonlinear homogenization
roblem (2.24), we refer to Schneider [66]. Further details on the
mployed FFT-based homogenization approach including solvers and
iscretization, we refer to Bertóti et al. [39] and Schneider [64].

To numerically obtain an effective viscosity or fluidity with the
ntegral Eqs. (2.8) and (2.13), the respective integral, and the deriva-
4

ives occurring in the integrand need to be discretized. In combination
with the costly computation of the effective stresses or strains this
renders the required computational effort to obtain an effective viscos-
ity prohibitively large. Instead, we employ equation (2.7) to estimate
an effective, viscosity-like quantity solely from computationally ob-
tained effective stresses �̄�, by using the following equation in Mandel’s
notation [39]

𝜏 = 𝑉 �̄�, i.e., 𝑉 = 𝜏 �̄�†. (2.33)

Here, (⋅)† denotes the Moore–Penrose pseudoinverse which is equal to
an inversion on 𝖲𝗒𝗆0(3), 𝜏 collects the computed effective stresses

𝜏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜏(1)11 𝜏(2)11 𝜏(3)11 𝜏(4)11 𝜏(5)11 𝜏(6)11

𝜏(1)22 𝜏(2)22 𝜏(3)22 𝜏(4)22 𝜏(5)22 𝜏(6)22

𝜏(1)33 𝜏(2)33 𝜏(3)33 𝜏(4)33 𝜏(5)33 𝜏(6)33
√

2𝜏(1)23

√

2𝜏(2)23

√

2𝜏(3)23

√

2𝜏(4)23

√

2𝜏(5)23

√

2𝜏(6)23
√

2𝜏(1)13

√

2𝜏(2)13

√

2𝜏(3)13

√

2𝜏(4)13

√

2𝜏(5)13

√

2𝜏(6)13
√

2𝜏(1)12

√

2𝜏(2)12

√

2𝜏(3)12

√

2𝜏(4)12

√

2𝜏(5)12

√

2𝜏(6)12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.34)

and �̄� collects the investigated load cases

�̄� = �̇�
√

2
3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 1
2 − 1

2 0 0 0

− 1
2 1 − 1

2 0 0 0

− 1
2 − 1

2 1 0 0 0

0 0 0
√

3
2 0 0

0 0 0 0
√

3
2 0

0 0 0 0 0
√

3
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.35)

The 𝑖th column in the matrix 𝜏 contains the effective shear stress
corresponding to the particular applied shear rate that is listed in the 𝑖th
column of the matrix �̄�. In the Newtonian case, the matrix 𝑉 encodes
the components of the viscosity tensor because of superposition. Since
superposition is not generally valid in the non-Newtonian case, the
matrix 𝑉 acts as an interpolation between the six calculated effective
stresses 𝜏. Additionally, the load cases �̄� are not uniquely defined and
interpolation between the effective stresses 𝜏 is qualitative in nature.
However, the matrix 𝑉 provides quantitatively robust information in
the load cases collected in �̄�, and its interpolating property allows us
to draw intuition for the results in between. Thus, even in the non-
Newtonian case, the matrix 𝑉 may be used to investigate the viscous
suspension behavior. We will refer to 𝑉 as the suspension viscosity
throughout the article.

2.4. A model for the fiber suspension viscosity

To model the fiber suspension viscosity with analytical means, a
few preliminary considerations regarding fiber orientation statistics are
in order. We consider fiber suspensions with fiber volume fraction 𝑐𝖥,
where all fibers are of the same length 𝓁, and diameter 𝑑. To describe
the orientation state of such a suspension, we use a fiber orientation
distribution function [1]

𝜌 ∶ 𝑆2 → R, 𝒏 ↦ 𝜌(𝒏). (2.36)

er definition, the function is non-negative, integrates to unity, and is
ymmetric with respect to the origin such that 𝜌(𝒏) = 𝜌(−𝒏). Typically,
t is not feasible to take the large amount of information contained in
he fiber orientation distribution function into account at every spatial
lement of component-scale simulations. To reduce the necessary com-
utational effort in treating fiber orientation states, it is common to use
he fiber orientation tensors of second and fourth order [67,68]

= 𝒏⊗ 𝒏 𝜌(𝒏) d𝑆(𝒏), (2.37)
∫𝑆2
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N = ∫𝑆2
𝒏⊗ 𝒏⊗ 𝒏⊗ 𝒏 𝜌(𝒏) d𝑆(𝒏). (2.38)

Both tensors 𝑵 and N are completely symmetric, positive semidefinite,
and contract with the second-order unity tensor 𝟏 such that

𝑵 ⋅ 𝟏 = 1, (2.39)

N[𝟏] = 𝑵 . (2.40)

With these two descriptors at hand, a large variety of anisotropic mean-
field models has been built to model material behavior [14]. In the
case of a transversely isotropic fluid with constant viscosity, a conve-
nient approximation of the popular Mori–Tanaka model is available
with [69]

V𝖬𝖳 = 2𝜂𝖬𝖥

(

P2 +𝑁𝖬𝖥
𝗉 P2 NP2

)

,

𝜂𝖬𝖥 =
1 + 𝑐𝖥
1 − 𝑐𝖥

𝜂, (2.41)

𝑁𝖬𝖥
𝗉 =

𝑐𝖥
1 + 𝑐𝖥

𝑟2𝖺
2(𝗅𝗇(2𝑟𝖺) − 3∕2)

.

Here, 𝜂𝖬𝖥 is the effective scalar viscosity, and 𝑁𝖬𝖥
𝗉 is the particle

umber. This model is derived by decomposing the microstructure
nto 𝑚 transversely isotropic pseudo domains containing a single fiber
nd the matrix material. In a first step, the unidirectional effective
iscosities V𝑚

𝖴𝖣 of these 𝑚 pseudodomains are approximated with the
ori–Tanaka method by

𝑚
𝖴𝖣 = 2𝜂 P2 +

𝑐𝖥
1 − 𝑐𝖥

P−1
𝑚 , (2.42)

where P𝑚 is the polarization tensor depending on the matrix material
properties and the fiber geometry. The expression (2.42) equals the
lower Hashin–Shtrikman bound [70]. In a second step, the effective
viscosity of the volume element is calculated by orientation averaging
the unidirectional effective viscosities V𝑚

𝖴𝖣 via

𝖬𝖳 = 1
𝑀

𝑀
∑

𝑚=1
V𝑚
𝖴𝖣. (2.43)

The Voigt-type average (2.43) yields an upper bound on the dissi-
pation [71]. However, this model is only applicable for fluids with
constant viscosity, since it does not depend on the shear rate �̇�. One
possible extension to incorporate shear rate dependency in the case of
rigid fibers is [14]

𝜂𝖬𝖥 =
1 + 𝑐𝖥
1 − 𝑐𝖥

𝜂
(

�̇�
1 − 𝑐𝖥

)

, (2.44)

which recovers the Newtonian case for the shear rate limits �̇� → 0
and �̇� → ∞ in the considered Cross-type case. In Section 4.3, results
btained with both the Newtonian (2.41) and Cross-type (2.44) Mori–
anaka model are compared to results of the FFT-based computational
pproach presented in Section 2.3.

.5. Material parameters

In the previous sections 2.2 and 2.4, we discussed some aspects
f FFT-based homogenization and analytical modeling of fiber sus-
ensions. In this section, we describe the material and microstructure
roperties considered in the article. In the following, we are concerned
ith microstructures of fiber polymer suspensions, and we consider
commercially available polyamide 6 (PA6) [72] as matrix mate-

ial in all computational studies. A Cross-type material law (2.2) was
itted to PA6 material data available for shear rates �̇� in the inter-
al [1.7, 16300] s−1 for a temperature of 250◦C. The available material
ata as well as the fit are visualized in Fig. 1, and the resulting
odel parameters are 𝜂0 = 288.9 Pa s, 𝜂∞ = 15.0 Pa s, 𝑘 = 10.9 ⋅ 10−4,

nd 𝑚 = 1.1. For all studied cases with Newtonian matrix behavior,
5

he shear rate dependent matrix viscosity 𝜂 was chosen as 𝜂 = 𝜂0.
Fig. 1. Material data and Cross-type fit for Ultramid®B3K.

Typical shear rates �̇� in compression molding processes are be-
low 5 ⋅ 101 s−1, while shear rates in injection molding processes are
typically kept below 1 ⋅105 s−1 for most materials [73, Sec. 21.6.8], but
can go above 1 ⋅ 106 s−1 in thin-wall and micro molding [74]. To cover
some of- the process-relevant shear rate intervals for both compression
and injection molding processes, computational investigations were
conducted for the macroscopic scalar shear rates

�̇� ∈ 𝑆�̇� = {𝑎 ⋅ 10𝑏 s−1| 𝑎 = 1, 2, 5; 𝑏 = 1, 2, 3, 4} ∪ {105}. (2.45)

Because the Cross-type matrix viscosity changes only slightly for shear
rates �̇� larger than 1 ⋅ 105 s−1, shear rates above 1 ⋅ 105 s−1 were not
investigated.

Overall, a thorough orientation state dependent investigation of
the suspension viscosity takes a large amount of computational re-
sources. Since the focus of this article lies in identifying the underlying
effects of shear-thinning rheology on the fiber suspension viscosity,
one particular orientation state was considered for our investigations.
Because strongly oriented fiber orientation states are very common
in injection and compression molding [75,76], the second order fiber
orientation tensor 𝑵 of the considered microstructure was chosen to be
transversely isotropic such that

𝑵 =
⎡

⎢

⎢

⎣

0.8 0 0
0 0.1 0
0 0 0.1

⎤

⎥

⎥

⎦

𝒆𝑖 ⊗ 𝒆𝑗 . (2.46)

While this particular choice of fiber orientation state is strongly ori-
ented, other fiber orientation states are of research and engineering
interest as well. However, to focus on the particularities and influ-
ence of the Cross-type matrix material on the non-Newtonian fiber
suspension viscosity, we restrict the scope of this article to the given
orientation state. The symmetry of the underlying microstructure is
also reflected in the suspension viscosity 𝑉 . Hence, if the computational
volume element was chosen sufficiently large, we expect the computed
suspension viscosity 𝑉 to be transversely isotropic as well. We use this
fact in Section 4 to complement the volume element study detailed in
Section 3.3.
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3. Preliminary studies

3.1. Validation against computational results from literature

Traxl et al. [44] investigated the suspension viscosity of rigid
spheres suspended in a non-Newtonian matrix fluid using the finite
element method. For validation purposes, we compare results obtained
with the presented FFT-based homogenization approach to results from
Traxl et al. [44]. The microstructures of interest include twenty spheres,
contain a sphere volume fraction of 𝑐𝖲 = 10%, and were generated based
on the mechanical contraction method of Williams–Philipse [77]. The
spheres are suspended in a Cross-type (2.2) matrix fluid with the same
parameters as in Traxl et al. [44]: 𝜂0 = 1.5 Pa s, 𝜂∞ = 0.5 Pa s, 𝑘 = 2,
𝑛 = 0.8. To replicate the procedure detailed in Traxl et al. [44], five
different realizations of the microstructure were generated and resolved
with 2563 voxels, see Fig. 2. As effective loads, twenty-one effective
stresses �̄� of the form �̄� = [0, 0, 0, 0, 0, 𝜏𝟣𝟤] were applied to each

icrostructure, with the effective stress components 𝜏𝟣𝟤 being linearly
paced on the interval [0.089, 0.914] Pa. Here, the interval bounds of the
ffective stress components 𝜏𝟣𝟤 were extracted from the results of Traxl
t al. [44]. For each microstructure 𝑚, the resulting effective shear rate
�̇�𝖥𝖥𝖳𝑚 (𝜏𝟣𝟤) in response to the loads �̄� was measured, and then used to
alculate an average effective shear rate �̇�𝖥𝖥𝖳

𝖠
(𝜏𝟣𝟤) via

�̇�𝖥𝖥𝖳𝖠 (𝜏𝟣𝟤) =
1
5

5
∑

𝑖=1
�̇�𝖥𝖥𝖳𝑖 (𝜏𝟣𝟤). (3.1)

ubsequently, the average effective shear rate �̇�𝖥𝖥𝖳
𝖠

(𝜏𝟣𝟤) was compared
o the average effective shear rate �̇� 𝗅𝗂𝗍

𝖠
(𝜏𝟣𝟤) given in Traxl et al. [44] via

he deviation 𝑑𝗇𝗎𝗆, which we define as

𝗇𝗎𝗆 =
|�̇� 𝗅𝗂𝗍
𝖠
(𝜏𝟣𝟤) − �̇�𝖥𝖥𝖳

𝖠
(𝜏𝟣𝟤)|

�̇� 𝗅𝗂𝗍
𝖠
(𝜏𝟣𝟤)

. (3.2)

he resulting effective shear rate-stress curves for the FFT-based method
s in very good agreement with the results from Traxl et al. [44],
ee Fig. 3(a). This is emphasized by the deviation 𝑑𝗇𝗎𝗆, which lies
elow 2.3% for all investigated effective loads �̄�, see Fig. 3(b).

.2. Resolution study

The resolution of the microstructure discretization is limited by
omputational resources, namely memory and runtime. To determine
6

a suitable resolution that accommodates limited resources, and allows
for an appropriately small error, we conducted a resolution study
for the cases of Newtonian and Cross-type (2.2) matrix behavior. We
conducted the study for a fixed fiber aspect ratio 𝑟𝖺 = 10 and for fiber
volume fractions 𝑐𝖥 ∈ {5%, 10%, 15%, 20%, 25%}. Since the inter fiber
distance decreases with increasing volume fraction 𝑐𝖥, the effective
stress �̄� of the suspension is expected to be more sensitive to resolution
effects for higher fiber volume fractions 𝑐𝖥. Consequently, we chose the
maximum considered volume fraction 𝑐𝖥 = 25% for all volume elements
in the resolution study. To reduce the amount of necessary voxels,
we investigated two types of voxel discretizations, namely binary and
composite voxels [78]. For the composite voxels, we used the general
dual mixing rule

�̄�𝖵 = 𝑐𝖬𝝉𝖬 + (1 − 𝑐𝖬)𝝉𝖥 (3.3)

where �̄�𝖵, 𝑐𝖬, 𝝉𝖬, and 𝝉𝖥 are the effective stress, the matrix volume
fraction, the matrix stress, and the fiber stress inside the composite
voxel, respectively. In the special case of rigid fibers, the fiber stress 𝝉𝖥
is zero. Hence, the general composite voxel mixing rule (3.3) simplifies
to

�̄�𝖵 = 𝑐𝖬𝝉𝖬. (3.4)

Like in Bertóti et al. [39], we increased the number of voxels
per fiber diameter 𝑣∕𝑑 in dyadic steps for the binary voxels, such
that 𝑣∕𝑑 ∈ {5, 10, 20, 40}, see Fig. 4.

Hence, a single microstructure was discretized with the resolu-
tions 𝑣∕𝑑 ∈ {5, 10, 20, 40} for binary voxels and 𝑣∕𝑑 ∈ {5, 10, 20} for
composite voxels, and the effective stress �̄� was calculated for all
considered shear rates and loading directions.

We define the relative error caused by the resolution as

𝑒𝗋𝖾𝗌 =
‖

‖

�̄� − �̄� 𝖿 𝗂𝗇𝖾‖‖2
‖

‖

�̄� 𝖿 𝗂𝗇𝖾‖‖2
, (3.5)

here �̄� is the effective stress for an arbitrary resolution 𝑣∕𝑑 < 40
nd �̄� 𝖿 𝗂𝗇𝖾 is the binary voxel result for a resolution of 𝑣∕𝑑 = 40. There-
ore, the effective stress �̄� for each resolution, voxel type, and load case
s compared to the load specific reference stress �̄� 𝖿 𝗂𝗇𝖾. For a particular
oxel type and a given resolution 𝑣∕𝑑, we define the set 𝑆𝖾 that collects
he resolution errors 𝑒𝗋𝖾𝗌 for all investigated load cases as

=
{

𝑒
(

�̄� (𝑖)(�̇�), �̄� (𝑖) (�̇�)
)

| 𝑖 = 1, 2, 3, 4, 5, 6, �̇� ∈ 𝑆
}

, (3.6)
𝖾 𝗋𝖾𝗌 𝖿 𝗂𝗇𝖾 �̇�
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Fig. 3. Comparison of the effective shear rate-stress curves given in Traxl et al. [44] and the effective shear rate-stress curves obtained from FFT-based simulations, as well as
their deviation 𝑑𝗇𝗎𝗆 for effective stress components 𝜏𝟣𝟤 ∈ [0.089, 0.914] Pa.
Fig. 4. Microstructure where four differently colored segments are shown with varying
voxels per fiber diameter 𝑣∕𝑑. Segments from left to right: grey (𝑣∕𝑑 = 5), orange (𝑣∕𝑑 =
10), blue (𝑣∕𝑑 = 20), green (𝑣∕𝑑 = 40).

where �̄� (𝑖)(�̇�) is the material response to the load case collected in
the 𝑖th column of �̄�(�̇�), see Eq. (2.35), and �̄� (𝑖)

𝖿 𝗂𝗇𝖾
(�̇�) is the corresponding

eference stress. Additionally, we define the minimum, maximum, and
ean error for a particular voxel type and a particular resolution as

𝗆𝗂𝗇 = min𝑆𝖾, 𝑒𝗆𝖺𝗑 = max𝑆𝖾, 𝑒𝗆𝖾𝖺𝗇 =
∑

𝑒𝗋𝖾𝗌∈𝑆𝖾

𝑒𝗋𝖾𝗌∕|𝑆𝖾|, (3.7)

here |𝑆𝖾| denotes the cardinality of the set 𝑆𝖾. The quantitative values
or the error measures 𝑒𝗆𝗂𝗇, 𝑒𝗆𝖺𝗑, and 𝑒𝗆𝖾𝖺𝗇 are visualized in Fig. 5 for bi-
ary and composite voxels and for the resolutions 𝑣∕𝑑 ∈ {5, 10, 20, 40}.

For all resolutions, the minimum, maximum and mean errors 𝑒𝗆𝗂𝗇,
7

𝗆𝖺𝗑, and 𝑒𝗆𝖾𝖺𝗇 decrease with the resolution 𝑣∕𝑑. In both the Newtonian
and Cross-type case, and for all resolutions 𝑣∕𝑑, the values of the three
errors (3.7) are lower for the composite voxels than for the binary
voxels. Most notably, the maximum error 𝑒𝗆𝖺𝗑 falls below 5% at a
resolution 𝑣∕𝑑 = 20 for the binary voxel model, but already does so at
a resolution 𝑣∕𝑑 = 10 when using composite voxels.

Intriguingly, the minimum errors 𝑒𝗆𝗂𝗇 are consistently lower in
the Cross-type case than in the Newtonian case, while the maximum
errors 𝑒𝗆𝖺𝗑 remain on a similar level. We note that the lowest errors 𝑒𝗆𝗂𝗇

occur, independent of the resolution 𝑣∕𝑑, for the pure shear load
case �̄� = �̇�[0 0 0 0 1 0] at a shear rate �̇� = 2 ⋅ 103 s−1. The maximum
errors 𝑒𝗆𝖺𝗑 occur at the lowest investigated shear rate of �̇� = 10 s−1 for
the elongational load cases which are collected in the 1st, 2nd, and 3rd
column of �̄�, see Eq. (2.35). Thus, some of the investigated load cases
lead to a reduced resolution requirement or the reference solution is
less accurate, which is an effect also observed in elastoplastic material
models in solid mechanics [79]. To ensure a resolution error 𝑒𝗋𝖾𝗌 below
5% for all load cases, a resolution of 𝑣∕𝑑 = 15 was chosen for all
following computations.

3.3. Volume element size

Like the resolution of the microstructure discretization, the size of
the volume element under investigation is limited by computational
resources. Appropriate volume element sizes for fiber suspensions with
Newtonian matrix behavior with aspect ratios 𝑟𝖺 = 10 and fiber vol-
ume fractions 𝑐𝖥 up to 25% were investigated by Bertóti et al. [39].
Depending on the fiber orientation, different representative volume
element sizes were identified by Bertóti et al. [39], and in the case
of aligned fibers, a volume element of the form 2.2𝓁 × 20𝑑 × 20𝑑 was
identified as sufficiently representative. Adding to these insights, we
conducted a study to determine a suitable size of the volume ele-
ment for the considered transversely isotropic orientation state in the
Cross-type case, with a fiber aspect ratio 𝑟𝖺 = 10, and fiber volume
fractions 𝑐𝖥 ∈ {5%, 10%, 15%, 20%, 25%}. Because the necessary volume
element size grows with the fiber volume fraction 𝑐𝖥, we chose 𝑐𝖥 = 25%
for the volume element study. We investigated volume elements of the
form 𝐿 ×𝑊 ×𝑊 , where 𝐿 ∈ {1.1𝓁, 2.2𝓁, 3.2𝓁} and 𝑊 ∈ {5𝑑, 10𝑑, 20𝑑}
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Fig. 5. Convergence of the relative resolution error (3.5) for the Newtonian case (a) and the Cross-type case (b).
Table 1
Mean, standard deviation, and maximum value of the relative error 𝑒𝖵𝖤 (3.8) in %, computed with ten realizations per combination of length 𝐿 and width 𝑊 .
𝐿 𝑊 Mean ± std Max 𝐿 𝑊 Mean ± std Max 𝐿 𝑊 Mean ± std Max

1.2𝓁 5d 37.48 ± 19.0 106.21 2.2𝓁 5d 29.76 ± 15.68 78.97 3.2𝓁 5d 9.71 ± 5.52 27.73
10d 5.06 ± 4.03 23.89 10d 3.75 ± 2.5 11.11 10d 3.28 ± 1.68 8.55
20d 3.62 ± 2.28 10.96 20d 1.75 ± 0.82 4.06 20d 1.14 ± 0.51 3.05
n
v

𝜂

w

v
t

with fiber length 𝓁 and the fiber diameter 𝑑, see Fig. 6. To discretize the
microstructures, we employed composite voxels and used a resolution
of 𝑣∕𝑑 = 15, as identified in the previous section.

For every combination of length 𝐿 and width 𝑊 , ten different
microstructures were generated, and their effective stresses �̄� were
calculated for all considered shear rates (2.45) and loading direc-
tions (2.35). We define the relative error caused by the volume element
size as

𝑒𝖵𝖤 =
‖

‖

�̄� − �̄� 𝗋𝖾𝖿‖‖2
‖

‖

�̄� 𝗋𝖾𝖿‖‖2
. (3.8)

For each individual load case, the effective stress �̄� of the ten largest
icrostructures with length 𝐿 = 3.2𝓁 and width 𝑊 = 20𝑑 was averaged

nd chosen as the reference stress �̄� 𝗋𝖾𝖿 . Thus, for each volume element
ize, the effective stress �̄� of each of the ten realizations is compared to
he average reference stress �̄� 𝗋𝖾𝖿 . This allows us to calculate the means
nd standard deviations of the relative error 𝑒𝖵𝖤 for each combination

of length 𝐿 and width 𝑊 , which are collected in Table 1.
First, we note that the mean and standard deviation of the relative

rror 𝑒𝖵𝖤 decrease faster with the width 𝑊 than with the length 𝐿.
he largest decrease in the mean and standard deviation of 𝑒𝖵𝖤 oc-

curred when the width 𝑊 was increased from 𝑊 = 5 to 𝑊 = 10.
Thus, an appropriate choice of the volume width is essential to ob-
tain robust results. Overall, we observe that the maximum value
of the error 𝑒𝖵𝖤 falls below the engineering bound of 5% for the
sizes 𝐿 = 2.2𝓁, 𝑊 = 20𝑑 and 𝐿 = 3.2𝓁, 𝑊 = 20𝑑, where the maximum
8

of the error 𝑒𝖵𝖤 is 4.06% and 3.05%, respectively. With mean errors
of 1.75% and 1.14%, and error standard deviations of 0.82% and
0.51%, both sizes 𝐿 = 2.2𝓁, 𝑊 = 20𝑑 and 𝐿 = 3.2𝓁, 𝑊 = 20𝑑 show
similar error characteristics. Consequently, we consider the size of
the volume element 𝐿 = 2.2𝓁, 𝑊 = 20𝑑 as sufficient, which aligns
with the results for aligned fibers in the Newtonian case of Bertóti
et al. [39]. Accordingly, we choose 𝐿 = 2.2𝓁, 𝑊 = 20𝑑 for all further
investigations.

4. Computational investigations

4.1. Spatial representation of the suspension viscosity through a scalar
elongational viscosity

Böhlke and Brüggemann [80] introduced a simple method to vi-
sualize an anisotropic stiffness tensor. We modify this approach to
calculate the fiber polymer suspension’s resistance to elongational flow
in a particular direction via an elongational viscosity 𝜂𝖺𝗉𝗉. In the general
on-Newtonian case, we define a direction-dependent, elongational
iscosity 𝜂𝖺𝗉𝗉

𝖺𝗉𝗉(�̇� , 𝑐𝖥,𝒅) = 𝑎(𝒅)𝖳𝑉 (�̇� , 𝑐𝖥) 𝑎(𝒅) ≈ V(�̇� , 𝑐𝖥)⋅(𝒅 ⊗ 𝒅 ⊗ 𝒅 ⊗ 𝒅), (4.1)

here 𝑎(𝒅) denotes the components of 𝒅⊗𝒅 in Mandel notation, 𝒅 is the
elongation direction, and the suspension viscosity 𝑉 (�̇� , 𝑐𝖥) is calculated
ia Eq. (2.33) as an approximation of the true suspension viscosity
ensor V(�̇� , 𝑐𝖥). Since the true suspension viscosity tensor V has the

minor and major symmetries, it is defined by 21 components. As a con-
sequence, the suspension viscosity 𝑉 (�̇� , 𝑐 ) can be completely described
𝖥
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Fig. 6. Comparison of microstructures with dimensions 𝐿 ×𝑊 ×𝑊 , lengths 𝐿 ∈ {1.1𝓁, 2.2𝓁, 3.2𝓁}, and widths 𝑊 ∈ {5𝑑, 10𝑑, 20𝑑}.
Fig. 7. Apparent viscosity 𝜂𝖺𝗉𝗉 in the Newtonian case for fiber volume fractions 𝑐𝖥 = 5% (a) and 𝑐𝖥 = 25% (b).
t

by a scalar elongational viscosity and a scalar dilatational viscosity,
see He and Curnier [81, Sec. 4.3]. The elongational and dilatational
viscosity then contain the information of 15 and 6 components of the
suspension viscosity 𝑉 (�̇� , 𝑐 ), respectively.
9

𝖥 t
However, due to incompressibility, all information contained in the
suspension viscosity 𝑉 (�̇� , 𝑐𝖥) is completely and uniquely encoded via
he elongational viscosity 𝜂𝖺𝗉𝗉(�̇� , 𝑐𝖥,𝒅) [81, Sec. 4.3]. This holds in both
he Newtonian and Cross-type case. Thus, in the following, we use the
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Fig. 8. Apparent viscosity 𝜂𝖺𝗉𝗉 in the Cross-type case for combinations of fiber volume fractions 𝑐𝖥 and shear rate �̇�: 𝑐𝖥 = 5%, �̇� = 10 s−1 (a), 𝑐𝖥 = 5%, �̇� = 500 s−1 (b), 𝑐𝖥 = 25%, �̇� = 10 s−1

(c), and 𝑐𝖥 = 25%, �̇� = 500 s−1 (d).
elongational viscosity 𝜂𝖺𝗉𝗉(�̇� , 𝑐𝖥) as a tool to completely visualize and
qualitatively understand the suspension viscosity 𝑉 (�̇� , 𝑐𝖥). For the spe-
cial case of an isotropic suspension viscosity, and a uniaxial elongation
direction 𝒅, the elongational viscosity 𝜂𝖺𝗉𝗉(�̇� ,𝒅) is related to the shear
viscosity 𝜂(�̇�) (2.2) such that 𝜂𝖺𝗉𝗉(�̇� ,𝒅) = 4𝜂(�̇�)∕3. In the Newtonian
case, the viscosity tensor components 𝑉 (�̇� , 𝑐𝖥) are independent of the
shear rate �̇�. The dependence of the elongational viscosity 𝜂𝖺𝗉𝗉(�̇� , 𝑐𝖥,𝒅)
and the suspension viscosity 𝑉 (�̇� , 𝑐𝖥) on the shear rate �̇�, fiber volume
fraction 𝑐𝖥, and elongation direction 𝒅 will be omitted for notational
clarity. Note that the colormap limits in Figs. 7 and 8 are chosen to
highlight the respective extrema of the elongational viscosity 𝜂𝖺𝗉𝗉, and
that differences in magnitude are visualized by the size of the viscosity
bodies.

In Figs. 7 and 8, we observe that for both the Newtonian and Cross-
type case, the elongational viscosity 𝜂𝖺𝗉𝗉 is large when the direction 𝒅
is aligned with the principal fiber orientation axis. This is expected,
since flow resistance along the cylindrical fibers is higher than in other
10
flow directions. Furthermore, the elongational viscosity 𝜂𝖺𝗉𝗉 for both
cases increases with growing fiber volume fraction 𝑐𝖥 in all directions 𝒅.
However, in the Cross-type case, the elongational viscosity 𝜂𝖺𝗉𝗉 de-
creases with the shear rate �̇� in all directions 𝒅. Depending on the value
of the shear rate �̇�, one effect outweighs the other.

Note that the minimum value of the elongational viscosity 𝜂𝖺𝗉𝗉 does
not occur perpendicular to the principal fiber orientation axis 𝑥 in both
cases, because of incompressibility.

4.2. Polar representation and material anisotropy

While spatial representations of the elongational viscosity 𝜂𝖺𝗉𝗉 pro-
vide intuition and qualitative understanding of the underlying viscosity
matrix 𝑉 , cuts through the viscosity bodies shown in the previous
section allow for a more focused discussion of the occurring effects. As
noted in the previous section, the fiber volume fraction 𝑐𝖥 has a strong
influence on the suspension viscosity 𝑉 . Because the matrix 𝑉 should
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Fig. 9. Apparent viscosity 𝜂𝖺𝗉𝗉 in the 𝑥 − 𝑦 and 𝑦 − 𝑧 plane, for fiber volume fractions 𝑐𝖥 ∈ {5, 10, 15, 20, 25}% in the Newtonian case.
Table 2
Apparent viscosities 𝜂𝑦𝖺𝗉𝗉 and 𝜂𝑥𝖺𝗉𝗉 in the Newtonian case for fiber volume fractions 𝑐𝖥 ∈ {5, 10, 15, 20, 25}%.

𝑐𝖥 in % 5 10 15 20 25

𝜂𝑦𝖺𝗉𝗉 in Pa s 530 726 964 1 243 1 581
𝜂𝑥𝖺𝗉𝗉 in Pa s 769 1 258 1 872 2 615 3 468
t

s
t
a
a
a
i

be transversely isotropic, see Section 2.5, we will discuss the effect of
the fiber volume fraction 𝑐𝖥 and the shear rate �̇� on the suspension
viscosity 𝑉 by focusing on the elongational viscosities 𝜂𝑥𝖺𝗉𝗉 and 𝜂𝑦𝖺𝗉𝗉 in 𝑥
nd 𝑦 direction.

In Section 4.1 we noted that the elongational viscosity 𝜂𝖺𝗉𝗉 increases
ith the fiber volume fraction 𝑐𝖥 in all directions 𝒅. Additionally, as

hown in Figs. 9 and 10, the changes of the elongational viscosities 𝜂𝑦𝖺𝗉𝗉
nd 𝜂𝑥𝖺𝗉𝗉 with the fiber volume fraction 𝑐𝖥 increase with the fiber volume
raction 𝑐𝖥 itself. In the Newtonian case, the viscosity 𝜂𝑦𝖺𝗉𝗉 increases

from 530 Pa s to 1 581 Pa s as the fiber volume fraction 𝑐𝖥 changes from
5% to 25%, see Table 2. In contrast, the elongational viscosity 𝜂𝑥𝖺𝗉𝗉
ncreases from 769 Pa s to 3 468 Pa s as the fiber volume fraction 𝑐𝖥 in-
reases from 5% to 25%. Thus, the elongational viscosities 𝜂𝑦𝖺𝗉𝗉 and 𝜂𝑥𝖺𝗉𝗉
ncrease by 198% and 351%, respectively.

In the Cross-type case, the elongational viscosity 𝜂𝖺𝗉𝗉 depends on the
hear rate �̇�, as highlighted by Fig. 10 and Table 3. At a fiber volume
raction 𝑐𝖥 = 5%, the elongational viscosity 𝜂𝑦𝖺𝗉𝗉 decreases from 529 Pa s
o 30 Pa s as the shear rate �̇� changes from 10 s−1 to 105 s−1. In contrast,
he elongational viscosity 𝜂𝑥𝖺𝗉𝗉 decreases from 759 Pa s to 43 Pa s as the
hear rate �̇� changes from 10 s−1 to 105 s−1. Hence, both elongational
iscosities 𝜂𝑦𝖺𝗉𝗉 and 𝜂𝑥𝖺𝗉𝗉 decrease by the same factor of around 94%.
owever, for a lower shear rate �̇� = 103 Pa s, the elongational viscosi-

ies 𝜂𝑦𝖺𝗉𝗉 and 𝜂𝑥𝖺𝗉𝗉 decrease differently by the factors 57% and 62%,
espectively. We observe a similar change for the higher fiber volume
raction 𝑐𝖥 = 25%. In this case, the elongational viscosities 𝜂𝑦𝖺𝗉𝗉 and 𝜂𝑥𝖺𝗉𝗉
lso decrease by around 94% as the shear rate �̇� changes from 10 s−1

o 105 s−1. Again, for a lower shear rate �̇� = 103 Pa s, the elongational
iscosities 𝜂𝑦𝖺𝗉𝗉 and 𝜂𝑥𝖺𝗉𝗉 decrease differently by the factors 75% and
8%, respectively. As a result, we conclude that for shear rates �̇� where
11
he matrix behavior is non-Newtonian the elongational viscosities 𝜂𝑥𝖺𝗉𝗉
and 𝜂𝑦𝖺𝗉𝗉 vary stronger with the shear rate for higher fiber volume
fraction 𝑐𝖥. Also, since the elongational viscosities 𝜂𝑦𝖺𝗉𝗉 and 𝜂𝑥𝖺𝗉𝗉 change
by different factors in both the Newtonian and Cross-type case for a
shear rate �̇� = 103 s−1, the material anisotropy changes with varying
fiber volume fraction 𝑐𝖥 and shear rate �̇�, see Fig. 11. We discuss these
changes in the following.

For the transversely isotropic symmetry of the suspension viscos-
ity 𝑉 , its anisotropy is characterized by the elongational viscosities 𝜂𝑥𝖺𝗉𝗉
and 𝜂𝑦𝖺𝗉𝗉. For further investigation we also use a third elongational
viscosity 𝜂𝑧𝖺𝗉𝗉 in 𝑧 direction. Each parameter represents the value of
the elongational viscosity 𝜂𝖺𝗉𝗉 for an elongation direction 𝒅 in 𝑥-, 𝑦-,
and 𝑧-direction, respectively. Thus, the fractions

𝑓1 =
𝜂𝑥𝖺𝗉𝗉
𝜂𝑦𝖺𝗉𝗉

, and 𝑓2 =
𝜂𝑥𝖺𝗉𝗉
𝜂𝑧𝖺𝗉𝗉

(4.2)

erve as a measure of directional anisotropy. For a theoretical, perfectly
ransversely isotropic suspension viscosity, both fractions 𝑓1 and 𝑓2
ssume the same value. As described in Section 2.5, we prescribed
transversely isotropic, second order orientation tensor (2.46) for

ll considered microstructures. Hence, we also expect a transversely
sotropic suspension viscosity 𝑉 if the volume element size for the

computational investigations was chosen sufficiently large.
To test if the volume element size was chosen appropriately, we

define the relative deviation

𝑒𝖽𝖾𝗏 =
|𝑓1 − 𝑓2| , (4.3)
|𝑓1|
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Fig. 10. 𝑥 − 𝑦 and 𝑦 − 𝑧 plane cuts of the Cross-type, elongational viscosity bodies for fiber volume fractions 𝑐𝖥 = 25% and shear rates �̇� ∈ {101 , 102 , 103 , 104 , 105} s−1.
Table 3
Apparent viscosities 𝜂𝑦𝖺𝗉𝗉 and 𝜂𝑥𝖺𝗉𝗉 in the Cross-type case for fiber volume fractions 𝑐𝖥 ∈ {5, 10, 15, 20, 25}% and shear rates �̇� ∈ {10, 103 , 105} s−1.

𝑐𝖥 in % 5 15 25

�̇� in s−1 101 103 105 101 103 105 101 103 105

𝜂𝑦𝖺𝗉𝗉 in Pa s 529 226 30 939 295 52 1 515 379 84
𝜂𝑥𝖺𝗉𝗉 in Pa s 759 287 43 1 818 494 101 3 336 729 185
T
c
t

and evaluate the relative deviation 𝑒𝖽𝖾𝗏 for both the Newtonian and
Cross-type case. For all considered shear rates �̇� and volume frac-
tions 𝑐𝖥, the deviation 𝑒𝖽𝖾𝗏 is smaller than 2% in both the Newtonian
and the Cross-type case. Therefore, the values of the fractions 𝑓1 and
𝑓2 differ only slightly from each other, and the expected symmetry
of the material is captured with an error that is sufficiently small for
engineering purposes. The elongational viscosity 𝜂𝖺𝗉𝗉 in the 𝑦-𝑧 plane,
as shown in Figs. 9(b) and 10(b), illustrate the material symmetry
further, since the polar plots of the elongational viscosity 𝜂𝖺𝗉𝗉 are
circular for all fiber volume fractions 𝑐𝖥 and shear rates �̇�. Since we
consider the volume elements as representative, we will discuss the
dependence of both fractions 𝑓1 and 𝑓2 on the fiber volume fraction 𝑐𝖥
and the shear rate �̇� as shown in Fig. 11.

In the Newtonian case, both fractions 𝑓1 and 𝑓2 grow significantly
from 1.45 at a volume fraction 𝑐𝖥 = 5% to 2.19 at a volume frac-
tion 𝑐𝖥 = 25%. Because the matrix behavior in the Cross-type case is ap-
proximately Newtonian for low shear rates �̇�, the values of the fractions
𝑓1 and 𝑓2 in the Cross-type case for a shear rate �̇� = 10 s−1 are similar
to those in the Newtonian case. As the shear rate �̇� grows, the values of
the fractions 𝑓1 and 𝑓2 decrease up to a shear rate �̇�𝗆𝗂𝗇 ≈ 103 s−1, where
they reach their respective minima. Because more fibers are likely to
be packed close to each other for higher volume fractions 𝑐𝖥, higher
velocity gradients occur at lower macroscopic shear rates �̇�. This, in
turn, decreases the local matrix viscosity. Consequently, the minimum
of the fractions 𝑓1 and 𝑓2 occurs at lower shear rates as the fiber volume
fraction grows. For a fiber volume fraction 𝑐𝖥 = 25%, the minimum of
the fractions 𝑓1 and 𝑓2 is attained at a shear rate �̇� = 103 s−1, whereas,
for a fiber volume fraction 𝑐𝖥 = 5%, the minimum is attained at a shear

3 −1
12

rate �̇� = 2 ⋅ 10 s .
Also, the maximum absolute changes

𝛥𝑓 (𝑐𝖥) = 𝑓 (𝑐𝖥, 10 s−1) − 𝑓 (𝑐𝖥, �̇�𝗆𝗂𝗇) (4.4)

increase with the fiber volume fraction 𝑐𝖥, e.g., 𝛥𝑓 (𝑐𝖥) = 17% and
𝛥𝑓 (𝑐𝖥) = 28% for fiber volume fractions 𝑐𝖥 of 5% and 25%, respectively.
In contrast, the maximum relative changes

𝛥𝑓 (𝑐𝖥) =
𝑓 (𝑐𝖥, 10 s−1) − 𝑓 (𝑐𝖥, �̇�𝗆𝗂𝗇)

𝑓 (𝑐𝖥, 10 s−1)
(4.5)

lie between 12% to 14% for all investigated fiber volume fractions.

4.3. Comparison to mean-field results

In the following, we compare the computational results with mean-
field estimates. In the Newtonian and Cross-type cases, we use the
Mori–Tanaka model (2.41) to calculate the apparent mean-field viscos-
ity 𝜂𝖬𝖥

𝖺𝗉𝗉. Then, we compare the apparent mean-field viscosity 𝜂𝖬𝖥
𝖺𝗉𝗉 with

the apparent computational viscosity 𝜂𝖥𝖥𝖳𝖺𝗉𝗉 via the deviation

𝑒𝖬𝖥 =
|

|

|

𝜂𝖬𝖥
𝖺𝗉𝗉 − 𝜂𝖥𝖥𝖳𝖺𝗉𝗉

|

|

|

𝜂𝖥𝖥𝖳𝖺𝗉𝗉

. (4.6)

o reduce dimensional complexity, and to avoid compromising the
omparison with potential interpolation errors, as discussed in Sec-
ion 4.1, we focus our discussion on the two scalar quantities 𝜂𝑥𝖺𝗉𝗉

and 𝜂𝑦𝖺𝗉𝗉. The results for the Newtonian and the Cross-type case are
shown in Figs. 12 and 13, as well as Fig. 14.

In the Newtonian case, the elongational viscosities 𝜂𝑥𝖺𝗉𝗉 and 𝜂𝑦𝖺𝗉𝗉
obtained via the mean-field method are lower than the ones obtained
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Fig. 11. Anisotropy fractions 𝑓1 and 𝑓2 (4.2) for the Newtonian and the Cross-type case, 𝑐𝖥 ∈ {5, 10, 15, 20, 25}%, �̇� ∈ [10, 105] s−1.
Fig. 12. Apparent viscosities 𝜂𝑥𝖺𝗉𝗉 and 𝜂𝑦𝖺𝗉𝗉 for the mean-field model and the FFT-based computational method, and deviation 𝑒𝖬𝖥 (4.3) for fiber volume fractions 𝑐𝖥 ∈ {5, 10, 15, 20, 25}%
n the Newtonian case.
o
c
t
T

ia the FFT-based computational method. Also, for a fiber volume
raction 𝑐𝖥 = 5%, the mean-field and FFT-based results for 𝜂𝑥𝖺𝗉𝗉 and 𝜂𝑦𝖺𝗉𝗉
an still be considered similar for engineering purposes, as the devi-
tion 𝑒𝖬𝖥 is below 5.7%. However, for increasing fiber volume frac-
ions 𝑐𝖥, the deviation 𝑒𝖬𝖥 increases monotonically up to 26.8% for the

𝑥 𝑦
13

longational viscosity 𝜂𝖺𝗉𝗉 and 23.5% for the elongational viscosity 𝜂𝖺𝗉𝗉. t
In the Cross-type case, for shear rates �̇� ≈ 10 s−1, �̇� ≈ 105 s−1, we
bserve the same results for the deviation 𝑒𝖬𝖥 as in the Newtonian
ase. This is a direct result of the two Newtonian regions of the Cross-
ype matrix viscosity 𝜂 at the shear rate limits �̇� → 0 s−1 and �̇� → ∞s−1.
he largest deviation 𝑒𝖬𝖥 occurs for a shear rate �̇� = 103 s−1, where

he matrix nonlinearity is highest. As we already observed for the



Journal of Non-Newtonian Fluid Mechanics 321 (2023) 105101B. Sterr et al.

i

Fig. 13. Apparent viscosities 𝜂𝑥𝖺𝗉𝗉 and 𝜂𝑦𝖺𝗉𝗉 for the mean-field model and the FFT-based computational method for fiber volume fractions 𝑐𝖥 ∈ {5, 25}% and shear rates �̇� ∈ [10, 105] s−1

n the Cross-type case.
Fig. 14. Deviation 𝑒𝖬𝖥 (4.3) of the elongational viscosities 𝜂𝑥𝖺𝗉𝗉 and 𝜂𝑦𝖺𝗉𝗉 for fiber volume fractions 𝑐𝖥 ∈ {5, 10, 15, 20, 25}% and shear rates �̇� ∈ [10, 105] s−1 in the Cross-type case.
anisotropy measures 𝑓1 and 𝑓2 in Section 4.1, the fiber volume frac-
tion 𝑐𝖥 influences the shear rate �̇� at which the maximum deviation 𝑒𝖬𝖥

occurs. In particular, for both elongational viscosities 𝜂𝑥𝖺𝗉𝗉 and 𝜂𝑦𝖺𝗉𝗉, the
maximum observed deviation for a fiber volume fraction 𝑐𝖥 = 25%
occurs at a lower shear rate �̇� = 103 s−1, whereas it occurs at a shear

3 −1
14

rate �̇� = 2 ⋅ 10 s for a fiber volume fraction 𝑐𝖥 = 5%. As an additional
consequence of the Cross-type material law (2.2), the curves of the
elongational viscosities 𝜂𝑥𝖺𝗉𝗉 and 𝜂𝑦𝖺𝗉𝗉 for the two calculation methods
intersect twice. For the fiber volume fractions 𝑐𝖥 = 5% and 𝑐𝖥 = 25%,
the first intersection occurs at shear rates �̇� ≈ 102 s−1 while the second
intersection occurs in the shear rate interval [104, 5 ⋅ 104] s−1, depending

on the fiber volume fraction 𝑐𝖥. For higher fiber volume fractions 𝑐𝖥 the
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second intersection occurs at lower macroscopic shear rates �̇�, because
the decreased fiber to fiber distance leads to higher microscopic shear
rates. Consequently we observe an earlier transition into the second
Newtonian regime at the shear rate limit �̇� → ∞s−1. In between the
intersections of the elongational viscosity curves, the elongational vis-
cosity 𝜂𝖺𝗉𝗉 obtained via the mean-field model is higher than for the
computational approach.

5. Conclusion

This work was devoted to study the effect of shear-thinning matrix
behavior on the effective viscosity of fiber suspensions. We focused
our considerations on shear rates of interest for engineering manu-
facturing processes, like injection and compression molding. For our
investigations, we made use of a Cross-type viscosity model and an
FFT-based computational method to determine the effective viscosity
of fiber suspensions over a wide range of shear rates. We found the
resolution error of the microstructure discretization to be dependent on
the shear rate and load direction, with the minimum resolution error
occurring at medium shear rates and pure shear loads. To our surprise,
we found the representative volume element size to be highly similar
in a Newtonian case with aligned microstructure and a Cross-type case
with transversely isotropic microstructure. Over the considered shear
rate interval, we found the Cross-type suspension viscosity to vary
strongly in magnitude and in degree of anisotropy. Finally, we ob-
served substantial deviations between the computational estimates and
Mori–Tanaka type mean-field estimates for the suspension viscosity.

In subsequent work, the presented Cross-type FFT-based homoge-
nization procedure could improve prediction capabilities of engineering
process simulations by providing enhanced estimates for the suspension
viscosity. Also, combined with an efficient upscaling technique such as
Deep Material Networks [82–85], the Cross-type FFT-based procedure
could be employed on an element level in nonlinear, component scale
process simulations. Furthermore, the Cross-type FFT-based procedure
could be used in the validation, improvement and development of
mean-field models for the viscosity of nonlinear suspensions. As the
first article to investigate the effective viscosity of non-Newtonian fiber
suspensions in the context of FFT-based computational homogeniza-
tion, the scope of this article was restricted to fibers of aspect ratio
ten, a selected transversely isotropic fiber orientation state, and Cross-
type shear-thinning rheology. From a physical perspective, effects like
shear-thickening rheology, temperature dependence, and polymer crys-
tallization might also be incorporated into the computational procedure
to increase versatility. Furthermore, investigations of suspensions with
higher fiber aspect ratios and different fiber orientation states are of
engineering interest as well, and could be elements of future research.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The research documented in this manuscript has been funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation), Germany, project number 255730231, within the Interna-
tional Research Training Group ‘‘Integrated engineering of continuous-
discontinuous long fiber reinforced polymer structures‘‘ (GRK 2078/2).
The support by the German Research Foundation (DFG) is gratefully
acknowledged. We thank the anonymous reviewers for their helpful
comments.
15
Author contributions

The present study was conceptualized by B. Sterr, D. Wicht,
M. Schneider, and T. Böhlke. B. Sterr, D. Wicht, and M. Schneider
implemented and validated the software. B. Sterr performed the simu-
lations, analyzed and visualized the data, and drafted the manuscript.
The original manuscript draft was extensively reviewed and edited by
B. Sterr, A. Hrymak, M. Schneider, and T. Böhlke. Resources were
provided by M. Schneider and T. Böhlke. The research project was
supervised by A. Hrymak, M. Schneider and T. Böhlke.

References

[1] P. Kennedy, R. Zheng, Flow Analysis of Injection Molds, Carl Hanser Verlag
GmbH Co KG, Munich, Germany, 2013.

[2] V. Goodship, ARBURG Practical Guide to Injection Moulding, Smithers Rapra,
Shawbury, United Kingdom, 2017.

[3] J. Castro, G. Tomlinson, Predicting molding forces in SMC compression molding,
Polym. Eng. Sci. 30 (24) (1990) 1568–1573.

[4] T. Karl, D. Gatti, T. Böhlke, B. Frohnapfel, Coupled simulation of flow-induced
viscous and elastic anisotropy of short-fiber reinforced composites, Acta Mech.
232 (6) (2021) 2249–2268.

[5] D. Binding, Capillary and contraction flow of long-(glass) fibre filled
polypropylene, Composites Manuf. 2 (3–4) (1991) 243–252.

[6] A. Poslinski, M. Ryan, R. Gupta, S. Seshadri, F. Frechette, Rheological behavior
of filled polymeric systems i. yield stress and shear-thinning effects, J. Rheol. 32
(7) (1988) 703–735.

[7] J.M. Krishnan, A.P. Deshpande, P.S. Kumar, Rheology of Complex Fluids,
Springer, Berlin, Heidelberg, Germany, 2010.

[8] W. Sutherland, A dynamical theory of diffusion for non-electrolytes and the
molecular mass of albumin, Lond. Edinb. Dublin Philos. Mag. J. Sci. 9 (54)
(1905) 781–785.

[9] A. Einstein, Eine neue Bestimmung der Moleküldimensionen (Ph.D. thesis), ETH
Zurich, 1905.

[10] G. Batchelor, The stress system in a suspension of force-free particles, J. Fluid
Mech. 41 (3) (1970) 545–570.

[11] G. Batchelor, The stress generated in a non-dilute suspension of elongated
particles by pure straining motion, J. Fluid Mech. 46 (4) (1971) 813–829.

[12] S.M. Dinh, R.C. Armstrong, A rheological equation of state for semiconcentrated
fiber suspensions, J. Rheol. 28 (3) (1984) 207–227.

[13] E.S. Shaqfeh, G.H. Fredrickson, The hydrodynamic stress in a suspension of rods,
Phys. Fluids A 2 (1) (1990) 7–24.

[14] T. Karl, T. Böhlke, Unified mean-field modeling of viscous short-fiber suspensions
and solid short-fiber reinforced composites, Arch. Appl. Mech. 92 (12) (2022)
3695–3727.

[15] C.J. Petrie, The rheology of fibre suspensions, J. Non-Newton. Fluid Mech. 87
(2–3) (1999) 369–402.

[16] L. Leal, The slow motion of slender rod-like particles in a second-order fluid, J.
Fluid Mech. 69 (2) (1975) 305–337.

[17] P. Kaloni, V. Stastna, Steady-shear rheological behavior of the suspension of
spherical particles in a second-order fluid, Polym. Eng. Sci. 23 (8) (1983)
465–470.

[18] P. Brunn, The slow motion of a rigid particle in a second-order fluid, J. Fluid
Mech. 82 (3) (1977) 529–547.

[19] P. Brunn, The motion of rigid particles in viscoelastic fluids, J. Non-Newton.
Fluid Mech. 7 (4) (1980) 271–288.

[20] J.D. Goddard, Tensile stress contribution of flow-oriented slender particles in
Non-Newtonian fluids, 1976.

[21] J. Goddard, The stress field of slender particles oriented by a Non-Newtonian
extensional flow, J. Fluid Mech. 78 (1) (1976) 177–206.

[22] J. Goddard, Tensile behavior of power-law fluids containing oriented slender
fibers, J. Rheol. 22 (6) (1978) 615–622.

[23] C. Mobuchon, P.J. Carreau, M.-C. Heuzey, M. Sepehr, G. Ausias, Shear and
extensional properties of short glass fiber reinforced polypropylene, Polym.
Compos. 26 (3) (2005) 247–264.

[24] R.B. Pipes, J. Hearle, A. Beaussart, A. Sastry, R. Okine, A constitutive relation
for the viscous flow of an oriented fiber assembly, J. Compos. Mater. 25 (9)
(1991) 1204–1217.

[25] R.B. Pipes, D.W. Coffin, S.F. Shuler, P. Šimáček, Non-newtonian constitutive
relationships for hyperconcentrated fiber suspensions, J. Compos. Mater. 28 (4)
(1994) 343–351.

[26] B. Souloumiac, M. Vincent, Steady shear viscosity of short fibre suspensions in
thermoplastics, Rheol. Acta 37 (3) (1998) 289–298.

[27] J. Férec, E. Bertevas, B.C. Khoo, G. Ausias, N. Phan-Thien, The effect of shear-
thinning behaviour on rod orientation in filled fluids, J. Fluid Mech. 798 (2016)
350–370.

[28] H.-C. Tseng, A constitutive equation for fiber suspensions in viscoelastic media,
Phys. Fluids 33 (7) (2021) 071702.

http://refhub.elsevier.com/S0377-0257(23)00113-1/sb1
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb1
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb1
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb2
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb2
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb2
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb3
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb3
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb3
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb4
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb4
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb4
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb4
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb4
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb5
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb5
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb5
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb6
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb6
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb6
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb6
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb6
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb7
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb7
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb7
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb8
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb8
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb8
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb8
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb8
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb9
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb9
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb9
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb10
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb10
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb10
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb11
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb11
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb11
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb12
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb12
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb12
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb13
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb13
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb13
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb14
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb14
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb14
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb14
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb14
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb15
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb15
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb15
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb16
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb16
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb16
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb17
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb17
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb17
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb17
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb17
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb18
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb18
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb18
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb19
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb19
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb19
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb20
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb20
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb20
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb21
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb21
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb21
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb22
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb22
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb22
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb23
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb23
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb23
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb23
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb23
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb24
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb24
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb24
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb24
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb24
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb25
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb25
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb25
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb25
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb25
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb26
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb26
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb26
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb27
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb27
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb27
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb27
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb27
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb28
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb28
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb28


Journal of Non-Newtonian Fluid Mechanics 321 (2023) 105101B. Sterr et al.
[29] J. Férec, E. Bertevas, B.C. Khoo, G. Ausias, N. Phan-Thien, A rheological
constitutive model for semiconcentrated rod suspensions in Bingham fluids, Phys.
Fluids 29 (7) (2017) 073103.

[30] A.J. Favaloro, H.-C. Tseng, R.B. Pipes, A new anisotropic viscous constitutive
model for composites molding simulation, Composites A 115 (2018) 112–122.

[31] O. Marin, K. Gustavsson, A.-K. Tornberg, A highly accurate boundary treatment
for confined Stokes flow, Comput. & Fluids 66 (2012) 215–230.

[32] F. Balboa Usabiaga, B. Kallemov, B. Delmotte, A. Bhalla, B. Griffith, A. Donev,
Hydrodynamics of suspensions of passive and active rigid particles: a rigid
multiblob approach, Commun. Appl. Math. Comput. Sci. 11 (2) (2017) 217–296.

[33] H. Moulinec, P. Suquet, A fast numerical method for computing the linear and
nonlinear mechanical properties of composites, C. R. Acad. Sci., Paris II (1994).

[34] H. Moulinec, P. Suquet, A numerical method for computing the overall response
of nonlinear composites with complex microstructure, Comput. Methods Appl.
Mech. Engrg. 157 (1–2) (1998) 69–94.

[35] T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Determination of the
size of the representative volume element for random composites: statistical and
numerical approach, Int. J. Solids Struct. 40 (13–14) (2003) 3647–3679.

[36] F. Willot, Fourier-based schemes for computing the mechanical response of
composites with accurate local fields, C. R. Mec. 343 (3) (2015) 232–245.

[37] S. Mezhoud, V. Monchiet, M. Bornert, D. Grande, Computation of macroscopic
permeability of doubly porous media with fft based numerical homogenization
method, Eur. J. Mech. B Fluids 83 (2020) 141–155.

[38] F. Tu, J. Tong, M. Wang, Z. Chen, S. Qi, An FFT-based Galerkin method for the
effective permeability of porous material, Internat. J. Numer. Methods Engrg.
(2022).

[39] R. Bertóti, D. Wicht, A. Hrymak, M. Schneider, T. Böhlke, A computational
investigation of the effective viscosity of short-fiber reinforced thermoplastics
by an FFT-based method, Eur. J. Mech. B Fluids 90 (2021) 99–113.

[40] J. Segurado, R.A. Lebensohn, J. LLorca, Computational homogenization of
polycrystals, Adv. Appl. Mech. 51 (2018) 1–114.

[41] M. Schneider, A review of nonlinear FFT-based computational homogenization
methods, Acta Mech. 232 (6) (2021) 2051–2100.

[42] Sergio Lucarini, Manas V Upadhyay, Javier Segurado, FFT based approaches
in micromechanics: fundamentals, methods and applications, Modelling and
Simulation in Materials Science and Engineering 30 (2) (2021) 023002.

[43] J. Domurath, M. Saphiannikova, J. Férec, G. Ausias, G. Heinrich, Stress and strain
amplification in a dilute suspension of spherical particles based on a bird–carreau
model, J. Non-Newton. Fluid Mech. 221 (2015) 95–102.

[44] R. Traxl, C. Pichler, R. Lackner, Micromechanics-based assessment of the effective
viscosity of suspensions of generalized-newtonian fluids embedding noncolloidal
angular/spheroidal pores and particles, J. Rheol. 64 (4) (2020) 899–913.

[45] O. Švec, J. Skoček, H. Stang, M.R. Geiker, N. Roussel, Free surface flow of
a suspension of rigid particles in a non-newtonian fluid: A lattice Boltzmann
approach, J. Non-Newton. Fluid Mech. 179 (2012) 32–42.

[46] M.M. Cross, Rheology of Non-Newtonian fluids: a new flow equation for
pseudoplastic systems, J. Colloid Sci. 20 (5) (1965) 417–437.

[47] M.M. Cross, Kinetic interpretation of Non-Newtonian flow, J. Colloid Interface
Sci. 33 (1) (1970) 30–35.

[48] J. Ericksen, Anisotropic fluids, Arch. Ration. Mech. Anal. 4 (1) (1959) 231–237.
[49] J. Ericksen, Transversely isotropic fluids, Kolloid-Z. 173 (2) (1960) 117–122.
[50] M. Silhavy, The Mechanics and Thermodynamics of Continuous Media, Springer

Science & Business Media, Berlin, Heidelberg, Germany, 2013.
[51] P. Suquet, Local and Global Aspects in the Mathematical Theory of Plasticity, in:

A. Sawczuk, G. Bianchi (Eds.), Plasticity Today, Elsevier Appl. Sc. Pub., London,
1985, pp. 279–310.

[52] P. Suquet, Elements of homogenization for inelastic solid mechanics, in:
Homogenization Techniques for Composite Media, 1987.

[53] A. Chambolle, T. Pock, An introduction to continuous optimization for imaging,
Acta Numer. 25 (2016) 161–319.

[54] T. Böhlke, A. Bertram, The reuss bound of the strain rate potential of viscoplastic
FCC polycrystals, Tech. Mech.-Eur. J. Eng. Mech. 23 (2–4) (2003) 184–194.

[55] T. Böhlke, The voigt bound of the stress potential of isotropic viscoplastic fcc
polycrystals, Arch. Mech. 56 (6) (2004) 425–445.

[56] M. Kabel, S. Fliegener, M. Schneider, Mixed boundary conditions for FFT-based
homogenization at finite strains, Comput. Mech. 57 (2) (2016) 193–210.

[57] D. Wicht, M. Schneider, T. Böhlke, An efficient solution scheme for small-strain
crystal-elasto-viscoplasticity in a dual framework, Comput. Methods Appl. Mech.
Engrg. 358 (2020) 112611.

[58] L. Armijo, Minimization of functions having lipschitz continuous first partial
derivatives, Pacific J. Math. 16 (1) (1966) 1–3.

[59] A.A. Goldstein, On steepest descent, J. Soc. Ind. Appl. Math. Ser A Control 3 (1)
(1965) 147–151.
16
[60] M. Schneider, The sequential addition and migration method to generate rep-
resentative volume elements for the homogenization of short fiber reinforced
plastics, Comput. Mech. 59 (2) (2017) 247–263.

[61] F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface, Phys. Fluids 8 (12) (1965)
2182–2189.

[62] J. Barzilai, J.M. Borwein, Two-point step size gradient methods, IMA J. Numer.
Anal. 8 (1) (1988) 141–148.

[63] R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J.
Numer. Anal. 19 (2) (1982) 400–408.

[64] M. Schneider, A dynamical view of nonlinear conjugate gradient methods with
applications to FFT-based computational micromechanics, Comput. Mech. 66 (1)
(2020) 239–257.

[65] M. Schneider, Lippmann–Schwinger solvers for the computational homogeniza-
tion of materials with pores, Internat. J. Numer. Methods Engrg. 121 (22) (2020)
5017–5041.

[66] M. Schneider, On the effective viscosity of a periodic suspension–analysis of
primal and dual formulations for Newtonian and Non-Newtonian solvents, Math.
Methods Appl. Sci. 39 (12) (2016) 3309–3327.

[67] S.G. Advani, C.L. Tucker III, The use of tensors to describe and predict fiber
orientation in short fiber composites, J. Rheol. 31 (8) (1987) 751–784.

[68] K. Kanatani, Distribution of directional data and fabric tensors, Internat. J. Engrg.
Sci. 22 (2) (1984) 149–164.

[69] R. Bertóti, Modeling the Flow-Induced Anisotropic Effective Viscosity of Fiber
Suspensions by Mean-Field and Full-Field Homogenization (Doctoral thesis),
Karlsruher Institut für Technologie (KIT), 2021.

[70] J.R. Willis, Bounds and self-consistent estimates for the overall properties of
anisotropic composites, J. Mech. Phys. Solids 25 (3) (1977) 185–202.

[71] R. Bertóti, T. Böhlke, Flow-induced anisotropic viscosity in short FRPs, Mech.
Adv. Mater. Mod. Process. 3 (1) (2017) 1–12.

[72] Ultramid®B3K polyamide 6 material data, 2020, https://www.campusplastics.
com/campus/de/datasheet/Ultramid%C2%AE+B3K/BASF/20/3a22f000.
(Accessed 26 September 2020).

[73] J.R.L. Valero, Plastics injection molding: scientific molding, recommendations,
and best practices, Carl Hanser Verlag GmbH Co KG, Munich, Germany, 2020.

[74] W. Friesenbichler, I. Duretek, J. Rajganesh, S.R. Kumar, Measuring the pressure
dependent viscosity at high shear rates using a new rheological injection mould,
Polimery 56 (1) (2011) 58–62.

[75] M. Vincent, T. Giroud, A. Clarke, C. Eberhardt, Description and modeling of fiber
orientation in injection molding of fiber reinforced thermoplastics, Polymer 46
(17) (2005) 6719–6725.

[76] C. Park, W. Lee, Y. Yoo, E. Kim, A study on fiber orientation in the compression
molding of fiber reinforced polymer composite material, J. Mater Process.
Technol. 111 (1–3) (2001) 233–239.

[77] S. Williams, A. Philipse, Random packings of spheres and spherocylinders
simulated by mechanical contraction, Phys. Rev. E 67 (5) (2003) 051301.

[78] M. Kabel, A. Fink, M. Schneider, The composite voxel technique for inelastic
problems, Comput. Methods Appl. Mech. Engrg. 322 (2017) 396–418.

[79] M. Schneider, D. Wicht, Superconvergence of the effective cauchy stress in
computational homogenization of inelastic materials, International Journal for
Numerical Methods in Engineering 124 (4) (2023) 959–978.

[80] T. Böhlke, C. Brüggemann, Graphical representation of the generalized Hooke’s
law, Tech. Mech. 21 (2) (2001) 145–158.

[81] Q.-C. He, A. Curnier, A more fundamental approach to damaged elastic
stress–strain relations, Int. J. Solids Struct. 32 (10) (1995) 1433–1457.

[82] Z. Liu, C. Wu, M. Koishi, A deep material network for multiscale topology learn-
ing and accelerated nonlinear modeling of heterogeneous materials, Comput.
Methods Appl. Mech. Engrg. 345 (2019) 1138–1168.

[83] S. Gajek, M. Schneider, T. Böhlke, On the micromechanics of deep material
networks, J. Mech. Phys. Solids 142 (2020) 103984.

[84] S. Gajek, M. Schneider, T. Böhlke, An FE-DMN method for the multiscale analysis
of thermomechanical composites, Comput. Mech. 69 (5) (2022) 1087–1113.

[85] A.P. Dey, F. Welschinger, M. Schneider, S. Gajek, T. Böhlke, Training deep
material networks to reproduce creep loading of short fiber-reinforced thermo-
plastics with an inelastically-informed strategy, Arch. Appl. Mech. 92 (9) (2022)
2733–2755.

http://refhub.elsevier.com/S0377-0257(23)00113-1/sb29
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb29
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb29
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb29
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb29
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb30
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb30
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb30
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb31
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb31
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb31
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb32
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb32
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb32
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb32
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb32
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb33
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb33
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb33
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb34
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb34
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb34
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb34
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb34
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb35
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb35
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb35
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb35
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb35
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb36
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb36
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb36
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb37
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb37
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb37
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb37
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb37
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb38
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb38
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb38
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb38
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb38
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb39
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb39
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb39
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb39
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb39
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb40
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb40
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb40
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb41
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb41
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb41
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb42
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb42
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb42
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb42
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb42
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb43
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb43
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb43
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb43
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb43
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb44
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb44
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb44
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb44
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb44
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb45
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb45
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb45
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb45
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb45
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb46
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb46
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb46
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb47
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb47
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb47
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb48
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb49
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb50
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb50
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb50
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb51
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb51
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb51
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb51
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb51
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb52
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb52
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb52
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb53
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb53
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb53
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb54
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb54
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb54
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb55
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb55
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb55
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb56
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb56
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb56
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb57
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb57
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb57
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb57
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb57
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb58
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb58
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb58
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb59
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb59
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb59
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb60
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb60
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb60
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb60
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb60
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb61
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb61
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb61
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb61
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb61
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb62
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb62
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb62
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb63
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb63
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb63
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb64
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb64
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb64
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb64
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb64
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb65
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb65
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb65
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb65
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb65
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb66
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb66
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb66
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb66
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb66
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb67
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb67
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb67
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb68
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb68
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb68
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb69
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb69
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb69
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb69
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb69
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb70
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb70
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb70
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb71
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb71
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb71
https://www.campusplastics.com/campus/de/datasheet/Ultramid%C2%AE+B3K/BASF/20/3a22f000
https://www.campusplastics.com/campus/de/datasheet/Ultramid%C2%AE+B3K/BASF/20/3a22f000
https://www.campusplastics.com/campus/de/datasheet/Ultramid%C2%AE+B3K/BASF/20/3a22f000
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb73
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb73
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb73
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb74
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb74
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb74
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb74
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb74
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb75
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb75
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb75
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb75
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb75
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb76
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb76
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb76
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb76
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb76
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb77
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb77
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb77
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb78
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb78
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb78
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb79
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb79
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb79
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb79
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb79
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb80
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb80
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb80
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb81
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb81
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb81
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb82
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb82
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb82
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb82
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb82
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb83
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb83
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb83
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb84
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb84
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb84
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb85
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb85
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb85
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb85
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb85
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb85
http://refhub.elsevier.com/S0377-0257(23)00113-1/sb85

	Homogenizing the viscosity of shear-thinning fiber suspensions with an FFT-based computational method
	Introduction
	State of the art
	Contributions

	Computing the effective viscosity of particles suspended in a nonlinear viscous medium
	The nonlinear viscosity tensor
	Scale transition in nonlinear viscosity
	Computational aspects and setup
	A model for the fiber suspension viscosity
	Material parameters

	Preliminary studies
	Validation against computational results from literature
	Resolution Study
	Volume element size

	Computational investigations
	Spatial representation of the suspension viscosity through a scalar elongational viscosity 
	Polar representation and material anisotropy
	Comparison to mean-field results

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Author contributions
	References


