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A B S T R A C T   

The northeastern Hunan Province hosts numerous hydrothermal Pb-Zn(-Cu-Co) polymetallic deposits. As a 
representative example, the Jingchong Cu-Co-Pb-Zn deposit is characterized by the lower Cu-Co and upper Pb-Zn 
mineralization, whereas little is known about Pb-Zn mineralization. In this study, three generations of sphalerite 
were identified based on their textural and geochemical differences. The Sph-I exhibits the oscillatory zoning that 
consists of reddish-brown Sph-Ia (poor in chalcopyrite inclusion) alternating with dark Sph-Ib with zoned 
chalcopyrite inclusion. Sph-II is composed of honey-brown Sph-IIa (abundant chalcopyrite droplets) and white 
clean Sph-IIb (rare chalcopyrite inclusion). The black Sph-III is characterized by nano- to submicron-sized 
chalcopyrite inclusions with typical “dusting” or “watermelon” texture and crosscuts all other sphalerite gen-
erations in veinlets. The electron microprobe and laser ablation inductively coupled plasma mass spectrometry 
show that Sph-I has higher Fe and Mn contents, but lower Cd, Cu and Ag contents than Sph-II and Sph-III. 
Sphalerite geothermometry yields temperatures of 334–346 (±58)◦C for Sph-I, 254–289 (±60)◦C for Sph-II 
and 286 (±55) ◦C for Sph-III. The sulfur fugacity ranges from logfS2 values of − 9.03 to − 8.26 for Sph-I to 
− 11.77 to − 10.63 for Sph-II and − 10.82 for Sph-III. The combined textural features and chemical compositions 
indicate that the self-organized mechanism forms Sph-I, and that the coupled dissolution and precipitation re-
actions triggered by the influx of Cu-elevated fluids are responsible for the formation of Sph-II and Sph-III. The 
associated pyrite and pyrrhotite inclusions in sphalerite are produced by the exsolution mechanism, while 
chalcopyrite inclusions are formed by co-precipitation due to local supersaturation at the interface of sphalerite 
with fluid. The 40Ar-39Ar dating of muscovite in the Jingchong deposit yields a mineralizing age of ca. 121.1 ± 2 
Ma, consistent with the ca. 130–120 Ma Pb-Zn mineralizing events in the northeastern Hunan Province. The 
sulfur isotopic values (− 3.0 to +3.5‰) of the Pb-Zn ores are similar to that of Cu-Co ores, indicating a magmatic 
sulfur origin. Together with the trace element affinity of sphalerite with magmatic-hydrothermal origin, it was 
proposed that the Jingchong Pb-Zn and Cu-Co mineralization were formed in the same magmatic-hydrothermal 
system. The placement of Pb-Zn orebodies at the upward zoning of Cu-Co orebodies could be attributed to the 
higher solubilities of Pb and Zn chloride complexes in hydrothermal fluids, relative to Cu chloride complex.   

1. Introduction 

Sphalerite is the most important zinc mineral in a variety of zinc 

sulfide deposits (Cook et al., 2009; Ye et al., 2011). Significant amounts 
of minor and trace elements like Mn, Fe, Co, Ni, As, Cu, Ga, Ge, Se, Mo, 
Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi are incorporated into sphalerite as 
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solid solution and/or mineral inclusions at sub-ppm to weight-percent 
levels, which is dependent on the crystallization temperature, pres-
sure, pH, redox potential, fluid chemistry and mineral assemblages 
(Cook et al., 2009; Ye et al., 2011; Belissont, 2014; Bonnet et al., 2016; 
Frenzel et al., 2016; George et al., 2016; Zhuang et al., 2019; Zhu et al., 
2021; Luo et al., 2022). Thus, the element composition of sphalerite can 
be used to constrain the physical and chemical conditions of the ore- 
forming fluid and even the ore deposit type (Barton and Bethke, 1987; 
Keith et al., 2014; Frenzel et al., 2016, 2022). For instance, sphalerite 
preferentially incorporates Fe, Mn and In in high-temperature 
magmatic-hydrothermal systems which are characterized by low oxy-
gen fugacity. Conversely, the enrichment of Ga, Ge, Tl and As in 
sphalerite occurs in sediment-hosted deposits with relatively low tem-
perature, i.e. Mississippi valley-type deposits (Cook et al., 2009; Belis-
sont, 2014; Frenzel et al., 2016; Zhou et al., 2018). In addition, the 
intergrowth of sphalerite and various mineral inclusions such as chal-
copyrite, pyrrhotite and pyrite have been explained by exsolution, co- 
precipitation, or replacement mechanisms (Kojima and Sugaki, 1987; 
Bortnikov et al., 1991; Nagase and Kojima, 1997; Çi̇Ftçi̇, 2011; Govin-
darao et al., 2018). Therefore, the combined features of mineral 
assemblage, textures and chemical compositions of sphalerite and 
associated mineral inclusions can help understand the Pb-Zn mineral-
izing process (Ramdohr, 1969; Cook et al., 2009; Ye et al., 2011; 
Cugerone et al., 2020). 

The Yanshanian (150–120 Ma) is an important period of large-scale 
Au, Cu, Co, Pb and Zn mineralization in South China (Hua et al., 2005; 
Mao et al., 2011; Chen, 2014; Deng et al., 2017, 2020; Xu et al., 2017, 
2022; Zou et al., 2018). The northeastern Hunan Province, located in the 
central segment of the Jiangnan Orogen, South China, hosts different 
types of Pb-Zn deposits, such as the hydrothermal vein-type Jingchong 
and Hengdong Cu-Co-Pb-Zn deposits (Wang et al., 2017, 2022; Zou 
et al., 2018), hydrothermal vein-type Taolin and Lishan Pb-Zn deposits 
(Yu et al., 2020, 2021; Guo et al., 2018) and skarn-porphyry type 

Qibaoshan and Aoyushan Cu-Pb-Zn deposits (Liu, 2017; Yuan et al., 
2018). Particularly, these deposits are accompanied by some critical 
metal resources, as represented by Co in the Jingchong and Hengdong 
deposits (Wang et al., 2017, 2022; Zou et al., 2018), Ga and Se in the 
Taolin and Lishan deposits, and In in the Qibaoshan deposit (Liu, 2017). 
These hydrothermal vein-type deposits share similar ore-forming fea-
tures such as orebodies controlled by fracture zones or faults and the 
close tempo-spatial correlation with the Jurassic-Cretaceous granitoids 
(i.e., orebodies either occurring within or approaching the Jurassic- 
Cretaceous granitoids) (Wang et al., 2017; Yu et al., 2020, 2021). 
However, there are still differences in ore geology. For example, fluorite 
and barite are the main gangue minerals in the Taolin and Lishan Pb-Zn 
deposits (Yu et al., 2020, 2021), instead, the Jingchong Cu-Co-Pb-Zn 
deposit has quartz as the main gangue mineral (Wang et al., 2017, 
2022). As a result of little attention to the Pb-Zn mineralization in the 
Cu-Co-Pb-Zn system, it is unclear about the discrepancy among these 
deposits. 

The Jingchong Cu-Co-Pb-Zn deposit with reserves of 0.24 Mt Cu, 
3718 t Co, 12250 t Pb and 72831 t Zn, is characterized by lower Cu-Co 
and upper Pb-Zn orebodies (Wang et al., 2017, 2022). Previous studies 
focus on the Cu-Co metallogeny and interpreted that the deposit has a 
magmatic-hydrothermal provenance according to sulfur, lead, helium 
and argon isotopic analyses (Ning, 2002; Yi et al., 2010; Wang et al., 
2017). Field investigation and detailed mineralogy reveal that cobal-
tiferous pyrite (up to 13.66 wt% Co) and cobaltite-alloclasite are 
responsible for Co mineralizing stage which follows the Cu stage and, in 
turn, followed by the Pb-Zn stage (Wang et al., 2022). However, little is 
known about the formation conditions of Pb-Zn ores and its correlation 
with Cu-Co mineralization, which limit understanding of the Cu-Co-Pb- 
Zn mineralizing process. 

Sphalerite in the Jingchong deposit exhibits various mineralogical 
characteristics (e.g., diverse color, texture and mineral inclusions), 
indicating complex growth mechanisms and varying ore-forming 

Fig. 1. a Tectonic framework of the South China Block showing location of the Jiangnan Orogen in WSG 84 (modified after Zhao, 2015). b Geological map of 
northeastern Hunan Province in WSG 84 (modified after Xu et al., 2009). 
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conditions during Pb-Zn mineralization. Here, we present data on 
sphalerite texture and chemical composition determined by in-situ 
electron probe microanalyzer (EPMA) and Laser ablation inductively 
coupled plasma mass spectrometry (LA-ICP-MS), with special attention 
to the elemental distribution of Fe, Mn, Cd, Cu, Ag, In and Ga. Principal 
component analysis, sphalerite geothermometry and fS2 calculation are 
used to describe element substitution mechanisms and the formation 
conditions associated with sphalerite generations. Furthermore, in-situ 
sulfur isotope data of sphalerite are used to constrain the source of ore- 
forming fluids. In combination with muscovite 40Ar/39Ar dating, the Pb- 
Zn mineralizing process and its correlation with the Jingchong Cu-Co 
mineralization are elaborated. 

2. Regional geology 

The South China Block is composed of two tectonic units: the 
Cathaysia Block to the southeast and the Yangtze Block to the northwest 
(Fig. 1a). These two continental blocks collided in the Neoproterozoic 
and formed the Jiangnan Orogen (Charvet et al., 1996, 2010; Li, 1999; 
Zhou et al., 2002a, 2002b; Wang et al., 2007, 2014a; Yao et al., 2014; 
Zhao, 2015). The Neoproterozoic successions include the early to middle 
Neoproterozoic Lengjiaxi Group and the middle Neoproterozoic Banxi 
Group (Zhao and Cawood, 2012; Wang et al., 2016). The Lengjiaxi 
Group is a suite of flysch turbidites mainly composed of sandstone, 
siltstone and pelite in protolith intercalated with volcanic rocks depos-
ited in retro-arc foreland basins or in the back-arc at ca. 860–820 Ma 
(Wang et al., 2007, 2014a; Wang et al., 2010, 2012, 2013; Gao et al., 
2011). The Banxi Group overlying the Lengjiaxi Group by an angular 

unconformity is mainly composed of sandstone, conglomerate and pelite 
with subordinate carbonate and volcanic rocks formed at ca. 800–760 
Ma in a rift and passive margin environment (Wang et al., 2007, 2010). 

The northeastern Hunan Province is located at the central segment of 
the Jiangnan Orogen. The Neoproterozoic successions (dominantly 
including the Lengjiaxi and Banxi groups metamorphosed in the 
greenschist facies) and Meso to Cenozoic red-bed rocks together with 
minor Archean to Paleoproterozoic crystalline metamorphic rocks (the 
Lianyunshan and Jianxichong groups) and Paleozoic sedimentary rocks 
constitute the lithostratigraphic units in this region (Wang et al., 2017; 
Zhou et al., 2021). Magmatism from the Neoproterozoic to the Jurassic- 
Cretaceous occurred in this area (Li, 2000; Mao et al., 2011; Lin et al., 
2022), of which the Jurassic-Cretaceous granitoids are the most wide-
spread (Fig. 1), including the Mufushan pluton (ca. 154–127 Ma; Wang 
et al., 2014b; Xu et al., 2022), Wangxiang pluton (ca. 160–140 Ma), 
Jinjing pluton (ca. 160–145 Ma) and the Lianyunshan pluton (ca. 
155–140 Ma; Wang et al., 2016; Ji et al., 2017; Deng et al., 2017). The 
structural framework is characterized by two horsts and three grabens, 
namely the Miluo graben, the Mufushan–Wangxiang horst, the Chang-
sha–Pingjiang graben, the Liuyang–Hengdong horst and the Lil-
ing–Youxian graben, from northwest to southeast (Xu et al., 2009). 
Several NE-trending, crustal-scale faults, represented by the Xin-
ning–Huitang and the Changsha–Pingjiang fault zones form the major 
structures (Fig. 1b). Abundant Au-, Cu-Co-Pb-Zn- and Nb-Ta-Li deposits 
occur in the Mufushan–Wangxiang and Liuyang–Hengdong horsts 
(Fig. 1b). 

Fig. 2. a Simplified geological map of the Jingchong Cu-Co-Pb-Zn deposit in WSG 84 (modified after Wang et al., 2017). b Exploration section along line A–B 
showing the occurrence of Cu-, Co- and Pb-Zn orebodies (modified after Wang et al., 2017). 
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3. Deposit geology 

The Jingchong Cu-Co-Pb-Zn deposit, situated at the contact of the 
Changsha–Pingjiang graben and the Liuyang–Hengdong horst, is 
controlled by the regional Changsha–Pingjiang fault zone (Fig. 1b). This 
fault zone stretches for nearly 680 km and experienced the transform 
from transpression to transtension during the Jurassic to the Early 
Cretaceous (Zhou et al., 2021). It consists of numerous NE-trending 
parallel faults labeled by F1-5, of which F2 is the main fault with a 
width of 10–100 m, a strike of N30◦E and 40◦ NW dip (Fig. 2a). 

The lithostratigraphic units comprise the Neoproterozoic Lengjiaxi 
Group, the Middle Devonian Tiaomajian and Qiziqiao formations, the 
upper Devonian Shetianqiao Formation, the Cretaceous Daijiaping 
Formation and the Quaternary sediments (Fig. 2a). Due to the intrusion 
of the Lianyunshan granitoid, the Lengjiaxi Group to the east of the 
mining area occurs as the migmatization zone with the width of 15–240 
m which consists of grey to dark-green banded migmatites and mig-
matitic gneiss. Fragments of the Lengjiaxi Group form as inclusion in the 
Lianyunshan granitoid. With the unconformity or fault contact with the 
Neoproterozoic Lengjiaxi Group, the Devonian Tiaomajian Formation 
with the lithological protolith of argillaceous limestone, shale, sandy 
shale, quartz sandstone and conglomerate occur at the footwall of F2. 
The Devonian Qiziqiao Formation occurs in the hanging wall of F2 and 
comprises limestone, dolomite, dolomitic limestone and calcareous 
slate. Due to faulting and hydrothermal activity, the Tiaomajian and 
Qiziqiao formations have been modified to the hydrothermal alteration 
zone and fracture zone, respectively (Fig. 2a). The hydrothermal alter-
ation zone is characterized by silicified and/or chloritized breccia and 
quartzite. The fracture zone is comprised of cataclasite and gouge. The 
Devonian Shetianqiao Formation occurs in the centre of the mining area 
and mainly consists of slate and minor sandstone lenses. To the west, the 
Cretaceous Daijiaping Formation consists of purple-red sandstone, slate 
and sandy conglomerate. Quaternary sediments cover all other lithol-
ogies unconformably. 

Magmatism is represented by the Late Jurassic to the Early Creta-
ceous Lianyunshan granitoid. It is mainly composed of biotite mon-
zogranite, two mica monzogranite and granodiorite. In addition, minor 
granite porphyry occurs along F5 (Ning, 2002), although no age data are 
available. 

Orebodies mainly occur as lenticular veins surrounded by the 

hydrothermal alteration zone, with Pb-Zn orebodies at the upper part of 
the hydrothermal alteration zone and Cu-Co orebodies in the lower 
segment (Fig. 2b). The Cu-Co orebodies are described by Wang et al. 
(2022), thus only Pb-Zn orebodies are introduced here. They are mainly 
present as veins and have a strike parallel to that of the hydrothermal 
alteration zone. Locally, it can be observed that Pb-Zn veinlets crosscut 

Fig. 3. Photographs showing the occurrences of Pb-Zn ores from the Jingchong deposit. a Pb-Zn ore has a clear boundary with the Cu-Co ore. b Pb-Zn veinlets 
crosscut Cu-Co ore. c Quartz-sphalerite veinlets crosscut the Cu-Co ore. d Pb-Zn veinlet crosscuts the early-formed Cu-Co ore consisting of alternated Qtz + Co-rich 
pyrite + arsenopyrite and Qtz + pyrite; reflected light. e Pb-Zn ore was crosscut by the barren quartz veinlets with breccias of early Cu-Co- and Pb-Zn ores. f reflected 
light of Fig. e. Mineral abbreviations: Py, pyrite; Co-Py, Co-rich pyrite; Sph, sphalerite; Gn, galena; Qtz, quartz; Apy, arsenopyrite. 

Fig. 4. Simplified paragenetic mineral sequences of the Pb-Zn mineralization in 
the Jingchong deposit. 
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the Cu-Co ores (Fig. 3a-d), and the barren quartz veinlets crosscut Pb-Zn 
ores (Fig. 3e and f). The Pb-Zn ores have euhedral to anhedral granular, 
cataclastic and replacement textures, with vein, veinlet and massive 
structures (Fig. 3c-f). The ore mineral assemblage includes sphalerite 
and galena, with minor chalcopyrite, pyrite and pyrrhotite. The gangue 
minerals dominantly consist of quartz, with minor chlorite and siderite 
(Fig. 4). 

4. Sampling and analytical methods 

Nine representative Pb-Zn ore samples were collected from under-
ground at 50 m and 0 m elevations (Table ESM 1). These samples include 
four samples from vein ores (05-B1, 05-B2, 05-B3, 05-B4) and five 
samples from massive ore (55B-B1, 55B-B2, 59-B2, 5B-4-1-1B, 5B-6-4- 
1B). They were prepared as polished thin sections for mineral chemistry 
and sulfur isotope analyses based on petrographic observation. In 
addition, one altered rock sample (JC-12 ms) with sphalerite minerali-
zation from the hydrothermal alteration zone was selected for muscovite 
40Ar/39Ar dating. 

4.1. Electron probe microanalyzer (EPMA) 

Major and selected trace elements of sphalerite were determined 
using the SHIMADZU EPMA-1720 electron microprobe equipped with 
four wavelength-dispersive spectrometers (WDS) at the School of Geo-
sciences and Information Physics, Central South University, China. 
EPMA uses an accelerating voltage of 20 kV, a beam current of 10 nA 
and a beam diameter of 1 μm (Table ESM 2). The following elements, 
analytical lines, standards and monochromators were used for spot 
analysis: S (Kα, ZnS, PET), Zn (Kα, ZnS, LIF), Fe (Kα, FeS2, LIF), Co (Kα, 
Co, LIF), Ni (Kα, Ni, LIF), Cu (Kα, Cu, LIF), Cd (Lα, Cd, PET), Ga (Lα, 
GaAs, TAP), Ge (Lα, Ge, TAP), Sn (Lα, Sn, PET) and Pb (Mα, PbS, PET). 
The ZAF method (Duncumb and Reed, 1968) was used for the correction 
of matrix effects. In addition, Fe (Kα, LIF), Zn (Kα, LIF) and Cu (Kα, LIF) 
were selected for EPMA element mapping, with an acceleration voltage 
of 20 kV, beam current of 50 nA, sampling time for each point ranging 
from 30 to 80 ms, beam size of 1 μm and pitch of 1.1 μm. A total of 143 
EPMA spot analyses were carried out for the three sphalerite generations 
(Table ESM 3). 

4.2. Laser ablation inductively coupled plasma mass spectrometry (LA- 
ICP-MS) 

Minor and trace element concentrations in sphalerite were deter-
mined by a Teledyne Cetac HE 193 nm laser ablation system linked to an 
Analytik Jena Plasma Quant MS Ellite ICP-MS at the School of Geo-
science and Information Physics, Central South University, China (Batch 
1 and 2, Table ESM 4) and a Teledyne 193 nm Excimer Laser coupled to 
an Element XR Thermo Fisher ICP-MS at the Laboratory of Environ-
mental and Raw Materials Analysis (LERA), Karlsruhe Institute of 
Technology, Germany (Batch 3, Table ESM 4). Measurements at the 
Central South University were operated at a constant pulse rate of 5 Hz 
and an energy density of 2.5 J/cm2 with the spot size of 35 μm. Each 
analysis comprises 20 s of background measurement and 40 s of sample 
ablation, followed by a 20 s retention time to ensure proper cell 
washout. The following isotopes were monitored: 32S, 55Mn, 57Fe, 59Co, 
60Ni, 63Cu, 66Zn, 69Ga, 73Ge, 75As, 78Se, 95Mo, 107Ag, 111Cd, 115In, 118Sn, 
121Sb, 125Te and 205Tl with dwell times of 10 ms for each element. 
External calibration was performed with the synthetic polymetallic 
sulfide standards MASS-1 (Wilson et al., 2002) as the primary reference 
material. The synthetic basaltic glass GSE-2G (Wilson, 2019) and stan-
dard glasses NIST SRM610 and NIST SRM612 (Pearce et al., 1997) were 
measured to check for instrumental drift. The analysis in LERA was done 
with a spot size of 35 µm, laser frequency of 10 Hz and fluence of 5 J/ 
cm2. The 32S, 55Mn, 57Fe, 59Co, 60Ni, 63Cu, 66Zn, 69Ga, 72Ge, 73Ge, 75As, 
78Se, 95Mo, 107Ag, 111Cd, 113In, 115In, 118Sn, 121Sb, 125Te, 205Tl, 208Pb 

and 209Bi were measured with 16 ms of dwell time separately. Calibra-
tions were conducted using the sulfide pressed-pellets Fe-S1, Fe-S4, Fe-S5 
from UQAC University (Savard et al., 2018), and basaltic glasses BHVO- 
2, BCR-2 (Jochum et al., 2016) and standard glasses NIST SRM612 
(Pearce et al., 1997) from the USGS. The concentrations of elements in 
both measurements were calculated using the Iolite 4 (Paton et al., 
2011) and the limits of detection (LOD) for each analysis were calcu-
lated using the methods described by Pettke et al. (2012). In the data 
reduction process, we pay special attention to Fe signals in LA-ICP-MS 
time-resolved depth profiles given that Fe is the major element of 
chalcopyrite, pyrite and pyrrhotite inclusions, and has less interference 
from background noises due to relatively high Fe contents in the Jing-
chong sphalerite. The jagged sections of the time-resolved depth profiles 
(especially for Fe signals) were omitted and only the smooth sections 
that last at least 20 s were integrated into the measurement interval. As a 
result, the measurements provide credible information about element 
concentrations in sphalerite. Corresponding EPMA-determined average 
Zn concentrations were utilized as internal standards for different 
sphalerite varieties. Indium concentrations were corrected for the 
isobaric interference of 115Sn on 115In and 113Cd on 113In, and 115In 
results were used based on relative high Cd and low Sn contents in 
Jingchong sphalerite. The complete LA-ICP-MS dataset (concentration, 
quality control and limit of detection) is provided in the electronic 
supplementary material (Tables ESM 4 and 5). The data quality control 
results show that all three data batches are comparable and robust. A 
total of 154 LA-ICP-MS spot analyses were carried out for the three 
sphalerite generations (Table ESM 4). 

LA-ICP-MS elemental mapping was performed at the Central South 
University with an energy density of 2 J/cm2, spot size with 30 μm and 
repetition rate of 5 Hz. Reference material (MASS-1) was measured at 
the start and end of the mapping using the same settings. The mapping 
images were processed using in-house software (Wang et al., 2017). It is 
notable that the element maps cannot be corrected for isotopic 
interferences. 

4.3. Laser ablation multi-collector inductively coupled plasma mass 
spectrometry (LA-MC-ICP-MS) 

In-situ sulfur isotopic studies on sphalerite and coexisting pyrite 
were performed at Nanjing FocuMS Technology Co. Ltd. (China) uti-
lizing a Teledyne Cetac Technologies Analyte Excite laser-ablation sys-
tem in conjunction with a Nu Instruments Nu Plasma II MC-ICP-MS. Spot 
measurements were performed using a 30 μm beam size for pyrite and a 
40 μm beam size for sphalerite, a pulse rate of 5 Hz, and a laser energy of 
100 mJ. After four spot analyses, natural pyrite Wenshan (WS-1; δ34S V- 

CDT= + 1.1‰ ± 0.2‰; Zhu et al., 2017) was measured as an external 
standard. The pressed powder pellets of pyrite GBW 07267 (δ34S V-CDT=

+ 3.6‰ ± 0.3‰; Fu et al., 2016) and chalcopyrite GBW 07268 (δ34S V- 

CDT= − 0.3‰ ± 0.3‰; Fu et al., 2016) from China’s National Research 
Center for Geoanalysis as well as fine-grained sphalerite NBS 123 (δ34S 
V-CDT= + 17.8‰ ± 0.2‰; Bao et al., 2017) from the United States Na-
tional Institute of Standards and Technology were used for quality 
control. Sulfur isotope compositions are expressed in terms of Canyon 
Diablo Troilite in conventional notation (CDT). The repeatability of the 
results was better than 0.6‰ (1σ). Results are given in the electronic 
supplementary material (Table ESM 6). Thirty-eight in-situ sulfur isotope 
analyses of sphalerite and associated pyrite were summarized in Fig. 11 
and Table ESM 6. 

4.4. Statistical analysis 

Principal component analysis (PCA) as multivariate statistical anal-
ysis is commonly used to reveal the most relevant trends based on a 
geochemistry dataset without external supervision (Belissont, 2014; 
Frenzel et al., 2016; Bauer et al., 2019; Yu et al., 2020). Here, we apply 
PCA to determine the relevance of important minor and trace elements 

E. Peng et al.                                                                                                                                                                                                                                     



Ore Geology Reviews 162 (2023) 105667

6

in sphalerite. Raw trace element data are log-transformed to ensure the 
approximate normality required for statistical treatment and are pro-
cessed by the ioGAS software through the PCA function. Only the ele-
ments in more than half of all cases with concentrations above the 
detection limit were selected for calculation, and the concentrations 
below the detection limits in the dataset were replaced by random 

numbers in the normal distribution with a mean and standard deviation 
equal to the corresponding detection limit (Frenzel et al., 2016). 

4.5. Muscovite 40Ar/39Ar dating 

After crushing and sieving to 250 to 500 μm size, muscovite was 

Fig. 5. Photomicrographs showing mineral assemblages of Pb-Zn ores and sphalerite textures from the Jingchong deposit. a Sph-I comprises reddish-brown Sph-Ia 
bands alternating with dark Sph-Ib bands. The honey-brown Sph-IIa replaces Sph-I, in turn is overgrown by white Sph-IIb. The black Sph-III crosscuts other sphalerite 
types. The white round and square-shaped dots are pits after laser ablation; transmitted light. b Sph-IIa formed along the grain boundaries (in white dash line) of Sph- 
I relics; transmitted light. c-d Sph-Ib are characterized by zoned chalcopyrite inclusions which are distributed along the crystal plane. Sph-IIa contains chalcopyrite 
blebs distributed unevenly and has sharp contact with Sph-I. c, transmitted light; d, reflected light. e Aligned pyrrhotite, chalcopyrite and pyrite inclusions in Sph-I. 
Noting Sph-III with dusting chalcopyrite inclusions cutting Sph-I; reflected light. f White Sph-IIb postdates Sph-IIa as the outer rim in an epitaxial texture; transmitted 
light. g Sph-IIb locally occurs as fine-grained aggregates; transmitted light. h Sph-III veinlets crosscut Sph-I and Sph-II along fractures; transmitted light. i Corre-
sponding zoomed area of h. Sph-III is rich in submicron chalcopyrite inclusions which are present as typical “dusting” or “watermelon” texture; reflected light. j 
Transmitted light of i. k Galena and pyrite coexisting with Sph-III; reflected light. 
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handpicked under a binocular with > 99% purity. For further purifica-
tion, muscovite is cleaned with nitric acid to remove carbonates and 
then washed with deionized water. After drying in an oven at 105 ◦C for 
15 h, muscovite separates and the monitor sample ZBH-2506 (Beijing 
Fangshan granodiorite biotite, ca. 132.7 ± 0.5 Ma; Wang, 1983) were 
irradiated together in the 49-2 reactor at the atomic reactor of the 
Research Institute of Atomic Energy (Beijing, China) for an irradiation 
time of 23 h and 44 min. After cooling, the samples were placed in a 
sample holder, sealed and degassed, and then analyzed by the 40Ar/39Ar 
step-heating method by an Argus VI static vacuum mass spectrometer at 
the Key Laboratory of Tectonics and Petroleum Resources, Ministry of 
Education, University of Geosciences (Wuhan), China. The correction 
factors include (39Ar/37Ar)Ca = 0.000852, (36Ar/37Ar)Ca = 0.000278 
and (40Ar/39Ar)Ca = 0.001147. The 40Ar/39Ar results were processed 
and plotted using the ArArCALC Version 2.40 software (Koppers, 2002), 
and the decay constant used for calculations was λ = (5.543 ± 0.010) ×
10− 10a− 1 (Steiger and Jäger, 1977). The detailed analytical procedure is 
described by Qiu et al. (2010) and Zhang et al. (2014). The 40Ar/39Ar 
data are summarized in Table ESM 7. 

5. Results 

5.1. Sphalerite mineralogy and paragenesis 

Based on the texture and distribution pattern of mineral inclusions, 
three sphalerite generations and five sphalerite subtypes are distin-
guished in the Jingchong deposit (Fig. 5a-d). 

The first sphalerite generation (Sph-I) forms idiomorphic grains and 
is characterized by oscillatory zoning that consists of reddish-brown 
(Sph-Ia) alternated with dark (Sph-Ib) zones (Fig. 5b-d). The reddish- 
brown Sph-Ia zone is poor in chalcopyrite inclusion, while the dark 
Sph-Ib is featured by zoned chalcopyrite inclusions (Fig. 5d). In addi-
tion, pyrite and pyrrhotite blebs, ellipsoids or lamella are locally present 
as mineral inclusions within Sph-Ia and Sph-Ib (Fig. 5e). Due to frac-
tures, Sph-I grains are commonly preserved as relics (Fig. 5a-c). 

The second sphalerite generation (Sph-II) generally replaces or 
overgrows Sph-I and is further divided into two sub-types based on color 
and texture. The Sph-IIa is honey-brown and was formed along the 

cleavage, fracture or grain boundary of Sph-I (Fig. 5a-c). Abundant 
chalcopyrite droplets are unevenly distributed in Sph-IIa (Fig. 5b-d). 
Relatively, white Sph-IIb typically postdates Sph-IIa as outer rims in an 
epitaxial texture (Fig. 5f) or occurs as fine-grained mineral aggregates 
(Fig. 5g). Chalcopyrite inclusions are rarely found in the Sph-IIb (Fig. 5f, 
g). 

In contrast to Sph-I and Sph-II, the third sphalerite generation (Sph- 
III) is opaque. The Sph-III generally occurs along fractures and crosscuts 
all early sphalerite generations in healed or unhealed veinlets (Fig. 5a, b, 
h, i). Nano- to submicron-sized zoned chalcopyrite inclusions are 
widespread in Sph-III, which is commonly referred to as a “dusting” or 
“watermelon” texture (Fig. 5i, j) (Bortnikov et al., 1991; Bente and 
Doering, 1995; Seifert and Sandmann, 2006; Cook et al., 2009). 
Noticeably, these inclusions become gradually denser and smaller in size 
as they are closer to fractures (Fig. 5i, k). Locally, anhedral galena and 
pyrite occur with Sph-III (Fig. 5k). 

5.2. Sphalerite chemical compositions and geothermometry and sulfur 
fugacity 

Sph-I has a relatively broad compositional spectrum due to the 
oscillatory zoning. Generally, Sph-Ia has higher Zn (54.97–63.10 wt%) 
but lower Fe (3.57–11.32 wt%) contents than Sph-Ib (56.16–57.77 wt% 
Zn, 8.32–9.78 wt% Fe; Table ESM 3). The average formulae are (Zn0.869, 
Fe0.128)S for Sph-Ia and (Zn0.839, Fe0.160)S for Sph-Ib. Sph-Ib is enriched 
in In (0.08–947 ppm), Cu (40.1–679 ppm) and Sn (17.6–250 ppm) 
relative to Sph-Ia (0.17–136 ppm In, 5.4–158 ppm Cu, 0.87–117 ppm 
Sn). Sph-Ib also has slightly higher Mn (236–394 ppm), Cd (299–550 
ppm), Ag (3.88–7.82 ppm), Ga (0.10–0.36 ppm) and Ge (0.52–2.69 
ppm) contents than Sph-Ia (216–260 ppm Mn, 245–364 ppm Cd, 
3.77–25.4 ppm Ag, 0.07–0.43 ppm Ga, 0.36–1.12 ppm Ge). In contrast, 
Sph-II has lower Fe but higher Cd, Cu and Ag contents than Sph-I 
(Fig. 6a, c, d, e). In Sph-II, Sph-IIa has Fe (0.58–6.10 wt%) contents 
higher than that of Sph-IIb (0.59–1.44 wt%), and the corresponding 
average formulae are (Zn0.940, Fe0.056)S for Sph-IIa and (Zn0.981, Fe0.017) 
S for Sph-IIb. Besides, Sph-IIa has higher Mn (127–312 ppm) and Cu 
(175–1530 ppm) contents than Sph-IIb (82.4–223 ppm Mn, 40.0–858 
ppm Cu). The In (1.27–128 ppm) and Ga (0.35–15.1 ppm) contents in 

Fig. 6. Box-and-whisker plots of the major and trace element contents of different sphalerite species from the Jingchong deposit. Iron (wt%) is from EPMA analyses 
and other trace elements (ppm) are from LA-ICP-MS analyses. 
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Sph-IIa vary greatly relative to that of Sph-IIb (10.9–42.2 ppm In, 
1.15–8.72 ppm Ga). The concentrations of Cd and Ge show no signifi-
cant differences between the two sub-types (Fig. 6 c, i). The Sph-III 
contains moderate amounts of Fe (2.36–7.20 wt%), with the average 
formula of (Zn0.915, Fe0.078)S. In contrast to Sph-I and Sph-II, Sph-III has 
the highest contents of Cd (454–794 ppm), Cu (259–2748 ppm) and Ag 
(11.6–60.3 ppm). The concentrations of Sn and In are variable, ranging 
from 0.82 to 218 ppm and 0.47–181 ppm, respectively. The contents of 
Mn, Ga and Ge are 89.6–321 ppm, 0.42–13.8 ppm and 1.22–3.67 ppm, 
respectively (Fig. 6). The Ni, As, Se, Mo, Sb, Te, Au and Tl contents are 
generally low (Table ESM 4). Binary plots are used to discriminate the 
correlation between elements in Jingchong’s sphalerite. In Fig. 7, a clear 

negative correlation is seen between the element groups of Zn and Fe +
Mn + Cd + Sn, whereas positive correlations are observed in the plots of 
Cu + Ag vs. In, Cu + Ag vs. In + Sn, Cu + Ag vs. Sn, and In vs. Sn. The In 
content, however, tends to increase with decreasing Fe content in 
sphalerite (Fig. 7f). 

The GGIMFis geothermometer is employed to estimate the formation 
temperature of sphalerite varieties according to the Ga, Ge, Fe, Mn and 
In contents (Frenzel et al., 2016). The calculated formation temperature 
for the five sphalerite varieties is given in Table 1. Specifically, the 
GGIMFis geothermometer gives average temperatures of 334 ± 56 ◦C 
for Sph-Ia, 346 ± 58 ◦C for Sph-Ib, 289 ± 55 ◦C for Sph-IIa, 254 ± 60 ◦C 
for Sph-IIb, and 286 ± 55 ◦C for Sph-III (Table 1). Based on GGIMFis 

Fig. 7. Bivariate plots of Zn vs. Fe + Mn + Cd + Sn (a), Cu + Ag vs. In (b), Cu + Ag vs. In + Sn (c), Cu + Ag vs. Sn (d), In vs. Sn (e), and In vs. Fe (f).  

Table 1 
GGIMFis temperature, log10(FeS), and log10(fS2) values (arithmetic means ± 2 σ).  

Generation PC1 TGGIMFis (◦C) 2 σexternal (◦C) log10(FeS) (mol.%) log10(fS2) 2 σexternal (fS2) 

Sph-Ia − 2.32 ± 0.14 334 ± 7 ±56 − 0.58 ± 0.01 − 9.03 ± 0.01 ±0.03 
Sph-Ib − 2.54 ± 0.12 346 ± 6 ±58 − 0.49 ± 0.01 − 8.26 ± 0.02 ±0.06 
Sph-IIa − 1.50 ± 0.12 289 ± 7 ±55 − 0.76 ± 0.03 − 10.63 ± 0.07 ±0.19 
Sph-IIb − 0.84 ± 0.18 254 ± 10 ±60 − 1.05 ± 0.1 − 11.77 ± 0.20 ±0.38 
Sph-III − 1.44 ± 0.09 286 ± 5 ±55 − 0.73 ± 0.04 − 10.82 ± 0.08 ±0.29 

Note: Uncertainties provided here for PC1*, TGGIMFis, log10(FeS), and log10(fS2) in the corresponding columns are internal uncertainties. External uncertainties 
described by 2 σexternal in separate columns contain all sources of uncertainty. The uncertainty levels correspond to ±2 standard errors in all cases. 
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estimated temperatures (Frenzel et al., 2016; 2022) and FeS contents in 
sphalerite (Table ESM1), the sulfur fugacity is calculated. The results 
revealed that Sph-Ia has the mean sulfur fugacity (log10fS2) of − 9.03 ±
0.03 and Sph-Ib of − 8.26 ± 0.06. In contrast, Sph-IIa and Sph-IIb have a 
decreasing sulfur fugacity with log10fS2 values of − 10.63 ± 0.19 and 
− 11.77 ± 0.38, respectively. Sph-III gives mean log10fS2 values of 
− 10.82 ± 0.29 (Table 1). 

5.3. Element distribution in sphalerite 

In EPMA maps, the areas with higher Fe and Cu contents are char-
acterized by relatively lower Zn content (Fig. 8b-d). Fe and Cu element 
maps display chalcopyrite inclusions with the most widespread in Sph- 
IIa and subordinate in Sph-Ib (Fig. 8c, d). After excluding the element 
anomalies from mineral inclusions, Sph-Ib has the highest Fe contents in 
all the sphalerite varieties, while Fe tends evenly distributed within Sph- 
Ia (Fig. 8c). 

LA-ICP-MS trace element maps (Fig. 9) reveal composite sphalerite 
consisting of oscillatory-zoned Sph-I in the core, Sph-IIa in the rim and 
Sph-III veinlets. The dark Sph-Ib bands generally have high Fe, Cd, Mn, 
Cu, Ag and In but relatively low Zn concentrations (Fig. 9b-i). Specif-
ically, the Fe-, Mn- and Cd-rich zones are mainly overlapped in Sph-Ib 
(Fig. 9c-e), while the Cu- and Ag-rich zones are generally consistent 
(Fig. 9g, h) but antithetical to the zoning patterns of Fe, Mn and Cd. The 
In map displays the best-developed rhythmic zoning, which overlaps 
with Cu- and Ag-rich zones in Sph-I (Fig. 9g-i). In contrast, Ga has a 
distinct distribution pattern in the element maps, i.e., local sector 
zoning. Sph-IIa and Sph-III have different element distribution patterns 
from Sph-I. Particularly, Sph-IIa is characterized by higher contents of 
Zn, Cu and Ag (Fig. 9b, g, h), and Sph-III is higher in Cu and Ag 

compared to Sph-I (Fig. 9g, h). 

5.4. Principal component analysis 

In the PCA loading biplot (Fig. 10), the arrow angles of two elements 
are determined by the covariance of element concentration (Bauer et al., 
2019), and thus indicate the correlation of elements as well as similar-
ities of geochemical behavior. The PCA results based on the log- 
transformed trace element concentration dataset yield a total variance 
of 72.3% explained by the first principal component (PC1, 55.1%) and 
the second principal component (PC2, 17.2%) for Sph-I (Fig. 10b). 
Manganese, Fe, Cu, Ag, Cd, In and Sn are mainly measured by PC1 to 
PC4. The scoring and loading biplot demonstrate that the data points of 
Sph-Ia and Sph-Ib are separate into two clusters (Fig. 10a, c), and two 
distinct element groups were identified: group-1 is composed of Ag, Cu 
and In, group-2 comprises Fe, Mn, Cd and Sn. 

Principal components of PC1 (37.1%) and PC2 (23.2%) account for 
60.3% of the total variance of Sph-II (Fig. 10e). The Sph-IIa and Sph-IIb 
populations appear to divide into two distinct clusters, showing minimal 
overlap (Fig. 10d). Based on the element correlation, three groups of 
elements are observed (Fig. 10d): Fe + Mn, Ag + Cu + Sn + Cd and In. As 
for Sph-III, PC1 (51.8%) and PC2 (18.2%) have a combined variance of 
70% (Fig. 10h), and three major element groups are identified: Fe + Mn 
(group-1), Cu + Ag + Cd + Sn (group-2) and In (group-3). In general, In 
exhibits distinct geochemical behavior as indicated by the negative or 
unrelated correlation with other elements in Sph-II and Sph-III. In 
contrast, Cu and Ag are highly correlated and described by the same 
principal component. 

Fig. 8. Photomicrographs (transmitted light) and EPMA element maps of different generations of sphalerite. Note that the round and square spots are LA-(MC)ICP- 
MS spots. 
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5.5. Sulfur isotopes 

Sph-I has δ34S V-CDT values from − 3.0 to − 1.7‰ (n = 15), Sph-II has 
δ34S V-CDT values varying between − 2.7 and − 1.7‰ (n = 12), and Sph-III 
yields δ34S V-CDT values between − 2.8 and − 2.0‰ (n = 5), indicating a 
relatively uniform sulfur isotopic composition. In contrast, pyrite has a 
relatively large δ34S V-CDT variation ranging from − 2.1 to 3.5‰ (n = 6) 
(Fig. 11 and Table ESM 6). 

5.6. Muscovite 40Ar/39Ar geochronology 

The corresponding plateau, isochron and inverse isochron age dia-
grams are presented in Fig. 12. The 40Ar/39Ar data exhibited a flat dis-
tribution in plateaus indicating no disturbance by late thermal events. 
The plateau date in the range of 4.8% to 30% laser energy is ca. 121.4 ±
1.2 Ma (MSWD = 0.52, Fig. 12b), which accounts for 85.09% of the total 
39Ar released. The corresponding isochron date is ca. 121.8 ± 1.2 Ma 
(MSWD = 0.54, Fig. 12b) and the inverse isochron date is ca. 121.7 ±
1.2 Ma (MSWD = 0.52, Fig. 12d). The initial 40Ar/36Ar ratios of 282.2 ±
8.5 and 283.8 ± 8.5 for the isochron and inverse isochron plots are close 
to the atmospheric value (295.5; Marty et al., 1989; Burnard et al., 
1999). The plateau date is in good agreement with the isochron and 
inverse isochron dates, indicating that hydrothermal muscovite alter-
ation occurs at ca. 121.1 ± 2 Ma. 

6. Discussion 

6.1. Element distribution and substitution mechanism 

Micro-scale inclusions are often identified as peaks in LA-ICP-MS 
ablation profiles, and conversely, flat signal spectra indicate that ele-
ments are present in solid solution or evenly distributed nano-particles 
(Cook et al., 2009; Ye et al., 2011). Generally, time-resolved depth 
profiles of the Jingchong sphalerite exhibit smooth signal patterns of 
Mn, Co, Ni, Ga, Ge and Cd (Fig. 13). Most Fe and Cu profiles exhibit 
relatively flat features for all sphalerite varieties, indicating they are 
mainly present as solid solutions. However, a few peaks of Fe and Cu 
signals are observed in Sph-Ib and Sph-IIa ablation profiles (Fig. 13b, c). 
Their compatible trends further imply that these anomalous peaks are 
caused by chalcopyrite inclusions. This is consistent with bleb-shaped 
anomalies in EMPA maps (Fig. 8a, c, d). In addition, some Fe peaks 
unparallel with Cu signals in Sph-I profiles may be attributed to the 
presence of pyrite and/or pyrrhotite inclusions (Fig. 5e). Besides, the 
spiky spectra of Ag, In and Sn in Sph-IIa and Sph-III presented similar 
trends which are compatible to Fe and Cu signals (Fig. 13c, e), indicating 
that Ag, In and Sn occur in both solid solution and chalcopyrite in-
clusions. Noticeably, only the smooth signal sections in the time- 
resolved depth profiles were selected for data processing, i.e., the 
interference of micro-scale mineral inclusions on the trace element 
compositions of sphalerite are negligible. 

Divalent cations such as Fe, Mn, Cd and Co commonly substitute 
Zn2+ directly, while monovalent cations like Cu+ and Ag+ are favored to 
be incorporated into sphalerite lattice by coupled substitution with 
trivalent and/or tetravalent cations such as In3+, Ga3+, Sn3+, Sn4+ and 

Fig. 9. Photomicrographs (transmitted light) and LA-ICP-MS trace element maps of sphalerite composite grain consisting of Sph-I, Sph-IIa and Sph-III. The boundary 
between Sph-I and Sph-IIa is marked by white dashed line, while gray solid lines delineate the Sph-III veinlets. 
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Ge4+ (Moh and Jager, 1978; Johan, 1988; Lepetit et al., 2003; Seifert 
and Sandmann, 2006; Cook et al., 2009, 2011; Bauer et al., 2019). 
Sphalerite in the Jingchong deposit displays complicated textural and 
chemical patterns (Figs. 8–9), indicating distinct substitution mecha-
nisms among the different generations. The LA-ICP-MS mapping iden-
tified the element groups of Fe + Cd + Mn and Cu + Ag + In based on 
their distinct zoning patterns (Fig. 9). In conjunction with the negative 
correlations between Zn and Fe + Mn + Cd + Sn (Fig. 7a), as well as the 
intimate relations of Fe + Mn + Cd + Sn in PCA (Fig. 10a), the following 

direct substitutions are proposed in Sph-I: Zn2+ ↔ (Fe, Mn, Cd, Sn)2+. 
Given that Fe3+ commonly exists in Fe-rich sphalerite with more than 
10 mol.% FeS at high sulfur fugacity (Lepetit et al., 2003), the incor-
poration of Fe3+ in the Jingchong sphalerite was not considered. In Sph- 
I, a coupled substitution of 2Zn2+ ↔ (Cu, Ag)+ + In3+ is proposed based 
on the relatively narrow angles between In, Cu and Ag in the PCA biplot 
and the positive correlation of Cu + Ag and In in Fig. 7b. Besides, the 
positive correlations in Cu + Ag vs. In + Sn, Cu + Ag vs. Sn and In vs. Sn 
plots (Fig. 7c-e) show that the data points are generally distributed along 
the lines of (Cu + Ag)/(In + Sn) = 1:1, (Cu + Ag)/(Sn) = 1:1 and 2:1, In/ 
Sn = 1:1. These observations suggest the coupled substitution of 4Zn2+

↔2 (Cu, Ag)+ + Sn3+ + In3+, 2Zn2+ ↔ (Cu, Ag)+ + Sn3+, 3Zn2+ ↔ 2(Cu, 
Ag)+ + Sn4+ and 3Zn2+ ↔ Sn3+ + In3+ + □ (vacancy) may exist in Sph-I 
at Jingchong. 

Different from Sph-I, PCA reveals different groups of Fe + Mn, Cu +
Ag + Cd + Sn and In in Sph-II and Sph-III. This is consistent with the 
results that Sph-II and Sph-III generally show higher Cd, Cu, Ag, Ga and 
Ge but lower Fe and Mn contents with variable In concentration 
compared to Sph-I (Figs. 6, 10). Thus, the following direct substitution 
may be incorporated into Sph-II and Sph-III: Zn2+ ↔ (Fe, Mn)2+. Be-
sides, the weak negative correlation between Fe and Cd in PCA plots and 
their opposite distribution patterns in Sph-II and Sph-III (Fig. 9c, d and 
Fig. 10d, g) indicate that there is elemental competition between Fe and 
Cd, which can be described as Fe2+ ↔ Cd2+. Notably, In tends to 
decouple from Cu and Ag in Sph-II and Sph-III (Fig. 9g-i) and exhibits 
uncorrelated or negative correlations with Cu, Ag and Fe in PCA 
(Fig. 10d, g). This is further confirmed by the irrelevance of Cu + Ag and 
In and the weak negative correlation between Fe and In as shown in 
Fig. 7b and f. These findings contradict many previous research studies 
in which In is commonly coupled with Cu and Ag and incorporated into 
sphalerite as solid solution or mineral inclusions, e.g., chalcopyrite 
(CuFeS2), stannite (Cu2FeSnS4), roquesite (CuInS2) and sakuraiite 
(CuZn2InS4) (Cook et al., 2009; Pavlova et al., 2015; Bauer et al., 2017; 
Xu et al., 2020). Here, we infer that the following substitution could also 
exist in Sph-II and Sph-III: 3(Zn, Fe)2+ ↔ 2In3+ + □ (vacancy). 

6.2. Sphalerite formation mechanism 

Oscillatory zoning as a common texture could be caused either by 
fluctuations of the physicochemical conditions under open systems or by 
the internal diffusion-limited self-organization process in closed systems 
(Reeder et al., 1990; Shore and Fowler, 1996; Holten et al., 1997; 
LʼHeureux and Jamtveit, 2002; Di Benedetto, 2005). In the Jingchong 
deposit, no significant variations of the physicochemical conditions 
between Sph-Ia and Sph-Ib bands (Fig. 14) preclude the external 
mechanism caused by environmental fluctuations. Instead, the alter-
nated Fe + Cd + Mn-rich and Cu + Ag + In-rich zones in Sph-I (Fig. 9) 
reveal the competition among these elements for incorporation into the 
crystal structure. Such element competition mechanisms are referred as 
self-organized non-equilibrium processes during crystal growth (Pat-
trick et al., 1993; LʼHeureux, 2000, 2013; Katsev and LʼHeureux, 2001; 
Di Benedetto, 2005). The presence of sector zoning of Ga in Sph-I 
(Fig. 9f) which implies the slow crystallization growth, further sup-
ports a kinetically-induced process (Watson and Liang, 1995). There-
fore, the self-organized mechanism is a possible explanation for the 
formation of Sph-I and its oscillatory and sector zoning patterns. 

The intimate intergrowth of sphalerite with pyrite, pyrrhotite and 
chalcopyrite has been interpreted as the products of exsolution, epitaxial 
growth, co-precipitation, or replacement (Wiggins and Craig, 1980). As 
for pyrite and pyrrhotite inclusions, they appear as oriented rows of 
blebs, ellipsoids or lamella, and are distributed discretely within Sph-I 
grains (Fig. 5e). This seems to preclude the likelihood of replacement 
(Wiggins and Craig, 1980), and instead exsolution formed the lamellar 
and ellipsoid intergrowths given the high Fe contents in Sph-I. It is 
supported by the partial overlap of the Sph-I ranges with the mineral 
reaction line of pyrite and pyrrhotite in Fig. 14 at relatively high 

Fig. 10. PCA plots of sphalerite chemical data. a, d, g A comprehensive score 
and loading plot showing clusters of elements with similar behavior. b, e, h 
Scree plot of the eigenvalues of the correlation matrix, explaining the variance. 
c, f, i Loadings of different elements for each principal component. 
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temperature and sulfur fugacity conditions. The separation of pyrite and 
pyrrhotite inclusions most likely occurred from the Fe-rich ZnS meta-
stable solid solution due to cooling or decompression (Wiggins and 
Craig, 1980; Bortnikov et al., 1991; Einaudi et al., 2003). However, 
exsolution is not an alternative formation mechanism for chalcopyrite 
inclusions due to the limited Cu-solubility in sphalerite (Kojima and 
Sugaki, 1985; Sugaki et al., 1987; Barton and Bethke, 1987; Kojima, 
1990; Cook et al., 2009; Govindarao et al., 2018). The relatively high Fe 
contents in the dark Sph-Ib bands (av. 9.24 wt%), combined with the 
abundance of coexisting chalcopyrite inclusions, verified the potential of 
local supersaturation of Fe2+ and Cu+ at the mineral-fluid interfaces. 
Consequently, chalcopyrite inclusions parallel to the growth zones of 
Sph-I are most likely formed by co-precipitation (Mizukami and Ohmori 
1989; Kojima 1990; Bortnikov et al., 1991; Kojima et al., 1995). 

Sph-IIa occurs along fractures or grain boundaries of Sph-I (Figs. 5a, 
b, c, h and 8a). The sharp contact (Fig. 5b, c) and remarkable changes in 
chemical compositions (such as Zn, Fe, Cd, Cu and Ag) between Sph-I 

and Sph-IIa (Figs. 6–8) indicate that Sph-IIa most likely formed by 
fluid-mediated coupled dissolution-reprecipitation reaction (CDR) 
(Altree-Williams et al., 2015). The fractures and grain boundaries of 
Sph-I can serve as the significant fluid pathway to the CDR reactions 
(Røyne et al., 2008; Jamtveit et al., 2009) and therefore formed “core 
(Sph-I)-rim (Sph-IIa)” texture. The higher Cu contents and more chal-
copyrite inclusions in Sph-IIa further suggest the fluid is elevated in Cu 
contents. Thus, the replacement of Sph-I by Sph-IIa is explained by the 
following reaction: 2Zn0.90Fe0.10S + 0.10Cu+ + 0.10H+ → 
1.80Zn0.95Fe0.05S + 0.10CuFeS2 + 0.10Zn2+ + 0.05H2 (modified from 
Barton and Bethke, 1987, Eldridge et al., 1988, Bortnikov et al., 1991). 
During this reaction, the dissolution of Fe-rich Sph-I provides abundant 
Zn2+, Fe2+ and S2-, while fluids provide Cu+ and H+, which caused the 
subsequent precipitation of Sph-IIa and chalcopyrite inclusions. Ac-
cording to the GGIMFis geothermometer, Sph-II was formed at the lower 
temperature and sulfur fugacity conditions relative to Sph-I (Fig. 14). 
This indicates that the influx of the low-T, -pH and -fS2 fluid with 

Fig. 11. a Histogram of sulfur isotopes of sphalerite and pyrite. b Comparison of sulfur isotope compositions from this study with those of the Neoproterozoic 
Lengjiaxi Group and the representative Pb-Zn deposits in northeastern Hunan Province. The δ34SV-CDT values of the Qibaoshan and Aoyunshan Cu-Pb-Zn deposits are 
from Liu et al. (2001), the Jingchong Cu-Co ores from Wang et al. (2017, 2022), the Lishan Cu-Pb-Zn deposit from Yu et al. (2021), and the Lengjiaxi Group from Luo 
(1990) and Liu et al. (1999). 

Fig. 12. The altered rock sample (a) and the 40Ar-39Ar plateau age (b), isochron age (c) and inverse isochron age (d) of muscovite in the Jingchong deposit.  
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elevated Cu level significantly facilitated the formation of Sph-IIa. After 
the extensive precipitation of Sph-IIa and chalcopyrite inclusions, the 
remaining fluids are depleted in Cu+ and Fe2+, and thus formed the Fe- 
poor Sph-IIb (rare chalcopyrite inclusions) with typical epitaxial texture. 
Relative to the formation temperature of 289 ± 55 ◦C for Sph-IIa, Sph- 
IIb yielded a lower temperature of 254 ± 60 ◦C, indicating Sph-IIb 
formed under decreasing temperature (Table 1; Fig. 14). 

Sph-III is characterized by the “dusting“ or “watermelon”-like chal-
copyrite inclusions with uneven sizes and distribution patterns (Fig. 5h, 
i), which are commonly regarded as the products of the solid-state 
diffusion mechanism (Bente and Doering, 1995; Blesgen et al., 2002, 
2004, Blesgen, 2005; Bauer et al., 2017, 2019; Kaur et al., 2020). 
However, in our case, distinct textural and compositional boundaries 
between Sph-III and Sph-I/ Sph-II (Figs. 5a, b, h and 8), and the absence 
of massive Cu-sulfide sources preclude solid-state diffusion. Instead, it 
favors the formation mechanism of CDR (Putnis, 2009, 2018; Zhao et al., 
2013; Altree-Williams et al., 2015). The dissolution of Sph-I, Sph-II and 
their mineral inclusions can provide abundant Zn2+, Fe2+ and Cu+ to 
form chalcopyrite inclusion-rich Sph-III. Nevertheless, given that the 
chalcopyrite inclusion is more abundant in Sph-III than Sph-I and Sph-II, 
a fluid pulse with elevated Cu contents may be involved during the Sph- 

III formation. Finally, a genetic model is built for the evolution of 
sphalerite varieties during Pb–Zn mineralization in the Jingchong de-
posit (Fig. 15). 

6.3. Correlation of Pb-Zn with Cu-Co mineralization 

The 40Ar-39Ar dating of muscovite from the hydrothermal alteration 
zone gives a plateau age of ca. 121.1 ± 2 Ma (Fig. 12). According to the 
presence of sphalerite in the altered rock sample, the plateau age could 
be regarded as the mineralizing time of the Jingchong Cu-Co-Pb-Zn 
deposit given that the hydrothermal system is not extremely long- 
lived. The obtained mineralizing age is consistent either with that of 
the Hengdong Co deposit (ca. 125 Ma, muscovite 40Ar-39Ar method; Zou 
et al., 2018) or the Taolin Pb-Zn deposit (ca. 121 Ma, muscovite 
40Ar-39Ar method; Xu et al., 2022) within error and slightly younger 
than that of the Lishan Cu-Pb-Zn deposit (ca. 129 Ma, muscovite 
40Ar-39Ar method; Xu et al., 2022). These geochronological data indicate 
that the Early Cretaceous (ca. 130–120 Ma) is an important Cu-Co-Pb-Zn 
mineralization period in the northeastern Hunan Province. 

The abundance of trace elements such as Fe, Mn, Cu, Ga, Ge, Cd, In 
and Sn in sphalerite can serve as important indicators for its origin (Cook 

Fig. 13. Representative time-resolved depth profiles for selected elements from different sphalerite species.  
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et al., 2009; Ye et al., 2011; Belissont, 2014; Yu et al., 2020; Zhao et al., 
2023). Generally, magmatic-hydrothermal sphalerite has higher Fe, Mn, 
Cu, In and Sn compared to those of non-magmatic-hydrothermal 
sphalerite (Canet et al., 2009; Murakami and Ishihara, 2013; Belissont, 
2014; Bauer et al., 2019; Zhao et al., 2023). The Jingchong sphalerite 
exhibits Fe (av. 5.87 wt%), Mn (av. 229 ppm), Cu (av. 692 ppm), In (av. 
46.5 ppm) and Sn (av. 44.0 ppm) concentrations, which are obviously 
higher than those in the non-magmatic-hydrothermal deposits (e.g., 

MVT, Jingding, Irish-type Pb-Zn deposits with generally Fe < 2 wt%, 
Mn < 100 ppm, Cu < 200 ppm, In < 1 ppm and Sn < 1 ppm; Ye et al., 
2011; Bonnet et al., 2016; Zhou et al., 2018; Li et al., 2020; Yu et al., 
2020; Song et al., 2020; Doran et al., 2022). Besides, the Cd/Fe and Cd/ 
Mn ratios of the Jingchong sphalerite range from 0.013 to 0.054 and 
1.21 to 4.12, respectively, consistent with that of magmatic- 
hydrothermal origin (Cd/Fe < 0.1, Cd/Mn < 5; Zhao et al., 2007; Cao 
et al., 2014; Yu et al., 2020). 

In general, the measured δ34S V-CDT values of sulfide minerals are 
regarded as equivalent to those of fluids at low oxygen fugacity and pH 
conditions (Ohmoto and Goldhaber, 1997). Given the absence of sulfate 
minerals and Fe-oxides in the Pb-Zn mineral paragenesis and the 
medium–low formation temperature for different sphalerite types 
(Fig. 14), the measured δ34S V-CDT values can represent the sulfur iso-
topic composition of the ore-forming fluid. By comparison, the 
measured δ34S V-CDT values are obviously distinct from that of the 
Neoproterozoic Lengjiaxi Group (Fig. 11; Luo, 1990; Liu et al., 1994; Liu 
et al., 1999), indicating a non-strata sulfur origin. Instead, they are 
similar to those for the magmatic-hydrothermal vein-type Lishan (− 5.1 
to − 0.4‰, Yu et al., 2021) and Taolin (− 6.0 to − 2.3‰, Yu et al., 2020) 
Pb-Zn (-Cu) deposits, and the skarn-porphyry Qibaoshan (+0.6 to 
+5.4‰; Liu et al., 2001) and Aoyushan (− 2.9 to +3.3‰, Liu et al., 2001) 
Cu-Pb-Zn deposits in the northeastern Hunan Province. What is more, 
the measured δ34S V-CDT values (− 2.79‰ to +3.47‰) of sulfides from 
Pb-Zn ores fall in the δ34S V-CDT range of Jingchong Co-Cu ores (− 4.90‰ 
to +3.57‰, Wang et al., 2017, 2022), indicating a similar sulfur source 
for both Cu-Co- and Pb-Zn mineralization. Consequently, consistent with 
the Cu-Co ores (Wang et al., 2022), the Jingchong Pb-Zn ores most likely 
have a sulfur source predominantly from a magmatic reservoir (0 ± 5‰; 
Ohmoto and Rye, 1979). 

The fluid cooling, boiling and mixing are considered as important 
metal precipitation mechanisms (Hemley et al., 1992; Hemley and Hunt, 
1992). In the Jingchong deposit, no evidence supports that fluid boiling 
controlled Cu-Co-Pb-Zn deposition according to the available mineral-
ogical and fluid inclusion data (Zhou and Kang, 2017). The integrated 

Fig. 14. Sulfur fugacity-inverse temperature plot (adapted from Einaudi et al., 
2003; Frenzel et al., 2022) showing the location of different sphalerite species 
in the Jingchong deposit relative to mineral reaction lines (in black), the S-gas 
and rock buffers (in grey), and isolines (in blue) describing the variation in 
sphalerite Fe contents. Ellipses delineating the fields for sphalerite varieties 
correspond to 95% confidence intervals. Mineral abbreviations: Cv, covellite; 
Dg, digenite; Py, pyrite; Bn, bornite; Ccp, chalcopyrite; Po, pyrrhotite; Apy, 
arsenopyrite; Lo, löllingite. 

Fig. 15. Schematic diagram for the formation of three sphalerite generations in the Jingchong deposit.  
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mineralogical and sulfur isotope evidence have disclosed that the 
Jingchong Pb-Zn- and Cu-Co mineralization were formed in a magmatic- 
hydrothermal system with similar wall rock alteration. The He-Ar iso-
topes of Cu-Co ores revealed that the mixing of magmatic-hydrothermal 
fluids with meteoric water was a possible mechanism for metal precip-
itation (Wang et al., 2017, 2022). In combination with the consistent 
ore-forming temperature between the Cu-Co stages (256–318 ◦C, chlo-
rite geothermometry; Wang et al., 2017) and Pb-Zn stage (286–346 ◦C, 
sphalerite geothermometry; this study), the mixing process is assumed 
to dominate the mineralization of Pb-Zn. The placement of Pb-Zn ore-
bodies at the upward zoning of Cu-Co orebodies and the sequent pre-
cipitation of Pb-Zn following Cu-Co might be related to the mobility of 
these metals in hydrothermal fluids (Brugger et al., 2016). According to 
Soft-Hard Acid-Base theory (Pearson, 1963), chloride complexes are 
assumed to be the dominant Co, Cu, Pb and Zn species in hydrothermal 
solutions with the temperature of no more than 400 ◦C, and their sta-
bility is dependent not only on the temperature, salinity, pH and redox 
of ore-forming fluid but also the coordination chemistry of metals 
(Migdisov et al., 2011; Zhong et al., 2015; Brugger et al., 2016). As 
mentioned above, the varying physicochemical conditions are hardly 
considered as the main factors controlling the discrepant precipitation 
between Pb-Zn- and Cu-Co metals. Instead, the higher solubility of Pb 
and Zn complexes relative to Cu complex in hydrothermal fluids could 
explain the long-distance transportation of Pb-Zn than Cu (Hemley et al., 
1992; Emsbo, 2000). 

7. Conclusions  

(1) Three generations of sphalerite are identified. Sph-I is featured by 
the oscillatory zones of Fe-, Cd- and Mn-rich alternating with Cu-, 
Ag- and In-rich and Ga sector zones. Sph-II and Sph-III have ho-
mogeneous but higher Cd, Cu and Ag concentrations compared to 
Sph-I. The following substitutions are identified in sphalerite 
species: Zn2+ ↔ (Fe, Mn, Cd, Sn)2+, Fe2+ ↔ Cd2+, 2Zn2+ ↔ (Cu, 
Ag)+ + In3+, 4Zn2+ ↔ 2(Cu, Ag)+ + Sn3+ + In3+, 2Zn2+ ↔ (Cu, 
Ag)+ + Sn3+, 3Zn2+ ↔ 2(Cu, Ag)+ + Sn4+, 3Zn2+ ↔ Sn3+ + In3+

+ □ (vacancy) and 3(Zn, Fe)2+ ↔ 2In3+ + □ (vacancy).  
(2) The sphalerite geothermometer gives average temperatures of 

334 ± 56 ◦C for Sph-Ia, 346 ± 58 ◦C for Sph-Ib, 289 ± 55 ◦C for 
Sph-IIa, 254 ± 60 ◦C for Sph-IIb, and 286 ± 55 ◦C for Sph-III. The 
estimated sulfur fugacity (log10fS2) is − 9.03 ± 0.03 for Sph-Ia, 
− 8.26 ± 0.06 for Sph-Ib,− 10.63 ± 0.19 for Sph-IIa,− 11.77 ±
0.38 for Sph-IIb, and − 10.82 ± 0.29 for Sph-III, indicating the 
fluctuant ore-forming conditions.  

(3) The oscillatory and sector zonings of Sph-I are formed by the self- 
organized mechanism. Pyrite and pyrrhotite inclusions in Sph-I 
are exsolved, while chalcopyrite inclusions are co-precipitated. 
The Sph-II and Sph-III species and associated mineral inclusions 
are interpreted to be formed by CDR reactions with the aid of the 
influx of relatively Cu-elevated fluids and subsequent direct 
precipitation.  

(4) The Jingchong deposit was most likely formed at ca. 121.1 ± 2 
Ma based on muscovite 40Ar/39Ar dating, which is in agreement 
with the ca. 130–120 Ma Pb-Zn mineralizing events in the 
northeastern Hunan Province. The sulfur isotopic values (− 3.0 to 
+3.5‰) of the Pb-Zn ores plot within the range of Cu-Co ores, 
indicating a similar sulfur reservoir. Together with the trace 
element affinity of sphalerite with magmatic-hydrothermal 
origin, the Jingchong Pb-Zn and Cu-Co mineralization was 
formed in a magmatic-hydrothermal system. 
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