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Abstract

In the context of fast-paced advancements in the Internet of Things and artificial
intelligence, the demand for custom solutions in emerging fields like smart packag-
ing and smart bandages has risen significantly. These innovative applications require
electronics that are not only ultra-low-cost but also highly flexible and customizable,
particularly for edge processing tasks. Traditional silicon-based electronics often fall
short in o↵ering cost-e↵ectiveness. In contrast, printed electronics have emerged
as a powerful alternative. They use additive manufacturing techniques to create
custom electronic circuits at ultra-low cost. These electronics are particularly versa-
tile, with a choice of materials and substrates contributing to notable flexibility and
bio-compatibility. To further equip them with computational abilities, there is an
increasing interest in printed neuromorphic circuits. These circuits e↵ectively merge
the benefits of neuromorphic computing with the capabilities of printed electronics.
Nevertheless, the intrinsic constraints of printed electronics, namely large feature
sizes and notably reduced integration density, pose challenges for compact applica-
tion areas. To address these challenges, we propose a method inspired by the Neural
Evolution for Augmenting Topologies algorithm. Unlike traditional gradient-based
optimization methods, such as pruning, our approach simultaneously optimizes the
learnable parameters and the topology structure of printed neuromorphic circuits,
thereby facilitating a reduction in circuit area. Through experiments conducted
on 11 di↵erent datasets, we demonstrate the e↵ectiveness of our approach. Ex-
perimental results reveal that, with the proposed approach, 3.1⇥ reduction of the
circuit area can be realized while maintaining 100% of classification accuracy of the
gradient-based pruning method.

Keywords: Neural Architecture Search, Printed Electronics, Neuromorphic Circuits,
Evolutionary Algorithms, Topology Optimization.
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1. Introduction

With the rapid advancements in the the Internet of Things (IoT) and artificial in-
telligence (AI), there is a growing demand for solutions tailored to new applications,
such as smart packaging [1] and smart bandages [41]. These applications call for
ultra-low-cost, super-soft, and highly customizable electronics for the measuring and
processing signals at the edge [49]. However, even the cheapest traditional silicon-
based electronics, such as Micro-controller Units1, fall short in delivering the desired
cost-e�ciency.

In this regard, printed electronics (PE) emerge as a promising alternative. Since
PE can be manufactured additively, high-customized circuits can be produced at
(sub-cent) ultra-low costs. Additionally, the appropriate choice of materials and
substrates allows these printed devices to demonstrate remarkable flexibility [22, 8],
and bio-compatibility [19].

In order to enhance the e�ciency of PE across various applications and equip PE
with computational capabilities, there has been a growing shift towards printed neu-
romorphic circuits [43]. This is due to their combination of the advantages of neuro-
morphic computing [34] with the capabilities of PE. Such circuits can emulate basic
operations of artificial neural network (ANN), such as weighted-sum and nonlinear
activation functions, through a combination of straightforward circuit primitives like
resistor crossbars and printed non-linear circuits. Additionally, as this emulation re-
quires only a stack of multiple simple circuit primitives whose operations are fully
di↵erentiable, it enables a highly e�cient design and optimization process through
gradient-based approaches.

However, printed neuromorphic circuits still su↵er from the inherent limitations of
PE, namely large feature sizes and reduced integration density. Such constraints
present a particularly challenging situation for applications like smart bandages and
compact intelligent packaging, where the size of the circuit area is critical. In order
to reduce the circuit area, the topology of printed circuit, especially the number
of neurons and their connections, must be optimized. But the common training

1https://pic-microcontroller.com/world-top-10-cheapest-microcontrollers-mcus
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methods for neuromorphic circuits, based on the chain rule, are intrinsically gradient-
based optimization processes. These methods are generally inadequate for circuit
topology optimization, as topology optimization is a discrete process that doesn’t
o↵er meaningful gradient information.

Considering this concern, we decided to utilize evolutionary methods to train the
printed neuromorphic circuit without necessitating gradient information. Drawing
inspiration from Neural Evolution for Augmenting Topologies (NEAT), we propose
a Evolutionary Algorithm (EA) to optimize both the topology and learnable param-
eters of printed circuits. Through experiments on 11 datasets, we demonstrated the
superior performance of our proposed algorithm. Compared to the baseline methods,
it achieved a more compact circuit area while maintaining equivalent accuracy, e.g.,
3.1⇥ reduction in area could be achieved without any accuracy decrease compared
to the gradient-based pruning method.

The organization of the rest of this thesis is structured as follows:

• Chapter 2 provides an overview of PE, analog printed neuromorphic circuits,
printed neural network and relevant literature. At the end of this chapter,
a comparison is made among various neural network topology optimization
methods, namely Neural Architecture Search (NAS), and the reasons for choos-
ing the EA are explained.

• Chapter 3 introduces the general process and features of the NEAT algorithm.

• Chapter 4 details the modeling of the circuit area and explain the key parts of
our method for training printed neuromorphic circuits.

• Chapter 5 first presents the experimental setup for our proposed approach and
then this approach is evaluated and discussed.

• Chapter 6 concludes this thesis.



2. Background

In this chapter, we will provide readers with the necessary background and knowl-
edge.

2.1 Printed Electronics

Printed electronics has gained significant attention and undergone notable develop-
ment in recent years, providing a novel approach to manufacturing electronic compo-
nents and devices through printing processes [12]. The fundamental concept of PE
technology aims to achieve cost-e↵ective, flexible, and highly customizable manufac-
turing of electronic devices by utilizing printing technology for additive component
fabrication.

Subtractive Process

substrate

film 
deposition

photoresist 
deposition

UV 
exposure development etching

photoresist removal

Additive Process

substrate photoresist removal

Figure 2.1: Di↵erence between the lithograph-based subtractive process and an ad-
ditive process for manufacturing electronic circuits.

Figure 2.1 shows the main di↵erence between the lithograph-based subtractive pro-
cess for silicon-based electronics and an additive process for manufacturing printed
electronic circuits. Compared to conventional lithograph-based silicon electronics,
PE requires less infrastructure and procedures for fabrication, and thus, exhibits
lower manufacturing cost.
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PE employ various printing techniques, including gravure printing, flexographic
printing, screen printing, and inkjet printing, to fabricate electronic assemblies.
These techniques can be categorized into contact printing processes (e.g., gravure,
flexographic, and screen printing) and non-contact printing processes (e.g., inkjet
printing). Contact printing technologies o↵er advantages such as low cost, fast
production speeds, good repeatability, and suitability for high-volume production.
Conversely, non-contact printing technology is slower but excels in digital creation or
transmission of information on substrates without the need for printing plates, mak-
ing it ideal for prototyping and on-demand production. Diverse printing methods
o↵er tailored advantages to meet specific application requirements. These techniques
precisely deposit functional materials, including conductive inks and semiconduct-
ing materials, to form essential electronic components like transistors, sensors, and
radio frequency identification (RFID) devices. The key properties and parameters
of the di↵erent printing techniques used PE are summarized in Table 2.1 [18, 17].

Printing
Process

Film Thickness
(µm)

Printing Speed
(m/min)

Resolution
(µm)

Image
Carrier

Screen 3–60 0.6-100 30 Stencil
Inkjet 0.01-0.5 0.02-5 20 Digital
Flexo 0.17-8 5-180 15 Polymer Plates

Gravure 0.02-12 8-100 15 Engraved Cylinder

Table 2.1: Key properties and parameters of printing techniques used in printed
electronics.

The potential applications of PE span a wide range of industries and continue to
expand. In the realm of wearable electronics, PE enables the development of con-
formable sensors [23] and displays [26] that can seamlessly integrate into clothing
and accessories. This breakthrough technology empowers continuous health moni-
toring, real-time data tracking, and immersive user experiences. For instance, Sun et
al. [41] developed an electronic smart band-aid, which can be used not only for wound
protection but also for self-powered sensing of movements and human-machine inter-
action. Furthermore, PE finds practical application in smart packaging [1], where it
embeds interactive features like temperature sensors, expiration indicators, and secu-
rity tags. These intelligent packages enhance consumer engagement, ensure product
freshness and authenticity, and optimize supply chain logistics.

In summary, PE represents an emerging technology that enables ultra-low-cost, flex-
ible, and highly customizable manufacturing of electronic devices through printing
processes and a spectrum of materials.

2.2 Printed Analog Neuromorphic Circuit

Printed neuromorphic circuits represent a cutting-edge advancement in electronic
circuitry, seamlessly merging the principles of neuromorphic computing with the
versatility of PE. These circuits emulate the intricate functionality of ANNs, a
cornerstone of modern machine learning applications.

Neuromorphic computing is a groundbreaking computational paradigm that draws
inspiration from the intricate signal processing mechanisms of the human brain,
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which has demonstrated remarkable expressiveness across diverse domains [44]. This
approach aims to imitate the brain’s neural networks and their operations, such as
weighted-sum calculations followed by nonlinear activations. Various hardware-level
implementations have been developed for digital neuromorphic systems [34]; How-
ever, these digital approaches are not optimally aligned with PE requirements due
to the large feature sizes and lower integration densities of PE. As a result, the ana-
log neuromorphic computing strategy has garnered increasing interest within the PE
sector, given its capability to significantly reduce the need for hundreds of transistors
in digital circuits [43]. A fundamental aspect of analog neuromorphic computing lies
in its capability to directly handle sensory data, bypassing the need for converting
it into digital signals. This avoids the necessity for costly analog-digital convert-
ers (ADCs), which would otherwise be essential in the signal processing pipeline.
Furthermore, machine learning-based techniques can be employed for training of
analog printed neuromorphic circuits, guaranteeing an e�ciency design and opti-
mization process. These analog printed neuromorphic circuits enable handle basic
sensor processing tasks and can find application in various scenarios. For instance,
they can be used to monitor wound characteristics [41] such as temperature, pH
levels, and the levels of substances like glucose, uric acid, and lactic acid. They can
also be employed to assess the freshness of fruits [1], as well as measure the skin’s
electrical activity in human body measurements [47].

Analog printed neuromorphic circuits consist of two main components: a matrix
multiplication unit and a nonlinear activation unit. The former is implemented by
printed resistor crossbars, whose values are usually obtained by learning. The latter
is implemented by printed nonlinear circuits, which are usually fixed for all tasks
during training. Each neuron in the printed neuromorphic circuit is composed of
these two units, which can perform the basic operations of neural networks: weighted
sum and activation function. The matrix multiplication unit can realize a large-scale
parallel computation of weighted sums for multiple neurons, while the nonlinear acti-
vation unit can introduce nonlinearity and sparsity into the neural network output.
Furthermore, in order to overcome the restrictions imposed by the hardware, the
design could encompass additional subcircuits, such as those for negative weight
circuits. By connecting multiple printed neurons in series or in parallel, complex
neural network architectures can be constructed. A detailed introduction to each
individual component will be provided in the subsequent sections.

2.2.1 Resistor crossbar

The resistor crossbar array stands as a fundamental architecture within printed neu-
romorphic circuits, mirroring the weighted-sum operations intrinsic to ANNs. The
weighted-sum operation serves as a standard process for conducting ANN inference.
This innovative architecture takes advantage of resistive elements to enable parallel
and distributed computing, paving the way for e�cient and high-density information
processing.

Resistor crossbar structures find versatile applications across various domains. In the
context of memory applications, they serve as the foundation for non-volatile mem-
ory devices like Resistive Random-Access Memory (ReRAM)-based graph processing
accelerator [36]. By harnessing the principle of resistive switching, where a mate-
rial’s resistance can be altered between high and low states, the crossbar architecture
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enables e�cient and high-density data storage. Additionally, these structures play
a crucial role in in-memory computing paradigms [35], where computational tasks
are performed directly within the memory. This minimizes the need for extensive
data movement between memory and processing units. Leveraging the inherent ana-
log computing capabilities of resistor crossbars, this approach o↵ers energy-e�cient
solutions for in-memory computations.

Figure 2.2 demonstrates a typical resistor crossbar in a printed neuromorphic circuit
with two input voltages V1, V2 and one output voltage Vz. In the crossbar, there
are also two internal constant voltages, namely V C

b = 1V and GND that refers to
0V. Each external input voltage and internal constant voltage is connected to the
corresponding resistor, namely RC

1 , R
C
2 , R

C
b , and RC

d . Here, the superscript (·)C
indicates the variables in the crossbar subcircuit. Following Kirchho↵ ’s law [21], we
obtain X

i

Vi � Vz

RC
i

+
V C
b � Vz

RC
b

� Vz

RC
d

= 0.

By expressing the resistance R as the corresponding conductance g = 1/R, this
equation can be formulated to

Vz =
X

i

gCi
gCsum

Vi +
gCb
gCsum

, (2.1)

where gCsum refers to the sum of all conductances in the crossbar, namely gC1 , g
C
2 ,

gCb and gCd . Here, gCi /g
C
sum corresponds to the weights in an ANN, while gCb /g

C
sum

corresponds to the bias on each neuron. Therefore, the crossbar’s output can be
described by the weighted-sum of input voltages, where the weights and bias are
represented by conductance values. This approach enables the realization of the
targeted weighted-sum operation through the precise printing of designated conduc-
tance values within the crossbar structure. Section 2.3 explains further on the design
aspects of resistors within the crossbar configuration.

2.2.2 Printed non-linear circuit

A non-linear activation function represents the another element essential for com-
putations within ANNs as outlined in [7]. This function is directly applied to the
output derived from the weighted-sum operation as illustrated in Figure 2.2. In the
domain of printed neuromorphic circuits, various nonlinear circuits with character-
istic curves resembling classic activation functions have been proposed. Examples
of these include the Rectified Linear Unit (ReLU) function [42] and the sigmoid
function [27].

An inverter-based printed non-linear circuit is depicted in Figure 2.3. The advantage
of this circuit lies in the presence of a super-linear interval between the input and
output voltages. This characteristic e↵ectively reduces signal loss at the output of
the layer and provides possibilities for cross-layer amplification [43].

The nonlinear circuit’s transfer characteristic can be elucidated through a modified
version of the hyperbolic tangent (tanh) function, specifically referred to as follows:

Va = ptanh(Vz) = ⌘A1 + ⌘A2 · tanh((Vz � ⌘A3 ) · ⌘A4 ),
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𝑅2𝐶

𝑅d
𝐶

𝑅1𝐶

GND

𝑉𝑧

V1

V2

𝑅b
𝐶

𝑉𝑏𝐶

Figure 2.2: The schematic of the 2-input crossbar (V1 , V2) implementing the weight-
sum operation.

where ⌘A = [⌘A1 , ⌘
A
2 , ⌘

A
3 , ⌘

A
4 ] is the vector of auxiliary parameters that translate

and scale the original tanh function [43]. The superscript (·)A signifies the as-
sociation of the parameters with the activation function. In this work, we em-
ploy a consistent printed non-linear circuit, where the auxiliary parameters are
⌘A = [0.290, 0.710,�0.017, 20].

2.2.3 Negative weight circuit

By observing equation 2.1, it becomes clear that the weight configurations within
the crossbar are expressed by the conductances, which are constrained exclusively
to positive values. Negative multiplications between inputs Vi and weights gCi /g

C
sum

(e.g., gCi /g
C
sum < 0 ) as well as the bias gCb /g

C
sum are not possible, as the resistances are

physically only positive. To overcome this problem and realize negative weights, [43]
propose an inverter-based transfer function (depicted in Figure 2.4). This function
transforms positive neuron input voltages into negative voltages, essentially mim-
icking the operation of Vi · (�1). In other words, the realization of negative weights
and bias in resistor crossbar is achieved through the inversion of the corresponding
inputs.

One notable advantage in contrast to other established methodologies [2] lies in
the selective utilization of the negative weights circuit. This circuit is employed
exclusively when required, strategically positioned ahead of crossbar resistors that
necessitate weight negation [46]. Thus, the resulting circuits o↵er less circuit area,
less power consumption and reduced transistor counts.

The transfer characteristic curve of the negative weight circuit exhibits nonlinearity
and, similar to the printed tanh (ptanh) circuit, can be expressed using a modified
negative tanh function as follows:

neg(Vin) = �(⌘N1 + ⌘N2 · tanh((Vin � ⌘N3 ) · ⌘N4 )),
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VSS

VDD

𝑅𝑏𝐴
𝑅2𝐴

𝑇1𝐴
𝑇2𝐴

𝑉𝑧

𝑉𝑎

𝑅1𝐴
𝑉𝑏𝐴

Figure 2.3: The schematic of inverted-based activation function for realizing the
hyperbolic tangent (tanh) function.

where ⌘N = [⌘N1 , ⌘
N
2 , ⌘

N
3 , ⌘

N
4 ] is the vector of auxiliary parameters that translate and

scale the original tanh function. The superscript (·)N signifies the association of the
parameters with the negative weight circuit. In this work, we employ a consistent
negation circuit, where the auxiliary parameters are ⌘N = [�0.006, 1.024, 0.016, 1.006].

By interconnection of these three primitive subcircuits, printed neurons can be con-
structed, with arbitrary number of neural inputs. Subsequently, based on the printed
neuron design, this framework enables the realization of printed neuromorphic cir-
cuits tailored to deal with complicated computing tasks.

2.3 Printed Neural Network

By interconnecting the aforementioned circuit primitives, printed neuromorphic cir-
cuits exhibit the potential to achieve computational capabilities. To fully exploit the
computational capacity of printed neuromorphic circuits, a design and optimization
stages is necessary. This optimization process takes into account the targeted appli-
cation domains of PE, while also addressing the demand for cost-e↵ective solutions.
Reconfigurable components are not employed during the operation of these circuits
for on-device training; instead, an o↵-device, software-centric design approach is
adopted. Once the circuit design is confirmed, the manufacturing phase begins.
To this regard, the concept of a printed neural network (pNN) is introduced [43].
The pNN, as a machine-learning-driven model, aims to simulate the behavior of
printed neuromorphic circuits. Within the pNN framework, the learnable parame-
ters correspond to the component values in the actual printed neuromorphic circuits.
The general workflow entails initially determining the network’s topology, including
the node count and layers. By training the pNN on the target dataset (dataset of
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neg(Vin)

𝑉in TN

𝑅2N𝑅3N

𝑅4N

𝑅5N

𝑅1N

VSS

VDD

Figure 2.4: The schematic of the negative weight circuit.

the specific task), optimal parameter configurations can be obtained; subsequently,
through various applicable printing techniques, on-demand manufacturing can be
achieved conveniently and cost-e↵ectively. In conclusion, the training process of the
pNN can be perceived as the design and optimization process for the corresponding
printed neuromorphic circuit.

In pNN, the learnable parameter for weighted-sum, referred to as the surrogate
conductance ✓i. The surrogate conductances encode the value of a respective con-
ductance through their absolute value, i.e., gCi = |✓i|, while the sign of ✓i encodes if
the input to the respective resistor should be inverted (negative weight),i.e., sign(✓i).
Through this, the weights in a printed neuron is modelled as

wi =
gCi
gCsum

=
|✓i|P
j |✓j|

,

Consequently, the weighted-sum can be expressed by

X

i

Vi · wi · {✓i�0} + neg(Vi) · wi · {✓i<0}, (2.2)

where {·} is an indicator function returning 1 if the respective condition is true, else
0. It is worth noting that the equation 2.2 can encompass the bias term and GND
term by augmenting the input voltage with a value of 1 (for the bias term, denoted
as V C

b ) and a value of 0 (for the GND term).
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Consequently, the weight-sum will pass through the ptanh function for activation,
the output of a printed neuron can be obtained by

ptanh(
X

i

Vi · wi · {✓i�0} + negqN(Vi) · wi · {✓i<0}). (2.3)

2.4 Circuit Compactification

In modern electronics, the importance of compact circuit design is increasingly ev-
ident, especially as mobile and IoT devices continually demand smaller sizes, lower
power consumption, and enhanced performance. A compact design not only al-
lows electronics to be more streamlined and lightweight but also potentially reduces
material and manufacturing costs.

Such designs typically feature shorter interconnections and smaller circuit compo-
nents, which contribute to decreased resistive and capacitive losses, thereby further
reducing power consumption.

From a consumer’s perspective, the reduced size and energy consumption undoubt-
edly make products more appealing, catering to desires for portability and extended
battery life.

Furthermore, compact circuit designs enhance flexibility, enabling adaptation to a
variety of applications and packaging requirements. A higher level of integration
means more functionalities can be accommodated within smaller spaces. For PE,
the push towards compactness is equally pronounced, especially in space-constrained
applications like on-skin computing [40] and near-sensor computing [49]. To our
knowledge, no new materials or manufacturing techniques currently exist that could
further miniaturize neuromorphic circuits. However, considering the inherent error-
tolerance of neuromorphic computing, approximate computing [32, 3] can be em-
ployed to simplify circuit designs. The incorporation of multifunctional components
is another path; for instance, certain ReRAMs can double as storage units and
compute elements, promoting a more compact design approach.

Given the strong correlation between circuit area and its topology, our approach
emphasizes optimizing the topology of neuromorphic circuits. Specifically, we aim to
reduce the number of neurons and their interconnections to achieve a more compact
design.

2.5 Neural Architecture Search

The optimization of the topology structure of pNN is achieved through a novel field
known as Neural Architecture Search (NAS). NAS is an automated methodology
used to discover the optimal neural network architecture specifically tailored to a
given task. Traditional approaches heavily rely on the expertise and intuition of
human experts for the design of deep learning models. However, as neural networks
continue to grow in scale and complexity, manual tuning becomes increasingly chal-
lenging and time-consuming. The primary goal of NAS is to replace manual tuning
by employing automated search methodologies to identify network architectures that
are superior in performance and e�ciency.
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Additionally, NAS methods can identify e↵ective architecture that traditional man-
ual design methods may overlook, introducing a variety of network architectures.
NAS finds application in diverse tasks such as image classification, speech recogni-
tion, and object detection, and it can be adapted to tasks that require specific model
architectures.

Search Space

architecture

𝒜
Search Strategy

Performance
Estimation
Strategy

𝐴 ∈ 𝒜

performance
estimate of 𝐴

Figure 2.5: An overview of neural architecture search pipeline [13].

The core elements of NAS algorithms are the search space, search strategy, and
performance estimation strategy [13]. The search space encompasses the collection
of neural network architectures that can be explored, forming the solution space.
The search strategy defines the approach used to explore the search space. The
performance estimation strategy evaluates the performance of a possible network
architexture. Figure 2.5 illustrate the NAS search pipeline.

Diverse search strategies are available for investigating the neural architecture space,
including evolutionary methods, reinforcement learning (RL), and gradient-based
methods. Below, we detail the commonly used NAS methods.

2.5.1 Reinforcement Learning-Based Optimization

Zoph et al. [50] were pioneers in employing RL for NAS. RL comprises five main
components: the agent, the state, the action, the environment, and the reward.
Within the NAS paradigm, the agent is the controller, often realized using a Recur-
rent Neural Network (RNN) [10]. The controller learns to propose or select neural
architectures by interacting with an environment. The state typically represents
the current neural architecture or parts of it. Actions refer to modifications to the
architecture, such as adding layers, changing layer types, or adjusting hyperparame-
ters. Once an action is taken and a new architecture is proposed, the architecture is
trained and validated, producing a performance metric (e.g., accuracy or loss value).
This metric serves as the reward that is fed back to the agent.

Over multiple rounds, the controller learns from prior decisions and their associated
rewards. It iteratively refines its proposals during subsequent iterations, aiming to
maximize the reward, leading to the discovery of neural architectures that exhibit
superior performance. The process of a RL-based NAS algorithm is illustrated in
Figure 2.6.

Di↵erent RL approaches di↵er in how they represent the controller’s policy and
how they optimize. For instance, Zoph et al [50] initially trained this network with
REINFORCE policy gradient algorithm, but subsequently adopted proximal policy
optimization in their further studies [51]. In contrast, Baker et al. utilized Q-learning
as their chosen strategy to direct the controller’s policy updates [5].
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Controller

Propose a neural network architecture A

A gets trained on a 
dataset and is then 
evaluated on a 
validation set

Performance of A is fed back to the controller as a reward

Figure 2.6: An overview of reinforcement learning-based neural architecture search
pipeline.

In comparison with other NAS techniques, RL-based NAS exhibits superior scala-
bility, although at a higher computational expense. For instance, the authors in [50]
took 28 days and 800 K40 GPUs to search for the best-performing architecture, and
a subsequent simplification of the search space in a later work still necessitated 4
days employing 450 GPUs [51]. MetaQNN [5] also took 10 days and 10 GPUs to
complete its search.

Liu et al. introduced a method called Progressive Neural Architecture Search
(PNAS) [24], which adopts a hierarchical approach to progressively refine the search
space. Additionally, the method employs approximate evaluation techniques to eval-
uate the performance of the architectures. This method is up to 5⇥ more e�cient
than the RL method of Zoph et al. [51] in terms of number of models evaluated, and
8⇥ faster in terms of total compute.

The E�cient Neural Architecture Search (ENAS) [29] exceeds this approach by
adopting a parameter-sharing strategy. In this strategy, all sample architectures
are treated as sub-graphs within a supernet. This approach facilitates parameter
sharing among architectures, eliminating the requirement to train each child model
independently. Consequently, ENAS accomplished the search for the optimal archi-
tecture on the CIFAR-10 dataset in approximately 10 hours using a single GPU, a
speed nearly 1000⇥ faster than that of the method introduced by Zoph et al. [50].

2.5.2 Evolutionary-Based Optimization

EAs draw inspiration from the principles of natural selection and biological evolu-
tion [4]. These optimization algorithms operate on a population of potential so-
lutions, iteratively evolving this population across generations to enhance solution
quality. Figure 2.7 shows the overview of the EAs.

In the context of NAS, evolutionary-based NAS initializes with a population of
diverse neural network architectures. Each member of this population carries its
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Figure 2.7: Overview of the evolutionary algorithms. [15]

unique genetic coding, symbolic of its structure, type of layers, hyperparameters,
and inter-layer connections. The architectures then undergo an evaluation phase.
Typically, they’re trained on a dataset and their performance is subsequently eval-
uated on a validation set. This performance, often denoted in accuracy or loss, acts
as the ’fitness’ score for the architecture.

Based on the available fitness scores, the algorithm chooses specific architectures to
act as parents for the next generation. Although high-performing architectures have
a greater chance of being selected, a few slots are set aside for the underdogs to
maintain diversity. These chosen architectures then experience crossover, which is
a mixing of attributes like layers or hyperparameters. To enable the exploration of
more novel structures and ensure diversity, random mutations are introduced. This
could involve adjusting a layer type or hyperparameters.

After the crossover and mutation process, some or all of the existing architectures
may be replaced by the newly formed ones. The best-performing architectures,
referred to as the ’elite’, are often preserved in order to consistently enhance perfor-
mance. The algorithm terminates either after reaching a predefined number of gen-
erations or when significant performance improvement becomes di�cult to achieve.

Notable instances in this field include NEAT [38]. NEAT algorithm begins with sim-
ple networks and allows their complexity to evolve gradually, incorporating concepts
like speciation and gene history. NEAT evolves not just the topology but also the
neural weights. AmoebaNet [31] is another notable method that incorporates asyn-
chronous evolution to enhance search diversity. It has demonstrated outstanding
performance on both CIFAR-10 and ImageNet datasets.
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The inherent nature of EAs encourages diversity, allowing for the avoidance of local
optima and comprehensive exploration of the search space. Moreover, their versatil-
ity makes them applicable to various types of neural networks. However, a significant
drawback is their computational intensity, especially when training each architec-
ture from scratch. As a result, researchers actively explore e�ciency-enhancing
techniques like weight sharing or surrogate modeling.

2.5.3 Gradient-Based Optimization

Gradient-based NAS utilizes gradient information from backpropagation [33] to
guide and optimize structural decisions within the search space. This approach
di↵ers from traditional NAS techniques that often rely on discrete decision-making.
The objective of gradient-based NAS is to transform the architecture search prob-
lem into a continuous and di↵erentiable context, which allows for the direct ap-
plication of optimization algorithms like gradient descent. This transformation is
typically achieved by softening discrete structural selection parameters into a con-
tinuous probability distribution, such as using the softmax function.

Among them, Di↵erentiable Architecture Search (DARTS) [25] is one of the most
famous gradient-based NAS methods. In DARTS, each layer of the model has mul-
tiple operation options, and the weights of these operations are learnable. Through
training, these weights converge, resulting in larger weights for certain operations.
Finally, the operation with the highest weight is chosen as the operation for each
layer, resulting in the final network structure. This strategy enables simultaneous op-
timization of both network architecture and network weights using gradient descent.
This joint optimization not only simplifies the search process but also significantly
enhances its e�ciency. More specifically, gradients for architectural parameters are
computed by backpropagating through the performance on a validation set, while
gradients for network weights are determined based on the performance over the
training set.

However, these approaches have certain drawbacks, such as the requirement to store
all possible operations, which could significantly increase memory usage. Addi-
tionally, similar to other gradient-based optimization techniques, these methods are
prone to becoming trapped in local optima. To address these challenges, researchers
have introduced enhanced techniques like Fair DARTS [11] and PDARTS [9]. The
latter dynamically adjusts the search space during the search process.

Among various NAS strategies, we selected the evolutionary-based NAS approach to
train our printed neuromorphic network. The foundational principle of EAs is rel-
atively straightforward, focusing primarily on the fitness function and continuously
evolving its population through operations such as mutation and crossover. EAs sig-
nificantly outperform traditional reinforcement learning approaches across a broad
range of benchmark tasks [39]. Compared to gradient-reliant methods, EAs o↵er
enhanced robustness. Furthermore, they possess an almost limitless search space,
enabling the exploration of network architectures that are challenging for gradient-
based methods, thereby facilitating the identification of innovative structures.

However, evolutionay-based NAS has its limitations, such as substantial computa-
tional consumption. But given our target application typically demands smaller net-
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work architectures, this limitation can be minimized. In conclusion, for the printed
neuromorphic network, the evolutionary-based NAS strategy emerges as an appro-
priate choice.

In summary, this chapter provides an overview of the foundational knowledge and
relevant literature. Our focus is primarily on the printed neuromorphic circuits do-
main, aiming to achieve a compact design by reducing circuit area. Thus the circuit’s
topology must be optimized. We reviewed various common NAS methods and, after
thorough consideration, chose the EA approach to apply to printed neuromorphic
circuit design.
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3. NEAT

The previous chapter provided background knowledge and related works for this
thesis. The final section compared various common NAS methods. For our applica-
tion scenario, we chose the EA for compact circuit design because of its unlimited
search space and alignment with PE. Among various EA, NEAT inspired us.

This chapter introduces the NEAT algorithm, giving readers an understanding of
the NEAT algorithm and laying the groundwork for understanding the method we
propose subsequently.

NEAT distinguishes itself from traditional EAs, being specifically designed for the
simultaneous evolution of neural network weights and architectures. In contrast to
conventional EAs, NEAT integrates several strategies, ensuring that the network
structure can flexibly adapt to a diverse range of task requirements while circum-
venting prevalent pitfalls in the evolution process [37].

Initially, each network is directly connected from input nodes to output nodes with-
out any hidden nodes. The algorithm then selects two ’parent’ networks and com-
bines their gene structures to produce a new ’child’ network, ensuring compatibility
between the two parent networks. The mutation phase follows, involving the random
alteration of a connection’s weight, the addition of a new connection between two
previously unconnected nodes randomly, and the insertion of a new hidden node by
splitting an existing connection. To ensure that new, innovative network structures
will not be eliminated before they can be truly explored, NEAT employs a strategy
known as ’speciation’ where networks with similar structures are classified into the
same ’species’. This ensures that crossovers occur only between networks of the
same species. Each generation selects and replicates the best-performing networks
based on their performance in a given task into the next generation.

The advantages of this method include the simultaneous optimization of structure
and weights, and starting with simpler structures can help prevent early overfitting.
Through speciation, NEAT ensures structural diversity in the population, thus pre-
venting early convergence. However, there are some disadvantages as well, such as
the evolutionary process of NEAT requiring multiple evaluations of a large number
of networks, leading to high computational costs. Moreover, certain parameters,
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like the speciation threshold and mutation probabilities, might need adjustments
for di↵erent tasks. The limitations of these disadvantages can be alleviated since
PE is designed to supplement silicon electronics specifically in edge contexts, where
circuits are typically of a smaller scale.

Input node Output node Intermediate node

(b)(a)

Figure 3.1: Examples of network with comparable accuracy. (a) Result network
through NEAT algorithm. (b) Pruned network.

Compared to traditional backpropagation methods, the uniqueness of NEAT is that
it doesn’t require a pre-defined network structure. This implies that NEAT could
potentially outperform in tasks where the optimal network structure is uncertain.
Moveover, NEAT demonstrates a significant advantage in discovering novel struc-
tures. For instance, Figure 3.1 presents a comparison between the network structures
discovered by NEAT and gradient-based pruning approach. The two example net-
works can achieve equivalent accuracy, but the result network from NEAT algorithm
is smaller than pruned network and has a unique topology. Notably, NEAT have
the capability to extend the connectivity of the output node to other nodes, thereby
functioning as intermediaries as well. Some output node can be seen as intermediate
node. This kind of innovative network is almost impossible to be generated from
pruning.

In summary, from the perspective of EAs, NEAT o↵ers an e�cient and adaptive
strategy for the evolution of neural network weights and structures. Its innovative
techniques and highlights position it as a preferred solution for many tasks.



4. Methodology

In the compact design of printed neuromorphic circuits, minimizing the area is cru-
cial. A reduced area can directly translate to cost savings, as the fabrication cost
of printed circuits often correlates with the space they occupy. Additionally, cir-
cuits with smaller areas facilitate higher integration density, which is essential for
incorporating complex neuromorphic systems on a single substrate. The reduction
in circuit area leads to a more streamlined and compact design. The compactness of
these circuits enhances their portability, making them well-suited for wearable and
handheld devices, especially in the context of edge computing.

To integrate circuit area directly into the training objective, we initially develop a
model in Section 4.1, which quantifies the space occupied by the printed neuromor-
phic circuits.

Following this, in Section 4.2, we introduce our proposed EA-based approach to
simultaneously optimize both the circuit parameters and topology.

Finally, we employ a gradient-based pruning method that may also achieve area
optimization and forms the baseline of our proposed method. In Section 4.3, the
pruning method is introduced and compared with the EA method.

4.1 Circuit Area Model

This section models the circuit area, laying the foundation for incorporating the area
into the objective equation in subsequent steps.

Figure 4.1 illustrates a printed resistor with supplementary layers of conductive ink
post-fabrication, adjusting its conductivity accordingly. We can achieve varying
resistance values by printing di↵erent numbers of ink layers. This implies that,
despite di↵erences in resistance values, the occupied area remains roughly consistent.
Thus, we directly infer the standard area of a resistor from the scale provided in this
figure, namely AR = 0.15mm2.

Similarly, we can directly determine the area occupied by nonlinear circuits in printed
neuromorphic circuits, such as printed tanh-like non-linear circuit and negative
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(a)

(b)

(c)

Figure 4.1: Resistor reprinting by adding layers. (a) Microscope photos, (b) Physical
schematics, (c) Circuit diagrams [48].

(a) (b)

Figure 4.2: Photos of the primitives in printed neuromorphic circuits. (a) Negative
weight circuit. (b) Tanh-like non-linear circuit [43].

weight circuit. Given that these circuits have predefined and fixed configurations,
their respective areas are directly read from Figure 4.2, with AN = 22.7mm2 and
AA = 30mm2.

Thus, we approximate the total circuit area by

A = NRAR +NNAN +NAAA, (4.1)

wherein NR, NN and NA represent the counts of resistors, negation circuits, and
ptanh circuits, respectively.

In summary, the circuit area model established in this section can be utilized for our
compact circuit design.

4.2 Proposed EA-Based Method
Given the application context of the printed neuromorphic circuit and drawing in-
spiration from the NEAT algorithm, we propose an EA method for compact circuit
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design, which simultaneously trains both learnable parameters and topology. Below
are the key parts of our proposed EA-based method.

4.2.1 Genome

Rb

Rd

Vb = 1V

GND
VDD

VSS

T1 T2

R

node i (in-node) node j (out-node)

(a) node gene (b) connection gene

Figure 4.3: The schematic of the genes in printed neuromorphic circuits. (a) Node
gene. (b) Connection gene.

In our proposed method, a population of individual genomes is maintained. Each
genome contains two sets of genes that describe how to build a pNN, namely node
genes and connections genes. The structure of a node gene and a connection gene
is illustrated in Figure 4.3.

Node genes, each of which specifies a single printed neuron. Within each node gene,
Rb and Rd from the resistor crossbar (refer to Section 2.2.1) are incorporated as
learnable parameters, followed by a consistent printed tanh-like non-linear activation
circuit (refer to Section 2.2.2). Every node possesses a distinct global index for
explicit identification.

Connection genes, each of which specifies the connection between the in-node and
the out-node. A learnable parameter R (refer to the resistance R in Figure 4.3
(b)), corresponding to RC

i in the resistor crossbar, is contained in a connection gene.
Additionally, each connection gene is also supplemented by a learnable boolean
parameter that signifies whether or not the corresponding connection is expressed in
neural network(either enabled or disabled). The identification of connection genes
relies on the indices of the nodes they connect. However, the order of nodes is
important, e.g., connection gene (i, j) and connection gene (j, i) represent 2 di↵erent
genes.

Combining various node genes and connection genes, we can construct genomes.
Each genome is able to emulate a printed neural network. Figure 4.4 depicts a
printed neuromorphic circuit composed of node genes and connection genes.

4.2.2 Speciation

As networks evolve, the addition of nodes or connections can temporarily diminish
their performance. How then can we ensure and optimize these novel structures
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Figure 4.4: The schematic of a printed neuromorphic circuit. (a) Example printed
neuromorphic circuit with topology 6-4-3-2. (b) A printed neuron composed of 3
connection genes (left) and 1 node gene (right).

before they’re prematurely culled from the population? NEAT solves this dilemma
through speciation. Similarly, in our approach, we categorize the population based
on the similarity of their genomes, where each genome competes only within its
designated species rather than against the entire population.

During the species partitioning process, the algorithm first identifies the best repre-
sentative for each existing species and removes these representatives from the pool
of unclassified genomes. Subsequently, for each remaining unclassified genome, the
algorithm calculates its genomic distance to each of the representatives to determine
its species assignment. This genomic distance is computed based on the similarity
in connection genes, node genes within the genomes.

The nodes distance is expressed as

DN =

P
DN

ij + (c ·Ndisjoint nodes)

Nmax nodes
,

and the connections distance is expressed as

DC =

P
DC

ij + (c ·Ndisjoint connections)

Nmax conn
,

thus, the distance between 2 genomes can be determined by

D = DN +DN,

where c denotes compatibility disjoint coe�cient (explained later in Section 5.1.4),
Ndisjoint nodes and Ndisjoint connections denotes the number of disjoint genes between 2
genomes, Nmax nodes and Nmax conn represents the number of genes in the genome that
has a greater number of genes among the two genomes. DN

ij signifies the distance
between homologous node genes (genes have same identification) as
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DN
ij = (|Rbi �Rbj |+ |Rdi �Rdj |) · k,

where k symbolizes the compatibility weight coe�cient (explained later in Sec-
tion 5.1.4). Similarly, DC

ij signifies the distance between homologous connection
genes, determined by

DC
ij = |Ri �Rj|+ {ei 6=ej} · k,

where ei and ej means the connection states of these genes(enable or disable).

If a genome is not su�ciently similar to any existing representative (i.e., the dis-
tance exceeds a predefined compatibility threshold), it becomes the representative
of a newly formed species. Finally, the algorithm updates the species collection
accordingly.

Genome 1

Genome 2

Genome 3

Genome 4

Genome 5

Genome 7

Genome 6

Genome 7

Genome 1

Genome 3

Genome 2

Genome 5

Genome 6
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Genome 4
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Species 1

Species 2

speciation ranking

Figure 4.5: Process of selection.

As shown in Figure 4.5, these genomes are divided into 2 species. And then sort
the genomes in each species according to their fitness value. The fitness value eval-
uate the performance of each genome. The best-performing M% of each species is
randomly selected for crossover (at least 2), where M is a hyperparameter named
survival threshold.

4.2.3 Crossover

Crossover serves as a strategy to combine attributes from two parent individuals
to produce new o↵spring. In the proposed method,the crossover process takes into
special consideration of the structural di↵erences between neural networks, allowing
even those with di↵erent structures to be crossed. This approach is particularly
important for neural networks in our method, as their architecture, such as nodes
and connections, can change over the course of evolution.

After the process of speciation, the top M% genomes, ranked based on their fitness,
from each species are selected as parents for crossover. Among these genomes, two
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Figure 4.6: Example for crossover. (a) Parent genome 1. (b) Parent genome 2. (c)
O↵spring.

genomes are randomly selected for crossover. The one with higher fitness is referred
to as the parent genome 1, and the other as parent genome 2. An example for
crossover is shown in Figure 4.6. The process iterates through all the genes in
parent genome 1. For each gene in genome 1, it checks whether a matching gene
exists in genome 2. If no match is found, this gene is considered to be inconsistent
and is directly copied from the parent with higher fitness, namely parent 1. However,
if both parents possess the gene, it means they are homologous genes; the o↵spring
will then randomly inherit from one of these parents. As for the genes present only
in parent 2, they are not inherited in our approach.

In summary, the core objective of crossover is to inherit structural and parametric
attributes from both parent genomes, ensuring that genome with higher fitness have
a greater influence on the resulting o↵spring.

4.2.4 Mutation

Our proposed approach aims to optimize both the topology and weights of printed
neural networks. In this framework, mutations play an essential role by injecting
necessary diversity into the evolution of the neural network, thus enhancing the
potential to find optimal solutions. We broadly categorize mutations in our method
into two types: parameter mutations and topological mutations.

For parameter mutations, they primarily target the resistance values in node genes
and connection genes, corresponding to Rb and Rd in Figure 4.3 (a) and R in (b).
These resistance values undergo random modifications, which might be subtle ad-
justments or replacement by a new value from a random distribution.

On the other hand, topological mutations can be further divided into the following
sub-types:
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connection ik
connection kj
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Figure 4.7: Example for mutation of adding node.

Mutate add node

In this ’add node’ mutation, as shown in Figure 4.7, an existing connection is split,
with the new node being placed where the old connection once was. It’s worth noting
that, the original connection, refer to connection ij, is set to a disable state(rather
than delete). The original starting node is linked to the new node with a resistance of
1 (refer to connection ik), and the new node is then connected to the original ending
node, retaining the resistance of the old connection (Rkj = Rij). This operation
contributes to the increasing complexity of the network topology.

node i

connection ij

node j

Figure 4.8: Example for mutation of adding connection.
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Mutate add connection

In this ’add connection’ mutation, two nodes are randomly selected. If there is no
existing connection between them, a new one is established, as shown in Figure 4.8.
However, if a connection previously existed but is currently disabled, it gets re-
enabled.

node i

node j

connection ij

Figure 4.9: Example for mutation of removing connection.

Mutate remove connection

In this ’remove connection’ mutation, as shown in Figure 4.9, a connection is ran-
domly chosen and then deleted.

node i

Figure 4.10: Example for mutation of removing node.
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Mutate remove node

In this ’remove node’ mutation, as shown in Figure 4.10, a node is randomly selected,
and it, along with its associated connection genes, is entirely removed. It’s worth
noting that the output nodes cannot be removed; thus, they won’t be selected for
deletion.

Through iterative cycles of the aforementioned generational processes, the fitness
of the genomes undergoes progressive optimization. When the predetermined ter-
mination criterion is met, indicating that the genomes have reached a satisfactory
level of optimization, the corresponding topological structures and parameters can
be transposed into the required printed neuromorphic circuit for further fabrication.

4.3 Comparison to Gradient-Based Pruning

While the existing gradient-based training for pNCs can not directly address topo-
logical problems such as circuit area, we still adopt it as the baseline of our proposed
method by incorporating strategies as pruning (removing parameters below a cer-
tain threshold) and straight through estimator [6]. Therefore, this section presents
some details of the EA-based method, as well as a comparison with gradient-based
training for compact printed neuromorphic circuits in terms of initialization and
area estimation.

Layer 1 Layer 2 Layer 3 Layer 4

input output

shortcut

add

fully-connected layer 
+ activation

Figure 4.11: Schematic of the fully connected dense network with all possible short-
cuts. Pruning this network serves as our baseline.

4.3.1 Initialization

From a topological perspective, as gradient-based pruning forms a dense-to-sparse
approach, circuit topology is initialized as a multi-layered, fully-connected network
with all possible shortcuts to guarantee a su�cient good result. The schematic of an
example baseline network is illustrated in Figure 4.11. Each layer represent a fully
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connected layer followed by an activation. The green curves indicate shortcuts that
only have weighted-sum, with no activation. The network comprises a total of C2

m

shortcut connections, where m represents the number of network layers, including
the input and output layers.

In contrast, the EA approach progresses from a sparse to a dense structure by
progressively expand the circuit size, therefore, it starts with a topology with only
output nodes without any connections.

From a parametric perspective, initialization of learnable parameters can greatly in-
fluence the success of learning [14]. For printed neuromorphic circuits, the physical
properties of the printed materials introduce additional constraints. For example,
the range of feasible conductance values gi 2 [gmin, gmax]. A poor choice in initial-
ization could lead the circuit to operate outside its optimal or reliable range.

In this regard, we can initialize the conductance gi uniformly around gmin with a
random o↵set up to 0.01. Additionally, gd should be initially set to the highest
possible value in order to allow for maximum decoupling, namely gd = gmax.

However, in gradient-based pruning network, vanishing gradients [16] can occur
because of the combination of initialization and activation function. To address this
problem, gb should be initialized by

gb =
⌘A3

1� ⌘A3
(
X

i

gi + gd).

Since in EA-based method, gb , gi and gd are initialized simultaneously, gb cannot
be initialized as shown above. Therefore, we initialized gb in the same way as gi.

4.3.2 Area estimation

Achieving area optimization through the minimization of Equation 4.1 within the EA
framework is relatively straightforward, as it simply involves evaluating resistances
and totaling number of node genes and connection genes. In contrast, accomplishing
the same task using gradient-based methods presents a unique set of challenges,
primarily owing to the discrete nature of device counts.

As illustrated in Figure 3.1 (b), when all inputs to a neuron are pruned, the neuron
itself, along with its associated gb, gd, and ptanh circuits, can also be eliminated.
Specifically, NA is expressed by

max
i

�
[ {g1>0}, {g2>0}, ..., {gi>0}, ...]

 
. (4.2)

However, within the context of gradient-based optimization, the indicator function
acts as a step function, yielding gradients of either 0 or 1 for @NA

@gi
. gi will not

be modified for the purpose of reducing NA. To address this issue and enable the
optimization of NA through gi, we introduce the soft count of ptanh circuits, denoted
by NA

soft. In the forward pass of the soft count, NA
soft is still calculated by Equation

4.2, however, in the backpropagation, a relaxed function,

max
i

{[sigmoid(g1), sigmoid(g2), ..., sigmoid(gi), ...]} ,
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is employed to generate the gradient for updating gi. Compared to Equation 4.2, the
indicator function is relaxed as a sigmoid function. This kind of separate treatment
for the forward and backward pass is also referred to as the straight-through gradient
estimator [6].

In a similar manner, the counts of resistors and negative weight circuits can also be
represented using the indicator function {·} and softened by the sigmoid(·) function.
NR

soft, in the forward pass, is expressed by

X

i

�
[ {g1>0}, {g2>0}, ..., {gi>0}, ..., {gb>0}, {gd>0}]

 
,

in the backpropagation, is calculated by

X

i

{[sigmoid(g1), sigmoid(g2), ..., sigmoid(gi), ..., sigmoid(gd), sigmoid(gb)]} .

NN
soft, in the forward pass, is expressed by

max
i

�
[1� {✓1�0}, 1� {✓2�0}, ..., 1� {✓i�0}, ...]

 
,

in the backpropagation, is calculated by

max
i

{[1� sigmoid(✓1), 1� sigmoid(✓2), ..., 1� sigmoid(✓i), ...]} ,

As a result, the area estimator for gradient-based methods is formulated as follows:

Asoft = NR
softA

R +NN
softA

N +NA
softA

A. (4.3)

In this chapter, we first established an area model for circuits. Subsequently, we
delved into the key components of our proposed method. Towards the end of the
chapter, we compared our approach with the gradient-based pruning network, which
served as the baseline of this work.
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5. Experiment

The preceding chapter o↵ered a description of the method we have proposed. To
assess the e↵ectiveness of our proposed EA-based approach, we implemented the
algorithm using PyTorch [28] and neat-python1 module and then conducted exper-
iments on 11 benchmark datasets.

5.1 Experiment Setup

5.1.1 Dataset

Dataset #Input #Output #Data
Acute Inflammation 6 2 120

Balance Scale 4 3 625
Breast Cancer Wisconsin 9 2 699

Energy (y1) 8 3 768
Energy (y2) 8 3 768

Iris 4 3 150
Mammographic Mass 5 2 961

Seeds 7 3 210
Tic-Tac-Toe Endgame 9 2 958

Vertebral Column (2 cl.) 6 2 310
Vertebral Column (3 cl.) 6 3 310

Table 5.1: Information of 11 benchmark datasets.

In this work, we conducted experiments on a set of 11 benchmark datasets. These
datasets have been utilized in other state-of-the-art studies related to printed neu-
romorphic circuits [43, 45]. Moreover, these benchmark datasets exhibit complexity
and scenarios that align with the intended application domains of PE. We randomly
split each dataset into training set (60%), validation set (20%), and test set(20%) .
The detailed information about the datasets can be found in Table 5.1. For these
datasets, the inputs consist of features, while the outputs are represented by labels
encoded as 0, 1, 2, and so on. Each of these datasets pertains to classification tasks.

1The module is available at https://neat-python.readthedocs.io
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5.1.2 Initial topology

In our proposed method, the topologies for all datasets are initialized as unconnected
networks, including only #output noodes. Additionally, in our approach, both the
activation circuits and the negative circuits remain constant and unaltered. The
corresponding auxiliary parameters are ⌘A = [0.290, 0.710,�0.017, 20] and ⌘N =
[�0.006, 1.024, 0.016, 1.006], respectively.

As baseline, the pruning networks for all datasets use a consistent topology(#inputs-
3-4-#outputs). Apart from the input and output layers, there are 2 hidden layer
containing 4 nodes and 3 nodes.

5.1.3 Objective function

For training ANNs, loss functions are generally utilized to guide the optimization
process and reflect the performance of the ANNs. For classification tasks we adopt a
typical loss function, namely cross-entropy(CE), as metric for classification accuracy.
It measure the di↵erence between the model’s predicted probability distribution and
the actual distribution of the labels. It heavily penalizes confident yet incorrect
predictions, making it e↵ective in ensuring that models are not just accurate, but
also confident in their predictions. Being di↵erentiable, it’s also suitable for gradient-
based optimization. Additionally, it often leads to quicker training convergence
compared to other loss functions.

Therefore, to jointly optimize both classification accuracy and circuit area, the train-
ing objective is given by

L(✓) = (1� �) ·CE(✓,x,y) + � · A
A0 , (5.1)

where ✓ collects all learnable conductance introduced in Equation 2.3, � denotes the
trade-o↵ factor between accuracy and circuit area, vector x and vector y are training
examples provided by the target dataset, and A0 serves as a constant multiplier to
harmonize the magnitude of the area term with that of the accuracy term. Through
few initial trials, for each dataset A0 is empirically set to di↵erent constant value,
is shown in Table 5.2. Moreover, To explore the trade-o↵ between accuracy and
area, we methodically choose 50 values for � within the range [0, 1]. Each value of
� undergoes training 10 times, with varying random seeds from 1 to 10, ensuring a
robust and optimal solution for the stochastic process.

Additionally, we employed an early stopping strategy [30] with a patience of 30,
meaning the training will halt if there’s no performance improvement on the valida-
tion set for 30 consecutive epochs.

Analogously, the objective function for the baseline is

Lb(✓) = (1� �) ·CE(✓,x,y) + � · Asoft

A0 ,

where Asoft is obtained by Equation 4.3, since it is a gradient-based training.
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Dataset A0(mm2)
Acute Inflammation 10840
Balance Scale 10360
Breast Cancer Wisconsin 12860
Energy (y1) 6250
Energy (y2) 6190
Iris 10660
Mammographic Mass 2192
Seeds 6090
Tic-Tac-Toe Endgame 61400
Vertebral Column (2 cl.) 2176
Vertebral Column (3 cl.) 28850

Table 5.2: Constant multiplier A0 for each dataset.

5.1.4 Hyperparameter

For the baseline, we choose the optimizer Adam [20] with default parameters. The
learning rate is set to 0.01.

In the EA-based method, the hyperparameters delineate how the topology evolves.
Table 5.3 provides a detailed list of the specific hyperparameters we employed in our
experiments.

Hyperparameter Value
pop size 300
mutate rate 0.7
replace rate 0.1
compatibility disjoint coe�cient 1
compatibility weight coe�cient 0.5
conn add prob 0.6
conn delete prob 0.4
enabled default True
enabled mutate rate 0.01
node add prob 0.3
node delete prob 0.2
compatibility threshold 3
max stagnation 20
species elitism 2
elitism 2
survival threshold 0.2

Table 5.3: Hyperparameters for EA-based method.

Below is an explanation for each hyperparameter.

Pop Size: The number of individuals in each generation.

Mutate Rate: The probability that mutation will change the learnable parameters
of a gene by adding a random value.
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Replace Rate: The probability that mutation will replace the learnable parameters
of a gene with a newly chosen random value (as if it were a new gene).

Compatibility Disjoint Coe�cient: The coe�cient for the disjoint and excess gene
counts’ contribution to the genomic distance.

Compatibility Weight Coe�cient: The coe�cient for each learnable parameter dif-
ference’s contribution to the genomic distance (for homologous nodes or connec-
tions).

Conn Add Prob: The probability that mutation will add a connection between
existing nodes.

Conn Delete Prob: The probability that mutation will delete an existing connection.

Enabled Default: The default enabled attribute of newly created connections.

Enabled Mutate Rate: The probability that mutation will replace (50/50 chance of
True or False) the enabled status of a connection.

Node Add Prob: The probability that mutation will add a new node (essentially
replacing an existing connection, the enabled status of which will be set to False).

Node Delete Prob: The probability that mutation will delete an existing node (and
all connections to it).

Compatibility Threshold: Individuals whose genomic distance is less than this
threshold are considered to be in the same species.

Species Elitism: The number of species that will be protected from stagnation;
mainly intended to prevent total extinctions caused by all species becoming stagnant
before new species arise. For example, a ’species elitism’ setting of 2 will prevent
the 2 species with the highest species fitness from being removed for stagnation
regardless of the amount of time they have not shown improvement.

Elitism: The number of most-fit individuals in each species that will be preserved
as-is from one generation to the next.

Survival Threshold: The fraction for each species allowed to reproduce each gener-
ation.

In summary, this chapter systematically details the experimental setups under-
taken to validate the proposed method. It provides a comprehensive overview of
the datasets, initial topology, objective functions, and hyperparameters, ensuring a
transparent and rigorous account of the entire validation process.

5.2 Result

After training, we evaluate the trained printed neuromorphic networks on the test
sets. Table 5.4 and 5.5 report the accuracies and areas with � 2 {0, 0.25, 0.5, 0.75, 1}.
The former results are derived from pruning, while the latter are obtained through
the EA approach.
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Figure 5.1: Results of Pruning with di↵erent � values. (a) Normalized accuracies of
11 tasks. Each task indicated by a di↵erent color. (b) Normalized area of 11 circuits
for the corresponding tasks.
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Figure 5.2: Results of EA approach with di↵erent � values. (a) Normalized accura-
cies of 11 tasks. Each task indicated by a di↵erent color. (b) Normalized area of 11
circuits for the corresponding tasks.

In pruning experiment (as baseline), to analyze the impact of � more clearly and
to eliminate the disparate di�culties among di↵erent tasks, we normalize the accu-
racy by the value (� = 0), which refers to the area-unaware training, and should
theoretically achieve the best accuracy. It’s important to recognize that, given the
intricate nature of the non-convex optimization challenge akin to neural network
training, this isn’t always the case in practical scenarios. The resulting curves are
displayed in Figure 5.1(a). Analogously, the circuit’s area is also normalized by the
value taking no consideration of area(� = 0). Because compared to the exact values,
the relative reduction of accuracy and area serves as a more informative metric. The
normalized area are visualized in Figure 5.1(b).

To investigate the e↵ectiveness of the area-aware training of pruning within a com-
prehensive and generic scenarios, we calculate the averaged normalized accuracy
across all tasks. The statistical result (w.r.t. 10 random seeds) of the averaged nor-
malized accuracy (blue curve) and area (red curve) are summarized in Figure 5.3(a).

For the experimental results derived from the EA method, we conducted similar
processing as mentioned above. It’s worth noting that the accuracy and area for the
EA method should be normalized by the values when � = 0 in the pruning results,
rather than its own values at � = 0. Only in this way can we compare the results of
the two methods.
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Figure 5.3: Averaged normalized accuracy and area, the curves and area denote
the mean and standard deviation w.r.t. random seeds. (a) Result of Pruning. (b)
Result of our EA method.

The curves showing the normalized accuracy and normalized area for 11 datasets,
obtained using the EA method and varying with �, are presented in the Figure 5.2.

The statistical results, w.r.t. 10 random seeds, for the average normalized accuracy
(depicted by the blue curve) and area (represented by the red curve) of experiments
conducted using the EA method are encapsulated in Figure Figure 5.3(b).

In order to obtain the Pareto front, we plot the entirety of normalized areas versus
their respective normalized accuracies for all runs (random seeds) and all values of �
by the points in Figure 5.4. The blue dots represent the results from the EA method,
while the green dots indicate the results from the pruning method. Subsequently,
we can delineate the Pareto front of EA approach by the blue curve and that of
pruning by the green curve respectively.

This section presents the results obtained from the experiments, along with tables
and figures based on these findings.

5.3 Discussion

Based on the aforementioned experimental outcomes, we observed, as expected, as
� progressively increase to 1, both averaged normalized accuracy and area derived
from pruning and EA approach in Figure 5.3 decline.

However, for the EA method, even at � = 0, its normalized area has approximately
reduced to 0.3. This observation is also corroborated when comparing the results
from Table 5.4 and Table 5.5. This signifies that the EA led to a 3.3x reduction in
circuit area while only incurring a 5% loss in accuracy.

In Figure 5.4, the pareto front of EA approach located above that of pruning. At
the same level of accuracy, EA approach can achieve a smaller area than pruning.
Table 5.6 extracted several trade-o↵ points from Figure 5.4. It is evident that the
baseline method yields a great area reduction at the accuracy level of 95%, namyly
from 100% to 36%. This indicates that gradient-based pruning methods have already
achieved commendable results in area optimization. Even though, our proposed EA
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Figure 5.4: Scatter plot of normalized accuracy vs. area. Green and blue color
denote pruning and EA respectively. The curves represent the Pareto front and the
dash lines illustrate various potential trade-o↵s consistent with Pareto optimality.

method outperforms. The circuit area can be further reduced by 2.6⇥. At other
level of accuracy , we can get the similar benefits, the specific reduction in area can
also be gleaned from the Table 5.6. This clearly demonstrates the superiority of our
approach.

In summary, the experiments validated the e↵ectiveness of our proposed method in
compact circuit design. Compared to the baseline, our approach achieves a more
compact topology and reduced circuit area while maintaining comparable accuracy.

Normalized Accuracy (100%) Pruning Area (100%) EA approach Area (100%)
100 100 32 #3.1x
95 36 14 #2.6x
90 25 13 #1.9x
85 20 12 #1.6x

Table 5.6: Comparison of accuracy-area trade-o↵ from both methods.
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6. Conclusion

In this work, we specifically focus on the compact design of printed analog neuro-
morphic circuits by explicitly establishing the area model. This model allows for the
integration of circuit area into the design objective of printed neuromorphic circuits.
Additionally, to facilitate the optimization of circuit topologies, we proposed an EA
centric approach. This approach enable the simultaneous optimization of circuit
topology and its parameters. We validated the e↵ectiveness of the proposed method
by comparing it with the gradient-based pruning method in our experiments. Our
approach can achieve a smaller topology and reduced circuit area while maintaining
equivalent accuracy. For instance, our approach can achieve a circuit area that is
3.1⇥ smaller than the pruning method, without any loss in accuracy. Our method-
ology o↵ers a compelling strategy for realizing highly compact and resource-e�cient
neuromorphic circuits. Furthermore, our methodology can be seamlessly applied on
other research, such as power-aware or variation-aware design of printed neuromor-
phic circuits that require topology optimization.
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