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Nicht auf Preuflens Liberalismus sieht Deutschland, sondern auf seine Macht; Bayern,
Wiirttemberg, Baden mogen dem Liberalismus indulgieren, darum wird ihnen doch keiner
Preufiens Rolle anweisen; PreuBlen mufl seine Kraft zusammenfassen und zusammenhalten
auf den giinstigen Augenblick, der schon einige Male verpafit ist; Preuflens Grenzen nach den
Wiener Vertréigen sind zu einem gesunden Staatsleben nicht giinstig; nicht durch Reden und
Majoritdtsbeschliisse werden die groflen Fragen der Zeit entschieden — das ist der grofie Fehler

von 1848 und 1849 gewesen —, sondern durch Eisen und Blut.

— Otto von Bismarck

I do not plan to come back. I have no reason to come back. I plan to do my best to help the

Chinese people build up the nation to where they can live with dignity and happiness.

— Xuesen Qian

Thought and learning are of small value unless translated into action.

— Yangming Wang
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Zusammenfassung

Diese Doktorarbeit untersucht das Potenzial von Big Data im Wasserumweltmanagement
(WEM), einem kritischen Aspekt der nachhaltigen Entwicklung. Ein Big-Data-Framework
wird erstellt, erstellt, um vier zentrale Ziele zu erreichen: Weiterentwicklung von Big-Data
Methoden fiir die Uberwachung und Bewertung der Wasserqualitit, die Identifizierung von
Wachstumsfaktoren fiir die Algenentwicklung und der Aufbau eine Frithwarnsystems des

Algenwachstums.

Der Aufgabenknoten zur Uberwachung der Wasserqualitit konzentriert sich auf das
Qingcaosha-Reservoir und verwendet eine Umwelt-Big-Data-Plattform (EBDP), die im Rahmen
dieser Doktorarbeit aus Satellitenfernerkundungsdaten (Sentinel-2) und Kreuzfahrtiiberwa-
chungsgeriten (BIOFISH) erstellt wurde. In dieser Arbeit wurden mittels eines tiefes neuronalen

Netzwerkes die Daten ausgewertet und ein Uberwachungskonzpet ausgearbeitet.

Der Aufgabenknoten zur Bewertung der Wasserqualitit, ebenfalls im Qingcaosha-Reservoir
angesiedelt, verwendet eine EBDP, die Ergebnisse aus dem Aufgabenknoten zur Uberwachung
der Wasserqualitit enthélt. Die verbesserte Technik des Deep Embedding Clustering (IDEC)
zeigt vier deutlich getrennte gemeinsame Managementzonen auf, wobei die charakteristischen
Faktoren jeder Zone durch statistische Methoden bestimmt werden und eine Grundlage fiir

regionale gemeinsame Managementstrategien bieten.

Der Aufgabenknoten zur Identifizierung der Wachstumsfaktoren von Algen untersucht die
mittlere Route des Siid-Nord-Wasserumleitung-Projekts unter Verwendung einer EBDP, die
hochfrequente, vierjahrige manuelle Stichprobendaten enthélt. Bloomformer-1, entwickelt auf
Basis der Transformer-Kernstruktur, erreicht eine hohe Leistung sowohl in Einzelunterstandort-
als auch in Vollliniensimulationen des Algenwachstums und identifiziert Gesamtphosphor (TP)
als den kritischsten treibenden Faktor. Die Kontrolle und Reduzierung von Phosphorgehalten
sind wesentliche Strategien zur Steuerung des Algenwachstums und zur Aufrechterhaltung der
Stabilitat der Wasserqualitét.

Der Aufgabenknoten zur Frithwarnung von Algenwachstum untersucht den Taihu-See und
verwendet eine EBDP, die aus Daten eines vertikalen Wasserqualitatsiiberwachungssystems
(BIOLIFT) erstellt wurde. Wertgewinnungswerkzeuge umfassen DeepDPM, spektrale Cluste-
rung und Bloomformer-2, ebenfalls entwickelt auf Basis der Transformer-Kernstruktur. Die
kombinierte Verwendung von DeepDPM und spektraler Clusterung gruppiert Tiefenabschnitte
in Cluster und optimiert so die Systemeffizienz. Bloomformer-2 zeigt hervorragende Leistungen

sowohl bei Einzelschritt- als auch bei Mehrschrittvorhersagen fiir alle Tiefenkombinationen,
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wobei eine verbesserte Interpretierbarkeit die Zuverlissigkeit und Anwendbarkeit in realen

Szenarien gewéhrleistet.

Zusammenfassend hebt das Ergebnis die zahlreichen Vollstdndigkeit von Big Data im
WEM hervor, einschlieBlich hoher Anpassungsfahigkeit, Genauigkeit, Umfassendheit und feiner
Granularitdt. Der durch vier Aufgabenknotenpunkte geformte Industriecluster-Effekt hat das
Konzept einer prazisen Wasserumweltmanagement eingelédutet. Diese Forschung veranschaulicht
das Potenzial datengesteuerter Ansitze bei der Bewéltigung komplexer Herausforderungen im
Wasserumweltmanagement, férdert unser Verstindnis fiir das Wasserressourcenmanagement
und bietet praktische Losungen fiir das nachhaltige Wasserumweltmanagement. Wenn
zukiinftige Forschungen auf diesem Rahmen aufbauen und zusitzliche Aufgabenknoten
integrieren, wird erwartet, dass die Vorteile und die Wirksamkeit des Big-Data-WEM-Ansatzes
weiter zunehmen und letztendlich zum iibergeordneten Ziel der nachhaltigen Entwicklung und

verantwortungsvollen Bewirtschaftung der Wasserressourcen beitragen.
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Abstract

This dissertation scrutinizes the potentiality of big data within the realm of Water Environment
Management (WEM), a crucial facet of sustainable development. A big data framework is
conceived and established with four task nodes: to further develop big data methodologies for
monitoring and assessment of water quality; to identify algal growth driving factors; and to

construct an early warning system for algal growth.

The water quality monitoring task node focuses on the Qingcaosha Reservoir, using an
Environmental Big Data Platform (EBDP) built from satellite remote sensing (Sentinel-2) and
cruise monitoring devices (BIOFISH) data in this Ph.D. thesis. Additionally, a deep neural

network was used to analyze the data and develop a monitoring concept.

The water quality assessment task node, also centered on the Qingcaosha Reservoir, employs
an EBDP comprising results from the water quality monitoring task node. The Improved
Deep Embedding Clustering (IDEC) technique reveals four distinct joint management zones,
with each zone’s characteristic factors determined through statistical methods, providing a

basis for regional joint management strategies.

The identification of algal growth driving factors task node examines the middle route
of the South-to-North Water Diversion Project, using an EBDP containing high-frequency,
four-year manual sampling data. Bloomformer-1, developed based on the Transformer core
structure, achieves high performance in both single sub-site and full-line simulations of the algal
growth, identifying total phosphorus (TP) as the most critical driving factor. Controlling and
reducing phosphorus levels are essential strategies for managing algal growth and maintaining

water quality stability.

The algal growth early warning task node investigates Lake Taihu, utilizing an EBDP
constructed from data collected by a vertical water quality monitoring system (BIOLIFT).
Value mining tools include DeepDPM, Spectral clustering, and Bloomformer-2, also developed
based on the Transformer core structure. The combined use of DeepDPM and spectral
clustering groups depth segments into clusters, optimizing system efficiency. Bloomformer-2
demonstrates outstanding performance in both single-step and multi-step predictions for all
depth combinations, with enhanced interpretability ensuring reliability and applicahility to

real-world scenarios.

In summary, the result highlights the numerous advantages of big data in WEM, including
high adaptability, accuracy, comprehensiveness, and fine granularity. The industry cluster

effect, fashioned by four task nodes, has heralded the concept of precise WEM. This research
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exemplifies the potential of data-driven approaches in addressing complex water environment
management challenges, advancing our understanding of water resources management and
offering practical solutions for sustainable water environment management. As future research
builds upon this framework and integrates additional task nodes, the benefits and effectiveness
of the big data WEM approach are expected to further increase, ultimately contributing to

the overarching goal of sustainable development and responsible water resource management.
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1 Introduction

Introduction

1.1 From small data to Big data in water environment man-

agement

Water environment management (WEM) is the practice of ensuring the sustainable use of water
resources while protecting and preserving the environment [1]. It involves the management
of water quality, aquatic ecosystems, and the overall health of watersheds. Effective water
environment management is critical for the long-term sustainability of water resources and
the preservation of aquatic ecosystems. The importance of water environment management is
increasingly recognized as the world faces the challenges of population growth, urbanization,
and climate change. These factors are placing unprecedented pressure on water resources and

ecosystems, making it essential to implement effective management practices.

Early in their evolutionary process, humans realized that the world is not only made up of
independent facts (i.e., data) but that these independent facts are interwoven by an intricate
web of cause-and-effect relationships [2]. It is the exploration of these causal explanations that
has shaped much of our scientific knowledge today. Historically, much of the knowledge in
WEM has been gained through empirical or hypothesis-driven research, where the pace of
synthesis was managed by individual researchers or research groups [3]. This is the hallmark
of scientific research in the era of small data, where a hypothesis of causality is set, and then
this hypothesis is verified through the collection and analysis of data in tightly controlled
experiments. However, the conclusions obtained from this approach to research have been
found to be insufficient (especially in the study of WEM) [4]. First, this research approach
tends to consider only a single or a limited number of natural processes, while nature is a very
complex system of super-many natural processes, and the individual natural processes interact
with each other, leading to conclusions that often do not work well in practical applications.
In other words, the natural environmental system is thought of as too simple. Second, the

small amount of data used for inference and verification of causality makes the conclusions
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poor in generalization, which means the conclusions are simply explainable under certain hard

preconditions( e.g., temperature and air pressure).

In recent years, with the development of data science, scientists seem to have found an
alternative path of using data-driven search for correlation instead of using a hypothesis-driven
search for causality [5]. This is the core idea of the big data era, which is simply to know what
instead of why. It has advantages. First, the interrelationship of the natural processes in the
complex system is contained in the historical data, and the conclusions drawn from the study
of the correlation of the historical data are not one-sided but systematic, which is much better
in practical applications [6]. Secondly, the correlations are derived from an extensive dataset,
thereby enhancing the generalizability of the findings. Simultaneously, as the relationships are
not causal in nature, there are no any preconditions; instead, any potential preconditions are

systematically incorporated as an additional dimension within the analysis [7].

In addition, due to the development of various sensors, the speed and dimensionality of
data generation greatly exceed the capacity of traditional data compilation and analysis. In
Earth observations, the total amount of data stored in the NASA Earth Observing System
Data and Information System Archive at the beginning of 2017 was about 22 PB, and the
NISAR satellite mission is expected to add up to 85 TB of data per day to the archive [§].
UAVs carrying multispectral cameras, in situ water quality monitors, and Acoustic Doppler
Current Profiler (ADCP), which are widely used in WEM, are also generating large amounts of
different kinds of data [9]. If we continue to use the research approach of the small data, there
is bound to be a strong asymmetry between the data generation and knowledge extraction
pipelines, resulting in the so-called "dark data" or "data iceberg" situation [10], i.e., the data
stream cannot be parsed in a timely manner, thus losing most of the data value [11]. Therefore,

in summary, the movement from small data to big data in WEM is positive and necessary.

I cannot entirely agree with the hypothesis-driven search for causality based on small data
(i.e., the desperate thirst for why), nor the data-driven search for correlation founded on big
data (i.e., abandoning the "why" and only pursuing the "what"). The author posits that within
the realm of WEM research, it is advisable to integrate both approaches, initially focusing
on identifying correlations and subsequently, through the incorporation of prior knowledge,

gradually progressing towards uncovering causality.

1.2 Characteristics of big data in WEM

Embracing the power of big data has become critical to solving complex WEM challenges as
the data generation rate in all water-related areas accelerates. Big data consists of a wide
range of data sets that are characterized by volume, velocity, variety, veracity and value - (5Vs)

- and requires scalable architectures for efficient storage, manipulation and analysis [12].
Volume: Managing Massive Water-Related Datasets

The volumetric attribute refers to the size of the data. A data volume is considered large if
it is larger than the traditional on-premise [T infrastructure can handle in a reasonable amount

of time. The volume of data is relative, and data can often be considered "large" if traditional
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analytics are found to be helpless [13]. In addition to the usual spatial dimension, the volume
of data also has a temporal dimension. This is particularly true for WEM, which often needs to
store water environment observations over long periods of time (years to decades) and at high
frequencies (seconds to hours). Thus, even though each individual scene data is not large in

the spatial dimension, it represents a large volume of data in spatial and temporal dimensions.
Velocity: Rapid Data Processing for Timely Decision-Making

The velocity attribute refers not only to the speed of data generation but also to the speed
of data analysis required for data ingestion. The speed of data generation, processing, and
analysis speed plays a critical role in water environment management, especially in emergencies
such as flooding or water pollution events. Processing and analyzing real or near real-time
data is critical to making informed decisions and deploying appropriate actions. The speed of
data generation is a direct result of increasing connectivity, widespread use of smart devices,
and real-time monitoring of networks. High-speed data sets generated continuously from
different sources form data streams that need to be processed in real or near-real time [14].
The generation of high-speed data streams, while having value-added information, also poses
new challenges for data storage and processing algorithms, requiring high-throughput data
stream servers with low latency (e.g., in-memory processing) and efficient online artificial
intelligence algorithms that can identify, filter, analyze, and process data streams as they pass
through [15].

Variety: Integrating Diverse Data Sources for Comprehensive Water Manage-

ment

Variety, one of the five core dimensions of the 5V framework in Big Data, refers to the
diversity of data types and formats generated by numerous sources. With the rapid development
of digital technology, data diversity has become an essential aspect of big data analysis and
management [16]. Due to the nature of observations, WEM generates a wide variety of data
types and formats, and there are three main types of data based on their structure [17]. The
first type is structured data. This type of data is highly organized, easily searchable, and can
be processed and analyzed using traditional database systems. Structured data usually exists
in relational databases or spreadsheets and consists of well-defined data types such as text,
numbers, and dates. Examples include sensor readings and manual monitoring. The second
type is semi-structured data. Semi-structured data is somewhere between structured and
unstructured data and has some organizational elements but lacks strict structure. This type of
data typically contains metadata or tags that provide context and facilitate analysis. Examples
of this include XML files in satellite remote sensing, which contain data in a hierarchical format,
but do not adhere to a fixed schema like structured data. The third type is unstructured data.
Unstructured data does not have a specific format or organization, making it more challenging
to process, store, and analyze. It forms a large part of the data generated today and includes
various forms such as text files, images, videos, audio files, and social media posts. Integrating
and analyzing these disparate data sets provides a holistic view of water resources and facilitates
informed decision-making. Advanced analytics, such as natural language processing (NLP)
and deep learning (DL), enable water resource managers to process and mine valuable content

from a variety of data sources to facilitate integrated water resource management [18].
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Veracity: Ensuring Data Quality and Accuracy in Water Management

Authenticity refers to the credibility, quality, and accuracy of the data. Data authenticity
is most important in WEM because poor data quality can lead to poor decisions and can
have serious consequences. Data authenticity includes accuracy, consistency, completeness,
and timeliness [19]. Data accuracy refers to the correctness of the data collected and used
for analysis. Inaccurate data can come from various sources, such as human error in the data
entry process, measurement errors in sensors, or inconsistencies between different data sources.
Data consistency refers to maintaining the same data values in all situations where data are
stored and used. Inconsistencies occur when data are updated or changed in one place and
not in another, leading to discrepancies and unreliable analysis. Data completeness means
having all the information needed for accurate analysis and decision-making. Incomplete data
sets can lead to biased or incomplete insights that undermine the effectiveness of data-driven
decision-making. Timeliness refers to how current and relevant the data is at the time of
analysis. Outdated data can result in decisions based on historical trends that are no longer
applicable, negatively impacting the outcomes of data-driven initiatives [12]. A number of
data management measures need to be taken, including governance, validation, cleansing,
and auditing, to ensure the authenticity of data. In WEM, data cleansing [20] is the most
frequently used and time-consuming. There are unpredictable factors such as complexity and
variability in real natural scenarios, and the data collected cannot be guaranteed to he accurate
(e.g., sensors need time to stabilize during sudden environmental changes), so identifying and
correcting errors, inconsistencies, and inaccuracies in the data is a key pre-requisite step to

placing it in the database.
Value: Extracting Actionable Insights for Sustainable Water Management

Value is the most central element of the 5V framework in Big Data and refers to the
actionable insights and benefits that result from processing and analyzing large databases. The
ways in which Big data can create value in WEM are diverse. Big data is used to collect and
analyze data from a variety of sources, such as sensors, satellite imagery, and social media, to
monitor and assess water quality. This allows organizations to identify trends, detect pollution
events, and develop strategies to address water quality issues [21]. Big data analytics are used
to optimize water allocations, predict demand, and assess the impact of climate change on
water resources. These insights help organizations develop sustainable water management
plans and improve water use efficiency [22]. Information on species distribution and abundance
is monitored to help organizations develop effective conservation strategies, restore degraded
habitats, and maintain ecosystem health. It is important to note that building a large database
that conforms to the 4Vs previously described is the first step and provides material for
subsequent value mining. In turn, the capability of value mining depends almost entirely on
the development and use of mining tools. A value mining approach with an advanced kernel
that fits the data modality, is easy to understand, and has outstanding performance can enable
us to obtain more and higher value information on existing data sets to make informed decisions,

optimize processes, and efficiently allocate resources to address water-related challenges.

In conclusion, Big data has tremendous potential to revolutionize water environment

management. The use of large datasets and deep learning can provide insights into water
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quality, consumption, distribution, and waste treatment that were previously impossible to

achieve.

1.3 Big data framework in WEM

In recent WEM research, scholars such as Peters-Lidard [23] advocate for the adoption of
burgeoning data science methodologies to synthesize, evaluate theories and models, and holster
data support for Earth system change mechanisms, thereby positioning data science as a novel
paradigm. However, at present, numerous inquiries, ambiguities, and even skepticism surround
the distinctions between emergent big data science and traditional small data science. Moreover,
the implementation of nascent research modalities, such as Big Data, within the realm of
WEM is primarily confined to singular tasks, sessions, and scenarios, failing to fully manifest
the inherent benefits of Big Data [24]. To secure a competitive edge in an increasingly digitized
and interconnected global landscape, the geoscience community necessitates a comprehensive
understanding of the pertinent technologies underpinning contemporary data science and
a paradigmatic research framework delineating the potential applications of these novel
technologies within the context of WEM. Consequently, I propose a big data WEM research
framework 1.1.

The cornerstone of this framework is the Environmental Big Data Platform (EBDP),
which occupies the central position. To ensure the EBDP possesses the attributes of big
data, various data collection methods are employed, such as remote sensing satellites, cruise
monitoring, manual sampling, and so on. The process of extracting value from the EBDP
centers on the current cutting-edge artificial intelligence technique, DL. DL enables computers
to process data within the EBDP in a manner reminiscent of human cognitive processing,
thereby facilitating more profound value extraction [25]. The structural differentiation of
DL allows it to address diverse data processing tasks such as clustering, classification, and
regression. Another fundamental aspect of this framework involves leveraging existing expertise
to align WEM tasks with the appropriate DL categories and to select the optimal structures
within the corresponding categories for the associated WEM tasks, such as water quality
monitoring, water quality assessment, and algal bloom prediction. The aggregation of these
tasks will form a comprehensive closed-loop chain encompassing WEM, with each WEM task
representing a node. This closed-loop, comprising individual nodes, serves as the foundation

for constructing a large-scale, multi-task, and multi-modal WEM model in the future.
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Research Objectives

The goal of this Ph.D. work is to improve water resource management through the development
of a big data framework in WEM and to show examples of task node completion and their
clustering effect through practical applications in various water bodies. Additionally, this
research seeks to evaluate the benefits and transformative potential of big data as a new

paradigm in WEM. This leads to the following objectives:

1) Large-scale water quality monitoring and assessment in Qingcaosha Reservoir.
As one of the indispensable foundations of WEM and the node of the research framework,
an economical, accurate, and practical water quality monitoring system has become essential
for researchers, practitioners, and policymakers [26]. Traditional water quality monitoring
methods are point-based, observing water quality for a given time series and placing a fixed
number of stations at varying densities and dispersions (Section 4.1). This becomes challenging
when researchers have limited resources available, such as employees, time, equipment, funding,
and access to funding (Section 4.1). Cruise monitoring technology (CMT) is more effective in
extracting environmentally relevant parameters on a large scale than point-based environmental
monitoring. The data collected by CMT is line-based, which transforms the "point-inferred
area" problem into a 'line-inferred area" problem combined with space interpolation [27].
However, CMT combined with spatial interpolation still requires an extensive monitoring
network to provide accurate estimates, which means there is still a heavy reliance on research
resources. This reliance seems to be alleviated in a sense by the development of remote sensing
technology (RST). The data collected by RST is area-based, and RST can directly scan the
target area and combine it with manual in situ measurements, a traditional process, to build
inverse models that present the state of the environment on a large scale (Section 4.3.1).
However, the amount of data at the measured point is much smaller than the amount of RST
data for the entire study area (usually differing by one to two orders of magnitude), resulting
in instability and uncertainty in the inversion results. As a result, the overall environmental
state of the target area cannot be presented clearly and accurately. After the appeal analysis,

CMT and RST are complementary for environmental monitoring problems in large-scale
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areas. Therefore, in the task node of water quality monitoring, EBDP consists of data from
CMT and RST. Value mining means using the Deep Neural Network (DNN) because it can
accurately find the complex nonlinear relationship between water quality parameters and
RST observations (Section 4.3.3). As an important part of WEM, representative and reliable
water quality assessment helps to identify potential problems, risks and areas for improvement
to ensure the safety of water resources [28]. Traditional assessment methods such as the
single-factor assessment method, water quality classification method, and integrated pollution
index method are often difficult to make a meaningful water quality assessment of the large
and complex matrix of water quality attributes [29]. Therefore, in this task node of water
quality assessment, I use the deep clustering method, Improved Deep Embedding Clustering
(IDEC), as a value mining tool, that is, similar elements are assigned to the same group, and
different elements are assigned to different groups so as to find a quick solution to the pollution
problem (Section 4.3.4). The EBDP of water quality assessment is composed of the results
of the water quality monitoring task node. Qingcaosha reservoir, located in the middle of
the Yangtze estuary, one of the world’s largest tidal reservoirs and the new largest source of
drinking water for about 12 million Shanghai residents (Section 4.2), was selected as the model

study area for the water quality monitoring and assessment node.

2) Identifying the algal growth driving factors in the South-to-North Water
Diversion Project. Water environment management is an important aspect of sustainable
development because it plays a vital role in protecting natural resources, ensuring public
health, and maintaining ecological balance (Section 1.1). Effective management strategies rely
on a comprehensive understanding of the driving factors that affect water quality, availability,
and ecosystem health (Section 5.1). Identifying these driving factors is paramount to designing
targeted interventions and adaptive management plans to address pressing water-related
challenges, so driving factor identification can be an important task node in the WEM big
data framework. One of the most important issues for ecologists, algal growth and water
quality relationships [30], was chosen by me as an example of the completion of this task
node. The South-North Water Diversion Middle Route Project, a mega water project in
China serving 69 million people, was selected as the implementation area for the driving factor
identification node (Section 5.2). While traditional process-based ecodynamic models can
systematically represent the relationship between a single output and multiple inputs, they
often require extensive up-front experiments to identify variables as well as parameters and
are difficult to calibrate because the physical transport and biological processes that regulate
algal biomass dynamics are highly variable at a different residence and biological time scales
[ﬂ] With the development of data science, some traditional data-driven methods, such as
regression analysis and multivariate analysis methods, have been proposed and applied (Section
5.1). However, due to their linear functional basis, these methods are ineffective in seeking
such nonlinear relationships between environmental factors and algal biomass [30]. Therefore,
machine learning has been used in recent years as a better tool for driver identification [32, 33,
34]. However, as environmental studies begin to migrate from small to large data, traditional
machine learning is unable to respond effectively. To solve this problem, Bloomformer-1
(Section 5.3.2, 5.3.3), a DL model based on the Transformer core proposed by Google (Section

5.3.2), was developed as a value mining method and implemented in EBDP consisting of
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high-frequency manual sampling and analysis data from the middle route of the south-north

water diversion over four years.

3) Building algal growth early warning system in Lake Taihu. Algal growth is a
significant environmental and public health concern worldwide. They occur when colonies of
algae grow rapidly and produce toxic or harmful effects on aquatic life, ecosystems, and human
health. Early warning systems for algal growth are essential for minimizing their impacts and
facilitating timely and effective management responses. These systems involve a combination
of monitoring and forecasting to detect, predict and guide stakeholders on how to prevent the
coming algal growth. The occurrence and extinction of algal growth are rapid and random
and fluctuate at different depths, so monitoring of algal growth based on different continuous
depths and high temporal resolution is essential. Traditional monitoring tools such as manual
sampling or fixed-point in situ water quality monitoring devices are difficult to do both due to
their technical bottlenecks and research resource limitations. To solve this problem, a vertical
aquatic monitoring system, named BIOLIFT, was applied and the generated monitoring data
was used as EBDP for early warning task nodes. Chlorophyll-a future value prediction depends
not only on its own previous values but also on the previous/present values of other water
quality parameters. Traditional time series prediction (TSP) methods can be difficult when
interpreting long background series and extending to complex variable relationships. Deep
learning models overcome these challenges by utilizing large data sets. The popular Long
Short-Term Memory (LSTM) DL models (Section 6.2.3) can only moderate the vanishing
gradient and exploding gradient problems to some extent when dealing with long time series
data; therefore, LSTM is only applicable to time series data of average length and its prediction
becomes poor for longer time series data. In addition, the algal growth early warning system
needs to be able to predict Chl-a accurately and also shows clearly and specifically the drivers
of the predicted values so that preventive measures can be developed. The mechanism and
structure of the LSTM dictate that it does not have this capability. In order to achieve high
performance in processing long time series data with the function of displaying the drivers of
predicted values, the DL model Bloomformer-2 (Section 6.2.4), based on the Transformer core
proposed by Google (Section 5.3.2), has been developed and used as a value mining method
for early warning task nodes. Taihu Laboratory for Lake Ecosystem Research, located on the
southern side of Meiliang Bay (Section 6.1), was selected as the model study area for the algal

growth early warning task node.
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Projects

3.1 Qingcaosha reservoir project

The Qingcaosha reservoir project is a joint research project initiated by Karlsruhe Institute of
Technology (KIT) and the University of Shanghai for Science and Technology (USST). The
project aims to develop and adopt innovative sensor-based scientific and technical approaches
for effective water quality monitoring to generate new knowledge about the system. The
project will contribute to risk assessment and early warning concepts for water pollution and
recommendations for improving water quality in the Qingcaosha Reservoir (Yangtze River).
The duration of this project, originally planned for May 2017 to December 2020, has been
extended to August 2021 due to the epidemic. The lead scientists from Germany and China
are Prof. Dr. Stefan Norra and Prof. Dr. Hongho Liu.

I am involved in the project from July 2019 to August 2021. My work mainly includes 1)
applying a multi-sensor cruise monitoring system (BIOFISH) for water quality monitoring in
Qingcaosha Reservoir; 2) collecting water samples from the reservoir and completing laboratory
analysis; 3) collecting and digitizing remote sensing images of Qingcaosha Reservoir, and 4)
performing high-value mining of EBDP composed of BIOFISH and remote sensing images to

complete examples of water quality monitoring and assessment task nodes.

3.2 Middle route of the south-to-north water division project

The middle route of the south-to-north water division project is undertaken by the Center for
Algal Biology and Application Research, Institute of Hydrobiology (IHB), Chinese Academy of
Sciences, and aims to conduct in-depth research on the spatial and temporal distribution and
growth factors of algae in the middle route of south-north water diversion and to contribute
to the ecological management of the mega-water project. The leading scientist is Prof. Dr.
Yonghong Bi. The duration of the project is from Jan 2017 to December 2025.
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I am involved in one of the sub-project “Study on the mechanism of algal outbreak and
its key driving factors in long-distance water transmission main canals” from June 2021 to
February 2023. My work mainly includes 1) field sampling and expedition to the South-North
Water Transfer Central Line, 2) collecting water samples from each monitoring station and
completing laboratory analysis, and 3) high-value mining of EBDP consisting of 4 years of

water sample analysis data and completing example of driving factor identification task node.

3.3 SIGN project

The Sino-German Water Supply Network (SIGN) is a collaborative initiative between China
and Germany aimed at addressing water management challenges through the exchange of
knowledge, technology, and best practices in the water supply sector. The partnership focuses
on enhancing the quality, efficiency, and sustainability of water supply systems in both countries,
leveraging their respective strengths and experiences. The SIGN research project consists
of phases | and II, running from 2015 to 2021, and its research is funded bilaterally by the
Chinese Ministry of Science and Technology (MOST) and the German Federal Ministry of
Education and Research (BMBF).

The subproject DYNAQUA in SIGN I and the subproject AMORIS in SIGN II were
designed and supervised by Prof. Dr. Stefan Norra at the Institute of Applied Geoscience
(AGW), Karlsruhe Institute of Technology (KIT). The main development objective of both
projects is to establish an algal early warning system and assess the ecological risk of sediment
resuspension events by developing an in situ online multi-sensor device for stationary monitoring

of water quality and meteorology.

I was involved in the project from January 2019 to August 2021. My work mainly includes
1) applying the vertical water quality monitor (BIOLIFT) to conduct fieldwork on Taihu Lake
in different seasons and times; 2) collecting water samples and completing laboratory analysis
on Taihu Lake; 3) using BIOLIFT and laboratory data to establish EBDP and complete algal

growth early warning system development.
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Water Quality Monitoring and
Assessment Task Node

4.1 Published paper

Title: Water quality monitoring and assessment based on cruise monitoring, remote sensing,

and deep learning: A case study of Qingcaosha Reservoir

Authors: Jing Qian, Hongbo Liu, Li Qian, Jonas Bauer, Xiaobai Xue, Gongliang Yu, Qiang
He, Qi Zhou, Yonghong Bi and Stefan Norra

Journal: Frontiers in Environmental Science, Volume 10-2022, doi: 10.3389/fenvs.2022.979133

Authorship statement: This peer-reviewed scientific journal article is based on data obtained
from the January 2020 field trip as well as remote sensing data from that day. T designed,
implemented, and was responsible for the entire research process. Due to the confidential
nature of the Qingcaosha reservoir, I started communication and preparation with my Chinese
colleagues at USST starting in July 2019. the only, one-day field trip in January 2020 was
conducted under the authority of Prof. Hongbo Liu. During the field trip, Jonas Bauer and
I worked together to set up the BIOFISH instrument and complete the field trip activities.
The pre-processing of the remote sensing data was done entirely by me alone. I completed
the deep learning model building with the help of Li Qian (Ludwig Maximilian University
of Munich) and discussed the results with Jonas Bauer (KIT) and Xiaobai Xue (MioTech
Research) for productization and industrialization. Finally, Prof. Dr. Stefan Norra (KIT),
Prof. Dr. Qiang He (Chongging University), Dr. Yugonglaing (IHB), and Prof. Dr. Qi Zhou
(Tongji University) were involved in the revision of this paper. Prof. Dr. Stefan Norra, Prof.
Dr. Hongbo Liu (USST), and Prof. Dr. Yonghong Bi (IHB) supervised this project, and Prof.
Dr. Stefan Norra provided funding. All co-authors critically reviewed the manuscript and gave

their consent for publication.
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Abstract: Accurate monitoring and assessment of the environmental state, as a prerequisite
for improved action, is valuable and necessary because of the growing number of environmental
problems that have harmful effects on natural systems and human society. This study developed
an integrated novel framework containing three modules: remote sensing technology (RST),
cruise monitoring technology (CMT), and deep learning, to achieve a robust performance for
environmental monitoring and the subsequent assessment. The deep neural network (DNN),
a type of deep learning, can adapt and take advantage of the big data platform effectively
provided by RST and CMT to obtain more accurate and improved monitoring results. It
was proved by our case study in the Qingcaosha reservoir that DNN showed a more robust
performance (R?=0.89 for pH, R2=0.77 for DO, R?=0.86 for conductivity, and R?=0.95 for
back-scattered particles) compared to the traditional machine learning including multiple linear
regression, support vector regression and random forest regression. Based on the monitoring
results, the water quality assessment of QQingcaosha reservoir was achieved by applying a
deep learning algorithm called improved deep embedding clustering. Deep clustering analysis
enables scientific delineation of joint control regions and determines the characteristic factors
of each area. This study presents a high value of the framework with a core of big data
mining for environmental monitoring and follow-up assessment in a manner of high-frequency,

multi-dimensionality, and deep-hierarchy:.

4.2 Study area

Located approximately 30 kilometers northeast of downtown Shanghai as Figure 4.1, the
Qingcaosha reservoir was built as part of a long-term strategy to address the growing demand
for fresh water in a rapidly expanding urban landscape. The reservoir’s primary function
is to provide a stable and secure water supply, and its development has contributed to a
significant improvement in the quality of life for 12 million Shanghai residents, ensuring that
access to clean water is no longer a luxury, but a fundamental right. Completed in 2010, this
massive reservoir covers approximately 70 km? and has become synonymous with sustainable
development and efficient resource management in the region [35]. One of the world’s largest
estuarine and tidal reservoirs, the Qingcaosha reservoir is strategically located at the mouth of
the Yangtze River (31.42-31.49N, 121.55-121.71E) and takes full advantage of the abundant
resources provided by Asia’s longest river. With a storage capacity of 435 million cubic meters,
the reservoir is designed to withstand natural disasters and seasonal fluctuations in water

levels, ensuring a steady supply of fresh urban water [36].

4.3 Framework of water quality monitoring and assessment

In the task node of water quality monitoring, EBDP consists of data from CMT and RST.
Deep neural network is used for value mining means (Figure 4.2. After that, the results of the
water quality monitoring node consist of new EBDP for deep clustering method, IDEC, for

further value mining to complete the task node of water quality assessment (Figure 4.3 ).
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4.4 Remote sensing

The Sentinel-2 Earth observation satellite was selected as the observation satellite for this
task node. Its multispectral instrument acquires 13 spectral bands from 440nm to 2200nm
with spatial resolutions containing 10m, 20m and 60m [37]. The information of Sentinel-2
is shown in Table 4.1. Sentinel 2 images were downloaded from the official website of the
U.S. Geological Survey (https://earthexplorer.usgs.gov/). The Level-1C data product was
selected for this task node, and this series has been radiometrically and geometrically corrected
(including orthorectification). The downloaded completed Sentinel-2 remote sensing images
underwent a series of pre-processing from radiometric correction, atmospheric correction, RST
image fusion and study area clipping to complete the digitization from the images. In this
task node, Fast Line of Sight Atmospheric Analysis of Hypercubes (FLAASH) [38] was set
as the atmospheric correction algorithm with parameter settings including ground elevation,
atmospheric model, aerosol retrieval and water retrieval obtained by reading the source file
from the FLAASH assistant plug-in. The Gram-Schmidt Pan Sharpening method [39] was
selected as the image fusion algorithm to bring the spatial resolution of all bands resampled
to 10m. The remote sensing data were Z-score normalized before being input to the model

according to the following equation [40]:

Z; = (4.1)

where Z; is the standard score of i-th data, x; is the i-th original data, Z; is the mean of
i-th data, and aj is the standard deviation of i-th data.

Table 4.1: Bands of Sentinel-2 and their specifications

Bands Specification Central Wavelength (um) Resolution (m)
Band 1 Coastal aerosol 0.443 60
Band 2 Blue 0.490 10
Band 3 Green 0.560 10
Band 4 Red 0.665 10
Band 5  Vegetation Red Edge 0.705 20
Band 6  Vegetation Red Edge 0.740 20
Band 7 Vegetation Red Edge 0.783 20
Band 8 NIR 0.842 10
Band 8A  Vegetation Red Edge 0.865 20
Band 9 Water vapor 0.945 60
Band 10 SWIR - Cirrus 1.375 60
Band 11 SWIR 1.610 20
Band 12 SWIR 2.190 20

4.5 Cruise monitoring

In this task node, multi-sensor cruise monitoring is performed by BIOFISH. It is an aquatic

cruise monitoring system equipped with multiple sensors and connected to the ship by a data
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Table 4.2: Sensors of BIOFISH and their specifications

Parameter Principle Range Resolution Accuracy
Pressure piezo-resistive 0-100dBar 0.01dBar +0.1dBar
Temperature Pt 100 0-36°C 0.001°C +0.01°C
Potentiometric
H 12pH .0lpH +0.02pH
p (Ag/AgCl) 0-12p 0.01p 0.02p
Potentiometric 0 o o
DO (Clark dlectrode) 0-100% 0.01% +0.01%
El.cond 7-pole-cell 0-60m.S/em luS/em +10uS/em
Backscattered particles Mie backscattering 0-100% 0.01% +0.01%

transmission cable. Data on water quality parameters were recorded in real-time with GPS
latitude and longitude positions. In this task node, BIOFISH swam between 10 ¢cm and 20 cm
below the water surface, so a swimming mode with a floating body was chosen instead of a
diving mode with fins. The monitoring parameters were customized by the demand side. The
study area Qingcaosha reservoir is one of the largest tidal reservoirs in the world. Of particular
interest to tidal reservoirs is the introduction of freshwater and the backflow of seawater. The
Yangtze River is a source of introduced freshwater and generally has a high turbidity level. And
the specific value and diffusion of this turbidity is an important factor affecting the residence
time. Electrical conductivity (El.cond.) and pH, as parameters reflecting the backflow of
seawater, are undoubtedly also of interest. In particular, the subsequent diffusion of these two
parameters and the degree of their influence can be of great help in adjusting the response
of the reservoir to seawater inversion. Finally, the concentration of dissolved oxygen (DO)
reflects the self-purification capacity of the reservoir. The level of self-purification capacity is
closely related to the reservoir’s ability to supply water. Therefore, back-scattered particles
(BP), El.cond., pH and DO were selected as the monitoring parameters in this task node. The
sensors of BIOFISH are made by ADM Elektronik and their specifications are shown in Table
42

Due to the limitation of authority, the sampling of BIOFISH needs to be completed within
5 hours. The cruise route is shown in Figure 4.1. and was designed to cover as much of the
study area as possible. S1 is the start and end point of the cruise route. S1-S7 are the seven
stops designed for BIOFISH calibration with YSL ProDSS to ensure data accuracy. BIOFISH
data were Z-score (Section 4.3.1) normalized before being input to the model. Since the high
sampling density of BIFOISH means that multiple BIOFISH sampling points can be found
randomly in a pixel block of size 10m x 10m, a satellite-ground synchronization matching
process is required for the BIOFISH data, i.e., to fix the BIOFISH sampling points in the
same pixel block and derive their representative values. The first step is to specify the spatial
information of all BIOFISH sampling points and pixel block centroids. The geodesic distances
[41] between the pixel grid centroids and the BIOFISH sampling points can be calculated by
the Python package Geopy, which is modeled as an ellipsoid, i.e., WGS-84. Then, by finding
the shortest geodesic distance between them, the pixel grid corresponding to the BIOFISH
sampling points can be extracted. The next step is to calculate the representative values of
BIOFISH measurements within each pixel block by arithmetic mean (AM).
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4.6 Deep neural network

DNNs are the basic form of deep learning. As the left side of Figure 4.4 shows, DNN is a
connectionist system with multiple hidden layers between the input and output layers [42].
Each hidden layer contains multiple neurons, called nodes. Any nodes in /th layer must be
connected to any node in [ + 1th layer, and the following equation indicates the non-linear

relationship between the DNN layers shown in the right side of Figure 4.4:

a?rl =f (Z aﬁwi-j + bﬂ) (4.2)
i=1

';r-+ Lis the activation value of jth

node in [ + 1th layer,wijlis the weight between aﬁ and affl, bj.ﬂ

Where af; is the activation value of ith node in Ith layer, a
is the bias value of jth node

in [ + 1th layer, and f(-) is the active function.

The process of training is depicted on the left side of Figure 4.4. Calculating and storing
intermediate variables (including outputs) from the input layer to the output layer is forward
propagation. Back propagation is the process of computing the gradient of neural network
parameters and updating them based on the difference between the output and the actual
value. In this task node, relu [43] was set as the active function and adam as the optimizer of
all models for adjusting hyperparameters. Apart for the El.cond.-spectral value, the layer and
neural units of models were (256,256,256,256,256) (256,256,256). In addition, batch size and

learning rate were optimized within a suitable range.

Several indicators including the coefficient of determination (R?), Root-mean-square error
(RMSE), Mean absolute percentage error (MAPE) and Median absolute deviation (MAD)
were used to evaluate the performace of models. The Units of RMSE and MAD are the same

as the respective water quality parameter units, and the unit of MAPE is %.

The coefficient of determination [44]( R?) was calculated as:

— (4.3)

RMSE [45] was calculated as:

RMSE(y,j) = (4.4)
MAPE [46] was calculated as:
100 S|y — Ui
MAPE (y,§) = — u‘ (4.5)
noo30 Y

MAD [47] was calculated as:
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where 7; is the predicted value of the ith sample, y; is the corresponding true value of the

total n samples, and 7; is the mean of true value.

4.7 Improved Deep Embedding Clustering

IDEC is an advanced clustering algorithm that combines the advantages of deep learning
and unsupervised clustering techniques to improve the performance of traditional clustering
methods. Tt is an extension of the original Deep Embedding Clustering (DEC) algorithm,
which uses an autoencoder to learn meaningful feature representations from high-dimensional
data and subsequently clusters the learned features [48]. The IDEC algorithm incorporates
several improvements to address certain limitations and improve the clustering performance of
the DEC method. The main components of the IDEC algorithm include (Figure 4.5):

1) Autoencoder and decoder: This is a deep learning neural network that learns to compress
the input data to a lower dimensional representation and then reconstructs the original data
from the compressed representation. Autoencoders are trained to minimize the reconstruction
error between the input data and the reconstructed output. In the context of IDEC, the

autoencoder is used to extract meaningful features from high-dimensional data.

2) Clustering layer: The clustering layer is added to the encoder part of the autoencoder,
resulting in a new model that maps the input data directly to the clustering task. The
clustering layer uses a Gaussian Mixture Model or another clustering algorithm to assign each

data point to a cluster centroid based on the learned feature representation.

3) Joint optimization: The IDEC algorithm involves a joint optimization process that
simultaneously refines feature representation learning and cluster assignment. The optimization

objective combines the reconstruction error of the autoencoder and the clustering loss term.
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Figure 4.5: Architecture of IDEC [48]
The clustering loss term is usually based on Kullback-Leibler divergence [49]. It is defined
as KL divergence between distributions P and Q, where Q is the distribution of soft labels

measured by Student’s distribution and P is the target distribution derived from Q.

4) Self-supervised fine-tuning: In the joint optimization process, the model adjusts its
weights to minimize the overall loss, taking into account the reconstruction error and clustering
loss. This self-supervised fine-tuning process helps to improve the quality of the learned feature

representations and thus the clustering performance.

In this task node, the encoder network is set as a fully connected multilayer perceptron
(MLP) with dimensions 4-125-125-500-10. the decoder network is the mirror image of the
encoder with dimensions 10-500-125-125-4. relu is set as the active function and adam is the
optimizer for all models. The coefficient of cluster loss gamma is set to 0.1 and the batch size
is 256. the convergence threshold delta is set to 0.1%. The update interval T was 1 iteration.
the IDCE and CH methods were performed by PyTorch.

The number of clusters was determined by the Carinski-harabasz (CH) method [50]. The
Calinski-Harabasz (CH) method, also known as the Calinski-Harabasz index, is a widely
used evaluation metric for determining the optimal number of clusters in a dataset. It is an
internal cluster validation method that measures the ratio of the between-cluster variance to
the within-cluster variance. The higher the CH index, the better the clustering performance,

as it indicates that the clusters are more compact and well-separated.

The CH index is calculated using the following formula:
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N
SSW = 3 [l — Cl? (17)
i=1
k
558 =3 m[e;— x|’ (4.8)
i=1
 SSBJ(k-1)
CH = Sgviin =1 (4.9)

Where k is the number of clusters, P is the partitions, X = {z,z5...z 5} represents the
data set with N-dimensional points, X = Z‘:\;l x;/N is the center of the entire data set,

C = {e1, ca...c;.} represents the centroids of cluster, ¢; is the ith cluster.

4.8 Computational environment

The experiment was carried out on a PC with the following features: Hardware: CPU i7-6950X,
RAM 64GB, dual GeForce RTX 3090, VRAM 24GB; Software: Ubuntu 20.04, Python3.6,
Pytorch 1.10.0, Numpy 19.2.

4.9 Results

4.9.1 Model performance evaluation

DNN demonstrate superior performance in terms of accuracy and stability when compared
to traditional machine learning methods such as Multiple Linear Regression (MLR), Support
Vector Regression (SVR), and Random Forest Regression (RFR). A summary of the model
performance metrics can be found in Table 4.3. Figure 4.6 presents a comparison between the
predicted and measured values for the test set. Notably, the slopes of the DNN test results
(0.90 for pH, 0.67 for DO, 0.82 for El.cond, and 0.92 for BP) are considerably larger than
those of MLR, SVR, and RFR. Consequently, the DNN model significantly enhances inversion
accuracy in comparison to MLR, SVR, and RFR methods.

4.9.2 Result of water quality monitoring and assessment in Qingcaosha

reservoir

The illustrative thermal cartography, showcasing concentration gradients of individual factors
such as pH, DO, El.cond., and BP, can be located within Figure 4.7, meticulously arranged in
distinct subsections. Through the application of the CH technique, the vast expanse of the
Qingcaosha reservoir bifurcates into four unique aquatic categories: I, IT, TII, and TV. The
spatial distribution of these clusters, as demarcated by the IDEC approach, is delineated in

Figure 4.8. An encompassing collation of the statistical evaluation, encapsulating extremities
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Figure 4.6: Regression model performance evaluation by comparison of the predicted data and
measured data on test set, where (a), (b), (c), (d) represent the test results of the pH, DO, El.cond
and BP, respectively, and (1), (2), (3), (4) represent the test results of the MLR, SVR, RFR and
DNN, respectively.
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Table 4.3: Results of model evaluation

Parameter Model R? RMSE MAPE MAD
MLR 0.55 0.64 0.86 0.41
SVR 0.74 0.55 0.69 0.21

pH RFR 073  0.50 057  0.17
DNN 0.89 0.33  0.52  0.10

MLR 022 085 283 0.30

DO SVR 024  0.83 1.30  0.12
RFR 057  0.65 159 0.14

DNN 0.77 0.49 1.61 0.06

MLR 023 0.8 9.62 020

Eleond SVR 033 081 1.54  0.08
RFR 052  0.67 .78 0.10

DNN 0.86 0.38 1.74 0.06

MLR  0.78  0.44 307 0.4

P SVR  0.87  0.38 334 007

RFR  0.87 0.38 2.72 0.06
DNN 0.95 0.26 3.10 0.03

(Max, Min), dispersion measure (standard deviation - STD), and central tendency (Median),

is presented in Table 4.4.

Group I, encapsulating a commanding 73.79% of the entire Qingcaosha reservoir’s expanse,
displays median values for each constituent element relative to its counterparts. This collective
finds its predominance in the northeastern periphery of the central isle, extending its influence
to the terminating zone. Group II and III, although minor, claim ownership of 4.99% and
3.23% of the water proportions respectively. Group II, distinguished by significantly amplified
BP indices in comparison to the other cohorts, is primarily nestled at the reservoir’s apex
and along the southern flank. Contrarily, Group III, marked by superior dissolved oxygen
concentrations vis-a-vis its peers, situates itself in the vicinity of the potable water outlet.
Concluding with Group IV, enveloping 17.99%, it is characterized by heightened pH metrics,
insinuating a subtly alkaline aquatic body. This cluster’s presence is predominantly felt in
the southwestern precincts of the central island, with minor footprints at the tail area and

proximate to the drinking water inlet.
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Table 4.4: Summary statistics of each group

Group Parameter Max Min STD Median

pH 9.00 6.20 0.25 7.04

Group I DO 14.00 6.90 0.32 10.13
El.cond 0.44 0.20 0.01 0.34

BP 3.02 001 0.23 1.57

pH 825 6.50 0.27 7.64

Group 11 DO 13.94 6.90 0.64 9.94
El.cond 042 020 0.02 0.34

BP 10.08 4.58 1.26 6.11

pH 830 6.20 0.223 6.95

Group 111 DO 14.00 9.15 0.72 12.11
El.cond 0.35 0.20 0.02 0.34

BP 7.47  1.23  0.54 2.60

pH 9.00 6.20 0.51 7.86

Group TV DO 14.00 6.90 0.45 10.26
El.cond 044 020 0.02 0.34

BP 4.83 1.94 0.52 2.93

4.10 Conclusion of water quality monitoring and assessment

task nodes

A groundbreaking framework has been erected, comprising three modules: RST, CMT, and DL.
The latter capitalizes on the extensive data platform constructed by RST and CMT, to procure
a robust efficacy in the monitoring and assessment of water quality. Examinations divulged that
the DNN embedded within the framework manifests a superior proficiency in the monitoring
of four water quality parameters (pH, DO, El.cond, and BP) when juxtaposed against MLR,
SVR, and RFR. The deployment of IDEC for the appraisal of water quality demonstrated
that the entirety of the QCSR was aptly segregated into four clusters, denominated as joint
control areas, namely, Group I, Group II, Group III, and Group IV. The distinctive factors
corresponding to each area were discerned, offering substantial contributions to the delineation

of a unified regional control strategy for the QCSR.

25



5 Identification of Algal Growth Driving Factor Task Node

Identification of Algal Growth Driving
Factor Task Node

5.1 Published paper

Title: Identification of algal growth driving factors in the South-to-North Water Diversion

Project by Transformer-based deep learning
Authors: Jing Qian, Nan Pu, Li Qian, Xiaobai Xue, Yonghong Bi and Stefan Norra
Journal: Water Biology and Security, https: //doi.org/10.1016 /j.watbs.2023.100184

Authorship statement: This peer-reviewed scientific journal article presents findings based
on data collected during a multi-site, high-frequency field study conducted between August 1,
2018, and August 1, 2022. T was responsible for designing and overseeing the entire research
process. My involvement included participating in eight field trips spanning the summer, fall,
and winter of 2021, as well as the spring, summer, fall, and winter of 2022, and the spring of
2023. Owing to the confidential nature of the water quality data associated with the middle
route of the South-to-North Water Division Project, standard sampling and storage procedures
were carried out by maintenance staff at each monitoring site. Subsequently, the samples were
sent to the Wuhan Institute of Aquatic Biology for analysis, for which I was responsible in the

laboratory setting.

I collaborated with Nan Pu (Leiden University) and Li Qian (Ludwig Maximilian University
of Munich) to develop the deep learning model, and together, I discussed the potential for
industrial transformation of our research findings with Xiaobai Xue (MioTech Research). The
project was supervised by Prof. Dr. Stefan Norra (KIT and Potsdam University) and Prof. Dr.
Yonghong Bi (IHB), with funding provided by Prof. Dr. Yonghong Bi (IHB). All co-authors

critically reviewed the manuscript and approved its publication.
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Abstract: Accurate and credible identification of the algal growth drivers is essential for
freshwater’s sustainable utilization and scientific management. In this study, I developed a
deep learning-based Transformer model, named Bloomformer-1, for end-to-end identification
of algal growth drivers without extensive a priori knowledge and prior experiments. The
Middle Route of the South-to-North Water Diversion Project (MRP) was used as the delegate
to demonstrate that Bloomformer-1 exhibited more robust performance (with the highest
R?, 0.80 to 0.94, and the lowest RMSE, 0.22 to 0.43ug/L) compared to four widely used
traditional machine learning models, including extra trees regression (ETR), gradient boosting
regression tree (GBRT), support vector regression (SVR), and multiple linear regression (MLR).
In addition, Bloomformer-1 had higher interpretability (including higher transferability and
understandability) than the four traditional machine learning models, which meant that it
was trustworthy and the results could be directly applied to real scenarios. Finally, it was
determined that total phosphorus (TP) was the most important driver for the MRP, especially
in Henan section of the canal. Total nitrogen (TN) had the highest effect on algal growth in
the Hebei section. Based on the results, phosphorus loading controlling in the whole MRP

was proposed as an algal control strategy.

5.2 Study area

The South-to-North Water Diversion Project (SNWDP) is an extensive infrastructure initiative
in China designed to transfer water from the water-abundant southern regions to the arid and
water-stressed northern areas (Figure 5.1). The project comprises three primary routes: the
Eastern Route, the Middle Route, and the Western Route. Of these, the Middle Route is the
largest and most crucial [51].

Originating at the Danjiangkou Reservoir in Hubei Province, created by damming the Han
River, a significant tributary of the Yangtze River, the Middle Route channels water northward
through an intricate network of canals, tunnels, and aqueducts. It traverses Henan and Hebei
provinces before ultimately reaching its primary recipients, Beijing and Tianjin. Spanning
approximately 1,200 kilometers (746 miles) in length, the Middle Route boasts a designed
annual water transfer capacity of around 9.5 billion cubic meters [52]. The recipient areas
mainly utilize the water for domestic, industrial, and agricultural purposes. Construction on
the Middle Route began in 2003 and was officially inaugurated in late 2014. This route has
been instrumental in mitigating water scarcity in northern China, enhancing water quality,

and fostering sustainable socio-economic development in the region [53].
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Figure 5.1: Sketch map of sampling stations distribution in the middle route of South-North
‘Water Diversion Project

5.3 Sample collection and chemical analytics

Nine water quality monitoring stations, designated P1 to P9, have been established along
the Middle Route of the SNWDP (MRP), stretching from south to north. Stations P1, P2,
P3, and P4 are situated in the Henan section; P5, P6, and P7 in the Hebei section; P8
in the Tianjin section; and P9 in the Beijing section (Figure 5.1). The database used in
this study includes water quality monitoring data from monitoring stations P1 to P9 for a
total of 49 months (August 1, 2018 to August 30, 2022). Water samples were collected at
a water depth of 0.5 m, stored at 4°C, and transported to the laboratory for determination
of water quality parameters. This task node mainly focuses on the chemical water quality
parameters, including total phosphorus (TP), phosphorous-phosphate (PO4-P), total nitrogen
(TN), nitrogen-nitrate (NO3-N), nitrogen-ammonia (NH3-N), potassium permanganate index
(CODwm), and total organic carbon (TOC). These parameters were measured according to
APHA [54]. The concentration of Chl-a was determined according to ASTM D3731-87 [55].

5.4 Multi-Head-Self-Attention

To analyze information more accurately and efficiently, humans have the ability to adjust
their focus on the data they receive when faced with an abundance of information [56]. This

suggests that the primary function of the focus mechanism is to assign weights to various
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pieces of information. An attention function could be interpreted as mapping a Q(query) and
a string of K (key)-V (value) to an output, where @, K, V, and output were vectors [57]. The

attention could be represented as:

Output Agtention = Attention(Q, K, V) (5.1)

Multi-Head Attention was the projection of @, K, and V by h different linear transfor-
mations, and finally, the different attention results were contacted together, which could be

represented as:

MultiHead(Q, K, V) = Concat (head,, ..., head, )W (5.2)
Where
head; = Attention (QWiQ, KWk, VWiV) (5.3)
WQ e Rdmodel Xdk WK e Rdmndel Xdk WV e Rdmndel de
and

WO = thv Xdmodel

There is a direct correlation between the input and output weights in the appealed Attention
mechanism, suggesting that the output vectors must participate in the weight calculation. As
opposed to this, the weight of Self-Attention was an internal weight relationship between input
vectors, which did not require participation from output vectors. Therefore, the multi-head-
self-attention (MHSA) meant ), K, and V were the same. In this study, we used the scaled

dot-product to calculate Attention:

T
Attention(Q, K, V) = softmax (?/Ii_k ) V (5.4)

Where dj. was the vector dimension in both @ and K.

The encoder consisted of N same units(Figure 5.2). Each unit consists of two sub-layers,
the multi-head-self-attention layer, and the fully connected feed-forward network, where each
sub-layer was processed with the residual connection “Add” and normalization “Norm”. The

output of the sub-layer could be represented as:

OUtmtSub[ayer = Norm(m + F(m)) (55)

Where F(z) was a function of the sublayer itself, multi-head-self-attention, or fully

connected feed-forward network.
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Figure 5.2: The architecture of standard Transformer [ﬁ]

Fully connected feed-forward networks provide a non-linear transformation that consists of
two linear transformations with the active function ReLu [43]. Compared with the encoder,
the decoder added another MHSA layer (Figure 5.2). A mask operation [58] was applied to
this multi-head self-attention layer in order to prevent the model from being exposed to future

information during training.

5.5 Bloomformer-1

Algal growth is a multifactorial process, and identifying its driving factors is a common
application of multivariate regression. The key to addressing this issue lies in understanding
the spatial relationships between the variables. However, the standard Transformer based on
Multi-Head-Self-Attention (MHSA) is not specifically designed for this purpose, as it treats
the value of each variable at a given time period as a single point in its graph, preventing each

variable from having its own context prioritization [59].

To investigate spatial relationships, T have developed Bloomformer-1, based on the
Transformer architecture. This enhanced method starts by converting the database’s context
sequence into an extensive spatial sequence. This sequence is then transposed to obtain
its corresponding lengthy spatial sequence. Utilizing an encoder-decoder architecture based

on Transformers, this sequence is processed to derive the expected values for each variable.
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The predicted values are subsequently restructured into their original format and trained to

minimize prediction error metrics.

Bloomformer-1’s training structure comprises a reconstruction stage and a regression stage.
The reconstruction task involves unsupervised pre-training and reconstruction of explanatory
variables through the connected encoder stack and decoder stack to extract robust and compact
features. The reconstruction task shares the encoder stack settings and position encoding
with the relevant portion of the regression task. In this study, the number of units in the
encoder and decoder layers is set at eight, representing the 7-dimensional water quality metrics
and 1-dimensional station location data. The station location information for the substation
task corresponds to the station number matched to each water quality measurement, ranging
from 1 to 9. For the entire MRP procedure, the station location information is set to 1.
Mean Square Error (MSE) is selected as the loss function for both the reconstruction and
regression stages. Figure 5.3 illustrates the architecture of Bloomformer-1. The MHSA
mechanism of Bloomformer-1 facilitates the positive and simultaneous derivation of driving

factor identification results achieved during model training.
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Figure 5.3: The architecture of Bloomformer-1

5.6 Training and performance evaluation of model
In this study, Chl-a and other previously described water quality parameters for the nine

monitoring stations (P1 to P9) were incorporated into the model as response and explanatory

variables. This was done for each station separately and for the entire project to identify
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the drivers of algal growth. Prior to inputting the data into the model, normalization was
performed using the Z-score (Section 4.3.1). Following the rule of randomly selecting one out
of every five steps, the dataset was divided into training and testing sets. Consequently, 80%
of the dataset was employed for model training, while the remaining 20% was used to evaluate
the model’s performance. Additionally, tenfold cross-validation was introduced during the

training phase to prevent overfitting.

To assess the accuracy and stahility of each regression model, two indicators were applied
to the test set: R? and RMSE (Section 4.3.3).

5.7 Computational environment

The experiment was carried out on a PC with the following features: Hardware: CPU i7-6950X,
RAM 64GB, dual GeForce RTX 3090, VRAM 24GB; Software: Ubuntu 20.04, Python3.6,
Pytorch 1.10.0, Numpy 19.2.

5.8 Results

5.8.1 Model performance evaluation

The model performance results are summarized in Table 5.1 (The bold-italic values represent
the best regression results and unit of RMSE is ug/L). Comparisons between model simulations

and ground truth can be found in Figure 5.4 and Figure 5.5.

For stations P1, P2, and P3, Bloomformer-1 demonstrates a significantly better performance
compared to the other four conventional machine learning models. Regarding stations P4, P5,
P6, P8, and P9, Bloomformer-1 exhibits relatively high performance. Although the difference
in R? values compared to Extra Trees Regression (ETR) is small (ranging from 0.03 to 0.06),
there is still a considerable advantage in RMSE values (e.g., Bloomformer-1 has an RMSE
value of 0.33 for P4, while ETR has the lowest RMSE value of 0.52 among the other four
traditional machine learning models). In the case of P7, although ETR shares the same R?
value as Bloomformer-1 (both at 0.94), Bloomformer-1 maintains a clear advantage in RMSE
values (Bloomformer-1 with 0.23, ETR at 0.43,Gradient boosting regression tree (GBRT)
with 0.47, SVR at 0.45, and MLR with 0.66). Consistent with the results for the individual
stations, Bloomformer-1 continues to exhibit robustness across the entire MRP. In conclusion,
Bloomformer-1 is the most effective model for describing the relationship between Chl-a

concentrations and driving factors when compared to traditional machine learning models.
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Table 5.1: Results of model performance evaluation

Stations Indicator Bloomformer-1 ETR GBRT SVR MLR

1 R? 0.85 0.75 0.72 0.63  0.42
RMSE 0.32 0.56 0.57 0.60  0.73

- R? 0.80 0.66 0.51 0.63  0.25
RMSE 0.43 0.62 0.68 0.63  0.82

p3 R? 0.83 0.70 0.39 0.58  0.39
RMSE 0.40 0.59 0.69 0.64  0.79

4 R? 0.89 0.84 0.68 0.46  0.35
RMSE 0.33 0.52 0.62 0.61  0.76

ps R? 0.90 0.89 0.78 0.88  0.49
RMSE 0.30 0.50 0.58 0.51  0.71

R? 0.89 0.85 0.74 0.88  0.46

P RMSE 0.26 0.45 0.49 0.43  0.68
P R? 0.94 0.94  0.85 0.92  0.68
RMSE 0.23 0.43 0.47 0.45  0.66

ps R? 0.94 0.91 0.84 0.89  0.71
RMSE 0.22 0.43 0.48 0.44  0.62

- R? 0.93 0.91 0.89 0.86  0.62
RMSE 0.28 0.46 0.48 0.49  0.68

R? 0.85 0.79 0.73 0.80  0.39

Whole MRP

RMSE 0.35 0.54 0.55 0.51  0.70
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Figure 5.4: Performance of Bloomformer-1 in P1-P9 (Blue lines are observations, and red lines
are model simulations. The circles are the test set, where the blue circles are the true values, and
the red circles are the predicted values. The part of the blue line, except for the blue circles, is the
training set. Numbers show RMSE and r? for model prediction and training data inside brackets.
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represent the test results of the Bloomformer-1, ETR, GBRT, SVR and MLR, respectively.
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5.8.2 Result of algal growth driving factors identification in MRP

Based on Bloomformer-1’s MHSA, the drivers of algal growth in MRP are shown in Figure 5.6.
The most dominant algal growth driver in P1, P2 and the whole MRP was TP with 18.73%,
19.20% and 22.28%, respectively. Notably, PO4-P also showed a very close occupancy rate of
16.09% in the whole MRP. Results for P5, P6, P8 and P9 showed that the most dominant
algal growth driver at these four sites was NO3-N, with 20.24%, 28.27%, 20.16% and 17.16%,
respectively. In P4 and P7, TN was the main algal growth driver with 22.16% and 17.96%,
respectively. The results of P3 differed from the others with 23.84% NH3-N as the most

dominant algal growth driver.
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Figure 5.6: Results of algal growth driving factor in MRP
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5.9 Conclusion of identifying algal growth driving factors task

node

Bloomformer-1, a sophisticated deep learning-based Transformer model, conceived for the
seamless identification of algae proliferation catalysts without the necessity of comprehensive
antecedent knowledge or preliminary experimentation, garnered the apex R? (0.80 to 0.94)
and the nadir RMSE (0.22 to 0.43ug/L) on both solitary subsites and all-encompassing
simulations within the MRP. When contrasted against four prevalent conventional machine
learning models (ETR, GBRT, SVR, and MLR) employed on monitoring data, Bloomformer-1
demonstrated superior interpretability, insinuating its reliability and the potential for the
direct implementation of its resultant data in tangible world scenarios. TP emerged as the
predominant instigator within the MRP. Consequently, the governance of phosphorus and its
reduction would constitute a critical stratagem to curtail algal proliferation and sustain the
stability of water quality within the MRP.
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Algal Growth Early Warning Task Node

6.1 Submitted paper

Title: An Intelligent Early Warning System for Harmful Algal Blooms: Harnessing the Power
of Big Data and Deep Learning

Authors: Jing Qian, Nan Pu, Li Qian, Yonghong Bi and Stefan Norra

Journal: This paper has been submitted to Environmental Science & Technology. The state

is under review.

Authorship statement: The research of algal growth early warning and prevention is based
on data obtained from the November 2018 and May 2019 field trips. I designed, implemented,
and was responsible for the entire research process. During the field trip, Andre Wilhelms and
I worked together to set up the BIOLIFT instrument and complete the field trip activities.
The data pre-processing was done entirely by me alone. I proposed a new deep learning model,
named Bloomformer-2, and completed the model building. In addition, I discussed the results
with Nan Pu (Leiden University) and Li Qian (Ludwig Maximilian University of Munich) for
productization and industrialization. The project was supervised by Prof. Dr. Stefan Norra
(KIT and Potsdam University) and Prof. Dr. Yonghong Bi (IHB), with funding provided by
Prof. Dr. Yonghong Bi (IHB).

Abstract: Harmful algal blooms (HABs) pose a significant ecological threat and economic
detriment to freshwater environments. In an endeavor to manage these occurrences, we have
harnessed the potential of big data and deep learning models to engineer an intelligent early
warning system for HABs. Data acquisition is accomplished through a Vertical Aquatic
Monitoring System (VAMS), which, in conjunction with the "DeepDPM-Spectral Clustering"
methodology, facilitates an intricate analysis of the vertical algal distribution. This approach
curtails the number of predictive models and enhances the adaptability of the system.
Employing the Bloomformer-2 model, developed by our team, the system carries out both

single-step and multi-step prognostications of HABs. Our case study corroborates the superior

39



6 Algal Growth Early Warning Task Node

performance of Bloomformer-2, exhibiting high congruity with actual value curves and a lower
margin of predictive error. This system boasts the unique ability to identify the driving factors
of HABs, thereby aiding in the formulation of targeted preventive measures. Additionally,
the model’s remarkable intelligence - the capacity to autonomously learn from preprocessed
data - and its inherent adaptability pave the way for future system upgrades and broader
applications. As part of future work, it is proposed to augment the big data platform and
establish a VAMS monitoring network to bolster the system’s geographical coverage and
predictive capability. This research underscores the transformative potential of integrating big
data and artificial intelligence in environmental management, and emphasizes the importance

of model interpretability in machine learning applications.

6.2 Study area

Taihu Lake, situated in the rapidly developing Yangtze River Delta region of China, is the
country’s third-largest freshwater lake, with a surface area of 2,338 square kilometers [60]
(Figure 6.1. This shallow lake has an average depth of 1.9 meters [61]. Meiliang Bay, one of the
most eutrophic bays in the northern part of Taihu Lake, has an area of 124 square kilometers
and an average depth of 1.5 meters. The Liangxi River and Zhenwugang River, two major
rivers, transport urban pollutants from Wuxi and Changzhou City into Meiliang Bay. Since
1998, Meiliang Bay has experienced severe algal blooms in both summer and fall, owing to its

role as a major recipient of human activities and an important source of drinking water.

To evaluate the performance of the algal early warning system I developed, I conducted
experiments at the end of a 250-meter-long jetty at the Taihu Laboratory for Lake Ecosystem
Research (TLLER) (31.418903 N, 120.213293 E), located on the southern side of Meiliang Bay.
The panoramic photograph of the TLLER and the BIOLIFT installation position are shown
in Figure 6.2.

40



6 Algal Growth Early Warning Task Node

Figure 6.1: Location of Lake Taihu, Meiliang Bay and TLLER (pentagon)
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Figure 6.2: Panoramic photograph of the TLLER and the BIOLIFT installation position
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6.3 BIOLIFT and EBDP construction

In this task node, multi-sensor vertical monitoring is conducted using BIOLIFT, an advanced
system equipped with multiple sensors connected to a control box via a data transmission line
(Figure 6.3). BIOLIFT performs real-time recording of water quality parameters and depth
indicators while moving up and down at periodic intervals. Researchers can specify work cycles,
which are a series of up and down movements, by setting the time interval between each cycle.
The recorded parameters include conductivity (ECs5), temperature (Temp.), pH, turbidity
(Turb.), colored dissolved organic matter (CDOM), and Chl-a at 25°C. A meteorological station
(Vaisala meteorological Transmitter WXT520) is integrated with BIOLIFT to record wind
speed (WS) and wind direction (WD) during its operation. The particulars pertaining to the
BIOLIFT sensors, including their specifications, are elegantly delineated in Figure 6.1, whilst

the meteorological station is vividly depicted in Figure 6.2.

Table 6.1: Sensors of BIOLIFT and their specifications

Parameter Principle Range Resolution Accuracy Re;‘:r?:se
Pressure piezo-resistive  0-200dBar  0.005dBar +0.1dBar 0.04s
Temp. Pt 100 -2-38°C 0.001°C +0.01°C 0.12s
Potentiometric o
pH (Ag/AgCl) 0-14pH 0.02pH 0.02pH 1s(63%)
Fluorescence
CDOM exc.325nm 0-15};1520 0.01ppbQS +5% 1s
fl. 470nm PP
Fluorescence 0.03-500
Chl-a exc.465nm ’ _L 0.01 pg/L N.A. 1s
fl. 696nm na/
ECa5 T-pole-cell ~ 0-6mS/em  0.1uS/em  +2uS/cm 0.05s
Turb. ol O0T50FTU  <0.001% +2% 0.1s
ackscattering
Table 6.2: Sensors of meteorological station and their specifications
Parameter Principle Range Resolution Accuracy Re:;:::se
WD N.A. 0-360 1 +3 0.25s
WS NA.  060m/s  0.1m/s =3% 0.25s

at 10m/s

BIOLIFT data from the "2018-Winter" and "2019-Summer" datasets collected by TLLER
were used to construct the EBDP for this task node. Work cycle intervals were set at 10
minutes, and individual depth segments were set at 0.05 m. The "2018-Winter" dataset
included 15 days of BIOLIFT data, with each day comprising 132 work cycles and water
quality data for 23 depth segments (0.05m to 1.2m), as well as wind speed and direction. The
"2019-Summer" dataset captured 13 days of BIOLIFT data, with each day consisting of 134
work cycles and water quality data for 37 depth segments (0.1m to 1.95m), along with wind

speed and direction.
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Figure 6.3: Diagram of BIOLIFT

6.4 Optimization of modeling strategy

The "DeepDPM-Spectral Clustering" method was developed to cluster depth segments into
several reasonable groups. The efliciency of the system is improved by an optimization strategy

that models each group rather than each depth segment.

DeepDPM is an inference algorithm capable of inferring and changing the number of
clusters during training [62]. DeepDPM contains two main parts, the first part is the clustering
network, and the second is K subclustering networks (one for each cluster k, k € {1,..., K}).
The workflow of DeepDPM (Figure 6.4) is shown below [62]:

First given an arbitrary initial cluster number K, the data is fed to the clustering network

fe1, which generates K soft cluster assignments for each data point x;:

fa(X)=R=(r)Y, (6.1)

ri = (Tig)y (6.2)

Where r; 1 € [0,1] is the soft cluster assignment R of x; to cluster k and Zszl rig = 1.

Secondly, the hard assignments z = (Zz)£i1 are calculated according to the equation:

Zi = ArgMAX Ty ) (6.3)
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Next, each subclustering network f:“ub is fed the hard assignments data for its respective

cluster and generates a soft subcluster assignment, as the following equations show:

o (Xk) = Ry = (#)

(6.4)

iizi=k

T = (f‘z‘,j)i:l (6.5)

Where 7; ; € [0,1] is the soft assignment of @; to subcluster j(j € {1,2}), and 751 + 72 =
Wk e{l1,...,K}.

The clustering network f. and each subclustering network ffub is a simple multilayer
perceptron with a single hidden layer. The last layer of the clustering network has K neurons,

while the last layer of each subclustering network has two.

Finally, the split or merge decisions are made for changing K according to the Metropolis-
Hastings framework [63].

The split proposals are accepted stochastically with probability min (1, Hy), where Hg is
Hastings ratio. In the split step, each cluster is split into its two subclusters. The merge

proposals are accepted/rejected using the reciprocal number of the Hastings ratio Hs.

al’ (Ni1) fa (X 13 A\) T (Np2) fo (K23 )
[ (Nk) fz (Xk; M)

H, = (6.6)

Where Hg is the Hastings ratio, I' is the Gamma function, X = (x;),., ;. stands for the

tiz;=

points in the cluster k, Ny = X[, Xk; = (@) (j) denotes the points in the subcluster,

(z4,2:)=

J(7 € {1.2}), Ni; = | Xk |, and fi(;A) is the marginal likelihood where A represents the

Normal-Inverse Wishart hyperparameters [64].

After the split and merge steps, the initial cluster number K, clustering network, and K
subclustering networks are updated, and iterative operations are performed until the optimal

cluster number K is found.

The DeepDPM algorithm’s implementation is available on a public GitHub repository,
https://github.com/BGU-CS-VIL/DeepDPM. In order to accommodate my initiative, I've
undertaken a recompilation of the standard code’s terminal segments. This entailed the
integration of optimal cluster number statistics and the direct formulation of adjacency

matrices. The code is written in Python and utilizes the PyTorch library.
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Figure 6.4: Workflow of DeepDPM [6_2}

Spectral clustering [65] is an unsupervised ML method used for partitioning data into
groups or clusters based on the similarity between data points. It is particularly effective
for data that does not fit the assumptions of traditional clustering algorithms like K-means
[66] or hierarchical clustering [67]. The main idea behind spectral clustering is to analyze the
eigenvectors and eigenvalues of the Laplacian matrix derived from the data’s adjacency matrix.

The steps of spectral clustering are as shown below [65].
Given a set of points S = {s1,...,s,} in R! that we want to cluster into k subsets:

1. Form the affinity matrix A € R"*" defined by A;; = exp (— || si — s /20‘2) if i # 7,
and A; = 0.

2. Define D to be the diagonal matrix whose (i, )-element is the sum of A ’s i-th row, and
construct the matrix L = D~Y/24AD~1/2,

3. Find xy,29,...,7, the k largest eigenvectors of L, and form the matrix X =

[x129 . .. 23] € R™F by stacking the eigenvectors in columns.

4. Form the matrix Y from X by renormalizing each of X ’s rows to have unit length (i.e.
1/2
Yy = X/ (T, X3) )

5. Treating each row of Y as a point in R*, cluster them into k clusters via K-means or

any other algorithm (that attempts to minimize distortion).

6. Assign the original point s; to cluster j if and only if row i of the matrix Y was assigned

to cluster j.

This code was developed by me in Python to adapt the Spectral clustering algorithm to
my project, utilizing the fundamental concepts proposed by the author. The adopted strategy
enables spectral clustering to commence directly from a known cluster count and adjacency
matrix, circumventing the initial adjacency matrix construction. This primarily aims to bolster
the connectivity with DeepDPM.

In this task node, water quality parameter data, wind speed and direction from each work
cycle in the "2018-Winter" and "2019-Summer" datasets were separately input into DeepDPM
for deep clustering. The optimal number of clusters for each cycle was self-taught by DeepDPM,
and the distribution of the optimal number of clusters was counted. In addition, the adjacency
matrix can be obtained by calculating the probability of each depth segment being classified

into the same cluster throughout the experiment. After that, the adjacency matrix was
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clustered using spectral clustering. As the magnitude of the data scale swells (as in the scenario
of an infinite data scale), the optimum cluster number across all temporal instances inclines
towards congruity. Within the confines of the existing data scale, the predominant optimum
clustering number, on account of its emblematic nature, is chosen to represent the totality of

cluster number.

6.5 Long Short Term Memory

In this task node, I utilized a well-established DL model for time series prediction, known as
LSTM [68], to serve as a comparison with Bloomformer-2. LSTM is a type of recurrent neural
network (RNN) [69] architecture designed to address the vanishing gradient [70] problem
commonly encountered in traditional RNN. LSTM have a more complex structure than
standard RNN, incorporating memory cells and various gates to control the flow of information

through the network.

The architecture of the LSTM is shown in Figure 6.5. For moment ¢, the LSTM has three
inputs: the cell state C;_1, the hidden layer state h;_1, and the input vector at moment ¢, X;.
In addition, there are two outputs: the cell state C; and the hidden layer state h;, where h; is

also used as the output at moment t.

The gate layers of the LSTM is designed with some computational steps to adjust the
input with the values of the two hidden layers. The gate layers in LSTM contain forget gate
layer, input gate layer and output gate layer. The square components in Figure 6.5 represent
neurons, and the difference between them is the difference in activation functions. o denotes
the Sigmoid function, whose output is between 0 and 1, and tanh is the hyperbolic tangent

function, whose output is between -1 and 1 [71].

The forget gate layer plays a crucial role in determining which information is retained
or discarded from the cell state. When the forget gate has a value of 1, it allows all the
information from the previous cell state to persist. On the other hand, when the forget gate
has a value of 0, it discards all the information, effectively resetting the cell state. The function
is [72]:

fe =0 Wy [hy_1,2¢] + by) (6.7)

The input gate layer is used to selectively record new information into the cell state, and

the functions of input gate layer are [72]:

it =0 (Wi - [h—1,24] + b;) (6.8)
& = tanh (Wz - [hy—1, 4] + be) (6.9)
= frxei1+ i x & (6.10)
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QO

Figure 6.5: Architecture and workflow of LSTM [72]

The output gate layer is used to save the previous information into the hidden layer and

output a time step value and the functions of output gate layer are [72]:

0O = T (WQ [h,gfl, :L'ﬁ] + bo) (611)

hy = o * tanh (¢;) (6.12)

where W;, Wz, W, are the weights of forget gate, input gate and output gate respectively,

‘7 denotes the pointwise multiplication

b;, bz, b, are corresponding bias, and the operator
of two vectors. In the process of updating the cell state, the input gate is responsible for
determining the new information that can be stored, while the output gate is tasked with

deciding what information should be produced, all based on the cell state.

The LSTM architecture allows the network to learn and retain long-range dependencies in

the input data by controlling the flow of information through the memory cell and gates.
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6.6 Bloomformer-2

Bloomformer-2 is an enhanced version of the standard Transformer [57]. Its MHSA mechanism
(Section 5.3.2) evaluates each token in the input sequence in relation to other tokens, gathering
and learning dynamic contextual information. Simultaneously, it addresses the issue of the
standard Transformer’s inability to effectively manage complex multivariate Time Series
prediction (TSP) [59], as it treats the value of each variable at a specific time period as a
token in its graph, preventing each variable from having its unique contextual priority. The
improved method initially transforms the contextual sequence of historical data and the target
timestamp for prediction into an extensive spatio-temporal sequence. This sequence is then
transposed to generate the corresponding long spatio-temporal sequence. Both sequences are
processed using a Transformer-based encoder-decoder architecture to obtain the predicted
values for each variable. Subsequently, the predicted values are restructured into their original
format and trained to minimize prediction error metrics. The entire process consists of three

stages: parallel dual-sequence input, spatiotemporal embedding, spatiotemporal attention and

efficiency optimization. Figure 6.6 illustrates the architecture of Bloomformer-2.

In a bid to construct a genuine spatiotemporal prediction model, initially, I devised a
parallel dual-sequence input at the ingress point, comprising a temporal sequence and a spatial
sequence, which are transposes of each other. The design intention is to individually extract
temporal and spatial feature information via subsequent structures. Now, an imperative query
demands resolution: How do we embed this sequence so that the attention network parameters

can accurately interpret the information within each sequence?

To embed the temporal sequence, I employed Time2vec [73]. Time2vec is the creation of
a fully connected (dense) layer, accepting temporal input and outputting a vector of fixed
size (a tunable parameter), thereby transforming temporal features into a learnable vector
representation. This layer’s activation function could be a periodic function; I opted for a
sine function, capable of capturing the cyclical characteristics of the input data. Additionally,
these activation functions can handle continuously increasing inputs without inducing gradient
explosion or saturation, unlike common activation functions (such as Rel.U, Softmax, Sigmoid,
etc.). In Transformer-related models, spatial embedding is often achieved through position
embedding. In conventional Transformer models, absolute position encoding is usually
generated by predefined fixed functions (like sine and cosine), which do not involve learning.
To render position encoding with enhanced flexibility and generalizability, I implemented
learnable absolute position encoding. Specifically, it involves: 1) Initialization: creating a
position vector for every possible position, which is randomly initialized. The dimension of
the initialized vector is congruent with the dimension of the embedding vector. 2) Vector
Addition: Prior to inputting the embedding vector into the model, the embedding vector is
added to its corresponding position vector, thereby encoding the position information into the
embedding vector. 3) Training: During the model’s training process, the position vector is

updated through the backpropagation of the fully connected layer.

Following the self-attention of the embedded time and space sequences, temporal and spatial

feature information is extracted. The ensuing step is the amalgamation of temporal and spatial
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feature information, thereby translating it into spatiotemporal feature information. Here, I
have designed a spatiotemporal attention mechanism. Specifically, the "query" outputs of the
temporal sequence self-attention layer (@Q¢) and the "key" and "value" outputs of the spatial
sequence self-attention layer (K, and V) are used for attention computation. Simultaneously,
the "query" outputs of the spatial sequence self-attention layer (Qs) and the "key" and "value"
outputs of the temporal sequence self-attention layer (K} and V;) are also employed for attention
computation. Thus, time and space are integrated via the attention mechanism, which I dub

spatiotemporal attention.

Considering the prediction task of algal growth is a prolonged forecasting assignment,
utilizing the attention mechanism in this task would complexify learning, thereby augmenting
the model’s training time. To enhance the model’s training efficiency and impart it with a
degree of timeliness, I utilized Batch Normalization [74] and Pre-Norm structures [75]. Batch
Normalization primarily resolves the Internal Covariate Shift problem, i.e., the alteration of
input distribution between network layers, thereby increasing network training instability and
reducing the time required to train a deep network. The Pre-Norm structure, while increasing
model training stability, can also increase the model’s depth, thereby endowing Bloomformer-2

with considerable potential.
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Figure 6.6: Architecture of Bloomformer-2
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6.7 Prediction strategy

The prediction strategy can be divided into single-step prediction and multi-step prediction [76].
In single-step prediction, a 2-day time step (268 in summer and 264 in winter) is employed to
predict the subsequent Chl-a data point. The prediction advances by sliding one step forward
at a time. On the other hand, multi-step prediction utilizes the Seq2Seq prediction strategy
[77], specifically designed for DL models. In this task node, 2-day time steps (268 in summer
and 264 in winter) serve as input sequences to predict the following 3-day time steps (402 in
summer and 396 in winter), which function as output sequences. Prior to incorporating all

data into the model, data normalization is performed using the Z-score (Section 4.3.1).

6.8 Performance evaluation of model

Mean Absolute Error (MAE), Mean Squared Error (MSE), and MAPE (Section 4.3.3) are
used to evaluate the performance of LSTM and Bloomformer-2. The Units of MAE and MSE
are the same as the respective water quality parameter units, and the unit of MAPE is %. In
addition, the 95% confidence interval of the predicted value for both DL modes was calculated,

respectively.

MAE [45] was calculated as:

MSE [78] was calculated as:

where 7; is the predicted value of the ith sample, y; is the corresponding true value of the

total n samples, and 7; is the mean of true value.

6.9 Computational Environment
The experiment was carried out on a PC with the following features: Hardware: CPU i7-6950X,

RAM 64GB, dual GeForce RTX 3090, VRAM 24GB Software: Ubuntu 20.04, Python3.6,
Pytorch 1.10.0, Numpy 19.2.
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6.10 Results

6.10.1 Result of water depth clustering

Each work cycle within the datasets pertaining to "Winter-2018" and "Summer-2019" was
independently introduced into DeepDPM for deep clustering. The distribution of the optimal
cluster number, as exhibited in Figure 6.7, reveals that the optimal cluster numbers are five
during the four in 2018-winter (57.0%) and 2019-summer (46.2%). Partial adjacent matrices
for winter and summer are delineated in Figure 6.8. These adjacent matrices underwent
spectral clustering to refine the modeling strategy, the outcomes of which are cataloged in
Table 6.3. In the summer of 2019, the aquatic depth within the target region was bifurcated
into five factions, designated Group S1 through Group S5. Conversely, in the winter of 2018,
the aquatic depth was segregated into four factions, marked as Group W1 through Group W4.

Optimal number of clusters

Optimal number of clusters . 3
— —
(2018-Winter) (2019-Summer)

Figure 6.7: Distribution of optimal cluster number
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Figure 6.8: Adjacency matrix of 2018-Winter and 2019-Summer (an example of 10 depth segment,
a depth segment is 0.05m )
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Table 6.3: Result of water depth clustering

Season Water depth group

Group W1 Group W2  Group W3  Group W4

0.05-01m 0.1-03m 0.3-09m 0.95-12m

Group S1 Group S2  Group S3 Group S4 Group S5
0.1-0.15m 0.15-04m 04-09m 0.95-15/m 1.55-1.95m

Winter 2018

Summer 2019

6.10.2 Model performance evaluation

The single-step prediction results for group S1 and W1, as examples, are depicted in Figure
6.9. The prediction errors of the two DL models in single-step prediction were calculated and
presented in Table 6.4 (The bold-italic values represent the best performance). In comparison
to the LSTM model, the prediction value curves of Bloomformer-2 for groups S1, S2, S4, W2,
W3, and W4 exhibit a closer fit to the true value curves, accompanied by narrower confidence
intervals. Moreover, the prediction error of Bloomformer-2 is smaller than that of LSTM. In
the S3, S5, and W1 groups, Bloomformer-2’s single-step prediction accuracy is comparable to
that of LSTM.

Table 6.4: Errors of single-step prediction of Bloomformer-2 and LSTM

Water depth group Model MAE MSE MAPE
Bloomformer 0.254 0.305 2.279

Group S1

LSTM 0.916  1.887 R.427
Group S2 Bloomformer 0.394 0.246  2.108
LSTM 0.541  0.573 2.969
Group S3 Bloomformer 0.357 0.205 0.733
LSTM 0.309 0.154 0.998
Group S4 Bloomformer 0.288 0.142 0.848
LSTM 0.301 0.143 0.855
Group S5 Bloomformer 0.417 0.249 1.955
LSTM 0.373 0.271 1.162
Group W1 Bloomformer 0.244 0.072 0.266
LSTM 0.159 0.076 0.191
Group W2 Bloomformer 0.213 0.056 0.269
LSTM 0.329 0.129 0.421
Group W3 Bloomformer 0.201 0.052  0.247
LSTM 0.688  0.509 0.801
Group W4 Bloomformer 0.175 0.042 0.228
LSTM 0.184 0.044 0.237
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Multi-step predictions for day-11, 12, and 13 for each water depth group for both "2018-

Winter" and "2019-Summer" were conducted using both models. The single-step prediction

results for group S1 and W1, as examples, are displayed in Figure 6.10. The prediction errors

of the two DL models in multi-step prediction are provided in Table 6.5 (The bold-italic values

represent the best performance). Bloomformer-2 outperforms LSTM in multi-step prediction

for all groups, as evidenced by the predicted value curves being closer to the true value curves

and the smaller prediction errors.

Table 6.5: Errors of multi-step prediction of Bloomformer-2 and LSTM

Water depth group Model MAE MSE MAPE
Group S1 Bloomformer 0.207 0.161 1.091
LSTM 0.613 1.086 5.264
Group S2 Bloomformer 0.421 0.269 4.011
LSTM 0.474  0.361 4.034
Group S3 Bloomformer 0.238 0.101 0.349
LSTM 0.526  0.473 2.629
Group S4 Bloomformer 0.341 0.184 1.39
LSTM 0.549  0.508 2.418
Group S5 Bloomformer 0.505 0.378 1.679
LSTM 0.512  0.402 3.748
Group W1 Bloomformer 0.249 0.121 0.372
LSTM 0.339 0.337 0.621
Group W2 Bloomformer 0.184 0.105 0.492
LSTM 0.353  0.283 0.799
Group W3 Bloomformer 0.188 0.068 0.243
LSTM 0.291 0.301 0.352
Group W4 Bloomformer 0.361 0.167 0.558
LSTM 0.397  0.307 0.603
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6.10.3 Driving factors for the predicted value

The comprehensive driving factors of 11*" to 13* prediction for Group W1 and S1 are shown
in Figure 6.11 and Figure 6.13, respectively. And the driving factor of the predicted value for
all work cycles for Group W1 and S1 on the 11th day is shown in Figure 6.12 and Figure 6.14,

respectively.

day-12 day-11

Importance (%)

day-13

Temp. ECas pH Chl-a CDOM Turb. WD ws

Figure 6.11: Driving factor of 11" to 13*" day prediction for Group W1
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Figure 6.12: Driving factor of predicted value for all work cycles for Group W1 on 11" day
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Attention Weight for Group S1 of 11-th day

day-11
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day-13
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Figure 6.13: Driving factor of 11*" to 13" day prediction for Group S1
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Figure 6.14: Driving factor of predicted value for all work cycles for Group S1 on 11" day
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In alignment with the World Health Organization’s "Alert Level Framework," two Chl-a
benchmarks (1 pg/L and 12 pg/L) are deployed to determine potential conditions fostering
algal bloom eruptions [79]. The former threshold resonates with "Alert Level I," symbolizing

the embryonic phase of HABs, while the latter corresponds to "Alert Level IL," indicative of
acute HABs.

Upon examination of predicted metrics spanning three days for Group W1, Chl-a
concentrations consistently inhabited the interval between 1 pg/L and 12 pg/L, insinuating
a persistent "Alert Level 1" state across the experimental zones. Comprehensive mitigation
strategies can thus be proposed for each day. Delving into the multi-step prognostication
results on the 11" day, Chl-a and wind velocity surfaced as paramount driving factors. The
12" day elevated the importance of wind speed and Chl-a, while the 13" day highlighted
CDOM and wind velocity. Antecedent research posits that wind speed can trigger bottom
sediment upheaval in shallow reservoirs such as Taihu Lake, releasing nutrients that stimulate
algal proliferation [60]. Simultaneously, this resuspension process can significantly escalate
turbidity. However, model outcomes illustrate that turbidity’s influence is marginal. Hence,
the accentuated weight of wind speed is likely attributed to its role in coalescing algae from
surrounding regions at the target locale. The subsequent algal demise amplifies the CDOM
content within the water strata. Subject to photochemical decay, CDOM can transition from
macro-molecular organic matter to micro-molecular organic matter and inorganic nutrients,
thereby nurturing conditions favorable for algal proliferation [80]. In summation, for Group
W1, the prevention of algal confluence within the area forms a crucial cornerstone in devising
preventative measures, such as the placement of algae interception barriers around the area’s

outskirts.

With respect to the predicted values for the triad of days concerning Group S1, nine
temporal instances succumbed to Alert Level 11, while the remainder maintained Alert Level
1. Initially, exhaustive preventative measures for each day can be proposed, drawing from
multi-step prediction results. Predominant driving factors on the 11" day were identified as
Chl-a and CDOM. The 12" day underscored Chl-a and CDOM, while the 13" day spotlighted
CDOM and pH. Contrasting the winter season, neither wind speed nor direction emerged
as primary influencers in summer, suggesting algal genesis primarily from localized growth.
Additionally, factors such as algal mortality and surface runoff escalated CDOM and pH
within the water strata at the experimental sites, fostering algal proliferation. As a result,
the extraction of existing algae at the experimental sites, coupled with pH adjustment, may
serve as an efficacious countermeasure against HABs outbreaks of Alert Level I, such as the

employment of acidic algaecides and manual salvage.

6.11 Conclusion of algal growth early warning task node

In the face of escalating ecological threats and economic damages posed by harmful algal
blooms (HABs) in freshwater environments, a novel approach has been developed that leverages
the power of big data and deep learning models. This intelligent early warning system for

HABS represents a significant stride forward in managing these phenomena. Data is gathered
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through a Vertical Aquatic Monitoring System (VAMS), which, when combined with the
"DeepDPM-Spectral Clustering" methodology, provides a detailed analysis of vertical algal
distribution. This approach streamlines the number of predictive models and enhances the
system’s adaptability. The system utilizes the Bloomformer-2 model developed by me to
perform both single-step and multi-step predictions of HABs. Our case study validates the
superior performance of Bloomformer-2, demonstrating high alignment with actual value
curves and a reduced margin of predictive error. One of the system’s unique features is its
ability to identify the driving factors of HABs, which aids in the development of targeted
preventive measures. The model’s impressive intelligence - its ability to autonomously learn
from preprocessed data - and inherent adaptability set the stage for future system enhancements

and wider applications.
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Synoptic Discussion

The preceding chapter delineates the formulation of a comprehensive research framework an-
chored on big data, focused on water environment management, and marks the accomplishment

of four exemplary task nodes at this juncture. These encompass:

1) Water quality monitoring and assessment task node: The EBDP for this task node
is constructed from measurements procured by RST and CMT. The DNN is employed to
apprehend the intricate relationships between remote sensing information and water quality
parameters, thereby fulfilling the task node of water quality monitoring. Subsequent to this,
IDEC is utilized to conduct a profound clustering of the water quality monitoring results,

culminating in the accomplishment of the water quality assessment task node.

2) Algal growth driving factor identification task node: The EBDP for this task node is
meticulously constructed from high-frequency, prolonged manual field sampling. Bloomformer-1
has been developed to precisely apprehend the spatial association information between Chl-a
and other water quality parameters, thereby accomplishing the task node of identifying the

driving factors of algal growth.

3) Algal growth early warning task node: The EBDP for this task node is constructed
from the measurements gathered by VAMS (BIOLIFT). Bloomformer-2 has been developed
to capture, with precision and efficiency, the spatio-temporal information in lengthy time
series encompassing Chl-a, water quality parameters, and meteorological parameters, thereby

facilitating the development of an algal growth early warning system.

This part proceeds to examine the merits of big data in the realm of WEM, the
amalgamation of industry clusters for WEM big data, and the interpretability of the models.

7.1 Potentials of big data in WEM

As demonstrated by the fulfillment of task nodes, big data assumes a pivotal function in

tackling the complexities of WEM, providing an array of benefits that contribute to optimizing
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resource utilization, enhancing efficiency, and facilitating sustainable decision-making. The

subsequent discourse delineates the merits of big data within the context of WEM.

First and foremost, big data exhibits considerable adaptability in addressing nodal tasks.
In the water quality monitoring task, comprehensive water quality monitoring of a large
reservoir (approximately 70 km?) must be accomplished within a short time frame (5 hours) by
a limited number of individuals (4 people). In the water quality assessment task, a multi-factor
comprehensive evaluation of the water quality of large reservoirs is required, along with the
accurate delineation of the joint control area. For the algae growth driver identification task,
it is imperative to precisely identify the algae growth drivers without conducting preliminary
experiments. In the algal growth warning task, accurate predictions of algal growth with
high temporal resolution and depth-based information are necessary. The outcomes of each
task node reveal that the big data research approach is capable of accomplishing these tasks,
whereas the small data research approach is insufficient. For instance, at the current stage,
the hypothesis-driven small data approach can only resolve the remote sensing inversion of

water quality parameters with optical properties.

Another conspicuous benefit is the remarkable accuracy demonstrated by the models.
Performance evaluations of various nodal tasks reveal that the results derived from the big
data approach exhibit high precision. For instance, the remote sensing inversion accuracy of
BP attains a value of 0.95.

Furthermore, big data offers the advantage of comprehensiveness. On one hand, owing to the
attributes of EBDP and the high performance of value mining tools, hig data can amalgamate
and analyze information from multiple sources, such as satellite imagery, meteorological
data, and water quality parameters, as evidenced in the task nodes. On the other hand, the
data within EBDP represents the entire system rather than an isolated process, implying
that the value extracted from EBDP also constitutes an integrated value interpretation of
the whole system. This advantage can assist water managers in better comprehending the
factors influencing water availability, quality, and distribution, and in devising more efficacious

strategies to manage these resources.

Lastly, big data presents the advantage of fine granularity. Fine granularity entails
collecting, storing, and analyzing data at a more detailed and intricate level, capturing nuanced
fluctuations and patterns that may elude detection in coarser granular datasets. The automated
equipment employed in the task node undoubtedly enhances the detail of data collection and
storage, such as BIOFISH enabling the high-density collection of water quality data with GIS
(Geographic Information Systems) labels, and BIOLIFT enabling high temporal resolution
collection of water quality parameters with depth labels. This collection methodology can be
characterized as a comprehensive process, mitigating the loss of crucial information to a certain
extent. Concurrently, deep learning can perform deep data mining from these fine-granular
datasets. This fine granularity advantage empowers decision-makers to base their choices
on more detailed information and a deeper comprehension of various phenomena, thereby

formulating superior and more targeted strategies, policies, or interventions.
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7.2 Industry cluster for WEM big data

Industrial clusters pertain to an economic notion characterized by geographically concentrated
enterprises, manufacturers in interconnected industries, and affiliated institutions within a
specific region, which maintain competitive and cooperative relationships while exhibiting
interdependence [81]. The genesis of such clusters is frequently ascribed to a multitude of factors,
encompassing access to skilled labor, raw materials, specialized infrastructure, or proximity to
markets. Industrial clusters give rise to cluster effects, encompassing resource agglomeration,
synergy and spillover, as well as the division of labor effects, ultimately conferring benefits upon
associated businesses and industries [82]. Notable exemplars of industrial clusters encompass
Silicon Valley in the United States (technology and innovation), the automotive cluster in

Stuttgart, Germany, and the fashion and design cluster in Milan, Ttaly [83].

From an economic standpoint, my doctoral research endeavors to devise a comprehensive
framework for WEM Big Data, which can be conceptualized as a WEM Big Data industrial
cluster. Within this framework, each task node assumes a distinct function in the WEM
industry. For example, the water quality monitoring task node operates as an upstream raw
material supplier, whereas the algal driving factor identification task node functions as a service
provider, accountable for the facilitation of pertinent services. The inherent attributes of big
data provide the basis for the establishment of a competitive and cooperative network amongst
the nodes. Analogous to the cluster effect observed in the emergence of industrial clusters in
the realm of economics [84], the WEM Big Data industrial cluster likewise engenders a cluster
effect. The key term for the cluster effect, engendered by the successful completion of the four

task nodes within my doctoral research, is precision.

Precision encompasses two dimensions: spatial and methodological, which pertain to the
loci of intervention and the specific actions to be undertaken. The water quality monitoring
task node carries out comprehensive evaluations of extensive water bodies. Initial analyses of
the monitoring outcomes pinpoint relatively expansive risk areas and corresponding remedial
strategies, such as the abrupt decline in dissolved oxygen (DO) at the tail end of the Qingcaosha
Reservoir. Successive water quality assessment task nodes, employing big data techniques,
partition the entire water body into multiple joint management and control zones. The
lucid demarcation of each zone’s boundaries augments the precision of risk area identification.
Concurrently, the application of the driving factor identification task node to each joint
management and control zone accurately ascertains the characteristic factors of every region,
thus establishing a foundation for subsequent management interventions. The spatiotemporal
dynamics of water quality monitoring and assessment outcomes can be efficiently acquired
by performing water quality monitoring and assessment within a singular water body over
a protracted duration. An examination of these spatiotemporal dynamics unveils specific
regions within the reservoir that fall within different joint management and control zones
at different times at varying time intervals, thereby designating them as fluctuating areas
(typically situated at the peripheries of the joint management and control zones). These

areas necessitate heightened vigilance. The placement of the BIOLIFT from the algal growth
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warning task node within these areas furnishes a more precise foundation for management and

control measures.

This transition from encompassing the entire water body to focusing on joint management
and control zones, and ultimately pinpointing the fluctuating areas, epitomizes precision in
the spatial dimension. Simultaneously, the progression from indistinct surface conditions to
well-defined surface conditions, and subsequently to exact underwater conditions, embodies

precision in the methodological dimension (Figure 7.1).

7.3 Model interpretability

As delineated in Section 1.1, it is posited that in the realm of WEM research, the pursuit of
correlation and causality within the subject matter should be amalgamated. The sequential
approach ought to initially focus on identifying correlation, followed by the progression from
correlation to causality, facilitated by relevant prior knowledge. Model interpretability serves
as a critical juncture in the process of deducing causality from correlation and can also be

regarded as the embodiment of causality in the search for correlation.

Model interpretability refers to the degree to which a model’s internal workings, predictions,
and decision-making processes can be understood and explained by humans [85]. It directly
determines whether the model is trustworthy. The interpretability of a model can be
represented by transferability and understandability [86]. Humans possess a crucial ability
to induce and transfer skills across various fields, and models should also be able to operate
in such environments, such as when conditions are less stable. This is the transferability or
generalizability of the model. Understandability represents the extent to which we comprehend
the workings of the model, also known as transparency. A model lacking transparency in the
decision-making stage is a black box model, whereas a transparent model is considered a white
box model. Figure 7.2 shows the levels of transparency of some models [87]. It is evident that
using highly interpretable models to seek correlation will subsequently allow us to obtain some
causal clues by analyzing the model’s internal workings, thus facilitating the inference from

correlation to causality.

A pivotal aspect of big data methodologies pertains to the selection of value mining
methods or models [88]. To procure more precise correlations, it is imperative to opt for
models with superior performance. Concurrently, to facilitate the inference of causality from
correlation, it is essential to select models with high interpretability. Presently, there exists
a tension between the performance and interpretability of models. As illustrated in Figure
7.3, enhanced model performance typically implies more intricate algorithms, which may
consequently result in diminished interpretability. Therefore, model selection necessitates
striking an equilibrium between performance and interpretability. The task nodes encompassed
within the WEM big data framework are complex and intimately connected to practical
applications, rendering this balance even more crucial. In contrast to DNN employed in the
water quality monitoring task node, the development and implementation of Bloomformer-1 and
Bloomformer-2 in the subsequent two task nodes have thoroughly considered both dimensions

of model performance and interpretability, enabling superior performance while concurrently
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Figure 7.2: Levels of transparency of some models : (a) Linear regression; (b) Decision trees;
(c) K-Nearest Neighbors; (d) Rule-based Learners; (e) Generalized Additive Models; (f) Bayesian
Models. This figure comes from [87].

accounting for interpretability to a certain degree. Given the burgeoning popularity of model

interpretability research and several technological advancements in recent years, the task nodes

incorporated into the framework at a later stage will more readily grasp or even transcend this

balance, thereby designing models with both high interpretability and exceptional performance.
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Hierarchical Bayesian Networks; SLR: Simple Linear Regression; CRF: Conditional Random Fields;
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XGB: XGBoost; CNN: Convolutional Neural Network; and GAN: Generative Adversarial Network.
This figure comes from [89].
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8 Conclusion and QOutlook

Conclusion and Outlook

8.1 Conclusion

WEM is a critical aspect of sustainable development. With the advancement of data science, big
data has emerged as a transformative force in WEM, offering significant potential for addressing
various challenges related to water resources. In this doctoral thesis, a big data framework in
WEM was constructed, and four task nodes were finished: water quality monitoring, water
quality assessment, identification of algal growth driving factors, and algal growth early

warning.

The research area for the water quality monitoring task node is the Qingcaosha Reservoir.
Its Environmental Big Data Platform is built using data collected by satellite remote sensing
(Sentinel-2) and cruise monitoring devices (BIOFISH). A Deep Neural Network (DNN) is
selected as the value mining tool. Results demonstrate that DNN performs exceptionally well
in monitoring four water quality parameters (pH, DO, El.cond, and BP), accurately estimating
the reservoir’s overall water quality situation (R? values ranging from 0.77 to 0.95 for the

different parameters).

The research area for the water quality assessment task node is also the Qingcaosha
Reservoir. The Environmental Big Data Platform employed here consists of the results from
the water quality monitoring task node. The Improved Deep Embedding Clustering (IDEC)
is chosen as the value mining tool. Results indicate that the entire Qingcaosha Reservoir is
distinctly divided into four joint management zones, with each zone’s characteristic factors
determined through statistical methods, providing the basis for formulating regional joint

management strategies.

The research area for the identification of algal growth driving factors task node is the
middle route of South-to-North Water Diversion Project. The EBDP used encompasses
high-frequency, four-year manual sampling data. The value mining tool is Bloomformer-1,

which I developed based on the Transformer core structure. Without extensive prior knowledge
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and preliminary experiments, Bloomformer-1 achieves the highest R? (0.80 to 0.94) and the
lowest RMSE (0.22 to 0.43 p g/L) in both single sub-site and full-line simulations of MRP.
Furthermore, Bloomformer-1 exhibits improved interpretability, ensuring reliability and direct
applicability to real-world scenarios. The application of Bloomformer-1 in MRP indicates that
total phosphorus (TP) is the most critical driving factor for MRP. Consequently, controlling and
reducing phosphorus levels are essential strategies for managing algal growth and maintaining
MRP water quality stability.

The research area for the algal growth early warning task node is Lake Taihu. The EBDP
employed here is constructed from data collected by a vertical water quality monitoring system
(BIOLIFT). Value mining tools include DeepDPM, Spectral clustering, and Bloomformer-2,
which I developed based on the Transformer core structure. The combined use of DeepDPM
and spectral clustering groups depth segments into several reasonable clusters, optimizing
system efficiency through modeling strategies for each group rather than individual depth
segments. Results show four depth groups in winter 2018 and five depth groups in summer
2019. Bloomformer-2 demonstrates outstanding performance in both single-step and multi-step
predictions for all depth combinations. Moreover, like Bloomformer-1, Bloomformer-2 also
exhibits enhanced interpretability, ensuring reliability and direct applicability to real-world

scenarios.

In summary, the successful completion of the four example task nodes highlights the
numerous advantages that big data offers in WEM, including but not limited to high
adaptability, accuracy, comprehensiveness, and fine granularity within the task nodes. Moreover,
the big data WEM framework established in this doctoral research forms an industry cluster
exhibiting the characteristics typically associated with such clusters. The key theme emerging
from the cluster effect generated by the four example task nodes is precision, which enables
the development of accurate strategies and responsive measures for watershed water quality
management. The implementation of the big data WEM framework exemplifies the potential of
employing data-driven approaches to tackle complex water environment management challenges.
By incorporating precision in both regional and methodological aspects, this research advances
our understanding of water resources management and offers practical solutions for sustainable
water environment management. As future research builds upon this framework and integrates
additional task nodes, the benefits and effectiveness of the big data WEM approach are
expected to further increase, ultimately contributing to the overarching goal of sustainable

development and responsible water resource management.

8.2 Informatization of the WEM industry cluster -~ WEM

foundation model

From the perspectives of environmental science, economics, and computer science, this
doctoral thesis essentially digitalizes the WEM industry cluster through big data. This digital
transformation retains the advantages of traditional industry clusters while also mitigating their

geographical limitations to some extent. To achieve further clustering effects, the framework’s
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scale must be expanded with the addition of more task nodes, such as flood and drought

prediction and mitigation, as well as the optimization of water infrastructure.

The rapid growth in scale introduces more diverse data formats and larger data
capacities, resulting in fragmented and diverse value mining scenarios. The development
cost of value mining tools, i.e., Al models, is extremely high, necessitating a process of
development, parameter tuning, optimization, iteration, and application. Therefore, under
these circumstances, the approach of customizing models for corresponding task nodes, as
demonstrated in this doctoral thesis, also known as the workshop mode, proves challenging. To
facilitate the transition from the workshop mode to the factory mode, foundation models offer
a feasible solution, specifically the "pre-trained large model + downstream task fine-tuning"
approach. Large-scale pre-training can effectively capture knowledge from vast amounts of
labeled and unlabeled data, storing the knowledge in numerous parameters and fine-tuning
the model for specific tasks to enable it to cope with multiple scenarios adequately. Moreover,
designing foundation models for multi-modal, multi-task purposes is crucial to accommodate

diverse data sources.

In summary, expanding the scale of the WEM big data framework and establishing a
cross-scenario, multi-task, and multi-modal WEM foundation model based on this framework

is the ultimate solution for addressing future WEM-related challenges.
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of Environmental Science and Engineering, Tongji University, Shanghai, China

Accurate monitoring and assessment of the environmental state, as a prerequisite
for improved action, is valuable and necessary because of the growing number of
environmental problems that have harmful effects on natural systems and human
society. This study developed an integrated novel framework containing three
modules remote sensing technology (RST), cruise monitoring technology (CMT),
and deep learning to achieve a robust performance for environmental monitoring
and the subsequent assessment. The deep neural network (DNN), a type of deep
learning, can adapt and take advantage of the big data platform effectively provided
by RST and CMT to obtain more accurate and improved monitoring results. It was
proved by our case study in the Qingcaosha Reservoir (QCSR) that DNN showed a
more robust performance (R* = 0.89 for pH, R* = 0.77 for DO, R = 0.86 for
conductivity, and R? = 0.95 for backscattered particles) compared to the traditional
machine learning, including multiple linear regression, support vector regression,
and random forest regression. Based on the monitoring results, the water quality
assessment of QCSR was achieved by applying a deep learning algorithm called
improved deep embedding clustering. Deep clustering analysis enables the
scientific delineation of joint control regions and determines the characteristic
factors of each area. This study presents the high value of the framework with a
core of big data mining for environmental monitoring and follow-up assessmentin
a manner of high frequency, multidimensionality, and deep hierarchy.

KEYWORDS

deep learning, environmental big data mining, cruise monitoring, remote sensing,
water quality, monitoring, assessment
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1 Introduction

A growing population and climate change along with land
use changes are increasing pollutant loads into freshwater
ecosystems, making clean water an increasingly critical issue
worldwide Sagan et al. (2020). As one of the indispensable
foundations of clean water management, developing an
economical, accurate, and practical water quality monitoring
and assessing system has become unavoidable to scientists,
policymakers, and environmental resource managers.

The traditional and widely applied water quality monitoring
is point-based, placing a fixed site of varying density and
dispersion in the area to measure the water quality within a
given time series. However, limited research resources such as
staff, time, equipment, money, and accessibility become a
Thus, the
conducted to estimate water quality by limited monitoring

challenge. spatial interpolation method was
points Li and Heap (2014). This method required a massive
decentralized monitoring point across the study area, which is
also subjected to limited research resources Lee et al. (2012).
With the significant development of sensors, cruise
monitoring technology (CMT) has proven to be more
effective for extracting environment-related parameters
compared to point-based monitoring Holbach et al. (2014). It
relies on a multisensor probe to record the water quality data as
well as consecutive geographic information along the cruise
Although CMT makes
compared to the point-based method because it can collect a
large amount of in sifu measurement data in a certain period of

time, a route design is still necessary since the geographic

route. progress in monitoring

information is a key parameter to spatial interpolation modeling.

In recent years, remote sensing technology (RST) has
developed rapidly and played a significant role in the data
collection and analysis of different Earth resources Feyisa
et al. (2014). The data collected by RST are area-based since
RST can scan the objective area directly. The status of water
quality in a broader space is obtained according to an inversion
model established using the in situ monitoring data (i.e., water
quality parameters) and corresponding RST image data Yuan
et al. (2020). According to the interaction with light, water-
quality parameters can be categorized into optical parameters
(ie., chlorophyll-a and turbidity) and nonoptical parameters
(ie., dissolved oxygen); it should be noted that most of the
studies have focused on optical parameters, and the detection
accuracy for nonoptical parameters is not high Hassan et al.
(2021).
information and nonoptical parameters are very complex and

Specific internal correlations between spectral
challenging to find due to the absence of direct optical properties
Niu et al. (2021). Therefore, data-driven machine learning has
become an indispensable tool for finding this complex
correlation Zhong et al. (2021) Sagan et al. (2020). In earlier
studies, linear approaches such as multiple linear regression

(MLR), partial least squares (PLSs), and genetic algorithms
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(GAs) were popular Ortiz-Casas and Pena-Martinez (1989);
Stork and Autrey (2005); Zhan et al. (2003). Although linear
models showed some degree of accuracy and feasibility, the
nonlinear relationship between the in situ measured data and
RST data makes the linear models less reliable in interpreting
information from RST Chang et al. (2015). With the
development  of learning, several nonlinear
approaches such as support vector regression (SVR), random
forest regression (RFR), and gradient boosting decision tree
(GBDT) have been developed and applied by many scientists
to capture complex statistical relationships between RST and

machine

measured water quality parameters in recent years Kim et al.
(2014); Forkuor et al. (2017); Abdel-Rahman et al. (2013). With
the advances in algorithm development and computing power,
the drawbacks of traditional machine learning become apparent,
while deep learning, with its powerful big data processing
capabilities, is receiving more attention. In our framework,
deep neural networks (DNNs), one type of deep learning,
were selected as a tool to approximate the complex nonlinear
relationship between measured water quality parameters and
RST observations through multilayer perception Marcais and de
Dreuzy (2017).

It is important to note that the performance of deep learning
methods is particularly dependent on a large number of training
samples, which is difficult to obtain in real-world scenarios Sagan
et al. (2020). The CMT mentioned earlier can significantly
increase the speed of acquiring training samples, thus
providing a sufficient database for deep learning RST
inversion model building. On the other hand, RST, to a
certain degree, liberates CMT from dependence on route
design since geographic information is not involved in the
inversion modeling.

As an important part of the water monitoring project, a
representative and reliable assessment of water quality is
necessary because of the spatial and temporal variability of
water parameters Simeconov et al. (2003). The conventional
methods for assessing the quality of water bodies are the
single-factor assessment method, water quality grading
method, and comprehensive pollution index method. These
methods play an active role in the assessment process of
water quality. However, the single-factor assessment method
does not fully describe the overall water quality when there
are multiple impairments. The water quality grading method
ignores the influence of extreme contributing factors (maximum
and minimum pollutant parameter values), making it difficult to
assess the overall water quality conditions between sites when
The calculation result of the
comprehensive pollution index method is a relative value and

extreme conditions occur.

cannot indicate the specific water quality classification Ji et al.
(2016). In particular, when faced with the huge and complex
matrix of water quality attributes formed by the establishment of
a big data platform like this study, making a meaningful water
quality assessment is often difficult Singh et al. (2005). A cluster
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FIGURE 1

Schematic illustration of (A) the novel framework and (B) the architecture of DNN.

analysis can be applied to interpret these complex data matrices
to help understand the water quality and ecological status of the
studied systems, identifying the possible resources and finding
rapid solutions to pollution problems by grouping the data so
that similar elements are assigned to the same group and different
elements are assigned to different ones Vo-Van et al. (2020);
(2003).
clustering is more effective at analyzing big data than
traditional clustering methods Guo et al. (2017), such as
K-means and C-means, an advanced deep learning clustering

Simeonov et al

Additionally, considering that deep
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algorithm, improved deep embedded clustering (IDEC), was
used for the water quality assessment in this study.

The aim of this study is to develop a novel framework with a
core of big data mining, integrating (1) CMT data from
multisensor monitoring systems, 2) RST information from the
satellites, and 3) deep learning for rapid and effective overall
water quality evaluation and the follow-up assessment of the
environmental situation. This novel framework was applied in
the Qingcaosha Reservoir (QCSR), located in Shanghai, to prove
its reasonability and reliability.
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2 Materials and methods

To achieve a robust performance in water quality monitoring
and assessment, the framework integrates the following three
modularized parts: RST, CMT, and deep learning. The DNN
model is responsible for efficient water quality monitoring on a
big data platform created by CMT and RST, while the IDEC
model is used for further assessment based on the previous
monitoring results (Figure 1A). A sampling activity in QCSR
(Supplementary Figure S1) was implemented to validate the
performance of the framework. QCSR is one of the largest
tidal reservoirs around the world. It is located in the
middle of the Yangtze River Estuary (31.42-31.49N,
121.55-121.71E), and is the new largest drinking water supply
for about 12 million Shanghai residents Liu et al. (2016a) since
2010 (Figure 2). The reservoir is long and narrow with a surface
area of approximately 70 km* and an average depth of 2.7 m Liu
et al. (2016b).

2.1 Remote sensing module

Sentinel-2 is an Earth observation satellite designed to
systematically deliver optical imagery at high spatial resolution
(10, 20, and 60m) over land and waters Drusch et al. (2012)
(Supplementary Table S2). Due to its relatively high resolution
and free accessibility, Sentinel-2 is widely used in environmental
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research. Its multi-spectral instrument (MSI) acquires 13 spectral
bands from 440 nm to 2,200 nm. The image of Sentinel-2 on
19 January 2020 (the same day as the CMT in situ measurement)
was downloaded from the official website of the U.S. Geological
Survey (https://earthexplorer.usgs.gov/). The level-1C data
product was selected in this study and this series of data has
been radiometrically and geometrically corrected (including
orthorectification).

RST image is processed in order of radiometric calibration,
atmospheric correction, RST image fusion, and research area
clipping to finish the conversion from images to spectral values
(Figure 1A). One conventional atmospheric correction
algorithm, Fast Line-of-Sight Atmospheric Analysis of
Hypercubes (FLAASH) was set as an atmospheric correction
algorithm in this study Buma and Lee (2020). The specific RST
parameters set, including ground elevation, atmospheric model,
aerosol retrieval, and water retrieval, were found in the files
alongside their respective multispectral images. The RST images
(not including bands 1, 9, and 10) were resampled to 10 m by the
Gram-Schmidt pan sharpening method (Supplementary
Material), one of the most widely used high-quality methods
for RST image fusion Zhang et al. (2019). All of the RST data
processing could be conducted using the packaged functions in
ENVI®, The RST data were processed by Z-score normalization
(Supplementary Material) before being input to the models. It
should be noted that when new data are collected, the
normalization part performs a new normalization of the
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TABLE 1 Summary statistics of the BioFish data.

10.3389/fenvs.2022.979133

Parameter In situ Unit Max Min Mean STD*
measuring(n)

pH 50081 N/A 831 6.20 7.34 0.43

DO 50005 mg/L 13.99 9.39 10.21 0.48

El.cond 50264 mSlcm 0.37 0.20 0.34 0.02

BP 50179 % 8.92 1.27 2.36 1.58

*Standard deviation.

overall data set (containing the previous data set and the new data
set) for the training model.

2.2 Cruise monitoring module

Cruise monitoring with multiple sensors is conducted by
BioFish in this study. It is an aquatic cruise monitoring system
that is equipped with multisensors (Supplementary Table S1) and
connected to a ship by a data transmission cable Udy etal. (2005).
The data of water quality parameters were recorded in real-time
with GPS longitudinal and latitudinal positions. In this study, the
BioFish swam 10 cm below the water surface. One optical
parameter, backscattered particles (BPs, similar to turbidity,
measured by a beam attenuation probe to estimate water
clarity) (Supplementary Material), and three nonoptical
parameters, including electrical conductivity (Elcond),
pH value, and dissolved oxygen (DO), are selected to validate
the performance of the framework.

Due to the limitations of power supply, equipment, time, and
accessibility, the in situ measuring in QCSR was finished within
1 day and the running time was 5hours. The cruise route is
shown in Figure 2, aiming to cover as much of the study area as
possible. S1 is the start and end point of the cruise route. Seven
stopping points were designed for (S1-S7, see Figure 2) the
BioFish calibration with the YSL ProDSS to ensure the accuracy
ofthe data. An overview of the data collected by BioFish in QCSR
is displayed in Table 1. The BioFish data were processed by
Material)

(Supplementary

Z-score normalization  (Supplementary and
satellite-ground synchronization matching
Figure S2) before being input into the models (Figure 1A). It
should be noted that the normalization section renormalizes the
new overall dataset when new data are collected.

Since the high sampling density of BioFish means that
multiple BioFish sampling points can be found randomly in a
pixel block of size 10 m x 10 m, determining the BioFish
sampling points within the same pixel block and deriving
their representative values are required. The first step is to
specify the spatial information of all BioFish sampling points
and pixel grid centroids. The geodesic distance Shamai and
Kimmel (2017) between the pixel grid centroid and the

BioFish sampling point can be calculated by the Python
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package geopy, with an ellipsoidal model, WGS-84. Then, the
pixel grid corresponding to the BioFish sampling point can be
extracted by finding the shortest geodesic distance between them.
The next step is calculating the representative values of BioFish
measurements within each pixel block by the arithmetic
mean (AM).

2.3 Water quality monitoring model

In this section, deep neural networks and three traditional
machine learning models are used to find the relationship
between RST and CMT and compare their performance,
respectively.

2.3.1 Deep neural network

The deep neural network (DNN) is the basic form of deep
learning and one of the most efficient and powerful tools to
model complex nonlinear relationships Rolnick and Tegmark
(2018). As the left side of Figure 1B shows, DNN is a
connectionist system with multiple hidden layers between the
input and output layers. Each hidden layer contains multiple
neurons, called nodes. Any node in the Ith layer must be
connected to any node in the [ + 1st layer, and the following
equation indicates the nonlinear relationship between the DNN
layers shown on the right side of Figure 1B:

a;*' _ f(iafwfj +bi,-),

where a! is the activation value of the ith node in the Ith layer,
aﬂ-” is the activation value of the jth node in the / + 1st layer,wf-;flis
the weight between a' and aj.”, bj.” is the bias value of the jth
node in the [ + 1st layer, and f () is the active function.

The training process is shown on the left side of Figure 1B.
Forward propagation refers to the calculation and storage of
intermediate variables (including outputs) from the input to the
output layer. Back propagation refers to the method of
calculating the gradient of neural network parameters and
updating the parameters depending on the error between the
output and true value. For tuning hyperparameters in this study,
relu Agarap (2018) was set as the active function and adam as the
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optimizer of all models. The layer and neural units of models
were (256, 256, 256, 256, 256) except El.cond.-spectral value was
(256, 256, 256). Additionally, batch size and learning rate were
also tuned in a reasonable range.

2.3.2 Multiple linear regression

Linear regression, a typical traditional machine learning
model, is a linear approach for estimating the relationship
between a dependent variable and one or more independent
variables. The case of one independent variable is called simple
linear regression; for two or more, the process is called multiple
linear regression (MLR) Berger et al. (2017). In this study, the
MLR model was built by calling the function in the Python
package scikit-learn. The parameter to be tuned in this study was
the degree of the polynomial features.

2.3.3 Support vector regression

Support vector regression (SVR) is a traditional supervised
machine learning that is applied widely in RST inversion Wagle
et al. (2020). The SVR model was also conducted by calling the
function in the Python package scikit-learn. The radial basis
function was chosen as the kernel of SVR. The parameters that
need to be tuned in this study are the regularization parameter
and the kernel coefficient.

2.3.4 Random forest regression

Random forest regression (RFR) is a traditional machine
learning algorithm for nonlinear regression. It uses an ensemble
learning method that combines a large set of regression trees to
make a more accurate regression than a single regression tree
Kimetal. (2014). The RFR model was implemented by calling the
function in the Python package scikit-learn. The n-estimators
and random-state need to be tuned.

2.3.5 Evaluation metrics

Evaluating the performance of a model is an essential step
before practical application. We split each dataset into a training
set and a test set with a ratio of 4:1 and take one at every four
intervals as the test data. Several indicators, including the
coefficient of determination (R?), root mean square error
(RMSE), mean absolute percentage error (MAPE), and
median absolute deviation (MAD), were used to evaluate each
regression model’s accuracy, stability, and inversion ability
(Supplementary Material).

2.4 Water quality assessment model

Improved deep embedded clustering is an unsupervised deep
learning algorithm for clustering. The monitoring results
obtained from the framework were clustered using IDEC, and
points with similar environmental states were grouped based on
the combined effect of all measured water quality parameters
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TABLE 2 Results of regression model evaluation.

Parameter Model R RMSE* MAPE** MAD*
pH MLR 0.55 0.64 0.86 041
SVR 0.74 0.55 0.69 0.21
RFR 0.73 0.50 0.57 0.17
DNN 0.89 033 0.52 0.10
DO MLR 0.22 0.85 2.83 0.30
SVR 0.24 0.83 1.30 0.12
RFR 0.57 0.65 1.59 0.14
DNN 0.77 049 1.61 0.06
Elcond MLR 0.23 0.88 9.62 0.20
SVR 0.33 0.81 1.54 0.08
RFR 0.52 0.67 1.78 0.10
DNN 0.86 038 1.74 0.06
BP MLR 0.78 0.44 3.07 0.14
SVR 0.87 0.38 334 0.07
RER 0.87 0.38 2.72 0.06
DNN 0.95 0.26 3.10 0.03

*Units are the same as the respective water quality parameter units.
**Unit is percentage.
The bold-italic values represent the best regression results, respectively.

(pH, DO, BP, and El.cond in this study), thus dividing the entire
reservoir into different areas possessing different environmental
states. According to the clustering results, each group’s specific
water quality characteristics can be understood by analyzing the
distribution of each group’s characteristic water quality
parameters. This characteristic of each group is the main
reason why these measurement points are clustered into the
same group, and it can also be described as the characteristic
factor of this group.

The structure of IDEC includes an encoder and a decoder
network Guo etal. (2017) (Supplementary Figure S3). The encoder
network is set as a fully connected multilayer perceptron (MLP)
with dimensions 4-125-125-500-10. The decoder network is a
mirror of the encoder with dimensions 10-500-125-125-4. relu was
set as the active function and adam as the optimizer of all models.
The coefficient of cluster loss y is set to 0.1 and batch size to 256.
The convergence threshold & is set to 0.1%. Also, the update
interval T is one iteration. IDCE and CH method was conducted
by PyTorch. The number of clusters was determined by the
Calinski-harabasz (CH) method Zhao and Frinti (2014).

3 Results

Considering the conceptual merits of the developed
framework, we applied the framework to a database of QCSR
sampling activity to evaluate its performance on inversion and
make the assessment of water quality through clustering results.
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FIGURE 3

Regression model performance evaluation by comparison of the predicted data and measured data on a test set, where (A), (B), (C), and (D)
represent the test results of the pH, DO, EL.cond, and BP, respectively and (1), (2), (3), and (4) represent the test results of the MLR, SVR, RFR, and DNN,
respectively.
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Performance of each regression model with increasing training data size, where (A=D) represent the results of the pH, DO, El.cond and BP,

respectively.

3.1 Model performance evaluation

Based on the performance of the regression model for four
water quality parameters, several results are achieved.

1) DNN represented the best performance in accuracy and
stability compared to the other three algorithms. The results for the
model performance are summarized in Table 2. Concerning the
inversion of pH, SVR, RFR, and DNN delivered satisfactory results.
DNN achieved the highest R* = 0.889 and the lowest RMSE = 0.33,
MAPE =0.52, and MAD = 0.10 that stand for the stability of DNN.
As for the DO and El.cond inversion, DNN achieved the highest
accuracy with R* = 0.77, 0.86 compared with MLR, SVR, and RFR.
In addition, the lowest RMSE (0.49 for DO and 0.38 for El.cond)
and MAD (0.06 for DO and 0.06 for El. Cond) demonstrated that
DNN has high stability even though the MAPE of DNN is slightly
less than that of SVR.

With respect to the inversion of BP, all models express relatively
satisfactory results. In particular, DNN reached a very high accuracy
with R* = 0.95 and relatively low RMSE, MAPE, and MAD.

The comparison of predicted values and the measured values on
the test set are shown in Figure 3. It is found that the slope of DNN
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test results (0.90 for pH, 0.67 for DO, 0.82 for El.cond, and 0.92 for
BP) is much larger than those of MRL, SVR, and RFR. Therefore,
DNN significantly improved the inversion accuracy compared with
MLR, SVR, and RFR.

2) The performance of each model increases with increasing
training data size. We randomly select 0-100% of the data in the
original dataset at 10% intervals for training and testing. This
process is performed 50 times for each data size, and then the
average performance of the model (denoted by R*) and its standard
deviation (Supplementary Material) are calculated at each data
size. As the training data size increases, the results of each water
quality parameter consistently showed an increasing trend of R
(Figure 4). It can be also found that DNN is highly sensitive to
training data size. The performance of DNN was not the best
among the four models with a small training data size, especially
when less than 30% of the training data size was fed. (Figure 4D).
When 40% or more of the training data are fed, a critical point is
noted, where DNN performance surpasses the other models. In
particular, a significant advantage of DNN can be observed as the
training data size increases from 50% to 100%. Meanwhile, a more
advanced performance of DNN could be expected.
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FIGURE 5
Distribution of (A) pH, (B) DO, (C) ELcond, and (D) BP in QCSR based on the framework.
. . TABLE 3 Summary statistics of each group.
3.2 Application of the developed
framework in QCSR Geoup pameter Max M STD*  Medi
The concentration heat-maps of each parameter (pH, DO, Group 1 pH 200 6:20 02 o
El.cond, and BP) are shown in Figures 5A-D, respectively. The bo 1400 690 032 1013
pH value obtained by the developed framework ranges from El.cond 044 020 001 034
. . BP 3.02 0.01 0.23 157
6.2 to 8.9, with a mean value of 7.2. The results reveal spatial
difference in that pH value decreases from the head region of Group 11 pH 8.25 6.50 0.27 7.64
QCSR to the tail region (see Figure 5A). The inverted DO ranges DO 13.94 6.90 0.64 9.94
from 6.90 mg/L to 14.00 mg/L, with a mean value of 10.30 mg/L. Elcond 0.42 0.20 0.02 0.34
The results show a similar spatial difference as that of pH since BP 10.08 458 1.26 6.11
the concentration of DO decreases from Figure 5Bthe head Group Tl pH 830 620 023 605
region to the tail region, as shown in Figure 5B. Differing Do 1400 915 o 211
from the pH value, a relatively low concentration of DO Elcond 035 0.20 0.02 034
occurs in the eastern portion of the reservoir, the tail region. BE . 123 054 560
The result of El.cond ranges from 0.20 mS/cm to 0.44 mS/cm,
with a mean value of 0.34 mS/cm. El.cond observed in the head Group IV pH 500 620 051 786
region is lower than that of the rest area (see Figure 5C). The o 1400 690 045 10.26
inverted BP ranges from 0.10 to 10.00%, with a mean value of Elcond 044 020 002 034
BP 483 1.94 0.52 2.93

2.13%. The results show a similar spatial difference as that of
pH since BP decreases from the head to the tail region, as shown
in Figure 5D.
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*Unit of DO is mg/L; unit of El.cond is mS/cm; unit of BP is percentage.
**Standard deviation.
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The entire QCSR can be divided into four groups of water
bodies by the CH method (Supplementary Material, Figure 4),
which are groups I, I, III, and IV. The summary statistics and
distributions of each group obtained by IDEC are shown in
Table3 and Figure 6. Group I occupied 73.79% of the entire
QCSR area. It exhibits characteristics that the values for each
parameter are in the middle position compared to others.
Group I is dominated from the northeast of the central island
to the tail region. The proportions of group II and III water
were 4.99 and 3.23%, respectively. Group II is characterized by
significantly higher BP values than the other groups and is
distributed at the head of the reservoir and on the southern
shore of the reservoir. Group III shows a higher DO value
compared to other groups and is distributed close to the
drinking water intake. Group IV has a higher pH value
compared to others, indicating a mildly alkaline water
body. Also, it is mainly found to the southwest of the
central island to a lesser extent in the tail region and near
the drinking water intake.

4 Discussion

4.1 Advantages of the novel framework
The design and application of the framework in our case

study demonstrated its high performance in the monitoring and

assessment of water quality. Compared to the previous studies,
the advantages of this framework are summarized as follows.

Frontiers in Environmental Science

CMT and RST are mutually integrated into the framework.
CMT provides RST with sufficient in situ measurements, the
prerequisite of the data set. In this study, the training data size
provided by BioFish was nearly 500 times as many as the manual
method within the same time interval Sagan et al. (2020); in
addition, the geographic information of the data is not involved
directly in the training and test process as input, which solves the
problem of space-time limitation of the spatial interpolation
methods to a certain extent. In the case of QCSR, the water
quality parameters far from the cruise route, where no cruise
route can be used nearby, can still be effectively inverted.

The environmental big data platform established by CMT
and RST provides the basis for accurate environmental
information interpretation. RST and CMT have the attributes
of big data and good complementary so that the environmental
big data platform can be built with the cooperation of the two
parts. As shown in Figure 4, the results show an increasing trend
of R* modelwise as the data size enlarges, indicating a significant
advantage of environmental data analysis in contrast with the
small or medium data platform.

On the big data platform, the adaptability and performance
of deep learning ensure accuracy in monitoring and assessment.
In Figure 4, break-even points can be observed at which the
performance of DNN exceeds those of other traditional machine
learning, especially when 40% or more data are fed. Through the
encoder network with dimensions 4-125-125-500-10 and
decoder network dimensions 10-500-125-125-4, original four-
dimensional features (pH, DO, El.cond, and BP) are transferred
into the new four-dimensional features, which contain much
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more information. Based on the updated four-dimensional
features, clustering results are better than those based on the
original four-dimensional features, meaning they are very close
to the real world.

The novel framework formed a closed loop of water quality
research, into which data collection, processing, monitoring, and
assessment are packaged. In the framework, monitoring results
can be mined for further assessment. Joint regional control
strategies are more efficient and effective than single-point
control strategies in environmental management and pollution
control Zhang and Yang (2022). Deep clustering analysis enables
the scientific delineation of joint control regions. Through the
character analysis of the divided joint control area, characteristic
factors of each area can be identified, which can contribute to
defining a joint regional control strategy for the objective area. In
this study, each group is managed as a joint control area, in a way
that depends on the characteristic factors. Elevated BP (low water
clarity) noted in the group II area may cause poor underwater
light climate and loss of submerged macrophytes to switch the
water body from a macrophyte-dominated state to an algae-
dominated one Huang et al. (2021). In addition, the alkaline
water body is one of the stimulatives for algae growth Lin et al.
(2021). This means that the two water quality parameters, BP and
pH, will be the focus of subsequent management and control of
the distribution areas of group IT and group IV, respectively.

To further ensure the reliability and accuracy of data
collection, we have several particular strategies. 1) Seven
calibrating points keep BioFish in a well-calibrated condition
during the in situ measuring in order to assure the measuring
accuracy. 2) The day of the satellite transit with cloud cover of
less than 10 % was selected as the sampling day.

4.2 Potentiality of the developed
framework

The developed framework as well as its three modularized
parts show high potential in extensibility.

1) The environmental quality parameters were inverted by
the developed framework by a data-driven approach instead of a
physics- or chemistry-based one. Being data-driven makes results
from the developed framework easily and rapidly transform into
inversion of other environmental parameters collected by
different sensors or CMT systems. The implementation was in
the water scenario in this study. Alternately, this framework can
be applicable to the air scenario when using an air quality CMT
system.

2) The developed framework can realize the water quality
monitoring in a timely manner by shortening the revisit time.
The revisit time is defined as the time interval between two
successive a satellite or a system’s observations on the same
ground point on the surface of the Earth Luo et al. (2017). In this
study, we chose the Sentinel-2 satellite system with a 5-day revisit
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time as the source of RST images. Accordingly, the need for 5-day
monitoring of the whole target water bodies can be met with good
weather conditions for RST observation and the availability of all
parties (e.g., financing and labor). Selecting satellites with a
shorter revisit time can increase the monitoring frequency,
enabling the whole QCSR monitoring to keep pace with the
environmental change of frequency, for example, replacing
Sentinel-2 in this article with WorldView-3 (97 min revisit
time) Ye et al. (2017).

A satellite with a spatial and spectral resolution provides a
more precise inversion result and sharper clustering spatial
boundaries by reducing the size of the raster within the
objective area. As such, replacing Sentinel-2 in this article
with WorldView-3 Ve et al. (2017) would obtain an up-to-
date and more accurate result of inversion and clustering.
revealed that the

performance of DNN is susceptible to the data size and gains

3) Our experiment in Section 3.1, 3.2

a significant improvement as the data size increases. The reason
can be seen in Figure 1B that each training iteration results in a
model that is pretrained for the next training iteration after
forward and backward calculations, and this process continues
iteratively. Thus, we can expect a more robust and accurate
model when more data are fed, such as more applications of the
framework. More importantly, as the model was fed and trained
by massive data, the in situ measuring might not be necessary.

4) The deep clustering method dealing with water quality
assessment has advantages for big data sets with higher
dimensional water quality parameters and multiple time
quality
parameters, IDEC can have more objectives to extract and

periods. For processing high-dimensional water
transform water quality features, which can make the
clustering results closer to the real situation. In addition, deep
clustering of the data for each time period separately allows for
delineating newly their
characteristics. In this way, the overall state changes in the

integrated control areas and
target water bodies can be seen at a glance, such as changes in
the boundaries of each control area and changes in the

characteristics of each control area.

4.3 Future work

Notwithstanding the developed work had several advantages,
it is essential to note that improvements can be a part of
future work.

RST images are significantly affected by weather conditions,
especially cloud cover. An image with less than 35% cloud cover
was regarded as a good practice to satisfy environmental
monitoring requirements Marshall et al. (1994). To ensure
accuracy, the “clear sky” images with less than 10% cloud
cover were applied to the framework. Thus, there was a strict
weather restriction during the in situ measuring. Sometimes the
uncertainty of the weather can make in sifu measurements
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fruitless, even though the plan is made according to the weather
forecast.

Furthermore, the cruise monitor’s running does not
synchronize with the satellite’s visit to the objective area. For
instance, it takes Sentinel-2 less than 2 s to cross the QCSR. This
lag prevents the satellite from being in real-time synchronization
with the CMT measurements. In order to hurdle the weather
limitations and eliminate the lag between RST and CMT
measurements, we plan to introduce unmanned aerial vehicles
(UAVs) associated with multispectral sensors into the
framework. Its lower-than-cloud flight altitude reduces the
interference of the cloud. In addition, the synchronized
working pace of UAVs allows for simultaneous data collection
along with the cruise monitor. As a supplementary element of the
framework, UAVs are particularly applicable to small surface
water areas like river bays and estuaries.

Last but not least, the performance of deep learning was
essentially dependent on the data size. Hence, collecting more
data from diverse types of water bodies should be a critical and
indispensable work.

5 Conclusion

An innovative framework was developed with three
modules: RST, CMT, and deep learning. Deep learning uses
the big data platform created by RST and CMT to achieve a
robust performance in water quality monitoring and
assessment. Our testing revealed that the DNN (a type of
deep learning) in the framework has a higher performance in
monitoring four water quality parameters (pH, DO, El.cond,
and BP) than MLR, SVR, and RFR. DNN is highly sensitive to
training data size compared to other models, and the
performance increases significantly with the elevated training
data size. The application of IDEC on the water quality
assessment showed that the entire QCSR was well-defined
and divided into four groups as joint control areas, which
are group I, group II, group III, and group IV. The
characteristic factors of each area were identified, which can
contribute to defining a joint regional control strategy for the
QCSR. Considering the big data platform is the foundation of
this framework, our future work in priority would be collecting
more measured data (RST and CMT) from different water
bodies to increase the capacity of the big data platform and
update the deep learning model in our framework.
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1 CHALLENGES OF WATER QUALITY MONITORING IN REMOTE AND LARGE
AREAS

In theoretical water monitoring, we should know the water quality parameters at every point and its
corresponding time across the study area and period. However, the research sources, including time,
equipment, accessibility, and money are usually limited. Thus, we have to rely on these limited research
resources to get the conclusions we want. Especially in remote and large areas, where there are no
sophisticated networks to monitor water quality, a framework to capture water quality at each point with
limited research resources is needed. In our case, the Qingcaosha Reservoir is a very important source
of drinking water, supplying over 50% of Shanghai’s drinking water. We were facing the challenge of
monitoring water quality in the 70km? water body within one day (limited accessibility and time) by using
only one BIOFISH (limited equipment). Therefore, this framework integrating remote sensing, cruise
monitory, and deep neural network was developed to overcome these challenges.
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Figure S1. Photo of BIOFISH running in Qingcaosha reservoir

2 BIOFISH MODULE AND DATA PROCESS

BIOFISH is a aquatic multi-sensors cruise monitor. The sensors and their specifications are shown in Table
S1. BP (Backscatter particle) in "%" reflects the percentage of light scattered back to the sensor after
emission and depends on the turbidity or water transparency. The more particles in the water, the more
light is scattered back.

Z-score Normalization is a tool to standardize features by removing the mean and scaling to unit variance.
This scaler is widely used for normalization in many machine learning algorithms (e.g., support vector
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Table S1. Sensors of BIOFISH and their specifications

Parameter Manufacturer Principle Range Resolution Accuracy
Pressure ADM Elektronik piezo-resistive 0-100dBar  0.01dBar +0.1dBar
Temperature ADM Elektronik Pt 100 0-36 C 0.001 C +0.01 C
pH ADM Elektronik ijg‘;;ﬁgfg"gg“ 0-12pH 0.01pH +0.02pH
DO ADM Elektronik P — 0-100% 0.01% +0.01%
El.cond ADM Elektronik 7-pole-cell 0-60mS/em  1uS/em  £10uS/cm
Backscattered particles ADM Elektronik Mie backscattering 0-100% 0.01% +0.01%

machines, logistic regression, and artificial neural networks). And it was utilized for each water quality
parameter in this study ¢ recorded by BIOFISH according to the following equationHousman et al. (2018):

Ti — T

Z; =

a;

where Z; is the standard score of i-th water quality parameter, z; is the -th original water quality
parameter, z; is the mean of i-th water quality parameter, and o; is the standard deviation of i-th water
quality parameter.
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3 REMOTE SENSING
3.1 Sentinel-2

The information of Sentinel-2 is shown in Table S2.

Table S2. Bands of Sentinel-2 and their specifications

Bands Specification Central Wavelength (1) Resolution ()
Band 1 Coastal aerosol 0.443 60
Band 2 Blue 0.490 10
Band 3 Green 0.560 10
Band 4 Red 0.665 10
Band 5  Vegetation Red Edge 0.705 20
Band 6 Vegetation Red Edge 0.740 20
Band 7  Vegetation Red Edge 0.783 20
Band 8 NIR 0.842 10
Band 8A  Vegetation Red Edge 0.865 20
Band 9" Water vapor 0.945 60
Band 10 SWIR - Cirrus 1.375 60
Band 11 SWIRk 1.610 20
Band 12 SWIR 2.190 20

“ Band 1, 9 and 10 were not used in this study

3.2 Pan-sharpening

Due to the technology at the time, Sentinel-2 could not also provide images with both high spectral and
spatial resolutions. What it can offer is multispectral images have high spectral resolution but relatively
low spatial resolution; panchromatic(PAN) images have high spatial resolution but low spectral resolution.
In order to make the multispectral images have high spatial detail performance while preserving the
spectral characteristics of multispectral images, merging the low-spatial-resolution multispectral images
with high-spatial-resolution panchromatic optical images is a solution. This process is Pan-sharpening.
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4 EVALUATION METRICS

To quantify the performance of the models, the coefficient of determinationRenaud and Victoria-Feser
(2010)(R?) was calculated as:

) ~\2
’ - —\2
> iy (i — i)

Root-mean-square errorChai and Draxler (2014) (RMSE) was calculated as:

RMSE(y.5) =

Mean absolute percentage errorGoodwin and Lawton (1999) (MAPE) was calculated as:

Yi —¥i yt

1
MAPE (y,9) = EOZ m
T

i=1

Median absolute deviationRousseeuw and Croux (1993) (MAD) was calculated as:

MAD (y,5) Z\yz 7l

where 7/; is the predicted value of the ith sample, y; is the corresponding true value of the total n samples,
and y; is the mean of true value.

5 RESULT OF DIFFERENT TRAINING DATA SIZE

The standard deviation of the model performance for each parameter at each data size are shown in S3, 54,
S5, and Sé6.

Table S3. The standard deviation of the pH model performance at each data size

pH DNN MLR SVR RFR
10% 0.15 11.23 027 0.16
20% 0.09 0.61 017 0.09
30% 0.05 042 0.07 0.08
40% 0.04 0.12 0.07 0.05
50% 0.04 0.11 0.05 0.04
60% 0.03 0.12 0.04 0.03
70% 0.02 0.05 0.03 0.03
80% 0.03 0.03 0.03 0.02
920% 0.04 0.02 0.02 0.01
100% 0.02 0.02 0.01 0.01
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Table S4. The standard deviation of the DO model performance at each data size

DO DNN MLR SVR RFR
10% 191 208134 394 1.21

20% 030 25.03 030 0.24
30%  0.27 6.51 021 0.23

40%  0.17 1.58 0.09 0.12
50%  0.14 0.90 0.08 0.10
60% 0.12 0.27 0.06 0.12
70%  0.10 0.09 0.05 0.07
80%  0.09 0.07 0.04 0.07
90%  0.06 0.11 0.03 0.05
100%  0.04 0.02 0.01 0.03

Table S5. The standard deviation of the El.cond model performance at each data size

El.cond DNN MLR SVR RFR
10% 10.10 1693.67 10.88 10.59
20% 874  21.66 320 4.88
30% 1.97 5.39 1.14 207
40% 0.82 1.29 026 1.10
50% 0.27 0.51 0.16 0.37
60% 0.17 0.14 0.10 0.24
70% 0.18 0.16 0.08 0.17
80% 0.12 0.04 0.07  0.13
90% 0.10 0.03 0.05 0.10
100%  0.07 0.01 0.01 0.06

Table S6. The standard deviation of the BP model performance at each data size

10% 0.17 17.15 0.26 0.16
20% 0.09 228 0.12 0.09
30% 0.06 0.16 0.06 0.06
40% 0.04 0.09 0.06 0.06
50% 0.03 0.13 0.04 0.04
60% 0.03 0.05 0.04 0.03
70% 0.03 0.05 0.03 0.03
80% 0.03 0.02 0.02 0.02
90% 0.02 0.01 0.01 0.01
100% 0.02 0.01 0.01 0.01

6 IMPROVED DEEP EMBEDDED CLUSTERING

Improved deep embedded clustering (IDEC) is a deep clustering algorithms, concluding encoder and
decoder. The network construction of IDEC is shown in Figure S2.

Calinski-harabasz (CH) method is used to determine of the number of clusters k. Several CH score of
each cluster number were calculated based on sum-of-squares within cluster (SSW) and/or sum-of-squares
between clusters (SSB) values, the equationsZhao and Frinti (2014) are:

N
SSW =" |lwi — Oyl

i=1
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Decoder

Encoder

SSO| UO0I1oNJ1suUoday

Clustering loss

Figure S2. The network construction of IDEC

k
SSB=Zchi—XH2
=1
_ SSB/(k—1)
CH = SSW/(N —k)

Where £ is the number of clusters, P is the partitions, X = {x1,x9...z v} represents the data set with
N-dimensional points, X = Zfil x;/N is the center of the entire data set, C' = {¢y, c2...c}, } represents

the centroids of cluster, ¢; is the ith cluster.

The knee point detection algorithm finds the point of maximum curvature, which corresponds to most
optimal clustering number. As Figure S3 shows, k=4 is the most optimal cluster number in the assessment

of QCSR.
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Figure S3. The result of Calinski-harabasz (CH) method
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Accurate and credible identification of the drivers of algal growth is essential for sustainable utilization and
scientific management of freshwater. In this study, we developed a deep learning-based Transformer model,
named Bloomformer-1, for end-to-end identification of the drivers of algal growth without the needing extensive a
priori knowledge or prior experiments. The Middle Route of the South-to-North Water Diversion Project (MRP)
was used as the study site to demonstrate that Bloomformer-1 exhibited more robust performance (with the
highest R?, 0.80 to 0.94, and the lowest RMSE, 0.22-0.43 pg/L) compared to four widely used traditional machine
learning models, namely extra trees regression (ETR), gradient boosting regression tree (GBRT), support vector
regression (SVR), and multiple linear regression (MLR). In addition, Bloomformer-1 had higher interpretability
(including higher transferability and understandability) than the four traditional machine learning models, which
meant that it was trustworthy and the results could be directly applied to real scenarios. Finally, it was determined
that total phosphorus (TP) was the most important driver for the MRP, especially in Henan section of the canal,
although total nitrogen (TN) had the highest effect on algal growth in the Hebei section. Based on these results,
phosphorus loading controlling in the whole MRP was proposed as an algal control strategy.

1. Introduction mathematical representation of the ecosystem is an effective approach to

analyzing the relationship between water quality and algal growth,

Algae, as a major footstone in the aquatic food chain, have a two-way
and complex relationship with water quality. On the one hand, algae can
affect water quality, since overgrowth and eventual death of algae cells
can adversely influence water quality by producing toxic secondary
metabolites and stench thereby affecting the survival of other aquatic
organisms (Xia et al,, 2019). On the other hand, algae can respond
immediately to changes in physico-chemical properties of water, such as
variations of temperature and nutrients, which can lead to changes in the
species' qualitative and quantitative composition. Consequently, algae
can often be used as reliable indicators for water quality assessment
(Gokee et al., 2016). However, increased knowledge and understanding
of this relationship is necessary.

Modeling the interactions of algal biomass, expressed as chlorophyll-
a(Chl-a) content, with multiple environmental factors based on a

* Corresponding author.
E-mail address: biyh@ihb.ac.cn (Y. Bi).

https://doi.org/10.1016/j.watbs.2023.100184

including process-based models and data-driven models (Su et al., 2022).
Process-based models, such as the Lotka-Volterra model in ecology, are
mathematical models that explicitly represent the processes occurring in
the target system with equations. In the identification of the driving
factors of algal growth, the process-based model is represented as an
ecodynamic model that attempts to simulate process-based relationships
by combining hydrodynamic processes with ecological processes and
takes into account the interactions between multiple subsystems.
Although ecodynamic models are capable of systematically representing
relationships between a single output and multiple inputs, they usually
require significant computational resource (Ralston and Moore, 2020). In
addition, equations for process-based models are often derived from
theory, but they are not necessarily credible (Kniisel and Baumberger,
2020), which leads to questionable correlations being obtained from the
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resulting models. In contrast, because this information is hidden in pre-
vious data, data-driven models can escape the limitations of theory and
reveal patterns of interaction between algal growth and environmental
factors from limited data and explain these patterns by correlation the-
ory. Earlier data-driven approaches were empirical regression algorithms
that used simple correlation and regression analyses to empirically model
the relationship between a single water quality parameter (e.g., TP) and
Chl-a (Xia et al., 2019). Since these models were generally unable to
represent multi-factor interactions, multivariate analysis methods, such
as cluster analysis (CA) and principal component analysis (PCA), were
applied to explore algal growth (Bierman et al., 2011; Du et al., 2017;
Qian et al., 2021). However, the relationship between environmental
factors and algal biomass is, in many cases, non-linear (Nelson et al.,
2018). As linear functions are the basis for most correlation coefficients
and multivariate methods, they cannot be applied to nonlinear re-
lationships (Su et al.,, 2022). In this context, machine learning has
recently been widely used to understand aquatic ecological processes and
to determine the strength of the association between environmental
variables and algal growth (Yu et al.,, 2021; Ly et al., 2021; Deng et al.,
2021).

Many studies have confirmed that traditional machine learning tools,
such as support vector machine (SVM), logistic regression, extra trees
regression (ETR), and multi-linear regression, are effective for the
simulation of algal growth, (Su et al., 2022; Park et al., 2015; Liping and
Binghui, 2013).As environmental research begins to migrate from small
data to big data, the shortcomings of traditional machine learning is
becoming more apparent, and deep learning, with its powerful big data
processing capabilities, is receiving increased attention (Qian et al.,
2022). Deep learning has been employed in previous studies to make
predictions regarding Chl-a time series, but has rarely been applied to
identify the critical factors associated with algal growth. This is because
deep learning operates with less transparency than traditional machine
learning and is implicitly expressive about the contributions of each
factor. To solve this problem, deep learning models of algal growth are
needed.

The Middle Route of the South-to-North Water Diversion Project
(MRP) is a national large-scale project in China, which aims to transfer
abundant water resources from the south to the north through artificial
channels in order to balance the overall water distribution of the country
(Zhu et al., 2022). The total length of the channel is 1432 km, including
155 km in Tianjin, serving a population of about 69 million people (Wang
et al., 2021). As a long-distance and long-term drinking water supply
corridor, water quality safety of the MRP is particularly important. Pre-
vious studies have shown that algal growth accelerated in parts of the
MRP after 2016, with large clusters of filamentous algae causing prob-
lems such as blockage of the basin grate and rapid siltation in front of the
outlet sluice (Zhu et al., 2019). Moreover, foul-smelling compounds and
algal toxins produced by the siltation of decomposing algal debris also
affected water quality levels and threatened water supply safety (Zhu
et al., 2022). Consequently, during the 5-10 years since MRP operation,
algal biomass has been a major factor affecting water quality. Further-
more, the instability of the overall system has made it difficult to identify
the mechanisms and factors that determine algal growth in the MRP. It is
noteworthy that most of the world's large water diversion projects are
built for irrigation and power generation and that only a small percentage
have provision of a drinking water supply as the main purpose (Long
et al., 2022). The low attention to water quality changes in these large
water diversion projects has resulted in a lack of case studies that can be
applied to the management of water quality safety in MRP. Therefore, at
this stage, the accurate identification of mechanisms that influence water
quality and algae in MRP is lacking. Nevertheless, the effective prediction
and management of algal growth are important for success of long dis-
tance and long-term drinking water delivery projects such as MRP.

Water Biology and Security xxx (xxxx) xxx

This study aims to accurately and quantitatively identify the driving
factors of algal biomass in the MRP with the core of big data mining. Our
method involves developing a Transformer-based deep learning model,
named Bloomformer-1, which runs on a big data platform derived from
long-term manual monitoring data, in order to reveal the driving
mechanisms of algal growth in the MRP accurately, transparently, and
directly. The findings will be useful for the efficient management and
sustainable utilization of the MRP.

2. Materials and methods
2.1. Study area and data collection

A total of nine water quality monitoring stations were evenly spaced
along the MRP, labeled P1 to P9, extending from south to north, with P1,
P2, P3 and P4 located in the Henan section, P5, P6 and P7 located in the
Hebei section, P8 located in the Tianjing section, P9 located in the Beijing
Section (Fig. 1). The database used in this study consists of 49 months
(August 1, 2018, to August 30, 2022) of water quality monitoring data
from each station. Water samples were collected at a depth of 0.5 m,
stored at 4 °C, and transported to the laboratory to determine water
quality parameters.

The chemical water quality parameters, which comprised total
phosphorus (TP), phosphorous-phosphate (PO, — P), total nitrogen (TN),
nitrogen-nitrate (NOz — N), nitrogen-ammonia (NHz — N), potassium
permanganate index (CODy,), and total organic carbon (TOC), were
determined according to APHA (Zhu et al., 2022). The concentration of
Chl-a was used as a response variable in the data-driven methods since it
is considered to be an indicator of phytoplankton biomass and was
determined according to ASTM D3731-87 (ASTM, 1993).

2.2. Bloomformer-1 model

Transformer is the state-of-the-art solution for natural language pro-
cessing (NLP) tasks (Wolf et al., 2020). This method takes advantage of
the Multi-Head Attention mechanism, which compares each token along
the input sequence to other tokens in order to collect and learn dynamic
contextual information. Attention is an important part of human cogni-
tive function (Lindsay, 2020), and when faced with large amounts of
information, humans can readily adjust the level of focus on the infor-
mation they received to analyze it more accurately and efficiently. The
essence of the attention mechanism was to provide weights. An attention
function could be interpreted as mapping a Q (query) and a string of
K(key)-V(value) to an output, where Q, K, V, and output were vectors
(Vaswani et al., 2017). The attention could be represented as:

Ouitputapension = AHE'"H-OH(Q- K, V}

Multi-Head Attention was the projection of Q, K, and V by h different
linear transformations. The different attention results were then stitched
together, which could be represented as:

MultiHead (Q, K, V) = Concat(head, , ..., head, ) W°
where

head; = Attention (QW2 , KW VW)

we € Remoser*de WK o Rmota*de WY o Refmosa v qnd WO £ RI* o

In the appealed Attention mechanism, the weights were the direct
weight correspondence between the input and output vectors, implying
that the weight calculation required the participation of the output
vectors. In contrast, the weight of Self-Attention was a weight relation-
ship between the input vectors internally, which did not require the
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Fig. 1. Sketch map of sampling stations distribution in the middle section of the South-North Water Diversion Project.
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participation of the output vectors. Therefore, the multi-head-self-
attention meant @, K, and V were the same.
In this study, we used the scaled dot-product to calculate Attention:

Attention(Q, K, V) fit (QKT)‘V
ention A L O =soltmax| ——
Va;

Where d;. was the vector dimension in both Q and K.

The encoder consisted of N same units (Fig. 2). Each unit consists of
two sub-layers, the multi-head-self-attention layer, and the fully con-
nected feed-forward network, where each sub-layer was processed with
the residual connection “Add” and normalization “Norm”. The output of
the sub-layer could be represented as:

Ouipuilsusiayer = Norm(x + F(x))

Where F(x) was a function of the sublayer itself, multi-head-self-
attention, or fully connected feed-forward network.

The fully connected feed-forward network provided a non-linear
transformation consisting of two linear transformations with the active
function ReLu (Agarap, 2018). Compared with the encoder, the decoder
added another MHSA layer (Fig. 2). A mask operation (Fan et al., 2021)
was applied to this multi-head self-attention layer in order to prevent the
model from being exposed to future information during training.

Because algal growth is a multi-factorial process, the determination of
the driving factors of algal growth is a typical multivariate regression
task. The key to solving this problem is to learn the spatial relationships
to understand how the variables are related to each other. However, the
standard Transformer is not designed for this because it treats the value
of each variable at a given time period as a single marker on its graph:
each variable cannot have its own view of the context it should prioritize
(Grigsby et al.,, 2021). Therefore, we developed Bloomformer-1 for
studying spatial relationships based on Transformer. The improved
method first converted the context sequence in the database into a long
spatial sequence. This sequence was also transposed to obtain the cor-
responding long spatial sequence. The sequence was then processed with
a Transformer-based encoder-decoder architecture to obtain the pre-
dicted values for each variable. Finally, the predicted values were
repackaged into their original format and trained to minimize prediction
error metrics. The training framework of Bloomformer-1 consists of a
reconstruction stage and a regression stage. The reconstruction task is an
unsupervised pre-training and a reconstruction of the explanatory vari-
ables through the connected encoder and decoder stacks to extract their
robust and compact features. The parameters of the encoder stack and
position encoding obtained by the reconstruction task are shared with the
corresponding part of the regression task. In this study, the number of
units in encoder and decoder layer is 8, which represented the 7-dimen-
sional water quality parameters and the 1-dimensional station location
information. When performing the substation task, the station location
information was the station number corresponding to each water quality
parameter, from 1 to 9. When performing the whole MRP task, the station
location information was set to 1. Mean square error (MSE, Supple-
mentary material) was selected as the loss function both in the recon-
structed stage and the regression stage. The framework and architecture
of Bloomformer-1 is shown in Fig. 2. The MHSA mechanism of
Bloomformer-1 allows the results of driving factor identification to be
obtained during model training forward propagation direction and
simultaneously derived.

2.3. Multiple linear regression

Multiple linear regression (MLR) is one of the typical traditional
machine learning models that can be used to predict the result of an
answer variable using a number of explanatory variables (Maulud and
Abdulazeez, 2020). For the purpose of verifying performance, an MLR
model was used in this study to compare with Bloomformer-1. The MLR
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model was built by using the Scikit-learn function from the Python
package. The parameter to be tuned was the degree of the polynomial
features. The driving factor analysis methods for MLR was sensitivity
analysis (SA) (Saltelli, 2002).

2.4. Support vector regression

Support vector regression (SVR) is a powerful traditional learning
machine for searching the relationship between the answer variable and
several explanatory variables, including linear and non-linear correla-
tions. The SVM approach is to map the training data non-linearly into a
high-dimensional feature space and then construct a separated hyper-
plane there with maximum margin (Awad and Khanna, 2015). This study
employed the SVR as a comparative model to assess the performance of
Bloomformer-1. The SVR model was derived by calling the function in
the Scikit-learn package in Python. Radial basis functions were selected
as kernels because they provided better performance through the kernel
test. The parameters that needed to be tuned in this study were the
regularization parameter and the Kernel coefficient. The driving factor
analysis methods for SVR was sensitivity analysis (SA) (Saltelli, 2002).

2.5. Gradient boosting regression tree

The gradient boosting regression tree (GBRT) algorithm is a combi-
nation of the classification and regression (CART) algorithm and the
gradient boosting (GB) algorithm (He et al., 2013). CART allows for the
modeling of non-linear relationships without requiring a priori infor-
mation about the probability distribution of the variables (Nie et al.,
2021). The gradient boosting algorithm combines weak learners by
iteratively focusing on the error generated at each step until a suitable
strong learner is obtained as a sum of successive weak learners (Fried-
man, 2001). The regression tree generated by the CART algorithm was
used as the weak learner and was added to the model to correct errors in
the previous model, thereby improving the accuracy of the model. This
study employed GBRT as a comparative model to assess the performance
of Bloomformer-1. The GBRT model was derived by calling the function
in the Scikit-learn package in Python. The driving factor analysis
methods for GBRT is to calculate the relative importance to the input
variables, the idea being to score each input variable by estimating the
reduction in relative variance (Su et al., 2022).

2.6. Extra trees regression

Extra trees regression (ETR) builds a collection of the unpruned de-
cision or regression trees based on a classical top-down procedure that
does not require a known underlying distribution of parameters or
associated assumptions (Geurts et al., 2006). The main difference be-
tween this method and traditional tree ensemble methods is that it splits
the nodes randomly and grows the tree based on the original training
data set rather than using a bootstrap method. With these two features,
ETR is able to produce outputs with lower variance and higher general-
ization than traditional tree-based models. In this study, the ETR was
used to evaluate the performance of Bloomformer-1 as a comparative
model. The ETR model was derived by calling the function in the
Scikit-learn package in Python. As for GBRT, the driving factor analysis
methods for ETR is to calculate the relative importance to the input
variables (Su et al., 2022).

2.7. Training and performance evaluation of model

Data from each of the nine water quality monitoring stations (P1 to
P9) were fed into the appealing model for training to identify the drivers
of algal growth at each water quality monitoring station. Chl-a and the
other water quality parameters described previously were placed in the
models as responses and explanatory variables, respectively. Before
entering all data into the model, data normalization was performed to
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ensure equality in model comparisons. Data normalization followed the
Z-equation (See Supplementary material).

Evaluation of model performance is a critical step prior to practical
application. The data set was divided into a training set and a test set
according to the rule of randomly taking one step out of every five, which
means 80% of the whole data set was used to train the model and 20%
was used to test the model performance. A tenfold cross-validation was
introduced to avoid over-fitting in the training phase. For the purpose of
evaluating the accuracy and stability of each regression model, two in-
dicators were used on the test set: coefficient of determination (Rz) and
root mean square error (RMSE), following the equations:

i (‘r’i - 5;{)2
R=1-21______
> i -y

i=0

2.8. Operation environment

The experiment was carried out on a PC with the following features:
Hard-ware: CPU i7-6950X, RAM 64GB, dual GeForce RTX 3090, VRAM
24GB; Software: Ubuntu 20.04, Python3.6, Pytorch 1.10.0, Numpy 19.2.

3. Results
3.1. Model performance evaluation

The performance of regression models directly determined the ac-
curacy and plausibility of the driver identification. After optimizing the
proposed models, we compared the performance of five machine
learning models across all monitoring stations using RZ and RMSE in a
tenfold cross-validation. The results for model performance are summa-
rized in Table 1. The comparison between model simulation and the
ground truth is shown in Figs. 3 and 4. In order to describe the training
process of Bloomformer-1 more intuitively, the loss values during the
training process are shown in Fig. S1.

The results of P1, P2, and P3 showed that Bloomformer-1 performed
much better than the four traditional machine learning models because

Table 1
Results of model performance evaluation.

Stations Indicator” Bloomformer-1 ETR GBRT SVR MLR
P1 R? 0.85 0.75 0.72 0.63 0.42
RMSE 0.32 0.56 0.57 0.60 0.73
P2 R* 0.80 0.66 0.51 0.63 0.25
RMSE 0.43 0.62 0.68 0.63 0.82
P3 R? 0.83 0.70 0.39 0.58 0.39
RMSE 0.40 0.59 0.69 0.64 0.79
P4 R? 0.89 0.84 0.68 0.46 0.35
RMSE 0.33 0.52 0.62 0.61 0.76
P5 R? 0.90 0.89 0.78 0.88 0.49
RMSE 0.30 0.50 0.58 0.51 0.71
P6 R? 0.89 0.85 0.74 0.88 0.46
RMSE 0.26 0.45 0.49 0.43 0.68
p7 R? 0.94 0.94 0.85 0.92 0.68
RMSE 0.23 0.43 0.47 0.45 0.66
P8 R? 0.94 0.91 0.84 0.89 0.71
RMSE 0.22 0.43 0.48 0.44 0.62
P9 R? 0.93 091 0.89 0.86 0.62
RMSE 0.28 0.46 0.48 0.49 0.68
Whole MRP R? 0.85 0.79 0.73 0.80 0.39
RMSE 0.35 0.54 0.55 0.51 0.70

The bold values represent the best regression results.
2 Unit of RMSE is ug/L.
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the difference in R? values between them was greater than 0.1. There was
also a significant difference in RMSE values (e.g., in P1, Bloomformer-1
had an R? value of 0.85, while the four traditional machine learning
models had R? values less than or equal to 0.75; Bloomformer-1 had an
RMSE value of 0.32, while the other models had RMSE values greater
than or equal to 0.56. The RMSE value of Bloomformer-1 was 0.32, while
the RMSE values of the other models were all greater than or equal to
0.56).

According to the results of P4, P5, P6, P8, and P9, Bloomformer-1
showed relatively high performance. Although the difference with ETR
in R? values was small (0.03-0.06), it still had a significant advantage in
RMSE values (e.g., Bloomformer-1 had an RMSE value of 0.33 in P4,
while ETR had the lowest RMSE of 0.52 among the four traditional
machine learning models). In P7, except for MLR, the other three tradi-
tional machine learning models showed better performance, especially
the R? value of ETR which was the same as Bloomformer-1 at 0.94.
However, Bloomformer-1 still had a significant advantage in RMSE
values (Bloomformer-1 0.23, ETR 0.43, GBRT 0.47, SVR 0.45, MLR 0.66).
Consistent with the results from the individual stations, Bloomformer-1
showed superior performance on the whole MRP, as evidenced by the
higher R? values (0.85) and lower RMSE values (0.35). In summary,
Bloomformer-1 showed the highest R? with the lowest RMSE across all
stations compared to traditional machine learning models and was,
therefore, the best model in terms of performance to describe the rela-
tionship between Chl-a concentration and the water quality parameters.

3.2. Driving factors of algal growth

The driving factors of algal growth in the MRP based on the attention
mechanism of Bloomformer-1 are shown in Fig. 5. In P1, P2 and the
whole MRP, the most dominant driving factor of algal growth was TP,
with 18.73%, 19.20% and 22.28%, respectively. It is noteworthy that
PO, — P also exhibited a very close occupancy rate in the whole MRP, at
16.09%. The results for P5, P6, P8, and P9 showed that the major driving
factor of algal growth at these four stations was NO; — N with 20.24%,
28.27%, 20.16%, and 17.16%, respectively. In P4 and P7, TN was the
main driving factor of algal growth, with 22.16% and 17.96%, respec-
tively. The results of P3 differed from the others, with 23.84% of NH3 —
N as the most dominant driving factor of algal growth.

4. Discussion
4.1. Model performance

Inferring causation from correlation and determining the explanatory
variables associated with the response variables is the basis for tradi-
tional model building, which requires a great deal of a priori knowledge
and background information about the domain (Xia et al., 2019; Su et al.,
2022). In traditional machine learning, feature extraction is
manual-based and has limited learning capability, thus requiring the
input terms (explanatory variables) have a clear one-way correlation
with the response variables, which implies a high reliance on a priori
knowledge. However, some explanatory variables are difficult to deter-
mine in practical applications, such as CODyy, in this study. The rela-
tionship between CODyy, and algal growth is bidirectional and complex
(Li et al., 2020; Yan et al., 2016). The foundation of CODmn as an
explanatory variable depends on which direction of the relationship is
dominant, which requires a priori knowledge as well as prior experi-
ments. Bloomformer-1 employs a combination of encoder and decoder
structures as well as the MHSA mechanism to automatically extract
features from raw data and to fully understand the raw data at the same
time. This full understanding means that the complex relationship be-
tween CODyy, and algal growth in the raw data is mined and quantified.
In this way, a rigorous correlation analysis is not required before using
Bloomformer-1. Moreover, building a model with excellent fitting per-
formance is the first and most critical step to identify the driving factors
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Fig. 3. Performance of Bloomformer-1 in P1-P9 (blue lines are observations, red lines are model simulations). The circles are the test set, where the blue circles are
the true values and the red circles are the predicted values. The blue line, except for the blue circles, is the training set. Numbers show RMSE and R? for model

prediction and training data (inside brackets).

of response variables. As a state-of-the-art deep learning model,
Bloomformer-1 has an advantage in the accuracy of model fitting with R>
(0.80-0.94). Compared with traditional machine learning, deep learning
is more advanced and has a stronger learning ability to automatically
extract, analyze and understand useful information from raw data to
obtain better results (Chauhan and Singh, 2019; Janiesch et al., 2021).
In the present study, when training traditional machine learning
models, each explanatory variable was completely independent, for
example, each decision tree that made up the ETR was unrelated to each
other. This meant that the traditional machine learning models only
focused on the logical relationship between each explanatory variable
and the corresponding variable, ignored the additional effects of the in-
teractions between explanatory variables on the corresponding variable.
Consequently, the traditional machine learning models could only
partially identify the drivers of algal growth, because algal growth is not
only related to a single water quality parameter, but also to the

interactions between multiple water quality parameters in different
spatial-temporal dimensions. The Transformer structure in Bloomformer-
1 had the MHSA mechanism that could simultaneously focus on all
relationship changes (Vaswani et al., 2017). Therefore, Bloomformer-1
can identify the drivers more reliably than traditional machine learning
models.

4.2, Model interpretability

Model interpretability represents trustworthiness (Ridgeway et al.,
1998), which can be expressed in terms of transferability and under-
standability (Lipton, 2016).

Transferability represents the ability to transfer learned skills to un-
familiar environments, especially in non-stationary environments (Lip-
ton, 2016). In this study, Bloomformer-1 outperformed four traditional
machine learning models on the test data set and was able to easily cope
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Fig. 4. Model performance evaluation in the whole MRP, where (a), (b), (¢), (d) and (e) represent the test results of the Bloomformer-1, ETR, GBRT, SVR and MRL,

with abrupt changes in Chl-a concentration whereas traditional machine

learning models were unable to do so (e.g., P3 in February 2020). These

findings demonstrate that Bloomformer-1 has superior transferability.
Understandability represents our ability to understand how a model

works (Lipton, 2016). When dealing with multidimensional variables,
SVR is difficult to understand because the human brain is unable to
visualize the hyperplane when the number of variables have more than
three dimensions. Both GBRT and ETR also showed low
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Fig. 5. Driving factors of algal growth at each of the sampling stations (P1-P9), and in the whole MRP, based on Bloomformer-1 modelling.

understandability. The direction and/or shape of covariate effects usually
cannot be obtained by the simple interpretation of GBRT (Welchowski
etal., 2022). ETR uses the same principles as Random Forest, except that
the selection of attributes and cut points is strongly randomized when
splitting the tree nodes (Geurts et al., 2006). Random forest is considered
as a black box model in many studies (Wright, 2018), so ETR based on the
same principle can also be considered as a black box model. On the
contrary, Bloomformer-1 possessed a relatively high level of under-
standability. First, Bloomformer-1 worked by synthesizing the compu-
tational resources derived from the analysis and continuously adjusting
the weights of each computational resource to obtain the desired results.
This work pattern imitates that of humans and is therefore easy to

understand. Secondly, the attribution algorithm (Hao et al., 2021) of the
self-attentive mechanism could provide an interpretable description of
the information interactions within Bloomformer-1 and construct attri-
bution trees to visualize the direct information interactions in different
layers. As a result, Bloomformer-1 has a high degree of interpretability,
and the obtained results are highly applicable to real-world situations.

4.3. Driving factors of algal growth
Nutrients play a vital role in algal growth, in particular their supply

and its variability affect algal biomass and net productivity (Yang et al.,
2016; Koeller et al., 2009). Among them, nitrogen (N) and phosphorus
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(P) are essential elements for algae (Hecky and Kilham, 1988). Nitrogen
to phosphorus ratios (N:P) are often used to determine the nutrient
limitation status of water bodies (Redfield, 1963), but difficulties remain
because the optimal N:P ratio varies considerably, i.e., from 4 to 133, for
different water bodies (Klausmeler et al., 2004). Previous studies on MRP
have recognized phosphorus as the limiting factor for algal growth, but it
was not definitive that it was the most critical nutrient limitation (Nong
et al., 2020). The results of this study indicated that TP was the most
critical factor in the whole MRP. These results agreed with other studies
on algal growth and further confirmed the driving role of nutrients on
algal growth.

Although the water quality of the MRP has been good and stable since
2014, the nutrient load has been increasing. Besides the increasing
nutrient load of Danjiangkou reservoir, the rain runoff, dry and wet
deposition along the channel were the important mechanisms of nutrient
input (Wang et al., 2021; Nong et al., 2020). Inundation of farmland and
mountainous areas led to the release of nitrogen, phosphorus and other
nutrients from the soil into the water, resulting in increased nutrient
concentrations in the Danjiangkou Reservoir. In recent years, rainfall
along the MRP has increased and this, coupled with dry and wet depo-
sition, has resulted in more nutrients, both from the land and the air,
being deposited into the MRP, which made the rich material basis for
algae rapid growth. It could be deduced that nutrient control, especially
phosphorus, should be important strategy for controlling algal growth
and maintaining water quality stability.

5. Future work

Bloomformer-1, as an advanced deep learning model, has obvious
performance advantages over traditional machine learning models in
processing high volume as well as high dimensional data (Fig. S2). As the
database used in this study has medium capacity and dimensionality, the
potential of Bloomformer-1 was not fully realized, which was also why
traditional machine learning models were able to perform well in some
scenarios. In addition, due to the complexity and size of the MRP, a
deeper understanding of the relationship between algal growth and
water quality is necessary. Therefore, future work should focus on
building databases with higher data capacity and dimensionality
(including collecting physical and hydrological data), increasing the
density of monitoring stations, and using automated monitoring equip-
ment. Using such databases, Bloomformer-1, with its excellent self-
learning capability, could make more relevant and timely conclusions
regarding the management of algal growth in the MRP.

6. Conclusion

Bloomformer-1, a deep learning-based Transformer model for end-to-
end identification of the drivers of algal growth without the need for
extensive prior knowledge and prior experiments, achieved the highest
R? (0.80-0.94) and lowest RMSE (0.22-0.43 pg/L) on both individual
subsites and full-line simulations in the MRP compared with traditional
machine learning models, namely ETR, GBRT, SVR and MLR.
Bloomformer-1 also had higher interpretability, implying that Bit was
trustworthy and that the results obtained from this model could be
directly applied to real-world scenarios. TP was the most important
driver for the MRP. Phosphorus control and reduction would be an
important strategy for controlling algal growth and maintaining water
quality stability in the MRP.

Funding
This research was Jointly funded by National Key R&D plan

(N0.2021YFC3200900) and National Natural Science Foundation of
China (N0.31971477).

Water Biology and Security xac (xxxx) xxx

Credit author statement

Conceptualization: Jing Qian.

Data curation: Jing Qian, Li Qian.

Formal analysis: Jing Qian and Nan Pu.

Funding acquisition: Yonghong Bi and Stefan Norra.
Investigation: Jing Qian, Nan Pu, Li Qian and Xiaobai Xue.
Methodology: Jing Qian.

Project administration: Yonghong Bi and Stefan Norra.
Resources: Yonghong Bi.

Software: Jing Qian, Nan Pu and Li Qian.

Supervision: Stefan Norra and Yonghong Bi.

Visualization: Jing Qian, Nan Pu and Li Qian.

Writing — original draft: Jing Qian.

Writing —review & editing: Stefan Norra and Yonghong Bi.

Declaration of competing interest

The authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a
potential conflict of interest.

Acknowledgments

We appreciate the help from Yuxuan Zhu and Gang Ruan with the
experiments. We would also like to thank Di Wang for proofreading.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.watbs.2023.100184.

References

Agarap, A.F., 2018. Deep learning using rectified linear units (ReLU). arXiv e-prints arXiv:
1803.08375arXiv:1803.08375.

ASTM, 1993. Standard Practices for Measurement of Chlorophyll Content of Algae in
Surface Waters, pp. 3731-3787.

Awad, M., Khanna, R., 2015. Support vector regression. In: Efficient Learning Machines.
Springer, pp. 67-80.

Bierman, P., Lewis, M., Ostendorf, B., Tanner, J., 2011. A review of methods for analysing
spatial and temporal patterns in coastal water quality. Ecol. Indicat. 11 (1), 103-114.
https://doi.org/10.1016/j.ecolind.2009.11.001.

Chauhan, N.K., Singh, K., 2019. A review on conventional machine learning vs deep
learning. In: 2018 International Conference on Computing, Power and
Communication Technologies, GUCON, vol. 2018, pp. 347-352. https://doi.org/
10.1109/GUCON.2018.8675097.

Deng, T., Chau, K.W., Duan, H.F., 2021. Machine learning based marine water quality
prediction for coastal hydro-environment management. J. Environ. Manag. 284
(December 2020), 112051. https://doi.org/10.1016/j.jenvman.2021.112051.

Du, X., Cai, Y., Wang, S., Zhang, L., 2017. Overview of deep learning. In: Proceedings -
2016 31st Youth Academic Annual Conference of Chinese Association of Automation,
vol. 2016. YAC, pp. 159-164. https://doi.org/10.1109/YAC.2016.7804882.

Fan, Z., Gong, Y., Liu, D., Wei, Z., Wang, S., Jiao, J., Duan, N., Zhang, R., Huang, X., 2021.
Mask attention networks: rethinking and strengthen trans-former. In: NAACL-HLT
2021-2021 Conference of the North American Chap-Ter of the Association for
Computational Linguistics: Human Language Technologies, Proceedings of the
Conference, pp. 1692-1701. https://doi.org/10.18653/v1/2021.naacl-main.135
arXiv:2103. 13597.

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting ma- chine.
Ann. Stat. 29 (5), 1189-1232. https://doi.org/10.1214/a0s/1013203451.

Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Mach. Learn. 63
(1), 3-42. https://doi.org/10.1007 /s10994-006-6226-1.

Gokee, D., 2016. Algae as an indicator of water quality. In: Thajuddin, N.,
Dhanasekaran, D. (Eds.), Algae, IntechOpen, Rijeka, Ch. 4, pp. 81-101. https://
doi.org/10.5772/62916.

Grigsby, J., Wang, Z., Qi, Y., 2021. Long-range Transformers for Dynamic Spatiotemporal
Forecasting arXiv preprint arXiv:2109.12218.

Hao, Y., Dong, L., Wei, F.,, Xu, K., 2021. Self-attention attribution: interpreting
information interactions inside transformer. In: Proceedings of the AAAT Conference
on Artificial Intelligence, vol. 35, pp. 12963-12971.

He, Q., Kamarianakis, Y., Jintanakul, K., Wynter, L., 2013. Incident duration pre-diction
with hybrid tree-based quantile regression. In: Advances in Dynamic Network
Modeling in Complex Transportation Systems. Springer, pp. 287-305.

Hecky, R.E., Kilham, P., 1988. Nutrient limitation of phytoplankton in freshwater and
marine environments: a review of recent evidence on the effects of enrichment.




J. Qian et al.

Limnol. Oceanogr. 33 (4part2), 796-822. htips://doi.org/10.4319/
10.1988.33.4part2.0796.

Janiesch, C., Zschech, P., Heinrich, K., 2021. Machine learning and deep learning.
Electron. Mark. 31 (3), 685-695. https://doi.org/10.1007/512525-021-00475-2.

Klausmeler, C.A., Litchman, E., Daufreshna, T., Levin, S.A., 2004. Optimal nitrogen-to-
phosphorus stoichiometry of phytoplankton. Nature 429 (6988), 171-174. htips://
doi.org/10.1038/nature02454.

Kniisel, B., Baumberger, C., 2020. Understanding climate phenomena with data-driven
models. Stud. Hist. Philos. Sci. 84, 46-56. https://doi.org/10.1016/
j.shpsa.2020.08.003.

Koeller, P., Fuentes-Yaco, C., Platt, T., Sathyendranath, S., Richards, A., Ouellet, P.,
Orr, D., Skiladéttir, U., Wieland, K., Savard, L., Aschan, M., 2009. Basin-scale
coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean.
Science 324 (5928), 791-793. https://doi.org/10.1126/science.1170987.

Li, Y., Nwankwegu, A.S., Huang, Y., Norgbey, E., Paerl, H.W., Acharya, K., 2020.
Evaluating the phytoplankton, nitrate, and ammonium interactions during summer
bloom in tributary of a subtropical reservoir. J. Environ. Manag. 271 (May), 110971.
https://doi.org/10.1016/j.jenvman.2020.110971.

Lindsay, G.W., 2020. Attention in psychology, neuroscience, and machine learn-ing.
Front. Comput. Neurosci. 14 (April), 1-21. https://doi.org/10.3389/
fncom.2020.00029.

Liping, W., Binghui, Z., 2013. Prediction of chlorophyll-a in the Daning River of Three
Gorges Reservoir by principal component scores in multiple linear regression models.
Water Sci. Technol. 67 (5), 1150-1158. https://doi.org/10.2166/wst.2013.679.

Lipton, Z.C., 2016. The Mythos of Model Interpretability, arXiv E-Prints arXiv:
1606.03490arXiv:1606.03490.

Long, Y., Feng, M., Li, Y., Qu, J., Gao, W., 2022. Comprehensive risk assessment of algae
and shellfish in the middle route of South-to-North Water Diver-sion Project. Environ.
Sci. Pollut. Control Ser. 29 (52), 79320-79330. https://doi.org/10.1007 /s11356-
022-21210-0.

Ly, Q.V., Nguyen, X.C., L&, N.C., Truong, T.D., Hoang, T.H.T., Park, T.J., Magbool, T.,
Pyo, J.C., Cho, K.H., Lee, K.S., Hur, J., 2021. Application of Machine Learning for
eutrophication analysis and algal bloom prediction in an urban river: a 10-year study
of the Han River, South Korea. Sci. Total Environ. 797, 149040. https://doi.org/
10.1016/j scitotenv.2021.149040.

Maulud, D., Abdulazeez, A.M., 2020. A review on linear regression comprehensive in
machine learning. Journal of Applied Science and Technology Trends 1 (4), 140-147.
https://doi.org/10.38094 /jastt1457.

Nelson, N.G., Munoz-Carpena, R., Phlips, E.J., Kaplan, D., Sucsy, P., Hendrickson, J.,
2018. Revealing biotic and abiotic controls of harmful algal blooms in a shallow
subtropical lake through statistical machine learning. Environ. Sci. Technol. 52 (6),
3527-3535. https://doi.org/10.1021/acs.est. 7b05884.

Nie, P., Roccotelli, M., Fanti, M.P., Ming, Z., Li, Z., 2021. Prediction of home energy
consumption based on gradient boosting regression tree. Energy Rep. 7, 1246-1255.
https://doi.org/10.1016/j.egyr.2021.02.006.

Nong, X., Shao, D., Zhong, H., Liang, J., 2020. Evaluation of water quality in the South-to-
North Water Diversion Project of China using the water quality index (WQI) method.
Water Res. 178, 115781. https://doi.org/10.1016/j.watres.2020.115781.

Park, Y., Cho, K.H., Park, J., Cha, S.M., Kim, J.H., 2015. Development of early-warning
protocol for predicting chlorophyll-a concentration using machine learning models in
freshwater and estuarine reservoirs, Korea. Sci. Total Environ. 502, 31-41. https://
doi.org/10.1016/j.scitotenv.2014.09.005.

Qian, L., Plant, C., Bhm, C., 2021. Density-based clustering for adaptive density
variation. In: 2021 IEEE International Conference on Data Mining (ICDM), IEEE,
pp. 1282-1287.

Qian, J., Liu, H., Qian, L., Bauer, J., Xue, X, Yu, G., He, Q., Zhou, Q., Bi, Y., Norra, S.,
2022. Water quality monitoring and assessment based on cruise monitoring, remote

10

Water Biology and Security xac (xxxx) xxx

sensing, and deep learning: a case study of Qingcaosha Reservoir. Front. Environ. Sci.
10 (October), 1-13. https://doi.org/10.3389/fenvs.2022.979133.

Ralston, D.K., Moore, S.K., 2020. Modeling harmful algal blooms in a changing climate.
Harmful Algae 91 (November), 101729. https://doi.org/10.1016/j.hal.2019.101729.

Redfield, A.C., 1963. The influence of organisms on the composition of seawater. Sea 2,
26-77.

Ridgeway, G., Madigan, D., Richardson, T., O'Kane, J., 1998. Interpretable boosted naive
bayes classification. In: The 4th International Conference on Knowledge Discovery
and Data Mining (KDD-1998), pp. 101-104. URL citeseer.ist.psu.edu/
ridgeway98interpretable.html.

Saltelli, A., 2002. Sensitivity analysis for importance assessment. Risk Anal. 22, 579-590.
https://doi.org/10.1111/0272-4332.00040.

Su, Y., Hu, M., Wang, Y., Zhang, H., He, C., Wang, Y., Wang, D., Wu, X, Zhuang, Y.,
Hong, S., Trolle, D., 2022. Identifying key drivers of harmful algal blooms in a
tributary of the Three Gorges Reservoir between different sea-sons: causality based
on data-driven methods. Environ. Pollut. 297 (August 2021), 118759. https://
doi.org/10.1016/j.envpol.2021.118759.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, 1., 2017. Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998-6008.

Wang, Y., Li, Y., Liang, J., Bi, Y., Wang, S., Shang, Y., 2021. Climatic changes and
anthropogenic activities driving the increase in nitrogen: evidence from the south-to-
north water diversion project. Water (Switzerland) 13 (18). https://doi.org/
10.3390/w13182517.

Welchowski, T., Maloney, K.O., Mitchell, R., Schmid, M., 2022. Techniques to improve
ecological interpretability of black-box machine learning models: case study on
biological health of streams in the United States with gra dient boosted trees. J. Agric.
Biol. Environ. Stat. 27 (1), 175-197. https://doi.org/10.1007 /s13253-021-00479-7.

Wolf, T., Debut, L., Sanh, V., Chaumeond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,
Louf, R., Funtowicz, M., et al., 2020. Transformers: state-of-the-art natural language
processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38-45.

Wright, R., 2018. Interpreting Black-Box Machine Learning Models Using Partial 594
Dependence and Individual Conditional Expectation Plots, Exploring SAS ®
Enterprise Miner Special Collection, pp. 1950-2018. URL. https://www.sas
.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1950-20
18.pdf.

Xia, R., Zhang, Y., Wang, G., Zhang, Y., Dou, M., Hou, X., Qiao, Y., Wang, Q., Yang, Z.,
2019. Multi-factor identification and modelling analyses for managing large river
algal blooms. Environ. Pollut. 254, 113056. https://doi.org/10.1016/
j-envpol.2019.113056.

Yan, H., Huang, Y., Wang, G., Zhang, X., Shang, M., Feng, L., Dong, J., Shan, K., Wu, D.,
Zhou, B., Yuan, Y., 2016. Water eutrophication evaluation based on rough set and
petri nets: a case study in Xiangxi-River, Three Gorges Reservoir. Ecol. Indicat. 69,
463-472. https://doi.org/10.1016/j.ecolind.2016.05.010.

Yang, Z., Zhang, M., Shi, X., Kong, F., Ma, R., Yu, Y., 2016. Nutrient reduction magnifies
the impact of extreme weather on cyanobacterial bloom formation in large shallow
Lake Taihu (China). Water Res. 103, 302-310. https://doi.org/10.1016/
j-watres.2016.07.047.

Yu, P., Gao, R., Zhang, D., Liu, Z.P., 2021. Predicting coastal algal blooms with
environmental factors by machine learning methods. Ecol. Indicat. 123, 107334.
https://doi.org/10.1016/j.ecolind.2020.107334.

Zhu, Y., Mi, W., Ty, X, Song, G., Bi, Y., 2022. Environmental factors drive periphytic algal
community assembly in the largest long-distance water diversion channel. Water 14
(6). https://www.mdpi.com/2073-4441/14/6/914.

Zhu, J., Lei, X., Quan, J., Yue, X., 2019. Algae growth distribution and key prevention and
control positions for the middle route of the south-to-northwater diversion project.
Water (Switzerland) 11 (9), 1-18. https://doi.org/10.3390,/w11091851.



8

9

Supplementary Material to Deep learning approach
towards accurate identification of spatial driving factors
for algal growth in the South-to-North Water Diversion

Project using Transformer-based model

Jing Qian®, Nan PuP, Li Qian®, Xiaobai Xued, Yonghong Bi®* Stefan Norraf

* Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe 76131,

Germany

b nstitute of Advanced Computer Science, Leiden University, Leiden, 2333 CA, Netherlands

CInstitute of Informatics, Ludwig Mazimilian University of Munich, Munich 80538,

Germany

4 Mio Tech Research, Yingtou Information Technology (Shanghai) Limited, Shanghai 200120,

China
¢State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology,
Chinese Academy of Sciences, Wuhan 430072, China
fInstitute of Environmental Sciences and Geography, Soil Sciences and Geoecology, Potsdam
University Potsdam-Golm 14476, Germany

1. Z-score Normalization

Z-score Normalization is a tool to standardize features by removing the mean
and scaling to unit variance. This scaler is widely used for normalization in
many machine learning algorithms (e.g., support vector machines, logistic re-
gression, and artificial neural networks). And it was utilized for each water

quality parameter in this study ¢ according to the following equation[1]:

T — T
Z; =

i
where Z; is the standard score of i-th water quality parameter, x; is the -th
original water quality parameter, T; is the mean of i-th water quality parameter,

and o; is the standard deviation of i-th water quality parameter.
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2. MSE

MSE is a convenient way to measure the average error, defined as the ex-
pectation of the square of the difference between the estimated value and the

true value, is a commonly used regression evaluation method|[2].

1 N
MSE = - > @ —w)
i=1

Where §; is the predicted value, y; is the true value.

3. Training loss of Bloomformer-1

(PT) (P8) (P9)

Figure S1: Training loss of Bloomformer-1

4. Deep learning

Deep learning is a subclass of machine learning that comprises neural net-
works with three or more layers. These neural networks seek to imitate the
activity of the human brain, although inadequately, allowing them to "learn”
from vast quantities of data. Despite the fact that a neural network with a
single hidden layer can still produce approximations, multiple hidden layers can

help to improve and enhance the network for precision. Figure S2 shows the
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Abstract

Harmful algal blooms (HABs) pose a significant ecological threat and economic
detriment to freshwater environments. In an endeavor to manage these occurrences, we
have harnessed the potential of big data and deep learning models to engineer an intel-
ligent early warning system for HABs. Data acquisition is accomplished through a Ver-
tical Aquatic Monitoring System (VAMS), which, in conjunction with the "DeepDPM-

Spectral Clustering”" methodology, facilitates an intricate analysis of the vertical algal



distribution. This approach curtails the number of predictive models and enhances
the adaptability of the system. Emploving the Bloomformer-2 model, developed by
our team, the system carries out both single-step and multi-step prognostications of
HABs. Our case study corroborates the superior performance of Bloomformer-2, ex-
hibiting high congruity with actual value curves and a lower margin of predictive error.
This system boasts the unique ability to identify the driving factors of HABs, thereby
aiding in the formulation of targeted preventive measures. Additionally, the model’s
remarkable intelligence - the capacity to autonomously learn from preprocessed data
- and its inherent adaptability pave the way for future system upgrades and broader
applications. As part of future work, it is proposed to augment the big data platform
and establish a VAMS monitoring network to bolster the system’s geographical cover-
age and predictive capability. This research underscores the transformative potential
of integrating big data and artificial intelligence in environmental management, and

emphasizes the importance of model interpretability in machine learning applications.
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Synopsis

This study leverages big data and deep learning to create an early warning system for harm-
ful algal blooms, improving predictive capabilities and adaptability, and enabling targeted

preventive measures.

Introduction

Perilous algal efflorescences, or Harmful Algal Blooms (HABs), have burgeoned into a perva-

sive global environmental quandary.' As per the records maintained by the Harmful Algae



Event Database (HAEDT, http://haedat.iode.org), the chronology from 1990 to 2021 has
witnessed a staggering 12,195 HABs events across the globe, exhibiting a disconcerting es-
calation in their frequency. These HABs, notably the cyanobacterial proliferations, pose
formidable repercussions for various facets of our ecosystem, encompassing the water supply,
fisheries, recreational utilities, tourism sector, and real estate.? Consequently, the exigency
for devising a cost-effective, precise, and pragmatic early warning system to combat HABs
has become an inescapable imperative for scientists, policy architects, and custodians of
environmental resources.

The concentration of Chlorophyll-a (Chl-a), serving as a pivotal gauge of water quality,
is typically employed to oversee HABs in both coastal and offshore aquatic environments.®
Foretelling the spatial-temporal oscillations of Chl-a concentration proffers an early alert
for the emergence of HABs, while concurrently providing a time-sensitive comprehension of
ecological conditions. Numerous scholarly pursuits have endeavored to leverage numerical
models to prognosticate Chl-a across diverse temporal resolutions, responding to the inci-
dence of HABs. At this juncture, the prediction models for Chl-a are predominantly based
on a monthly framework.™ However, a subset of researchers have constructed prediction
models for Chl-a with heightened temporal resolution, including semi-monthly, weekly, and
daily intervals. @ Albeit, considering the intricate nature of algae blooms, which corre-
late with physical, chemical, biological, and hydrological factors, the extant time-resolved
studies fall short of efficiently tracking and predicting this multifaceted process. Thus, the
procurement of high-resolution temporal data and the formulation of an apt prediction model
become imperative. Presently, most HABs early warning system studies predominantly rely
on Chl-a data derived from the water body’s surface.® Nevertheless, water depth is recog-
nized as a crucial determinant controlling algal biomass and growth, ™0 suggesting that the
circumstances of HABs at distinct depths within a precise location are subject to fluctua-
tion, corroborated by our collected data. Hence, the development of Chl-a prediction models

across various depths can enhance our understanding of the harmful algal circumstances



within the targeted area.

In light of the considerable advancements in sensor technology, a vertical aquatic moni-
toring system (VAMS) has been unveiled to scrutinize water. This system, armed with an
array of sensors, autonomously gathers data pertaining to water quality parameters tagged
with depth labels (from surface to bottom) at predetermined intervals. On the one hand,
the data harvested by VAMS renders it feasible to construct a high temporal resolution and
depth-dimensional early warning system. On the other hand, it lays down the foundation
for transitioning from small data analysis to big data analysis of vertical water bodies, given
its inherent characteristics of high-volume, real-time, and continuous data.

Given the unbroken nature of depth data, the number of models would burgeon if predic-
tion frameworks were fashioned for each depth segment — for example, presuming a 0.05m
depth segment, we would confront 40 models for a 2m water depth. Such a modeling ap-
proach is deemed superfluous, as it unsettles the balance between temporal investment and
predictive prowess. As a result, a technique dubbed "DeepDPM-Spectral Clustering" was
devised in this study to refine the modeling strategy. The most formidable challenge in this
endeavor is clustering depth segments with an indeterminate cluster quantity. DeepDPM,
a deep learning clustering algorithm, can address this quandary. Unlike conventional clus-
tering algorithms, DeepDPM possesses the aptitude to autonomously discern the optimal
cluster number to tackle expansive data with an undefined cluster figure through iterative
cycles of amalgamation and division.™ Subsequent to the deep clustering executed by Deep-
DPM, an adjacency matrix is obtained by computing the likelihood of each depth segment
being classified within the same cluster. Thereafter, the spectral clustering algorithm can
integrate pertinent depth segments based on this adjacency matrix, thus subdividing the
water column at the focal site into several assemblages, each distinguished by water quality
and demarcated by depth.

Serving as indicators of environmental alterations, algae swiftly react to a broad spec-

trum of pollutants, thus establishing a correlation between their proliferation and the quality



of the adjacent water bodies.T? The forecast of Chl-a’s future values hinges not solely on its
antecedent values but also on the preceding or current values of other water quality param-
eters. Conventional time series forecasting (TSF) statistical techniques may grapple with
interpreting lengthy contextual sequences and extending to intricate variable relationships.™
Deep Learning models surmount these hurdles by capitalizing on extensive datasets. The
Long-Short-Term-Memory (LSTM) model has recently gained traction for predicting Chl-a
concentration. 224 Although LSTM can attain relatively superior prediction accuracy, its
structure precludes direct visualization of the relationships and weights between the predicted
value and other variables. As a result, preventative measures cannot be precisely delineated
or timely instituted. Furthermore, LSTM can only mitigate vanishing gradient and exploding
gradient issues to a certain degree when handling extensive time-series data, but it does not
provide a comprehensive solution.™ Therefore, LSTM is only suited to relatively long time-
series data, whereas its predictive eficacy for more protracted time-series data is subpar. In
addition, the HABs early warning system requires the capability to accurately predict Chl-a
while concurrently offering a clear and tangible presentation of the driving factors for pre-
dicted values to aid in the creation of preventative measures. The mechanism and structure
of LSTM dictate that it lacks this functionality. In contrast, the Transformer, another deep
learning model, showcases a distinctive edge in processing TSF. Its Multihead-Self-Attention
(MSA) mechanism allows the Transformer to achieve a prediction accuracy that is on par
with or surpasses LSTM when dealing with long time-series data, while directly elucidat-
ing the temporal and spatial relationships between predicted values and other parameters.
However, the standard Transformer struggles to effectively handle complex multivariate TSF
problems.T¥ To address these needs, we devised a transform-based prediction model for the
HABs early warning system, dubbed Bloomformer-2. Owing to its structure, it retains all
the advantages of standard Transformers while adeptly handling complex multivariate TSF.

This study endeavors to create a high temporal resolution and depth-dimensional HABs

early warning system with a cornerstone of big data mining, grounded on (1) the Vertical



aquatic monitoring system for the construction of a big data platform; (2) "DeepDPM-
Spectral cluster" for the optimization of modeling strategy; and (3) Bloomformer-2 for precise
predictive outcomes and preventative measures. The early warning system was implemented
in the Taihu Laboratory for Lake Ecosystem Research (TLLER) to validate its soundness

and dependability.

Materials and methods

Study area

Reposing in the dynamically evolving Yangtze River Delta region of China, Taihu Lake, the
nation’s third-largest freshwater body, sprawls across an expansive 2,338 square kilometers, ™
as illustrated in Figure This relatively shallow lake possesses an average depth of 1.9
meters.T? Meiliang Bay, a notably eutrophic haven in the northern facet of Taihu Lake,
encompasses a vast area of 124 square kilometers, with an average depth of 1.5 meters.?? Two
principal waterways, the Liangxi River and the Zhenwugang River, ferry urban pollutants
from the metropolises of Wuxi and Changzhou into the heart of Meiliang Bay. Since 1998,
Meiliang Bay has been grappling with severe algal blooms in both the summer and autumn
seasons, a consequence of its significant function as a primary conduit of human activities
and a crucial source of potable water.

To gauge the performance of our meticulously constructed algal early warning system, we
orchestrated a series of experiments at the terminus of a 250-meter-long jetty at the Taihu
Laboratory for Lake Ecosystem Research (TLLER) (31.418903 N, 120.213293 E), nestled on

the southern fringe of Meiliang Bay.

Vertical aquatic monitoring system

In this study, we developed a vertical aquatic monitoring device, called BIOLIFT, to collect

the data of the investigated water body (Seeing supporting information). Equipped with a
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suite of multi-sensors and tethered to a control box via a data transmission cable, it dili-
gently records real-time water quality parameters, each data point meticulously labeled with
its corresponding depth as the device ascends and descends at pre-set time intervals. Each
complete cycle of ascension and descension is denoted as a work cycle, the temporal interval
between which can be adjusted by the investigators. The recorded parameters encompass
Electrical Conductivity at 25 °C (ECs;), Temperature (Temp.). pH, Turbidity (Turb.), Col-
ored Dissolved Organic Matter (CDOM), and Chl-a. Moreover, given the potent correlation
between wind patterns and the ecological evolution of large shallow lakes, epitomized by Lake
Taihu, a weather station (Vaisala Weather Transmitter WXT520) is seamlessly integrated
with BIOLIFT to capture wind speed (WS) and direction (WD) throughout the operational
duration of BIOLIFT. The detail of the sensors is shown in supporting information.

Data harvested by BIOLIFT at TLLER during the winter of 2018 and the summer of 2019
have been utilized to construct a comprehensive data platform and validate the efficacy of
this HABs early warning system. The temporal interval between work cycles was established
at 10 minutes, and the depth of a single segment was determined to be 0.05m. Acknowledging
the requisite stabilization period for sensors of BIOLIFT upon immersion, outlier analysis
was employed to refine data from depth segments proximal to the surface. Moreover, the
BIOLIFT system was routinely checked and calibrated each morning for a period of 1.5 to 2
hours, thereby ensuring the accuracy and reliability of its data. The "2018-Winter" data set
encapsulates 13 days of BIOLIFT data, with each day comprising 132 work cycles and each
cycle containing water quality data from 23 depth segments (ranging from 0.05m to 1.2m),
in addition to wind speed and direction. The "2019-Summer" data set chronicles 13 days of
BIOLIFT data, each day encompassing 134 work cycles and each cycle incorporating water
quality data from 37 depth segments (ranging from 0.1m to 1.95m), along with wind speed

and direction.



Modeling strategy optimization

The method christened "DeepDPM-Spectral clustering" was meticulously crafted and de-
ployed to assemble depth segments into several cogent clusters, predicated on the cumulative
impact of the measured water quality parameters. Based on this method, an optimization
stratagem was devised to augment the efficiency of the system by modeling each cluster as

an entity, rather than focusing on individual depth segments.

DeepDPM

DeepDPM is bifurcated into two primary components:™ firstly, the clustering network and
secondly, the K subclustering networks, each corresponding to a distinct cluster k, where
ke 1,...,K. The role of the clustering network is to vield soft cluster assignments from
the original data, while a subclustering network’s task is to produce soft subcluster assign-
ments from the same raw data. Each of these, the clustering network and the subclustering
networks, constitutes a straightforward multilayer perceptron with a lone hidden layer. The
terminal layer of the clustering network is equipped with K neurons, in contrast to the final
layer of each subclustering network which houses a duo.

Guided by the Metropolis-Hastings framework,?! decisions to split or merge are made,
effecting changes in K, and the split/merge procedures are executed accordingly. Throughout
these split/merge stages, the preliminary cluster number K, the clustering network, and the
K subclustering networks undergo modifications, and an iterative process is implemented
until the identification of the optimal cluster number K. The detailed technicalities are
exhibited in the appended Supporting Information.

Within the parameters of this research, data pertaining to water quality parameters
(excluding wind speed and direction) for each work cycle in the "2018-Winter" and "2019-
Summer" datasets were independently processed through DeepDPM for intensive clustering.
DeepDPM autonomously discerned the optimal cluster number for each cycle, resulting in a

statistical distribution of the optimal cluster numbers. Furthermore, the adjacency matrix



can be derived by calculating the probability that each depth segment is classified into the

same cluster during the course of the experiment.

Spectral clustering

The spectral clustering algorithm perceives® all data as spatial points that can be inter-
connected with edges. The weight of the edge connecting two distant points is diminished,
while the weight between two proximate points is amplified. Through cleaving the graph,
composed of all data points, the summation of edge weights between distinct subgraphs
post-separation is minimized, and conversely, the ageregate weight within the subgraph is
maximized, thereby facilitating the objective of clustering. In essence, the spectral cluster-
ing algorithm’s process involves the construction of an adjacency matrix and its partition
via normalized cut, necessitating a given value of cluster number K during the partitioning
phase. The specifics of the spectral clustering algorithm are delineated in the appended
supporting information.

The adjacency matrix was derived throughout this research via the analysis of the Deep-
DPM results. The optimal cluster number K, boasting the highest percentage in the Deep-

DPM results, was adopted as the value of the cluster number K in the spectral clustering.

Multivariate Time Series Forecasting

In this section, a juxtaposition of LSTM and Bloomformer-2, two intricate deep learning
models tailored for multivariate time series prognostication, is presented. The amalgamated
datasets stemming from the "2018-Winter" and "2019-Summer" intervals, encompassing

wind speed and direction, are respectively furnished to these models for forecasting purposes.

LSTM

Long Short-Term Memory is distinctive Recurrent Neural Networks (RNNs) adept at dis-

cerning long-term dependencies. Conventional RNNs employ a loop to amalgamate the
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input with the preceding output, thereby fostering information persistence. Despite recur-
rent networks theoretically embodying a straightforward yet potent model to grapple with
the challenge of "long-term dependencies", their practical application often falls short.?¥
The complications of vanishing and exploding gradients impede the consistent recollection
of useful information.2¥ To mitigate this issue, LSTMs were introduced. Equipped with a
memory cell, they have the capability to store, discard, and append data contingent on the
requirement of the information over an extended duration. As a result, LSTMs are proficient
at predicting longer sequences.?? The cornerstone of LSTM is the cell state.28 The cell state
traverses through the entire chain akin to a conveyor belt, undergoing only minor linear
interactions. This allows information to flow along it unaltered. The constructs that facili-
tate the removal or addition of information to the cell state are termed gate layers. LSTM
encompasses three such gate layers: the forget gate layer, input gate layer, and output gate
layer. The architecture and intricate technicalities of LSTM are elucidated in the supporting

information.

Bloomformer-2

The Transformer model represents the state-of-the-art solutions for natural language pro-
cessing (NLP) tasks.2” Employing the Multi-Head Attention mechanism (as delineated in
the supporting information), the Transformer scrutinizes each token in the input sequence
in relation to other tokens to gather and assimilate dynamic contextual information.? This
underpins the model’s proficiency in orchestrating the transfer of information among inputs.
Unlike the LSTM, the Transformer, given its non-sequential analysis of inputs, remains im-
pervious to the gradient vanishing issue that impedes the long-term predictive capabilities
of RNNs.%? Consequently, Transformers have found utility in datasets, including those perti-
nent to TSF, which harbor long-term historical information. The architecture and specifics
of the standard Transformer are illustrated in the supporting information.

Nonetheless, the standard Transformer lacks optimization for complex multivariate TSF
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tasks, as it perceives the value of each variable at a specified time period as a discrete
marker in its graph, with each variable being incapable of prioritizing its own contextual
view.™ As an enhancement of the standard Transformer, the Bloomformer-2 is adept at
tackling complex multivariate TSF tasks efficiently. This refined approach initially trans-
mutes the contextual sequence of historical data and the anticipated target timestamps into
an extensive spatio-temporal sequence. This sequence is then transposed to yield a corre-
sponding extensive temporal-spatial sequence. Both sequences are subsequently processed
with a Transformer-based encoder-decoder architecture to derive the predicted values for
each variable. Ultimately, the predicted values are reassembled into their original format
and trained to minimize the prediction error metrics. This entire process, constituting the
flattening of input variables into spatio-temporal sequences, spatio-temporal embeddings,
and long-term prediction, is vividly depicted in Figure [2] showcasing the architecture of the

Bloomformer-2.
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Figure 2: Architecture of the Bloomformer-2

Training process

In the realm of TSF, a prognostication for a solitary future timestep is termed as a single-step
prediction, whereas a prediction encompassing multiple future steps is referred to as a multi-
step prediction.3? This procedure progressively slides forward one step at a time to envisage
the ensuing data point. Traditional strategies for multi-step prediction encapsulate direct
multi-step prediction, recursive multi-step prediction, and a fusion of both. Past research

has substantiated that the amalgamation of direct and recursive strategies outperforms ei-
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ther strategy in isolation. Nonetheless, due to the recursive operation, error accumulation
transpires during multi-step prediction, diminishing the predictive efficacy.®! To a certain
degree, the Sequence-to-Sequence (Seq2Seq) architecture, tailored for deep learning models
and delineated in the supporting information, mitigates this issue by directly outputting
sequences of adjustable length.52

In this study, the datasets of 2018-Winter and 2019-Summer were divided into training
sets and test sets. The training set encapsulates data from the 1st through the 10th day,
whilst the test set comprises data spanning from the 11th to the 13th day. within the single-
step prediction process, two-day timesteps—268 work cycles for 2019-Summer and 264 work
cycles for 2018-winter—are employed to foresee the subsequent Chl-a data. In the multi-
step prediction, two-day timesteps—268 work cycles for 2019-summer and 264 work cycles
for 2018-winter—are utilized as the input sequence to predict the forthcoming three-day
timesteps—402 work cycles for 2019-summer and 396 work cycles for 2018-winter—which
constitute the output sequence. Prior to incorporating all data into the model, data normal-

ization is performed using the Z-score(seeing supporting information).

Computational Environment

The experiment was carried out on a PC with the following features: Hardware: CPU

17-6950X, RAM 64GB. dual GeForce RTX 3090, VRAM 24GB Software: Ubuntu 20.04,

Python3.6, Pytorch 1.10.0, Numpy 19.2

Evaluation metrics

In the assessment of LSTM and Bloomformer-2 performance, we employ discerning metrics
such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Per-
centage Error (MAPE).®3 Negligible quantities of MSE, MAE, and MAPE herald a harmo-
nious congruence between the anticipated and the authentic values. A zero value epitomizes

the zenith of accuracy. A comprehensive exposition of MSE, MAE, and MAPE is furnished
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in the Supporting Information. Moreover, to depict their performance, the 95% confidence

interval of the predicted value was meticulously calculated.

Results

Results of water depth clustering

Each work cycle within the datasets pertaining to "Winter-2018" and "Summer-2019" was
independently introduced into DeepDPM for deep clustering. The distribution of the optimal
cluster number, as exhibited in Figure 8] reveals that the optimal cluster numbers are five
during the four in 2018-winter (57.0%) and 2019-summer (46.2%). Partial adjacent matrices
for winter and summer are delineated in Figure f] These adjacent matrices underwent
spectral clustering to refine the modeling strategy, the outcomes of which are cataloged in
the table. In the summer of 2019, the aquatic depth within the target region was bifurcated
into five factions, designated Group S1 through Group S5. Conversely, in the winter of 2018,
the aquatic depth was segregated into four factions, marked as Group W1 through Group
W4,

Optimal number of clusters

Optimal number of clusters . 3
- 3 -y
[} . 5
- 5 - 6
LI - 7
. 3
(2018-Winter) (2019-Summer)

Figure 3: Distribution of optimal cluster number
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Table 1: Result of water depth clustering
Season Water depth group
. Group W1 Group W2  Group W3 Group W4
Winter 2018 ) 05 _0.lm  0.1-0.3m  0.3-0.95m  0.95- 1.2m
Group S1 ~ Group S2  Group S3 Group S4 Group S5

Summer 2019

0.1-0.15m 0.15-04m 0.4-0.95m 0.95-1.55m 1.55-1.95m

Re

sults of prediction

In this study, a pair of models, LSTM and Bloomformer-2, were employed to prognosticate

the datasets from Winter-2018 and Summer-2019. We executed single-step and multi-step

forecasts for each aquatic depth category, subsequently juxtaposing the predictive perfor-

mance of the two deep learning models.

Single-step prediction

Computation of the predictive errors for the two deep learning models in single-step fore-

casting was undertaken (Table [2| the bold-italic values represent the best performance). The

outcomes of the single-step predictions for Group W1 and Group S1 are portrayed in Fig
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(The results of other water depth groups are shown in Figure S6 and S7). The predictive

value trajectories of Bloomformer-2 for Groups S1, S2, S4, W2, W3, and W4 exhibit a su-

perior alignment with the veritable value curves and possess constricted confidence intervals

in comparison to LSTM. Furthermore, Bloomformer-2 yielded smaller predictive errors than

LSTM. Using Group S1’s single-step prediction as an illustration, the performance evaluative

metrics of Bloomformer-2 (MAE=0.254, MSE=0.305, and MAPE=2.279) are universally in-

ferior to those of LSTM (MAE=0.916, MSE=1.887, and MAPE=8.427). In Groups S3, S5,

and W1, Bloomformer-2’s single-step predictive precision parallels LSTM, as evidenced by

their analogous predictive value curves, akin confidence intervals, and comparable perfor-

mance evaluative metrics.

Table 2: Errors of Bloomformer-2 and LSTM in single-step prediction

Water depth group Model MAE MSE MAPE
Group S1 Bloomformer-2 0.254 0.305 2.279
LSTM 0.916  1.887 8.427
Group S2 Bloomformer-2 0.394 0.246 2.108
LSTM 0.541  0.573 2.969
Group S3 Bloomformer-2 0.357 0.205  0.733
LSTM 0.309 0.154 0.998
Group S4 Bloomformer-2 0.288 0.142 0.848
LSTM 0.301  0.143 0.855
Group S5 Bloomformer-2 0.417 0.249  1.955
LSTM 0.373 0.271 1.162
Group W1 Bloomformer-2 0.244 0.072  0.266
LSTM 0.159 0.076 0.191
Group W2 Bloomformer-2 0.213 0.056 0.269
LSTM 0.329 0.129 0.421
Group W3 Bloomformer-2 0.201 0.052 0.247
LSTM 0.688  0.509 0.801
Group W4 Bloomformer-2 0.175 0.042 0.228
LSTM 0.184  0.044 0.237
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Multi-step prediction

The prediction errors for both deep learning models in multi-step prediction were computed

(Table Ekhe bold-italic values represent the best performance). The multi-step predictive

outcomes for Group W1 and Group S1 are illustrated in Figure E| (The results of other water

depth groups are shown in Figure S8 and S9). Bloomformer-2 outperforms LSTM across all

groupings in the context of multi-step forecasting, as the projected value trajectories more

closely mirror the authentic value curves, and the forecast inaccuracies are notably reduced.

Table 3: Errors of Bloomformer-2 and LSTM in multi-step prediction

Water depth group Model MAE MSE MAPE

Group S1 Bloomformer-2 0.207 0.161 1.091
LSTM 0.613 1.086 5.264

Group S2 Bloomformer-2 0.421 0.269 4.011
LSTM 0.474  0.361 4.034

G S Bloomformer-2 0.238 0.101 0.349
roup 53 LSTM 0526 0.473  2.629
Group $4 Bloomformer-2 0.341 0.184 1.39
LSTM 0.549  0.508 2418

Group S5 Bloomformer-2 0.505 0.378 1.679
LSTM 0.512  0.402 3.748

Group W1 Bloomformer-2 0.249 0.121 0.372
LSTM 0.339 0.337 0.621

Group W2 Bloomformer-2 0.184 0.105 0.492
LSTM 0.353  0.283 0.799

Group W3 Bloomformer-2 0.188 0.068 0.243
LSTM 0.291  0.301 0.352

Group W4 Bloomformer-2 0.361 0.167 0.558
LSTM 0.397  0.307 0.603
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Identification of Driving factors for the predicted value

The outcome of the 11th-day prediction for Group S1 serves as an exemplar, showcasing
the amalgamated driving factors for a one-day forecast and a solitary driving factor for a
ten-work cycle prediction (as an example) in Winter-2018 and Summer-2019, respectively

(Figure (7).
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Discussion

Advantages of the developed system

The architectural design and application of our system, examined through a case study,
demonstrate its substantial role in enabling early warnings for HABs.

The data infrastructure of the system is built upon VAMS, which offers a sturdy base for
the HABs early warning system. The utility of big data methodologies over traditional meth-
ods is evident in scientific exploration.®3 These methodologies pave the way for creating a
data platform with big data characteristics, overcoming the hurdles posed by conventional
data collection methods, particularly in terms of human, material, and temporal constraints.
Utilizing VAMS, we could successfully construct a data platform adhering to the 5Vs prop-
erties™ of big data within the prescribed time limit.

A key aspect of our approach is the integration of water depth data, providing a com-
prehensive view of algal distributions. Notably, algal distributions and productivity have a
significant correlation with water depth, indicating possible HABs occurrences at varying
water depths.? Accordingly, we've developed prediction models focused on water depth, aid-
ing in the analysis of algal vertical distribution at the study site. This provides predictive
data with depth labels, leading to the development of targeted measures for specific water
depths. The use of 'DeepDPM-Spectral Clustering’ to optimize our modeling strategy re-
sulted in a major reduction in model quantity, while also establishing a scientific suggestion
for future sampling.

Predicting algal blooms, an intricate multivariate TSF procedure necessitates deciphering
temporal and spatial correlations. Traditional modeling methodologies engage in sequential
assimilation of these relationships — initially attaining knowledge of a singular relationship,
then employing this amalgamated outcome as input to comprehend an additional relation-
ship. Nonetheless, the loss function’s direct affiliation with the apex of the model means com-

plete optimization is attainable solely during the latter phase of the learning process. Thus,
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models engineered in this manner possess an inherent predilection towards either the tempo-
ral or spatial domains. For instance, LSTM prioritizes spatial-temporal sequences, thereby
emphasizing comprehension of temporal relationships. In essence, conventional models fo-
cus more on localized learning, frequently disregarding a comprehensive global understand-
ing. Bloomformer-2, however, circumvents this predicament through its innovative design
featuring parallel, interconnected temporal and spatial modules. This allows for real-time
interaction and integrated learning of both dimensions. Consequently, Bloomformer-2 pos-
sesses unique capabilities for TSF tasks, such as early warning of HABs, exhibiting marked
superiority over traditional models.

Preventive measures are formulated by identifying the factors influencing predicted val-
ues. The system, besides accurately predicting HABs occurrences, can determine the driv-
ing factors and their respective weights with precision based on its multi-head-self-attention
mechanism.®” Adjustments to relevant water quality parameters of medium and high weights
can control or suppress HABs manifestation. A thorough prevention program can be devel-
oped for medium and long-term periods after identifying the combined driving factors in
multi-step prediction outcomes. Specific high-risk temporal junctures can be addressed with
tailored preventive measures.

A noteworthy feature of the HABs early warning system is its superior intelligence. The
prediction module has achieved a high level of intelligence, suggesting that the deep-learning-
based prediction model can learn autonomously from pre-processed data, eliminating the
need for human intervention. During the data pre-processing phase, the "'DeepDPM-Spectral
clustering” method independently learns the optimal cluster number, enabling deep clustering
of raw data and enhancing the intelligence of the pre-processing stage. This 'end-to-end’
operation improves adaptability to incoming data and holds promising implications for future

system upgrades.
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Model interpretability

Machine learning has been extensively employed across diverse fields, including environmen-
tal applications.®¥ Yet, can we truly rely on these machine learning models? To address
this concern, model interpretability is proposed as a solution, encompassing the concepts of
transferability and comprehensibility.3?

The innate human capacity to generalize and transfer acquired skills across various do-
mains is crucial, and machine learning models must also function effectively in such con-
texts, especially under less predictable conditions.”? Evaluation metrics demonstrate that
Bloomformer-2 outperforms LSTM in both single- and multi-step predictions. Furthermore,
in unstable situations, Bloomformer-2 can accurately discern fluctuations in trends, whereas
LSTM falls short. For instance, in the multi-step prediction of Group W1 on the 12th day,
LSTM failed to predict a sudden and substantial decrease in values, while Bloomformer-2
successfully accomplished the task. This underscores Bloomformer-2’s superior transferabil-
ity compared to LSTM.

Comprehensibility refers to our ability to understand a model’s functioning. Transparent
models are those that can be understood, while inscrutable models are deemed "black-
box.# " The modeling logic of LSTM presupposes that data adheres to the Markov decision
process, ™ considering only the relationship between two consecutive time steps. Specifically,
it employs the Sigmoid function in the forget gate layer to selectively inherit information
from the previous time step for predicting the next one. This selection mechanism lacks
causality, potentially overlooking critical causal cues. Consequently, the model is classified
as a black-box model, subject to stochastic inference. In contrast, Transformer-based models
contemplate the relationship between any two-time steps directly. They utilize the Multi-
Head-Attention (MHA) mechanism to consider all relationships between time steps (global,
local, self, and cross) for predicting subsequent information. The Query, Key, and Value
information interactions embedded in the attention mechanism exhibit causal tendencies,

taking into account all causal cues for inferring the next time step data and revealing the
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weight values of each attention head explicitly and in real-time. In addition, the attribution
algorithm pertaining to the self-attention mechanism furnishes comprehensible delineations
for information exchanges within the model, erecting attribution trees to manifest direct
information interplays amidst disparate layers,”® consequently amplifying the interpretabil-
ity of such models grounded in the self-attention mechanism to a notable degree. Thus,
Bloomformer-2 is more transparent and interpretable than the aforementioned black-box

models.

Practical application

This section explores the pragmatic application of this system, which serves to offer a 3-day
early warning (on the 11th, 12th, and 13th days) of HABs at experimental sites (using Group
W1 and Group S1 as examples), suggesting suitable preventative measures. Adhering to the
World Health Organization’s "Alert Level Framework," two Chl-a thresholds (1 pg/L and
12 pg/L) are utilized to ascertain the conditions for lake algal bloom outbreaks.™ The initial
threshold corresponds to "Alert Level I," signifying the inception of HABs, whilst the latter
corresponds to "Alert Level I1." denoting severe HABs.

According to the predicted values for the three days to Group W1, Chl-a concentrations
were consistently within the 1 pg/L to 12 pg/L range, suggesting the experimental sites were
at "Alert Level I" throughout. Comprehensive preventative measures can be proposed for
each day. Analysis of multi-step prediction results on the 11th day revealed Chl-a and wind
speed as high-weight driving factors. On the 12th day, wind speed and Chl-a were prominent,
while the 13th day spotlighted CDOM and wind speed. Previous research indicates that wind
speed can cause bottom sediment resuspension in shallow lakes such as Taihu Lake, thereby
releasing nutrients to promote algal growth.#® Concurrently, this resuspension process can
significantly augment turbidity. However, the model results demonstrate that turbidity’s
weight is nominal. Therefore, wind speed’s high weight likely stems from its role in clustering

algae from surrounding areas to the target site. The ensuing algae death elevates the CDOM
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concentrations within the water column. CDOM is subject to photochemical degradation
and can transition from large-molecule organic matter to small-molecule organic matter and
inorganic nutrients, fostering conditions conducive to algal growth.?% In conclusion, for Group
W1, preventing algae aggregation around the area is instrumental in devising preventative
measures, such as the installation of algae interception screens in the area’s periphery.
Given the predicted values for the three days of Group S1, nine time points fell into Alert
Level II, while the remaining were in Alert Level 1. Initially, comprehensive preventative
measures for each day can be proposed based on multi-step prediction results. High-weight
driving factors on the 11th day were Chl-a and CDOM. The 12th day featured Chl-a and
CDOM, while the 13th day highlighted CDOM and pH. Contrary to winter, wind speed and
direction were not primary driving factors in summer, suggesting the algae predominantly
originated from local growth. Additionally, factors such as algal mortality and surface runoff
led to increased CDOM and pH in the water column at the experimental sites, fostering algal
growth. Consequently, the removal of existing algae at the experimental sites complemented
by pH adjustment may serve as an effective deterrent to HABs outbreaks of Alert Level I,

such as the application of acidic algaecides and manual salvage.

Future work

Owing to Bloomformer-2’s robust learning prowess, prioritizing the enhancement of the big
data platform is paramount. We envision a twofold augmentation of the current big data
platform. Initially, the installation of additional sensors on the VAMS is requisite, markedly
amplifying data diversity. Subsequently, deploying the system across assorted water bodies
can appreciably escalate the system’s data capacity.

Moreover, by instituting a VAMS monitoring network, the system’s application extends
from a singular point (or modest area) to a more expansive territory, thereby capacitating

it to execute tasks over a broader geographical expanse.
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Vertical aquatic monitoring system - BIOLIFT

The photo of BIOLIFT at work is shown in Figure SI] And the panoramic photograph of
the TLLER and the BIOLIFT installation position are shown in Figure The sensors of
BIOLIFT and their specifications are shown in Table The producer of sensors of pressure,
temperature and ECs; are ADM Elektronik GmbH. The sensors of Chl-a and CODM are
produced by Turner Designs, Inc. The sensor of pH is produced by AMT GmbH. The sensor

of Turbidity is produced by Seapoint Sensors, Inc.
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Figure S1: BIOLIFT at work (©)Andre Wilhelms



Figure S2: Panoramic photograph of the TLLER and the BIOLIFT installation position
©Jing Qian



Table S1: Sensors of BIOLIFT and their specifications

Range Resolution Accuracy Re:g: ;‘se

0.005dBar +0.1dBar 0.04s

Parameter  Principle

Pressure piezo-resistive  0-200d Bar
Temp. Pt 100 -2-38°C 0.001°C +0.01°C 0.12s
Potentiometric
pH (Ag/AgCl) 0-14pH 0.02pH 0.02pH 1s(63%)
Fluorescence 0.15-1250
CDOM exc.325nm : dl- § 0.01ppbQS +5% 1s
fl. 470nm ppbQ
Fluorescence 0.03-500
Chl-a exc.465nm ’ _/L 0.01 pg/L N.A. Is
fl. 696nm H9
ECas 7-pole-cell  0-6mS/em  0.1uS/em  +2uS/em 0.05s
Turb. e 0-T50FTU  <0.001% +9% 0.1s
ackscattering
WD N.A. 0-360° 1° +3° 0.25s
+3%
WS N.A. 0-60m/s 0.1m/s at 10m/s 0.25s




DeepDPM

DeepDPM contains two main parts, the first part is the clustering network, and the second
is K subclustering networks (one for each cluster k, k € {1,..., K}). The training process
is shown in Figure

In the training process, first given an arbitrary initial cluster number K, the data is fed
to the clustering network f.), which generates K soft cluster assignments for each data point

€ZT;:

K
ri= (Ti,k)kzl

Where r; 4 € [0,1] is the soft cluster assignment R of x; to cluster k and Zle rig = 1.

Secondly, the hard assignments z = (zi)?;l are calculated according to the equation:

% = arg maxri

k

Next, each subclustering network f~, is fed the hard assignments data for its respective

cluster and generates a soft subcluster assignment, as the following equations show:

skub (Xk) =R, = ("'Fi)i;z,-:k

~ ~ 2
ri = ('ri,j)j=1

Where 7; ; € [0, 1] is the soft assignment of x; to subcluster j(j € {1,2}), and 7 + 7,2 =
ke {1,...,K}.

The clustering network f, and each subclustering network f*

p 1s a simple multilayer
perceptron with a single hidden layer. The last layer of the clustering network has K neurons,

while the last layer of each subclustering network has two.



Finally, the split or merge decisions are made for changing K according to the Metropolis-
Hastings framework.”

The split proposals are accepted stochastically with probability min (1, H), where Hj is
Hastings ratio. In the split step, each cluster is split into its two subclusters. The merge

proposals are accepted/rejected using the reciprocal number of the Hastings ratio H..

1 — T V) fo (Bas M T (Neo) fo (Xi2: A)
S [ (Ni) fo (X A)

Where H; is the Hastings ratio, I' is the Gamma function, A}, = ("Ei)i:zl—=k stands for the
points in the cluster k, Ny = |Xi|, Xi,; = (€i),.,, 5,)—(x ;) denotes the points in the subcluster,
j(7 € {1,2}), Ni; = | X, l|, and fz(-;A) is the marginal likelihood where A represents the
Normal-Inverse Wishart hyperparameters.?

After the split and merge steps, the initial cluster number K, clustering network, and K
subclustering networks are updated, and iterative operations are performed until the optimal

cluster number K is found.

X R

: Soft cluster Soft subcluster
DEIF] Clustering network assignments | K clm@ﬂng networks
> K

X

—~

~ 4
Updating 31 Split/merge decisions 3

Figure S3: Training process of DeepDPM

Spectral cluster

Spectral clustering® is an unsupervised machine learning technique used for partitioning data
into groups or clusters based on the similarity between data points. The main idea behind

spectral clustering is to analyze the eigenvectors and eigenvalues of the Laplacian matrix

6



derived from the data’s adjacency matrix. The steps of spectral clustering are as shown
below.?

Given a set of points S = {s,...,s,} in R! that we want to cluster into k subsets:

1. Form the affinity matrix 4 € R"*" defined by A;; = exp (= ||s; — s;||* /20?) if i # j,
and A; = 0.

2. Define D to be the diagonal matrix whose (,7)-element is the sum of A ’s i-th row,
and construct the matrix L = D~1/2AD~1/21

3. Find zy,x9,..., 2, the k largest eigenvectors of L, and form the matrix X =
[T122...14) € R™** by stacking the eigenvectors in columns.

4. Form the matrix Y from X by renormalizing each of X ’s rows to have unit length
(ie. Yij = X/ (2, Xg,)m).

5. Treating each row of Y as a point in R¥, cluster them into k clusters via K-means or
any other algorithm (that attempts to minimize distortion).

6. Assign the original point s; to cluster 7 if and only if row i of the matrix Y was

assigned to cluster j.

LSTM

We utilized a well-established DL model for time series prediction, known as LSTM,# to serve
as a comparison with Bloomformer-2. LSTM is a type of recurrent neural network (RNN)Z
architecture designed to address the vanishing gradient® problem commonly encountered in
traditional RNN. LSTM have a more complex structure than standard RNN, incorporating
memory cells and various gates to control the flow of information through the network.
The architecture of the LSTM is shown in Figure For moment ¢, the LSTM has three
inputs: the cell state C;_;, the hidden layer state h;_;, and the input vector at moment ¢, X;.
In addition there are two outputs: the cell state C; and the hidden layer state h;, where h;

is also used as the output at moment £.



The gate layers of the LSTM is designed with some computational steps to adjust the
input with the values of the two hidden layers. The gate layers in LSTM contains forget gate
layer, input gate layer and output gate layer. The square components in Figure §4]represent
neurons, and the difference between them is the difference in activation functions. o denotes
the Sigmoid function, whose output is between 0 and 1, and tanh is the hyperbolic tangent
function, whose output is between -1 and 1. The role of forget gate layer is to selectively

forget the information in the cellular state, and the function is:

fr =0 Wy [l 4] + by)

The input gate layer is used to selectively record new information into the cell state, and

the functions of input gate layer are:

fo =0 (Wy - [he—1, 4] + by)

ég = tanh (WC . [hg_l, .”L’g] + bc)

Ct=ft*ct—1+it*ét

The output gate layer is used to save the previous information into the hidden layer and

output a time step value and the functions of output gate layer are:

or = o (W, [hey, 2] + by)

hy = o; * tanh (Cy)

The LSTM architecture allows the network to learn and retain long-range dependencies



in the input data by controlling the flow of information through the memory cell and gates.

fi

Figure S4: Architecture of LSTM



Transformer

Architecture

According to the article " Attention is all you need", the architecture of Transformer, depicted
in Figure operates on the fundamental principle of an encoder-decoder construct.” The
leftmost section represents the encoder, while the decoder finds its placement on the right.

As for the encoder, it is constituted of six identically designed layers, epitomizing 'N” in
the corresponding architectural schematic. Each encoder comprises dual sub-components:
the inaugural one is the Multi-Head Attention, succeeded by a position-wise, fully connected
feed-forward network forming the second. The two sub-layers are intricately linked via
residuals, culminating in Layer Normalization, a process indicated as 'Add&Norm’ in the
associated architectural illustration.

Switching focus to the decoder, it too is fashioned out of six congruent layers. Each
decoder encompasses three sub-layers, two of which are designed analogously to those in the
encoder, with the supplementary inclusion of multi-head attention, tasked with processing
the output produced by the encoder layer. The decoder, much like its encoder counterpart,

utilizes residual connections and Layer Normalization.

Attention

Within the realm of the Attention function, the triad of Q(Query), K(Key), and V/(Value)
are transformed into an output, whereby the aforementioned triad and the output manifest
as vectors. The output unfurls as a weighted summation of V' (Value), the weightage of which
is ascertained by scrutinizing the fusion of Q(Query) and K(Key).

Scaled dot-product attention

The equation of the scaled dot-product attention is as follows.

10
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Figure S5: Architecture of standard Transformer
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Attenti (Q K ) = soft ( )
ention(Q, K,V soltmax V
. V dk

The vector dimension in both ) and K in the above equation is di, and the vector

dimension of V' is d,. In self-attention, d = d, = dyordaEmbedding/numHeads- The commonly

used attention function is dot-product (multiplicative) attention.

Multi-Head Attention

The function of Multi-Head Attention is:

MultiHead(Q, K, V) = Concat (head,, . .. , head;,)W©°

Where head; = Attention (QVViQ, KWK, VWZ-V) Where the projections are parameter
matrices W2 € Rimodet Xdi 7K ¢ Réfmoder Xdi 7V ¢ Rédmodet Xdv and WO g R % dmaden

The calculation process is shown below:

a. Assume that the number of heads is now h. First, the vectors are divided into h equal
parts according to the length of the vectors on each time sequence.

b. Then the new values of (), K, and W are obtained by mapping the above equal parts
of h data with different weights.

¢. The h copies of the above mapped data are used to calculate the value of the corre-
sponding Attention.

d. It is reassembled according to the form of the previous segmentation and then mapped

to the original vector dimension. Then we get the value of Multi-Head Attention.

Sequence to Sequence

The output of Sequence to Sequence (Seq2Seq) tactic is germane to the network endowed

with an Encoder-Decoder framework, wherein both the input and output take the form of

12



sequences. In the Encoder, the sequence undergoes metamorphosis into a fixed-length vector,

which is then transformed by the Decoder into the desired output sequence.

Evaluation metrics

MAPE was calculated as:

n

MAPE (y, §) = -0 3

n
i=1

yi — Ui
Yi

MAE was calculated as:

> |vi — il
MAE(y,j) = =

n

MSE was calculated as:

L ~\2
_ (vi — 4:)
MSE(y, i) = =
n

where y; is the predicted value of the ith sample, y; is the corresponding true value of

the total n samples, and 7; is the mean of true value.

Z-score

All data were Z-score normalized before being input to the model according to the following

equation:

where Z; is the standard score of i-th data, x; is the -th original data, T; is the mean of

i-th data, and a; is the standard deviation of i-th data.

13



Result of prediction

Single prediction

The single-step predictive outcomes for Group W2 to Group W4 are illustrated in Figure

[S6] while the results for Group S2 to S5 are shown in Figure

14
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Multi-step prediction

The multi-step predictive outcomes for Group W2 to Group W4 are illustrated in Figure S§]

while the results for Group S2 to S5 are shown in Figure

19
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Identification of Driving factors for the predicted value

The comprehensive driving factors of 11th to 13th prediction for Group W1 and S1 are shown

in Figure [S10] and Figure S12] respectively. And the driving factor of the predicted value

for all work cycles for Group W1 and S1 on the 11th day is shown in Figure S11]and Figure

[SI3] respectively.

day-12 day-11

Importance (%)

day-13

Temp. ECas pH Chl-a CDOM Turb. WD ws

Figure S10: Driving factor of 11th to 13th day prediction for Group W1
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Figure S11: Driving factor of predicted value for all work cycles for Group W1 on 11th day
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Figure S12: Driving factor of 11th to 13th day prediction for Group S1
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Figure S13: Driving factor of predicted value for all work cycles for Group S1 on 11th day
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diversion project using advanced Al
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Identifying the factors contributing to algal growth
accurately and reliably is vital for sustainable use
and scientific management of freshwater
resources. As scientific research evolves from using
small data sets to larger ones, the shortcomings of
traditional machine learning become clearer, and
deep learning which is adept at processing large
amounts of data, is getting more attention.
Although it has been used occasionally for
forecasting chlorophyll-a (Chl-a) time series, deep
learning has hardly been employed to identify
important factors concerning algal growth.

To address this gap, a cross-national team of
researchers from China, Germany and The
Netherland developed a deep learning-based
Transformer model, Bloomformer-1, designed for
end-to-end identification of algal growth driving
factors.

“Deep learning models have lower operational
transparency compared to traditional machine

IMAGE: FIGURE 1 SKETCH MAP OF SAMPLING
STATIONS DISTRIBUTION IN THE MIDDLE SECTION
OF THE SOUTH-NORTH WATER DIVERSION
PROJECT AND DRIVING FACTORS OF ALGAL
GROWTH BASED ON BLOOMFORMER-1
MODELLING view more >

learning, but they exhibit significant advantages in performance,” said Jing Qian, the first author of

the paper. “The development of Bloomformer-1 aims to create a win-win situation in terms of



interpretability and performance, enabling the driving factors of algal growth to be identified
transparently and accurately.”

Qian, a doctoral student from the Karlsruhe Institute of Technology in Germany, conducted this
research as a jointly-cultivated doctoral student at the Institute of Hydrobiology in China.

The Middle Route of the South-to-North Water Diversion Project (MRP), a national large-scale project
in China, was selected as the study site to demonstrate the superior performance of Bloomformer-1.
It was compared to four widely used traditional machine learning models—extra trees regression
(ETR), gradient boosting regression tree (GBRT), support vector regression (SVR), and multiple linear
regression (MLR)—with the highest R2 (0.80 to 0.94) and lowest RMSE (0.22 to 0.43 pg/L).

"Bloomformer-1 employs the multi-head-self-attention mechanism, which compares each token in
the input sequence with other tokens to collect and learn dynamic contextual information, thus
enabling a thorough understanding of all the field sampling data. This is one of the reasons for its
superior performance," said co-author Stefan Norra from the University of Potsdam.

The results of study, published in the KeAi journal Water Biology & Security, revealed that total
phosphorus (TP) was the most significant factor affecting the MRP, especially in the Henan section,
while total nitrogen (TN) had the most substantial impact on algal growth in the Hebei section.

“Controlling and reducing phosphorus is an important strategy for controlling algal growth and
maintaining stable MRP water quality, while nitrogen control in the Hebei region is also worth paying
attention to," said Yonghong Bi from the Institute of Hydrobiology, Chinese Academy of Sciences,
who is the corresponding author of the study. "Furthermore, the promotion and application of
Bloomformer-1 in other water bodies will be an important task going forward.”
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Hydrobiology (IHB), China, jing.gian@partner.kit.edu
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Uncovering the driving factors behind algal
growth in the South-to-North Water
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Sketch map of sampling stations distribution in the middle section of the South-
North Water Diversion Project and driving factors of algal growth based on
Bloomformer-1 modeling. Credit: Jing Qian, Karlsruhe Institute of Technology
(KIT), Germany, and Institute of Hydrobiology (IHB), China
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Identifying the factors contributing to algal growth accurately and
reliably is vital for sustainable use and scientific management of
freshwater resources. As scientific research evolves from using small
data sets to larger ones, the shortcomings of traditional machine learning
become clearer, and deep learning which is adept at processing large
amounts of data, is getting more attention.

Although it has been used occasionally for forecasting chlorophyll-a (Chl-
a) time series, deep learning has rarely been employed to identify
important factors concerning algal growth.

To address this gap, a cross-national team of researchers from China,
Germany and The Netherlands developed a deep learning-based
Transformer model, Bloomformer-1, designed for end-to-end
identification of algal growth driving factors.

"Deep learning models have lower operational transparency compared to
traditional machine learning, but they exhibit significant advantages in
performance," said Jing Qian, the first author of the paper. "The
development of Bloomformer-1 aims to create a win-win situation in
terms of interpretability and performance, enabling the driving factors of
algal growth to be identified transparently and accurately."

Qian, a doctoral student from the Karlsruhe Institute of Technology in
Germany, conducted this research as a jointly-cultivated doctoral student
at the Institute of Hydrobiology in China.

The Middle Route of the South-to-North Water Diversion Project
(MRP), a national large-scale project in China, was selected as the study
site to demonstrate the superior performance of Bloomformer-1. It was
compared to four widely used traditional machine learning
models—extra trees regression (ETR), gradient boosting regression tree
(GBRT), support vector regression (SVR), and multiple linear regression
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(MLR)—with the highest R2 (0.80 to 0.94) and lowest RMSE (0.22 to
0.43 ng/L).

"Bloomformer-1 employs the multi-head-self-attention mechanism,
which compares each token in the input sequence with other tokens to
collect and learn dynamic contextual information, thus enabling a
thorough understanding of all the field sampling data. This is one of the
reasons for its superior performance,” said co-author Stefan Norra from
the University of Potsdam.

The results of study, published in Water Biology & Security, revealed that
total phosphorus (TP) was the most significant factor affecting the MRP,
especially in the Henan section, while total nitrogen (TN) had the most
substantial impact on algal growth in the Hebei section.

"Controlling and reducing phosphorus is an important strategy for
controlling algal growth and maintaining stable MRP water quality, while
nitrogen control in the Hebei region is also worth paying attention to,"
said Yonghong Bi from the Institute of Hydrobiology, Chinese Academy
of Sciences, who is the corresponding author of the study. "Furthermore,
the promotion and application of Bloomformer-1 in other water bodies
will be an important task going forward."

More information: Jing Qian et al, Identification of driving factors of
algal growth in the South-to-North Water Diversion Project by
Transformer-based deep learning, Water Biology and Security (2023).
DOI: 10.1016/1.watbs.2023.100184

Provided by KeAi Communications Co.

Citation: Uncovering the driving factors behind algal growth in the South-to-North Water

3/4



PHYS {9/

Diversion PrOJect usmg advanced Al (2023 May 22) retrieved 30 May 2023 from

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

4/4



KeAi e English 3 =

Home > News
> Uncovering the Secret Masks Behind Algae Growth in the South-to-North Water Diversion Project Using Advanced Al

Uncovering the Secret Masks Behind Algae Growth in the
South-to-North Water Diversion Project Using Advanced
Al

Published 24 May, 2023

Identifying the factors contributing to algal growth accurately and reliably is vital for sustainable use and scientific
management of freshwater resources. As scientific research evolves from using small data sets to larger ones, the
shortcomings of traditional machine learning become clearer, and deep learning which is adept at processing large
amounts of data, is getting more attention. Although it has been used occasionally for forecasting chlorophyll-a (Chl-
a) time series, deep learning has hardly been employed to identify important factors concerning algal growth.

To address this gap, a cross-national team of researchers from China, Germany and The Netherland developed a
deep learning-based Transformer model, Bloomformer-1, designed for end-to-end identification of algal growth
driving factors.

“Deep learning models have lower operational transparency compared to traditional machine learning, but they
exhibit significant advantages in performance,” said Jing Qian, the first author of the paper. “The development of
Bloomformer-1 aims to create a win-win situation in terms of interpretability and performance, enabling the driving
factors of algal growth to be identified transparently and accurately.”

Qian, a doctoral student from the Karlsruhe Institute of Technology in Germany, conducted this research as a jointly-
cultivated doctoral student at the Institute of Hydrobiology in China.

The Middle Route of the South-to-North Water Diversion Project (MRP), a national large-scale project in China, was
selected as the study site to demonstrate the superior performance of Bloomformer-1. It was compared to four
widely used traditional machine learning models—extra trees regression (ETR), gradient boosting regression tree
(GBRT), support vector regression (SVR), and multiple linear regression (MLR)—with the highest R2 (0.80 to 0.94) and
lowest RMSE (0.22 to 0.43 ug/L).

"Bloomformer-1 employs the multi-head-self-attention mechanism, which compares each token in the input
sequence with other tokens to collect and learn dynamic contextual information, thus enabling a thorough
understanding of all the field sampling data. This is one of the reasons for its superior performance," said co-author
Stefan Norra from the University of Potsdam.

The results of study, published in the KeAi journal Water Biology & Security, revealed that total phosphorus (TP) was
the most significant factor affecting the MRP, especially in the Henan section, while total nitrogen (TN) had the most
substantial impact on algal growth in the Hebei section.

“Controlling and reducing phosphorus is an important strategy for controlling algal growth and maintaining stable
MRP water quality, while nitrogen control in the Hebei region is also worth paying attention to," said Yonghong Bi
from the Institute of Hydrobiology, Chinese Academy of Sciences, who is the corresponding author of the study.
"Furthermore, the promotion and application of Bloomformer-1 in other water bodies will be an important task going
forward.”
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Contact author name, affiliation, email address: Jing Qian, Karlsruhe Institute of Technology (KIT), Germany, and

Institute of Hydrobiology (IHB), China, jing.gian@partner.kit.edu

Social media handles:
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See the article [ Qian, Jing, et al. "Identification of driving factors of algal growth in the South-to-North Water
Diversion Project by Transformer-based deep learning." Water Biology and Security (2023): 100184.
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Code

C.1 DNN

1 import torch

2 import torch.nn as nn

3 import torch.optim as optim

: from torch.utils.data import Dataloader, TensorDataset

5 import numpy as np

6 from sklearn.preprocessing import StandardScaler

7 from sklearn.metrics import mean_squared_error, r2_score,

median_absolute_error

9 # Set seed for reproducibility
10 torch.manual_seed (42)
11 if torch.cuda.is_available():

12 torch.cuda.manual_seed_all (42)

14 # Define model structure
15 class MLP (nn.Module):

16 def __init__(self, input_size, hidden_layer_sizes):

17 super (MLP, self).__init__()

18 layers = []

19 layer_sizes = [input_size] + list(hidden_layer_sizes)
20 for i in range(len(layer_sizes) - 1):

21 layers.append(nn.Linear (layer_sizes[i], layer_sizes[i+1]))
22 layers.append (nn.RelLU())
23 layers.append(nn.Linear (layer_sizes[-1], 1))

24 self .model = nn.Sequential (*layers)

26 def forward(self, x):

27 return self.model (x)

20 # Load data
30 X_train, y_train, X_test, y_test = load_data()

196



C Code

# Initialize model
hidden_layer_sizes = (256, 256, 256, 256, 256)
model = MLP(X_train.shape[1], hidden_layer_sizes)

; # Define a loss function and optimizer
criterion = nn.MSELoss ()

optimizer = optim.Adam(model.parameters(), 1lr=0.001)

# Create dataloader for batch processing
dataset = TensorDataset(X_train, y_train)
dataloader = Dataloader (dataset, batch_size=200, shuffle=True)

# Train the model
for epoch in range (1000):
for X_batch, y_batch in dataloader:

model . train ()
optimizer.zero_grad ()
y_pred = model(X_batch)
loss = criterion(y_pred, y_batch)
loss .backward ()

optimizer.step ()

# After training, we switch to evaluation mode for testing

model.eval ()

56 with torch.no_grad():

y_test_pred = model(X_test)

# Convert prediction tensor back to numpy array for metrics computation
y_test_pred = y_test_pred.numpy ()
y_test = y_test.numpy()

test_mse = mean_squared_error (y_test, y_test_pred)

test_rmse = np.sqrt(test_mse)

test_r2 = r2_score(y_test, y_test_pred)

test_mape = np.mean(np.abs((y_test - y_test_pred) / y_test))

7 test_mad = median_absolute_error(y_test, y_test_pred)
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C.2 Spectral clustering

import numpy as np
from scipy.cluster.vq import kmeans, vq

from scipy.linalg import svd

def spectral_clustering(adj_matrix, num_clusters):

nun

Perform spectral clustering from adjacency matrix.

Parameters:

adj_matrix: numpy.ndarray
adjacency matrix

num_clusters: int

number of clusters

Returns:
cluster_labels: numpy.ndarray

an array of cluster assignments for each data point

nun

# Compute row sums (degrees for each node)

rowsum = np.sum(abs(adj_matrix), axis=0)

# Compute the degree matrix (diagonal matrix with degrees)

degree_matrix = np.diag(l / np.sqrt(rowsum + 1le-6))

# Compute the Laplacian matrix using symmetric normalization

laplacian_matrix = degree_matrix.dot(adj_matrix) .dot(degree_matrix)
# Compute the eigenvectors of the Laplacian matrix using Singular Value
Decomposition (SVD)

_, _, eig _vectors = svd(laplacian_matrix, full_matrices=False)

# Stack the first num_clusters eigenvectors to create feature vectors

features = np.array(eig_vectors[:num_clusters]).T
# Perform k-means on these features
centroids, _ = kmeans(features, num_clusters)

cluster_labels, _ = vq(features, centroids)

return cluster_labels
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