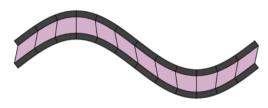


The influence of impact damage on the damping behavior of constrained layer damping laminates

Alexander Jackstadt, Luise Kärger, Kay A. Weidenmann ICCM23 International Conference on Composite Materials 30 July – 4 August 2023, Belfast

Introduction


Motivation

- Lightweight components prone to vibrations due to...
 - High stiffness
 - Low mass
 - Low thickness
- Noise vibration harshness (NVH) is a growing issue in the development of most structures and machinery
- Can hybridization influence damping?

Constrained-layer damping (CLD)

constraining layer: stiff

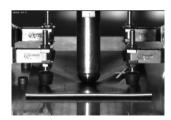
material

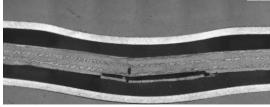
constrained layer: highly compliant, viscoelastic

material

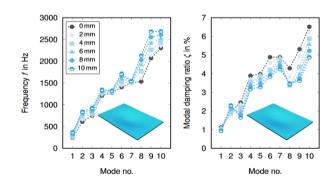
- Intrinsic damping mechanism
- High transverse shear deformations allow for effective dissipation in viscoelastic damping layers

How does low-velocity impact damage influence CLD?




Methodology

Experimental


- Low-velocity impact tests according to ASTM 7136
- Impact energies: 5 J, 10 J, 20 J
- Observed damage modes:
 - Delaminations
 - Intra-ply damage in CFRP layers
 - Permanent deformation

Numerical

- Modal analysis of pre-damaged laminates considering intra-ply failure, delaminations and permanent deformation
- Example: Depth of permanent deformation

Conclusions

Low-velocity impact results in delaminations, intra-ply damage to CFRP layers and permanent deformation

Natural frequencies and modal damping ratios largely unaffected by delaminations and intra-ply damage

Permanent deformation is the leading cause of change in natural frequencies and modal damping ratios

CLD is a highly damage-tolerant intrinsic damping mechanism for lightweight design

Thank you for your attention!

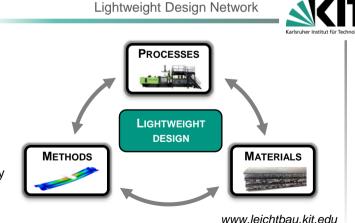
The presented research has been funded by:

- German Research Foundation (DFG) within the Priority Program SPP 1897
- The Vector Foundation within the Young Investigator Group Green Mobility

The financial support by the funding institutions is gratefully acknowledged.

We also thank Gummiwerk KRAIBURG GmbH & Co. KG for their continuous support in supplying the elastomer material.

Contact


Alexander Jackstadt, M.Sc.

alexander.jackstadt@kit.edu

+ 49 721 608-45365

KIT | Karlsruhe Institute of Technology Institute of Vehicle System Technology - Lightweight Technology Rintheimer Querallee 2 | Bld. 70.04 76131 Karlsruhe

