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We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum
many-body entangled states with symmetry-protected topological order. Specifically, we consider the experi-
mental platform consisting of superconducting transmon circuits and linear microwave resonators. We perform
theoretical modeling of this platform via pulse-level simulations based on physical features of real devices. In our
protocol, transmon qutrits are mapped onto spin-1 systems. The qutrits’ sharing of nearest-neighbor dispersive
coupling to a dissipative microwave resonator enables elimination of state population in the Stotal = 2 subspace
for each adjacent pair, and thus, the stabilization of the many-body system into the Affleck, Kennedy, Lieb, and
Tasaki state up to the edge mode configuration. We also analyze the performance of our protocol as the system
size scales up to four qutrits, in terms of its fidelity as well as the stabilization time. Our work shows the capacity
of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum many-body states
that are topologically nontrivial.
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I. INTRODUCTION

Dissipation is usually viewed as an undesirable process in
handling quantum information, it destroys quantum coherence
and should therefore be removed by quantum error correction.
However, dissipative processes can also contribute novel ele-
ments for quantum information processing when controlled
and engineered [1,2]. One such application is in preparing a
quantum many-body system into the ground state of a generic
many-body Hamiltonian [3]. This kind of preparation is typ-
ically achieved in one of three ways. One can engineer the
system with the interactions of a certain Hamiltonian and
relax the system towards the ground state [4]. However, the
appropriate interactions or relaxation may not be generally
achievable, or sufficiently low temperatures may pose a chal-
lenge. Alternatively, one can prepare a many-body entangled
state using adiabacity [5,6], where a system is initialized in
a trivial ground state and the Hamiltonian is slowly tuned
to adiabatically produce the many-body ground state. Here,
high fidelity requires slow evolution and an absence of ex-
cess dissipation that induce quantum jumps between states.
Finally, one can start with a trivial state and implement a
time-dependent Hamiltonian that will rotate the state into the
desired target state, not insisting on following the instan-
taneous ground state, e.g., by sequential unitary operations
[7]. However, determining and implementing the appropriate
Hamiltonian with robustness to other sources of dissipation
can be a challenging, if not impossible task. The limitations
of these three approaches motivate the investigation of driven
dissipative methods in preparing and stabilizing a manybody

system in a nontrivial state. Here, by designing the dissipative
terms in the system Lindbladian [8], the desired many-body
state can be reached and stabilized as the fixed point of the
resulting dynamics [9]. Due to the intimate connection be-
tween disspation and measurement [10], this approach can be
viewed as a type of blind steering through measurement or
equivalently autonomous feedback.

First proposed by Affleck, Kennedy, Lieb, and Tasaki
(AKLT) in 1987, the AKLT state [Fig. 1(a)] is a prototypical
example of the Haldane phase [11] with a symmetry-
protected topological order. It works as a resource state for
measurement-based quantum computation [12,13] and can be
efficiently represented by matrix-product states (MPS) [14].
Since the MPS representation efficiently describes a large
variety of low-energy states of many-body Hamiltonians, pro-
tocols that can produce the AKLT state may be generalized for
a range of applications. Compared with the typical preparation
method of the AKLT state based on its matrix product rep-
resentation via postselection [15,16], or based on sequential
unitary gates [7] and assisted by measurements [17], driven-
dissipative methods create the many-body state with robust-
ness and self-correcting features. Here, the system coherence
can last much longer than the lifetime of a single compo-
nent. Prior proposals addressed possible implementation in
ion trap and cold atom systems [18,19]. Here, we focus on the
ALKT states under open boundary conditions, where there is a
four-fold degenerate ground state. Our protocol stabilizes this
subspace of states in the superconducting transmon platform.

The superconducting circuit QED (cQED) platform,
which we consider, provides a versatile methodology for
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FIG. 1. Schematic diagram of the AKLT chain and proposed
device. (a) The AKLT chain as represented in the form of a spin-1
chain, where neighboring pairs of spin-1 particles are dissipatively
excluded from the Stotal = 2 manifold (indicated as red squiggly ar-
rows). (b) Sketch of the proposed one-dimensional superconducting
transmon array, with shared resonators between nearest neighbors.
Using this platform we present a protocol for the dissipative prepa-
ration and stabilization of the system in the AKLT subspace.

controlling superconducting artificial atoms and their interac-
tion with electromagnetic cavities [20]. In recent years, the
platform has been a mainstream track for developing quantum
processors [21]. Superconducting noisy intermediate scale
quantum (NISQ) processors are at the forefront of the quest
for quantum advantage [22] and quantum error correction
[23]. Beyond coherent manipulation, cQED allows for de-
signing driven-dissipative dynamics, which has been shown to
enable stabilization of single-body states [24–31], two-body
states [32–36], as well as many-body entangled states [37].

In this article, we propose a scheme to dissipatively stabi-
lize the one-dimensional (1D) AKLT state consisting of spin-1
particles on such a platform. As is presented in Fig. 1, a
spin-1 chain can be realized with an array of superconducting
transmon circuits [38], where each spin-1 particle is identified
with the lowest three energy levels as a qutrit [39]. Here the
dissipative element is provided by autonomous feedback [32]
from reservoir engineering. With two qutrits both coupled
to a microwave resonator, local drives combined with cavity
dissipation pump the qutrit pair into the subspace where their
total spin Stotal ∈ {1, 0}. In stabilization of the ground state of
a frustration-free Hamiltonian, the many-body entangled state
is achieved by applying such two-body dissipation terms si-
multaneously on each nearest-neighbor pair as the system size
scales up [10]. We thus demonstrate the viability of preparing
and stabilizing a four-dimensional subspace of weakly en-
tangled many-body states, the AKLT states, within devices
of superconducting transmon qutrits, linear microwave res-
onators, and specific microwave drives.

This work is structured as follows. In Sec. II, we introduce
the physical models to describe the experimental platform and

review the entanglement stabilizing scheme via autonomous
feedback for the case of two qubits. In Sec. III, we propose
a driven-dissipative approach to stabilize the AKLT state in
a superconducting qutrit array and analyze its scalability in
terms of state preparation time and steady-state fidelity. Sec-
tion IV discusses future extensions and concludes our article.

II. PHYSICAL MODELS

A. Strong dispersive regime

A spin-1 one-dimensional chain can be realized experi-
mentally by identifying each spin-1 with the lowest-energy
levels of a superconducting transmon circuit [38–41]. Such
encoding between the spin-1 states and the native transmon
states can be achieved in a simple and direct way. The eigen-
states for the z component of the spin can be written as |S =
1, Sz = ±1, 0〉 and the energy levels of the superconducting
transmon qutrit can be written as |g〉, |e〉, and | f 〉. Here we
encode |S = 1, Sz = −1〉 to |g〉, |S = 1, Sz = 0〉 to |e〉 and
|S = 1, Sz = 1〉 to | f 〉. As is shown in Fig. 1(b), each two
adjacent transmons aligned in a 1D array are coupled to a
common microwave resonator, which is coupled quasilocally
to a dissipative environment. A transmon qutrit coupled with
a linear cavity can be described by the generalized Jaynes-
Cummings Hamiltonian

ĤJC = h̄ω0
r â†â + h̄

∑
j

ω0
j | j〉〈 j|

+
⎛
⎝h̄

∑
j

g j, j+1| j〉〈 j + 1|â† + H.c.

⎞
⎠, (1)

with rotating wave approximation applied and qutrit param-
eters approaching the transmon limit [38]. Here â†(â) is
the cavity photon creation (annihilation) operator, | j〉 (h̄ω0

j )
are the energy eigenstates (eigenenergies) of the transmon,
ω0

r /2π is the cavity resonance frequency, and g j, j+1 are the
cavity-transmon couplings. In the dispersive limit [42–44],
the detunings between the cavity frequency and the qutrit
transition frequencies are large compared to the coupling
strength such that |ω j − ωr|/g j, j+1 � 1. In this case, the sys-
tem Hamiltonian can be approximated by

Ĥ = h̄ωrâ
†â + h̄

∑
j

ω j | j〉〈 j| + h̄
∑

j

χ j | j〉〈 j|â†â, (2)

where ωr/2π and ω j/2π are the new cavity and transmon
frequencies which are renormalized due to the coupling. The
dispersive interaction energies h̄χ j shift the cavity resonance
frequencies by χ j/2π depending on the state of the qutrit | j〉.
Similarly, for a cavity populated with n photons, the trans-
mon transition frequencies (ω j+1 − ω j )/2π are also shifted
by (χ j+1 − χ j )n/2π , which is proportional to the photon
number n.

As an example of the strong-dispersive regime in the con-
text of qubits, Fig. 2(a) displays the cavity spectrum when
the dispersive interaction with a qubit shifts its resonance fre-
quency. The strong dispersive regime [45,46] occurs when the
cavity linewidth κ is much smaller than the dispersive shifts
χ j , leading to well-resolved cavity spectral peaks. In turn, the
qubit spectrum is split depending on the cavity photon number
[45], and thus the statistics of the field can be resolved [46].
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FIG. 2. Protocol to prepare a two-qubit Bell state. As introduced
in [32], a dissipative protocol can prepare and stabilize a two-qubit
Bell state. (a) The cavity spectrum shifted by different two-qubit
states, with two cavity probes applied at the frequencies marked
by the orange arrows. (b) Hilbert space engineering for the Bell
state stabilization scheme [32]. The orange arrows mark the states
measured by the two cavity probes shown in (a). The blue solid
semicircle arrows represent the “0-photon drive,” which comes into
resonance with the qubits when zero photons are in the cavity. The
green, dashed rectangle encircles the stabilized state and the zigzag,
red arrows are dissipative processes steering into the stabilized state
the mechanism of which is shown in the inset circled by the red solid
rectangle. Inset shows the realization of the jump operator from state
|gg〉 and state |ee〉 to the stabilized state. In the inset, the orange
solid arrow indicates populating and the red zigzag arrow indicates
decaying of the cavity photons. The yellow dashed semicircle arrows
denote the “n-photon drive.”

The strong dispersive regime has proved to be useful in a
range of different experimental tasks. For example, because
of the large shifts of the cavity spectrum, quantum nondemo-
lition measurement can be performed “selectively” between
one state and its orthogonal subspace [47]. In the context
of multiple qubits, this regime is used to demonstrate a co-
herent entangling gate between noninteracting qubits [48,49].
In addition, the strong dispersive regime enables control and
entanglement of quantum states encoded in cavity modes
[50–52]. In this proposal, we will harness the strong disper-
sive regime to create autonomous feedback on the quantum
state of two nearest-neighbor qutrits, the basic idea of which
is introduced below with a comparatively simpler model of
nearest-neighbor qubits.

B. Autonomous feedback scheme

The purpose of our proposal is to harness dissipation en-
gineering to prepare and stabilize a particular subspace on a
chain of spin-1 (qutrits). The underlying mechanism is similar
to the one used in a recent work focusing on the stabilization
of entangled states of qubits [32]. Hence, in this section, we
review the protocol in the simpler two-qubit scenario, before
extension to the spin-1 system as presented in Sec. III B.

The primary idea of stabilizing an entangled state by au-
tonomous feedback was put forward by Leghtas et al. for a
two-qubit Bell state [53] and was then experimentally realized
in the system of two superconducting qubits [32], as well as
with trapped ions [54–56]. Representing a spin-half particle
as a two-level system denoted by |g〉 and |e〉, Fig. 2(a) de-
picts the qubit-state-dependent cavity spectrum and Fig. 2(b)
demonstrates Hilbert space engineering in this dissipative sta-
bilization scheme. For a linear cavity dispersively coupled
with both qubits A and B, the system Hamiltonian with ro-
tating wave approximation

Ĥ = h̄ωrâ
†â + h̄ωA

σ̂ A
z

2
+ h̄ωB

σ̂ B
z

2

+ h̄gA(σ̂ A
+â + σ̂ A

−â†) + h̄gB(σ̂ B
+a + σ̂ B

−â†) (3)

becomes

Ĥeff = h̄χA
σ̂ A

z

2
â†â + h̄χB

σ̂ B
z

2
â†â, (4)

in the rotating frame for qubits and the cavity and applying
the dispersive limit (see Appendix A). Here h̄ωA(B) is the
transition energy of qubit A(B), gA(B) is the coupling strength
between the cavity and qubit A(B), and h̄χA(B) is the interac-
tion energy between the cavity and qubit A(B). This indicates
a shift in the cavity resonance frequency equivalent to the
addition of the shifts from qubits A and B, shown in Fig. 2(a).

The cavity is driven at ωr − (χA + χB)/2 and ωr + (χA +
χB)/2, corresponding to the resonance spectrum peaks for
two-qubit states |gg〉 and |ee〉. Thus, whenever the qubits are
in either |gg〉 or |ee〉, the cavity photon population ramps
up to an average number of n̄. Otherwise, the cavity photon
number exponentially decays to zero assuming that χ � κ

limit (see Appendix B). When the cavity is populated with n
photons, the transition energies for qubits A and B are shifted
as h̄ω′

A = h̄ωA + h̄χAn and h̄ω′
B = h̄ωB + h̄χBn.

Hence, we can consider two types of single-qubit Rabi
drives on both qubits. The “zero-photon drive” is applied at
ωA(B) with Rabi frequency �(0) while the “n-photon drive”
is applied at ωA(B) + χA(B)n with Rabi frequency �(n), given
that n ≈ n̄. Therefore, the first qubit drive is in resonance with
the cavity unpopulated while the second requires a component
into the photon number eigenstate of n. The effective Hamil-
tonian for those continuous drives are given by

Ĥ (0)
eff ∝ σ̂ A

x ⊗ IB + IA ⊗ σ̂ B
x ,

Ĥ (n)
eff ∝ σ̂ A

x ⊗ IB − IA ⊗ σ̂ B
x ,

(5)

applied at their corresponding resonance frequencies. We will
now denote the cavity state with average photon number n̄
in the rotating frame of its driving frequency can be denoted
as |n̄〉C . We also denote that |φ−〉 = (|eg〉 − |ge〉)/

√
2 and
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|φ+〉 = (|eg〉 + |ge〉)/
√

2. When the qubit-cavity system is in
|gg〉|0〉C or |ee〉|0〉C , the cavity starts to populate with photons
and is driven to a coherent state |gg〉|n̄〉C or |ee〉|n̄〉C . At this
moment, the “n-photon drives” come into resonance, rotating
state |gg〉|n̄〉C and |ee〉|n̄〉C into state |φ−〉|n̄〉C . Once leaving
the two-qubit subspace spanned by states |gg〉 and |ee〉, with
the system state in |φ−〉|n̄〉C , the cavity probes are no longer
in resonance. Subsequently, the cavity photon population de-
cays into |φ−〉|0〉C , setting the “n-photon drive” off-resonant
again. When �(n) has the same scale as the cavity linewidth
κ , the “n-photon drive” combined with cavity probes drives
the two-qubit state unidirectionally from state |gg〉|0〉C and
|ee〉|0〉C to the target Bell state |φ−〉|0〉C . As is shown in the
inset of Fig. 2(b), the effect of such an autonomous feed-
back process is similar to that of quantum jump operators
|φ−〉〈gg| and |φ−〉〈ee|, which occur at a rate proportional
to κ .

Aside from the above feedback loop, the “zero-photon
drive” is applied to induce rotations between state |φ+〉|0〉C

and state |gg〉|0〉C or |ee〉|0〉C . Choosing �(0) to be comparable
with κ , any state of the Hilbert space is driven into the target
Bell state {|φ+〉, |gg〉, |ee〉} → |φ−〉. An intuitive picture of
the entire stabilizing process is shown in Fig. 2(b), where
we map the two energy levels of a qubit into a spin-1/2
particle. With state |g〉 encoded into |S = 1/2, Sz = −1/2〉
and state |e〉 encoded into |S = 1/2, Sz = 1/2〉, we have |gg〉
encoded into the added spin |S = 1, Sz = −1〉, | f f 〉 encoded
into |S = 1, Sz = 1〉, |φ+〉 encoded into |S = 1, Sz = 0〉, and
|φ−〉 encoded into |S = 0, Sz = 0〉.

As is shown in Fig. 2(a), when χ � κ , the density of states
corresponding to |ge〉 and |eg〉 is highly suppressed at the
applied cavity drive frequencies. However, if χ/κ is finite,
as is expected in any reasonable experimental realization, a
difference in dispersive shifts (χA �= χB) results in different
amplitudes in the tails of the Lorentzian cavity spectrum line-
shapes. This difference distinguishes the |ge〉 and |eg〉 states,
corresponding to a measurement of the qubits in those bases.
This residual measurement, therefore, dephases the |φ−〉 state,
mixing the state populations of the stabilized state |φ−〉
and the eliminated state |φ+〉, and thus reducing the fidelity
of the autonomous feedback scheme. Considering the scal-
ing between the rate of this residual measurement and the
stabilizing rate to the target Bell state, such a reduction in
fidelity can be significant for a large discrepancy between χA

and χB. Hence, for optimal operation, the scheme requires
χA  χB.

To summarize, the qubit protocol involves a “pump”
that drives unwanted states {|φ+〉, |gg〉, |ee〉}|0〉C to
{|gg〉, |ee〉}|n̄〉C . This then activates a “reset” which drives the
qubits to |φ−〉 and the cavity decays to |0〉C . In the language of
Roy et al. [10], the protocol belongs to the class of “shaking
and steering.”

III. PROPOSAL

A. AKLT state

The AKLT Hamiltonian can be obtained as

ĤAKLT =
∑

i

[
�Si · �Si+1 + 1

3
(�Si · �Si+1)2

]
. (6)

Here �Si is the angular momentum vector operator for the
spin-1 particle on the ith site. This model was first proposed
by AKLT in 1987 as an exactly solvable model exemplifying
a gapped excitation spectrum [57–59] and a symmetry-
protected topological (SPT) order for an odd-integer spin
chain [60,61]. The topological order of the 1D AKLT chain
is protected by the Z2 × Z2 symmetry group, and can be
detected by a string order parameter [62,63] or characterized
by the entanglement spectrum [64]. The AKLT ground state
is short-range entangled, can be efficiently represented via
MPS, and cannot be modified into a nonentangled product
state without closing the gap of the Hamiltonian or breaking
the Z2 × Z2 symmetry [59]. Also, the computation capability
of an open AKLT chain as a quantum wire in measurement-
based quantum computation is shared by all states in the
Z2 × Z2 symmetry-protected topological phase [65].

Under periodic boundary conditions (PBC), ĤAKLT has a
unique ground state, the AKLT state. With open boundary
conditions (OBC), though, the ground state becomes four-
fold degenerate, with two fractionalized degrees of freedom
emerging on each of the two boundaries. The AKLT states
with OBC can be explicitly written in the matrix product form
[16,66]

|AKLT〉 =
∑
{s}

ψ (s1, s2, . . . , sN )|s1s2, . . . , sN 〉, (7)

where si ∈ {+,−, 0} are the three single-particle states |S =
1, Sz = 1〉, |S = 1, Sz = −1〉, and |S = 1, Sz = 0〉 for the
spin-1 particles in the array, and the wave function is
given by

ψ (s1, s2, . . . , sN ) = [
bl

A
T

As1 As2 , . . . , AsN br
A

]
. (8)

Here the matrices A+, A0, and A− are represented by

A+ =
(

0
√

2
3

0 0

)
, A− =

(
0 0

−
√

2
3 0

)
,

A0 =
(

− 1√
3

0

0 1√
3

)
, (9)

and the boundary vectors bl
A and br

A represent the edge
spin-1/2 modes and choose a specific state out of the
four-dimensional AKLT manifold. In our work, we achieve
stabilization into this four-dimensional manifold with OBC,
creating the AKLT state up to a boundary configuration. The
nontrivial SPT order of the AKLT chain can be revealed by
those edge modes. The edge states are protected by symmetry,
which means that their degeneracy can resist local perturba-
tions that do not break the corresponding symmetry [67]. For
a better understanding of the edge states, one can visualize
the AKLT state on a spin-1/2 chain. In this case, the AKLT
state can be obtained by dividing the chain into adjacent
spin-singlet pairs and then projecting the Hilbert space of each
pair into the spin-triplet subspace. This is the approach that is
followed in optical systems for the preparation of the AKLT
state for measurement-based quantum computation [15]. Such
a representation views the edge modes as unpaired spin-1/2
particles.
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To represent the AKLT state in a more relevant way to the
driven-dissipative protocol, its parent Hamiltonian can also be
written in the form of quasilocal projectors

ĤAKLT =
∑

i

P̂S=2
i,i+1. (10)

Here P̂S=2
i,i+1 projects a pair of neighboring spin-1 particles [the

ith and the (i + 1)th] onto the subspace where their total spin
equals 2, thereby adding an energetic cost to the Stotal = 2 sub-
space. Since the AKLT Hamiltonian is frustration-free [59],
its ground state can be reached by independently driving each
adjacent pair of qutrits into the Stotal ∈ {0, 1} subspace. The
AKLT state can then be obtained whenever the projection onto
Stotal = 2 is eliminated for each adjacent pair of sites, which
is schematically indicated in Fig. 1(a).

B. Dissipative stabilization protocol

The AKLT Hamiltonian reviewed above is frustration-free
with a unique ground state on periodic boundary conditions
and a four-fold degenerate ground-state subspace with open
boundary conditions. Thus, the AKLT state can be reached by
the strategy of driving each two adjacent spin-1 particles out
of the Stotal = 2 subspace, as is manifested by the projector
form of ĤAKLT in Eq. (10). Figure 3 presents an extension of
the two-qubit protocol onto a two-qutrit system, which instead
stabilizes the system into the two-qutrit subspace representing
Stotal ∈ {0, 1}.

Considering two qutrits coupled to a common linear cavity
in the strong dispersive regime, without applied drives, the
effective Hamiltonian becomes

Ĥeff = h̄
∑

j

(
χA

j | j〉A〈 j|A + χB
j | j〉B〈 j|B)

â†â, (11)

in the rotating frame for qutrit levels and the cavity, with
rotating wave approximation and then the dispersive limit
applied. Here | j〉A(B) are the energy eigenstates of qutrit A(B).
h̄χ

A(B)
j are the interaction energies between the cavity and

qutrit A(B), indicating the cavity resonance frequency’s shift
summed over A and B. The cavity’s resonance frequencies are
shown in Fig. 3(a).

Inspired by the qubit protocol, the cavity is driven at its
resonance frequencies for qutrit states |gg〉 and | f f 〉, which
acts as part of the “pump.” With cavity photon number n,
the qutrit energy levels are shifted to h̄ω

A(B)
j + nh̄χ

A(B)
j . Here,

the three anharmonic energy levels are denoted as |g〉, |e〉,
and | f 〉, with ω

A(B)
e f = ω

A(B)
f − ωA(B)

e , ωA(B)
ge = ωA(B)

e − ωA(B)
g ,

χ
A(B)
e f = χ

A(B)
f − χA(B)

e , χA(B)
ge = χA(B)

e − χA(B)
g , and χ

A(B)
gf =

χ
A(B)
f − χA(B)

g . Thus, we apply the “zero-photon drive” at

ωA(B)
ge and ω

A(B)
e f simultaneously with the same Rabi frequency

�(0), while the “n-photon drive” is applied at ωA(B)
ge + nχA(B)

ge

and ω
A(B)
e f + nχ

A(B)
e f with Rabi frequency �(n). The effective

Hamiltonians for those continuous drives are given by

Ĥ (0)
eff ∝ ŜA

x ⊗ IB + IA ⊗ ŜB
x ,

Ĥ (n)
eff ∝ R̂A

gf ⊗ IB − IA ⊗ R̂B
gf ,

(12)

where ŜA(B)
x are the spin angular momentum operators of

the spin-1 particles represented by qutrit A(B), with ŜA(B)
x =

FIG. 3. Diagram of the two-qutrit protocol. (a) The cavity spec-
trum shifted by different two-qutrit states, with two cavity probes
applied at the frequencies marked by the orange arrows. (b) Hilbert
space engineering for the stabilization of two adjacent qutrits into the
Stotal ∈ {0, 1} subspace. The orange arrows mark the states measured
by the two cavity probes shown in (a) and the blue semicircle arrows
represent the “zero-photon drives.” The green, dashed rectangle en-
circles the stabilized subspace of Stotal ∈ {0, 1} and the zigzag, red
arrows are dissipative processes steering into the stabilized subspace,
with a similar mechanism as shown in the inset of Fig. 2(b).

|g〉〈e| + |e〉〈 f | + H.c., and R̂A(B)
gf = |g〉 〈 f | + H.c. The first is

implemented with in-phase and equal amplitude-independent
Rabi drives between state |g〉 and |e〉 and between state |e〉
and state | f 〉, and the second is induced by direct two-photon
transition on qutrit A(B). The precise form of these drives
is given in Appendix C; we discuss alternative “n-photon
drives” in Appendix D. The effective drive Hamiltonian Ĥ0

eff
coincides with the total spin angular momentum Ŝtotal

x . Thus,
this drive preserves the total spin represented by the two-qutrit
system, while it rotates between different eigenstates of the z
component for the total spin Ŝtotal

z . Meanwhile, the “n-photon
drive” does not preserve the total spin and has nonzero com-
ponents linking states |gg〉|n̄〉C and | f f 〉|n̄〉C to the |Stotal =
0〉|n̄〉C and |Stotal = 1〉|n̄〉C subspace. Similar to the process
described in Sec. II B, with those two drives combined, the
two-qutrit system undergoes unidirectional evolution into the
target subspace. The autonomous feedback loop here pro-
vides quantum jump operators from |gg〉 and | f f 〉 to Stotal ∈
{0, 1} subspace, with an overall rate proportional to the cavity
linewidth κ .
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Noticing that states |gg〉 and | f f 〉 represent two spin-1
particles’ states |Stotal = 2, Stotal

z = 2〉 and |Stotal = 2, Stotal
z =

−2〉, the drive Ŝtotal
x thus connects the entire subspace Stotal =

2 with |gg〉 and | f f 〉. This “zero-photon drive”, when applied
continuously, therefore, assists to evacuate the Stotal = 2 sub-
space, leading to their stabilization into the target subspace
where Stotal ∈ {0, 1}. Meanwhile, the drive Ŝtotal

x has no cross
term between the Stotal = 2 subspace and the target subspace,
preventing leakage back from the stabilized states. Conse-
quently, the applied drives and dissipations ensure that the
degenerate AKLT manifold is a fixed point when the protocol
is applied on a qutrit chain. Since the “zero-photon drive”
continues to induce rotations within this manifold, dynamics
continue within the AKLT manifold once the qutrit chain is
stabilized.

As is discussed in Sec. II B, the overlaps between the peaks
in Fig. 3(a) can cause redundant measurements, compromis-
ing the fidelity of the target state. In the stabilization protocol
for the two-qubit Bell state, the cavity-qubit detuning can
be tuned to achieve consistency between cavity shifts [32].
However, when it comes to the two-qutrit protocol, where the
stabilized subspace is four-dimensional, such discrepancies
are unavoidable even with full tunability on the device pa-
rameters. Thus, finite χ/κ becomes one of the main limiting
factors for the final fidelity. Possible optimization paths are
discussed in Appendixes B and E.

C. Numerical simulations

Following the protocol discussed in Sec. III B, we model
the qutrits and cavities in QUTIP [68,69] for numerical
simulations, with the microwave drives applied during the
stabilization process. Details of the simulation are given in
Appendix C. Analyzing the simulation results, we now study
the protocol’s effectiveness as well as its performance with an
increased number of qutrits in the chain.

As is shown in Fig. 4(a), an adjacent pair of qutrits is
initialized in a maximally mixed state of the nine-dimensional
Hilbert space. This choice of initial state is only a matter of
convenience and not necessary for the protocol. The system
then evolves under the driven dissipative protocol which con-
sists of always-on drives. For the qutrit pair, all five states
representing Stotal = 2 have their state population converg-
ing to zero in the course of the protocol, while the four
states in subspace Stotal ∈ {0, 1} are preserved and stabilized.
The protocol effectively eliminates the Stotal = 2 subspace
while steering the system into the Stotal ∈ {0, 1} subspace.
Figure 4(b) shows the total four-state population in subspace
Stotal ∈ {0, 1}, which is the two-qutrit AKLT subspace. The
curve can be well fitted with an exponential function y =
Ae−bx + C. In a later analysis, the fitting parameter C is ex-
tracted as the final fidelity of the target subspace and b as the
stabilization rate, with the convergence time for the protocol
calculated as 1/b.

The protocol, therefore, drives the spin-1 chain into the
AKLT manifold. The resulting quantum state within this man-
ifold may be a pure state, contain coherences within the AKLT
manifold, or be a mixed state depending on the initial condi-
tions at the start of the protocol.

FIG. 4. Time evolution of two qutrits under the stabilization pro-
tocol. (a) Stabilization process for one pair of neighboring qutrits,
with the entire subspace Stotal = 2 eliminated and subspace Stotal ∈
{0, 1} stabilized. The colored lines are the the relative weights of
the states, given by the diagonal entries of the density matrix for
eigenstates of both Ŝtotal and Ŝz

total. Although the specific distribution
of states inside the AKLT depends on the initial state distribution as
well as our choice of “n-photon drive,” here we are just concerned
about stabilizing into the entire subspace. (b) The blue, solid line
represents the change of total population in the targeted subspace
where Stotal ∈ {0, 1}. The black, dashed line is an exponential fit.

Extended from the two-qutrit case, we study the evolution
of the system with two, three, and four qutrits in the AKLT
chain. Here, the effective Hamiltonian of the “zero-photon
drive” and the “n-photon drive” can be viewed as

Ĥ (0)
eff ∝

Nsites∑
i=1

Ŝi
x,

Ĥ (n),i
eff = R̂i

gf − R̂i+1
gf . (13)

The “zero-photon drive” is applied by an in-phase, equal
amplitude single qutrit Sx drive on each site. The “n-photon
drives” are carried out with the ith pair of qutrits, qutrit i and
qutrit i + 1, at the shifted qutrit frequencies due to the ith
cavity. We notice that the global drive Ĥ (0)

eff commutes with
the AKLT Hamiltonian. So, once the system is in the AKLT
subspace, applying the “zero-photon drive” will not rotate
the system out of the ground-state manifold. In contrast, the
“n-photon drives” are defined by each individual resonator
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FIG. 5. Protocol performance for larger qutrit chains. (a) Starting
from the qutrits’ ground state |g . . . g〉 (solid colored lines) and start-
ing within the AKLT subspace (dashed colored lines), we simulate
the time evolution of the AKLT chain with open boundary conditions
subspace population under the driven dissipative protocol with vary-
ing number of qutrits (a) Nsites = 2 (red), (b) Nsites = 3 (blue), and (c)
Nsites = 4 (green) for comparison. Inset: The four-qutrit time evolu-
tion under the stabilizing protocol in terms of the system population
in the AKLT subspace, with the cavity shift scaling as (a) χ0/4, (b)
χ0/2, and (c) χ0. (b) Extracted fitting parameters as the final fidelity
and the convergence time with the same method as in Fig. 4(b) on the
total population in the AKLT subspace. The blue round dots represent
the varied final fidelity with systems of two, three, and four qutrits
(left axis), and the green, squared dots represent the convergence time
for the protocol (right axis).

and come into effect whenever there is an adjacent bond with
Stotal = 2.

We consider two initial preparations: Either one of the
AKLT states or the product state of single-qutrit ground states
|g . . . g〉. For the choice of the first, since we observe that
the decay features of the AKLT subspace total population
are similar for different initial states within the subspace, we
simply initialize the simulation with a particular state within
the AKLT subspace. The evolution of the populations in the
AKLT subspace under the protocol is shown in Fig. 5(a).
Here we can extract the final fidelity and stabilization time
for different chain sizes defined by the same method as in
Fig. 4(b), which is presented in Fig. 5(b). While stabilization
of the AKLT state is observed, the final fidelity decreases for
larger chains.

The decrease in final fidelity is due to the finite value of
χ/κ , which we explore in the inset of Fig. 5(a). Here we plot

FIG. 6. Fidelity in the four-qutrit AKLT subspace estimated
under experimental imperfections. The stabilized state fidelity is
defined by the same method as in Fig. 4(b) according to the tendency
of the state population vs. time. (a) The impact of finite dispersive
shift χ (Sec. II A) to cavity decay rate κ (Sec. II B), smaller χ/κ

degrades the stabilized state fidelity. (b) Running the protocol with
mismatched device parameters. The protocol is relatively robust to
small parameter mismatches. (c)–(e) Evaluating the protocol fidelity
under the dissipation channel with finite qutrit T1/Tφ/T1&Tφ between
adjacent levels. The final state fidelity is degraded when the qutrit
lifetime becomes comparable with the stabilization time.

the AKLT state population starting from the AKLT state or the
ground state with cavity shifts χ given as χ0, χ0/2, and χ0/4.
As is shown in the inset of Fig. 5(a) and in Fig. 6(a) smaller
values of χ bring extra measurements on the preserved two-
qutrit states, causing dephasing out of the AKLT state. This
effect of extra dephasing is similar to the effect caused by a
shortened T2, reducing the fidelity as Nsites increases since the
extra dephasing occurs for each pair of neighboring qutrits.
For similar reasons, the stabilization time increases for larger
qutrit chains because these errors can diffuse around the chain
before being eliminated by the protocol.

For this reason, the protocol favors a large value of χ , how-
ever, reasonable values of χ are an experimental limitation set
by the dispersive condition. The value of χ0 we choose here
is quite large for typical transmon systems. We choose this
value for clarity of demonstration. However, as we explore
in Appendix E, large effective values of χ can be achieved
with very reasonable experimental parameters. Such a realistic
implementation requires a more complex set of drives, yet
achieves even higher-state fidelities than the symmetric case
presented in the main text.

In actual experiments, the qutrits are not perfectly realiz-
able as in the model simulated above. For example, there is
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limited control over the qutrit-cavity coupling parameters. In
the above simulations, we assume that the cavity frequency
shifts induced by qutrits are approximately equivalent, with
discrepancies smaller than 5 percent. This relation requires
equally spaced cavity frequency shifts from qutrit states |g〉,
|e〉, and | f 〉, as well as equal cavity-qutrit interaction terms
among different qutrits. Such an assumption is made for the
sake of simplicity, but may be difficult to realize in experi-
ments.

In the experimental realization with transmon qubits [32]
matching between the cavity shift of qubits A and B, χA = χB,
was achieved by tuning the qubit frequencies, where χA(B) ∝
g2

A(B)/(ωA(B) − ωr ) with g denoting the coupling strength.
However, for the current protocol involving qutrits, matching
all the dispersive shifts by simple frequency tuning of the
qutrit levels is not possible. Figure 6(b) shows the protocol
fidelity on a four-qutrit chain with qutrit-cavity coupling pa-
rameters mismatched to varied degrees; The choice of device
parameters is introduced in Appendix B. The final fidelity
of the protocol decreases slowly from ∼85% to ∼70% with
larger parameter mismatches from 10% to 40%, indicating a
relatively small impact on the protocol performance.

Overall, the protocol retains a robustness to parameter
mismatch because the “zero-photon drive” can always be
achieved by adjusting the amplitude and phase of single-qutrit
drives regardless of the qutrit parameters. Also, between each
two adjacent qutrits, the consistency of cavity shifts from |g〉
to | f 〉 can be always achieved with one-by-one tuning of qubit
frequencies, allowing the application of the “n-photon drive.”
These tunings allow that variations in qutrit parameters in the
array can be tolerated. Also, there are no specific requirements
for the relation between cavity shifts of a single qutrit from
state |g〉 to |e〉 or from state |g〉 to | f 〉 to aim for a good
protocol fidelity. The slight decrease in the fidelity results
from increased extra dephasing induced by residual measure-
ments since the spectrum peaks shown in Fig. 3(a) no longer
perfectly overlap considering the parameter mismatch. This
effect can nevertheless be eliminated by an even higher ratio
of χ/κ , as is described in Appendix B.

The other aspect of imperfect qutrits considers their
intrinsic relaxation and dephasing. In previous numerical sim-
ulations, we set the qutrit T1 and T2 at an optimistically high
level (T1 = T2 = 500 µs, thus Tφ = 1000 μs) for isolating
the protocol performance from the effects brought up by ex-
tra environmental coupling. However, in realistic setups, the
relaxation towards the ground state of every single qutrit,
as well as the decoherence between qutrit levels, will drive
the many-body system out of the AKLT subspace, impairing
the effectiveness of the protocol. Nevertheless, we find that
the driven dissipative protocol is still able to stabilize the
system coherence far beyond the single qutrit coherence time.
As is shown in Figs. 6(c), 6(d), and 6(e), the final fidelity
in the AKLT subspace is extracted for finite values of T1

and Tφ , as well as both T1 and Tφ , between adjacent qutrit
levels. In Figs. 6(c) and 6(d) we consider the case where we
keep T1 at the optimistically high value when we set Tφ to
a limited value and vice versa. With T1 or Tφ solely set to
a finite value from 10 μs to 40 μs, the protocol final fidelity
increases from ∼40% to ∼70%. With T1 and Tφ both set
to a finite value from 10 μs to 40 μs [Fig. 6(e)], the AKLT

subspace fidelity increases from ∼25% to ∼55%.Considering
the 34 = 81 dimensions of the four-qutrit Hilbert space, where
a maximally mixed state would have a ∼5% fidelity to the
ALKT subspace, this result further confirms the ability of
a driven-dissipative method to maintain the state coherence
beyond native relaxation or dephasing time.

IV. DISCUSSION

In this work, we proposed and analyzed a driven-
dissipative protocol to achieve preparation and stabilization of
the AKLT state with OBC in a one-dimensional superconduct-
ing qutrit array. Our stabilization of a manifold of edge states
opens up the opportunity to study dynamics within that mani-
fold, rather than just preparing a pure state. Via numerical sim-
ulation, we verified the effectiveness of our protocol for a pair
of two adjacent qutrits as well as with extended system sizes.

Our results illuminate the possibility for efficient genera-
tion of many-body entangled states on superconducting qutrit
platforms. Generalization from the AKLT state to other matrix
product states or projected entangled pair states [70] may be
possible. Since the spin-1 ALKT state represents a quantum
wire in measurement-based quantum computing, it only al-
lows for performing quantum computation of a limited scope.
Universal computation, in contrast, can be realized by the
spin-2 AKLT state on a two-dimensional square lattice [71],
which would be a natural next step beyond our work.
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APPENDIX A: DISPERSIVE LIMIT

Here we provide a detailed derivation of the system effec-
tive Hamiltonian in the dispersive limit, as in Eqs. (4) and (11)
[equivalent to Eq. (C4)]. For two transmon qudits coupled to
a common linear cavity [42,43], after applying the rotating
wave approximation, the system Hamiltonian should be

Ĥ = Ĥ0 + V̂ ,

Ĥ0 = h̄
∑

j

ωA
j | j〉A〈 j|A + h̄

∑
j

ωB
j | j〉B〈 j|B + h̄ωr â†â,

V̂ = h̄
∑

i

gA
i,i+1(|i〉A〈i + 1|Aâ† + |i + 1〉A〈i|Aâ)

+ h̄
∑

i

gB
i,i+1(|i〉B〈i + 1|Bâ† + |i + 1〉B〈i|Bâ). (A1)
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Here the coupling strength gi,i+1 ≈ √
i + 1g0 [38]. In the

dispersive limit, the detuning between adjacent energy level
differences of the qutrit is much larger than the coupling

strengths. This allows us to perform the Schrieffer-Wolff
transformation, which can approximately diagonalize the sys-
tem Hamiltonian in the dispersive limit, Ĥeff = e−ŜĤeŜ , with

Ŝ =
∑

i

λA
i (|i + 1〉A〈i|Aâ − |i〉A〈i + 1|Aâ†) +

∑
i

λB
i (|i + 1〉B〈i|Bâ − |i〉B〈i + 1|Bâ†), (A2)

where λ
A(B)
i = gA(B)

i,i+1/(ωA(B)
i,i+1 − ωr ) and ω

A(B)
i,i+1 = ω

A(B)
i+1 − ω

A(B)
i . We can have

[Ŝ, Ĥ0] = h̄
∑

i

λA
i

(−ωA
i+1 + ωA

i + ωr
)
(|i + 1〉A〈i|Aâ + |i〉A〈i + 1|Aâ†)

+ h̄
∑

i

λB
i

(−ωB
i+1 + ωB

i + ωr
)
(|i + 1〉B〈i|Bâ + |i〉B〈i + 1|Bâ†),

[Ŝ, V̂ ] = h̄
∑

i

(
λA

i+1gA
i,i+1 − λig

A
i+1,i+2

)
(|i + 2〉A〈i|Aââ + |i〉A〈i + 2|Aâ†â†) + 2h̄

∑
i

χA
i,i+1|i + 1〉A〈i + 1|A

+ 2h̄
∞∑

i=1

(
χA

i−1,i − χA
i,i+1

)|i〉A〈i|Aâ†â − 2h̄χA
0,1|0〉A〈0|Aâ†â

+ h̄
∑

i

(
λB

i+1gB
i,i+1 − λig

B
i+1,i+2

)
(|i + 2〉B〈i|Bââ + |i〉B〈i + 2|Bâ†â†) + 2h̄

∑
i

χB
i,i+1|i + 1〉B〈i + 1|B

+ 2h̄
∞∑

i=1

(
χB

i−1,i − χB
i,i+1

)|i〉B〈i|Bâ†â − 2h̄χB
0,1|0〉B〈0|Bâ†â + h̄

(∑
i

gB
i,i+1|i〉B〈i + 1|B

)(∑
i

λA
i |i + 1〉A〈i|A

)

+ h̄

(∑
i

gB
i,i+1|i + 1〉B〈i|B

)(∑
i

λA
i |i〉A〈i + 1|A

)
+ h̄

(∑
i

λB
i |i + 1〉B〈i|B

)(∑
i

gA
i,i+1|i〉A〈i + 1|A

)

+ h̄

(∑
i

λB
i |i〉B〈i + 1|B

)(∑
i

gA
i,i+1|i + 1〉A〈i|A

)
, (A3)

where the relation [Ŝ, Ĥ0] + V̂ = 0 stands. Also, from the
Baker-Campbell-Hausdorff relation, there is Ĥeff = Ĥ0 +
V̂ + [Ŝ, Ĥ0] + [Ŝ, V̂ ] + 1

2 [Ŝ, [Ŝ, Ĥ0]] + 1
2 [Ŝ, [Ŝ, V̂ ]] + · · · .

Then we have Ĥeff = Ĥ0 + 1
2 [Ŝ, V̂ ] + O(λ2). Here, the

two-photon transition terms involving ââ and â†â† are small
and can be omitted [38]. We also notice that cavity-mediated
interaction terms emerge between next-nearest-neighbor
layout of qutrits. However, when the qutrits in the array
are also far-detuned from each other, this term becomes
counterrotating when we go to the rotating frame of the qutrit
and the cavity. The final Hamiltonian, in the rotating frame
for the shifted qutrit Hamiltonian and the cavity frequency,
becomes

Heff = h̄
∞∑

i=0

(
χA

i |i〉A〈i|A + χB
i |i〉B〈i|B)

â†â. (A4)

Here χi = (χi−1,i − χi,i+1) for i � 1 and χi = −χ0,1 for i =
0, and χi,i+1 is defined as λigi,i+1 which is g2

i,i+1/(ωi,i+1 − ωr ).
Then we obtain Eq. (11), which becomes Eq. (C4) when we
only consider the first three levels of the qudit. This becomes
Eq. (4) when we only consider the first two levels.

APPENDIX B: STRONG DISPERSIVE LIMIT

In the strong dispersive limit, we have the relation
χ � κ for the cavity-qutrit coupling parameters. The cavity

resonance amplitude T = 1/(1 + x2) is of a Lorentzian
spectral line shape, which is presented in Fig. 2(a) as well as
in Fig. 3(a). Here x = 2(ω − ωr )/κ and ωr is the cavity res-
onance frequency, Thus, as we probe the system at one of the
peaks, there is a high ratio between the resonance amplitudes
for probed and unprobed states. However, with a relatively
long protocol time, a small resonance amplitude still causes
residual measurements that distinguish between stabilized
two-qutrit states. Such extra measurements induced by the
probe, as introduced in Sec. III B, have a visible effect on the
final fidelity of the stabilization for the many-body entangled
state. As is shown in the inset of Fig. 5(a) as well as Fig. 6(a),
such an effect can hinder the scalability of our protocol if un-
eliminated. To explore this further, we study the performance
of the protocol for smaller values of χ , which exacerbates the
residual measurement effect. Here the “zero-photon drives”
and the measurement probe are applied to systems with qutrit
number Nsites = 3 and Nsites = 4, as is described in Sec. III B.
The system is initialized in one of the open boundary AKLT
states and the decreases in the AKLT subspace population
are fitted with exponential functions y = Ae−bx + C. The
extracted dephasing rates b are plotted in the insets of Fig. 7,
showing that the decay rate grows significantly as χ is
decreased. This trend favors larger values of χ , which can be
achieved by optimizing the device parameters via enhanced
coupling parameter g or reduced cavity-qutrit frequency
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FIG. 7. Dephasing out of the AKLT subspace due to extra mea-
surements caused by the cavity probes. Initialized with a (a) three-
or (b) four-qutrit AKLT state, the system dephases under the “zero-
photon drives” and the cavity probes, with qutrit-induced cavity shift
set as (a) χ = χ0/4 (red), (b) χ = χ0/2 (blue), (c) χ = χ0 (green),
and (d) χ = 2χ0 (yellow). The AKLT subspace population curves
are fitted with exponential functions. Insets display the extracted
dephasing rate of the system versus the relative cavity shift χ/χ0.

detuning, as well as by working in the so-called straddling
regime for transmon circuits [38] as discussed in Appendix E.
On current platforms, we can expect efficient stabilization
as long as the residual measurement-induced dephasing is
reduced to some negligible level compared to the intrinsic
dephasing and relaxation of the superconducting qutrits.

APPENDIX C: NUMERICAL SIMULATION SETUPS

For the two-qutrit protocol, we simulate the Lindblad mas-
ter equation

d

dt
ρ(t ) = − i

h̄
[Ĥ(t ), ρ(t )] + κD[â]ρ(t )

+
∑

l=ge,e f
j=A,B

(
1

T j,l
1

D[σ j,l
− ]ρ(t ) + 1

2T j,l
φ

D
[
σ j,l

z

]
ρ(t )

)
.

(C1)

Here, T A(B),ge
1 and T A(B),e f

1 are the relaxation time from
state |e〉 to state |g〉 and from state | f 〉 to state |e〉. The pure

dephasing rate is given by

1/T A(B),ge(e f )
φ = 1/T A(B),ge(e f )

2 − 1/2T A(B),ge(e f )
1 ,

where T A(B),ge(e f )
2 are the dephasing times between the corre-

sponding two adjacent levels. The Lindblad superoperator for
an observable Ô acting on the density matrix ρ is defined as

D[Ô]ρ = ÔρÔ† − 1
2 Ô†Ôρ − 1

2ρÔ†Ô. (C2)

For the unitary part of system evolution, we have the Hamil-
tonian

Ĥ = Ĥsystem + Ĥprobe + Ĥ0 + Ĥn. (C3)

Since we work in the rotating frame for the qutrit transition
energies as well as for the center of the cavity resonance fre-
quencies of corresponding to |gg〉 and | f f 〉, this Hamiltonian
consists of

Ĥsystem = h̄

(
χA

gf

2
σ A,gf

z + χA
ge − χA

e f

2
|e〉A〈e|A

+χB
gf

2
σ B,gf

z + χB
ge − χB

e f

2
|e〉B〈e|B

)
â†â, (C4)

Ĥprobe = 2h̄εC cos

(
χA

gf + χB
gf

2
t

)
(â + â†), (C5)

Ĥ0 = h̄�(0)
(
σ A,ge

x + σ A,e f
x + σ B,ge

x + σ B,e f
x

)
, (C6)

and

Ĥn = h̄�(n)

[
cos

(
n
χA

gf + χB
gf

2
t

)(
σ A,gf

x − σ B,gf
x

)

− sin

(
n
χA

gf + χB
gf

2
t

)(
σ A,gf

y − σ B,gf
y

)]
. (C7)

Here χ
A(B)
ge/gf /e f are the cavity shifts induced by qutrit A(B) and

εC is the amplitude of the cavity probe with εC = κ
√

n/2.
The qutrit operators are defined similarly to the qubit case,
where σ

ge
+ = |e〉〈g|, σ

ge
− = |g〉〈e|, σ

gf
+ = | f 〉〈g|, σ

gf
− = |g〉〈 f |,

σ
e f
+ = | f 〉〈e|, and σ

e f
− = |e〉〈 f |. Thus we have σ

ge/e f /gf
x =

σ
ge/e f /gf
+ + σ

ge/e f /gf
− , σ

ge/e f /gf
y = i(σ ge/e f /gf

+ − σ
ge/e f /gf
− ), as

well as σ
gf
z = −|g〉〈g| + | f 〉〈 f |. Here we choose n = 3. The

parameters we used for the cavity-qutrit interaction term and
the cavity linewidth are shown in the first line of Table I. The
T1s and T2s are set to optimistically large values of 500 µs, so
that these decay channels contribute negligibly to the dynam-
ics. The Rabi frequencies for the “zero-photon drive” and the
“n-photon drive” are chosen as �(0) = κ/2 and �(n) = κ for
optimization.

With the protocol applied to a 1D qutrit chain containing
N qutrits, the Hamiltonian terms become

Ĥsystem = h̄
N−1∑
i=1

(
χ i

g f

2
σ i,gf

z + χ i
ge − χ i

e f

2
|e〉i〈e|i

+ χ ′ i
g f

2
σ i+1,gf

z + χ ′ i
ge − χ ′ i

e f

2
|e〉i+1〈e|i+1

)
â†

i âi, (C8)
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TABLE I. The cavity-qutrit interaction parameters and the cavity linewidth for one cavity in the chain. Line 1: The base parameters we
choose for simulating two-qutrit as well as multiqutrit protocol performance in the article, except in Fig. 6(b). This set of base cavity parameters
already exhibit a small (5%) mismatch from the ideal “target” parameters. Line 2: The ideal device parameters as the target of device fabrication
processes. This set of parameters is the reference for generating the mismatching parameter. Lines 3 to 5: The mismatched cavity parameters
for a four-qutrit chain with its three cavities, the parameter deviations are randomly generated within 10 percent deviation from the ideal values.
Such deviations are enlarged proportionally for generating the 20%, 30%, and 40% mismatching parameters as given in Fig. 6(b).

χge/2π (MHz) χgf /2π (MHz) χ ′
ge/2π (MHz) χ ′

gf /2π (MHz) κ/2π (MHz)

Base parameters used in all simulations 40.00 79.20 38.00 76.00 2.00
Ideal “target” parameters 40.00 80.00 40.00 80.00 2.00
Cavity 1 mismatched 10% from target 43.64 87.81 39.67 87.81 1.93
Cavity 2 mismatched 10% from target 36.66 79.83 39.87 79.83 1.99
Cavity 3 mismatched 10% from target 41.52 76.96 42.79 76.96 1.94

Ĥprobe = 2h̄
N−1∑
i=1

εi
C cos

(
χ i

g f + χ ′ i
g f

2
t

)
(âi + â†

i ), (C9)

Ĥ0 = h̄�(0)
N∑

i=1

(
σ i,ge

x + σ i,e f
x

)
, (C10)

and

Ĥn = h̄
N−1∑
i=1

�
(n)
i (−1)i−1

×
[

cos

(
n
χ i

g f + χ ′ i
g f

2
t

)(
σ i,gf

x − σ i+1,gf
x

)

− sin

(
n
χ i

g f + χ ′ i
g f

2
t

)(
σ i,gf

y − σ i+1,gf
y

)]
. (C11)

Here χ i
ge/gf /e f and χ ′ i

ge/gf /e f are the cavity shifts on the ith
cavity induced by the ith and the (i + 1)th qutrit, and âi(â

†
i )

is the annihilation(creation) operator for the ith cavity. With κ i

being the cavity linewidth of the ith cavity, we apply the probe
strength for this cavity εi

C = κ i√n/2. The terms σ
i,ge/e f /gf
x,y,z are

the qutrit matrices for the ith qutrit. The “zero-photon drive”
�(0) is chosen to be related to the averaged cavity linewidth as∑N−1

i=1 κ i/2(N − 1) and the “n-photon drive” applied on the ith
cavity �

(n)
i is chosen to be κ i. The averaged photon number n

is chosen to be n = 3 up to optimization. The qutrit-cavity
parameters and cavity linewidths are assumed to be the same
for each cavity, equivalent to the two-qutrit case, which is
shown in the first line of Table I. The T1 and T2 settings are also
the same as in the two-qutrit case unless otherwise specified.

For the qutrit number Nsites � 3, we use the QUTIP master
equation solver to obtain the time evolution of the expectation
value for the AKLT subspace projector. For Nsites = 4, the
Monte Carlo solver is chosen for its better performance the
in case of large-dimensional Hilbert spaces. In the later solver,
the equivalence to the system evolution under the master equa-
tion is obtained by stochastically calculating the trajectories
for quantum jumps. The parameter settings are shown in the
first line of Table I, with a general ratio between χge and κ

around 20. Table I displays the dispersive shifts and cavity
linewidths used for the simulations. To ensure that our results
do not hinge on perfect parameter matches, we performed all

simulations with “base parameters” that were near to what
might be considered ideal. The base parameters and the “tar-
get” parameters are given in the first two lines of the table.
The base parameters are used for the simulations displayed
Figs. 4, 5, and 6(a), 6(c), and 6(d). In Fig. 6(b) we display
simulation results where the neighboring qutrits and cavities
have mismatched parameters. With an overall control of the
Josephson inductance, we can assume that perfect matching
between χ i

g f and χ ′ i
g f can be achieved for each cavity i and its

two coupled qutrits i and i + 1 via flux tuning on the qutrits.
Other parameters, including the qutrit-cavity interaction term
and the cavity linewidth, are mismatched. These parameters
are given in lines 3 to 5 of Table I. For larger mismatches
displayed in Fig. 6(b), the deviations are simply scaled ac-
cordingly.

For optimization of the simulation process, it is desirable
to make a cutoff at the maximal cavity photon population at
the lowest value possible while maintaining accurate results.
As is presented in Fig. 8, we thus monitored the cavity photon
number population throughout the same stabilization process
shown in Fig. 4. With the ground state or the maximally
mixed state unidirectionally projected into the Stotal ∈ {0, 1}
subspace, the cavity photon number ramps up in about the first
500 ns and then decays monotonically. Whichever initial state
we chose, the cavity photon numbers for n � 4 are quite small
throughout the stabilization process. Actually, the behavior of
cavity photon number n ∈ {0, 1, 2, 3} makes up 90 percent
of the cavity state population, thus enabling a representative
description of the overall system behavior with limited photon
numbers. Consequently, we make a reasonable cutoff of the
cavity photon population n � 3, with which the simulation
results are shown in the insets of Figs. 8(a) and 8(b). By
comparing the insets of Figs. 8(a) and 8(b) (with n � 3) to the
main panels (with n � 9) we see very similar photon number
dynamics further confirming that a simulation cutoff of n � 3
produces accurate results.

APPENDIX D: ALTERNATIVE “n-PHOTON DRIVES”

The “n-photon drive” serves to drive states back into the
ALKT subspace. The drives are activated when there are n
photons in the cavity. This drive can be chosen as any oper-
ator that has components rotating between the two subspaces
inside and outside Stotal = 2. With different choices of the n-
photon drive, the stabilization can in theory be accomplished
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FIG. 8. Cavity photon population during the stabilization pro-
cess. (a) The system is initialized with a fully mixed state and then
evolves under the protocol. (a)–(f) The state population for cavity
photon number 0–5. (b) The system is initialized in the ground
state. Insets show the stabilization process calculated with a maximal
photon number cutoff of n = 3 instead of n = 9. (a)–(d) The state
population for cavity photon number 0–3.

with a varied converging time. For example, one alternative to
the second line in Eq. (12) could be

Ĥn
eff = ŜA

x ⊗ IB − IA ⊗ ŜB
x . (D1)

This alternative protocol is shown in Fig. 9 for the two-qutrit
case as well as its scaling performance. Applied to two qutrits
[Fig. 9(a)], the protocol still effectively stabilizes the target
subspace, but with a different distribution of states in the four-
fold target subspace. However, by comparing Fig. 9(b) [with
the rotation Eq. (D1)] and Fig. 9(c) [with the rotation Eq. (12)]
we see that the choice of Eq. (12) performs better at a larger
number of sites.

APPENDIX E: POTENTIAL EXPERIMENTAL LAYOUT

We propose an experimental design that can be realized
with state-of-the-art fabrication capabilities, as a proof of
principle of our scheme. This is shown in Fig. 10. Each
qutrit is attached to a flux line and a control line, where the
qutrit frequencies can be tuned and the qutrit rotations can be

FIG. 9. Performance comparison for the protocol with different
“n-photon drives.” (a) For the stabilization of one adjacent pair of
qutrits initially prepared with fully mixed state with an alternative
drive given in Eq. (D1). (b,c) The performance of the protocol with
system size scaling up in terms of stabilization time and fidelity.
Round dots mark the stabilized state fidelity and square dots mark
the stabilization time. In (b) the rotation is Ĥn

eff ∝ ŜA
x ⊗ IB − IA ⊗ ŜB

x

while in (c) the rotation is Ĥn
eff ∝ R̂A

gf ⊗ IB − IA ⊗ R̂B
gf . Here the

cavity shifts scale as (a) χ = χ0/4 (blue), (b) χ = χ0/2 (green), (c)
χ = χ0 (red), and (d) χ = 2χ0 (black).

applied. For the microwave cavity coupled to each adjacent
pair of qutrits, there is a drive line to apply probes to the
shared cavity. The shared cavities can also be utilized for state
readout to perform quantum state tomography.

In the main text, we analyzed an idealized set of parameters
that yields the clearest setup for pedagogical reasons. Here
we provide physical parameters to realize the high value of
χgf required for high-fidelity operation of the protocol. We
first introduce the straddling regime [38] for the dispersive

FIG. 10. Potential experimental device. Sample layout of a N =
6 qutrit chain, where dissipative coupling between neighboring trans-
mon circuits is mediated by resonators. Individual lines allow for flux
tuning and microwave pulse control of each transmon.
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FIG. 11. Cavity probe and corresponding two-qutrit stabilization
in the straddling regime. (a) A diagram of the cavity spectrum that
can be obtained in the straddling regime, where cavity shift of state
| f 〉 is positive and the value is negative for state |e〉. In this case,
the cavity probe at the |gg〉 peak would induce a large amount of
extra dephasing, so only the | f f 〉 peak is driven. This spectrum is
diagrammatic with certain shifts and widths exaggerated to show the
structure. (b) The two-qutrit protocol performance under the single-
sided cavity probe. The protocol still efficiently drives the two-qutrit
state into the four-dimensional target subspace. Here since the cavity
drive is single-sided, we adjust the “zero-photon drive” frequency of
the qutrits to be shifted with a small photon number induced by the
single-side cavity probe.

shift between superconducting transmon and the cavity. As
is shown in Appendix A, χgf = χ2 − χ0 = χ1,2 − χ2,3 + χ0,1.
Since χi,i+1 = g2

i,i+1/(ωi,i+1 − ωr ), and the coupling strengths
have gi,i+1 = √

i + 1g0, we have

χgf = g2
0

(
2

ω1,2 − ωr
− 3

ω2,3 − ωr
+ 1

ω0,1 − ωr

)
. (E1)

Since for the transmon energy level, we have [38]

Em  −EJ +
√

8ECEJ

(
m + 1

2

)
− EC

12
(6m2 + 6m + 3).

(E2)
Then E01 = √

8ECEJ − EC , E12 = √
8ECEJ − 2EC ,

E23 = √
8ECEJ − 3EC . For EC/h = 400 MHz = α/2π

and
√

8ECEJ/h = 7 GHz we have reasonable qubit frequency
and anharmonicity, and a good ratio of EJ/EC ∼ 40
that enables less fluctuations on the | f 〉 state. When

FIG. 12. Protocol performance with multiple qubits in the strad-
dling regime. (a) The AKLT subspace population starting from
the qutrits’ ground state |g . . . g〉 (solid colored lines) and starting
within the AKLT subspace (dashed colored lines), we simulate the
time evolution of the AKLT chain with open boundary conditions
subspace population under the driven dissipative protocol with a
varying number of qutrits (a) Nsites = 2 (red), (b) Nsites = 3 (blue),
and (c) Nsites = 4 (green) for comparison. (b) Extracted fitting pa-
rameters as the final fidelity and the convergence time with the same
method as in Fig. 4(b) on the total population in the AKLT subspace.
The blue dots represent the varied final fidelity with systems of two,
three, and four qutrits (left axis) and the green dots represent the
convergence time for the protocol (right axis).

we have ω1,2 − ωr = α/2, then ω0,1 − ωr = 3α/2 and
ω2,3 − ωr = −α/2, and thus χe f = 32g2

0/3α. To obtain
χe f /2π = 80 MHz, we can have g0/2π = 55 MHz which
still stays in the dispersive limit. In this case, though, the
cavity spectrum peaks are arranged in a different way since

χge = χ1 − χ0 = g2
0

(
2

ω0,1 − ωr
− 2

ω1,2 − ωr

)
, (E3)

where χge = −8g2
0/3α is a negative value, χge/2π =

−20 MHz. Thus, a slightly new driving strategy should
be adopted. A diagram of the cavity spectrum is shown
in Fig. 11(a), where we probe the cavity only at the | f f 〉
peak. The corresponding protocol performance is shown in
Fig. 11(b) and the multiqutrit protocol performance is shown
in Fig. 12. Here, we show that the good isolation of the
| f f 〉 peak is achievable in realistic physical devices, and the
consequential high performance can be expected.
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