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1 Introduction

The inclusive semileptonic B — X /v, decays, mediated by the charged-current transition
b — qfvy, with ¢ = u, ¢, are standard probes of the CKM matrix elements V., and V. The
comparison between the experimental values of the branching ratios and their theoretical
predictions obtained within the framework of the Heavy Quark Expansion has allowed the
extraction of |Vg| with a 1.2% accuracy [1, 2] while for |V,;| it has reached about 5% [3].

The calculation of the decay rate in the free quark approximation, i.e. I'(b — ¢fvy),
constitutes one of the main theoretical ingredients for the extraction of the CKM elements.
The decay rate is known in an exact form for arbitrary mass of the final state quark ¢ only
up to order as. At higher orders, results have been obtained only as asymptotic expansions
either in the massless limit, with the expansion parameter p = m./m; < 1, or the equal
mass limit, with the expansion parameter § =1 —p=1—m./my < 1.

At next-to-next-to-leading order (NNLO), expansions around p — 0, which covers both
b — ulvy and b — clvy, have been computed in refs. [4, 5]. The asymptotic expansion in this
limit is quite involved and it has not yet been extended to next-to-next-to-next-to-leading
order (N3LO). At NNLO also the other limit § — 0 was studied in ref. [6] showing a much
simpler asymptotic expansion (compared to the limit p — 0) and a fast convergence of
the series in 0 even at the physical value of m.. At N3LO an expansion around m. ~ my
has been performed in refs. [7, 8] (see also ref. [9] where a subset of diagrams have been
cross-checked). Currently, the predictions for b — u at N3LO are based on expansions for
me — my and a subsequent extrapolation to m. = 0. This yields a sizable uncertainty of
about 10%.



Recently, a semi-analytic method for the calculation of multi-loop Feynman integrals
depending on one dimensionless parameter (and the dimension d) has been developed in
ref. [10]. It was applied successfully in QCD to the calculation of the fermionic part of the
MS-pole mass relation at four loops and the massive form factors at three loops [11-13].
The “expand and match” method provides results well suited for fast numerical evaluation
and sufficiently precise for phenomenological applications.

In this paper we reconsider the corrections of O(a?) to the b — ¢l total rate, and
revisit its calculation utilizing the method developed in [10]. The purpose is twofold. On
the one hand, the application of the “expand and match” method to semileptonic decays
serves as preparation for similar other calculations in B physics, such as the computation of
non-leptonic decay rates at NNLO. It also provides cross checks of the known expansions
around p = 0 and p = 1. On the other hand, we discuss for the first time the role of the
rare decay b — ccclvy, which contains an additional cc pair in the final state. This decay
channel was so far neglected in the expansions around the limit m. ~ my, both at NNLO
and N3LO.

Let us further elaborate on the last point. At leading order and NLO, the possible real
emission processes which contribute to the total semileptonic rate (b — vy and b — cgliy)
contain only one charm quark in the final state. Starting from NNLO, there is also a decay
channel where three charm quarks appear in the final state (see, e.g., figures 1(a) and (e)).

For technical reasons (see below) the calculation for m. ~ m; includes only the
contributions with one (massive) charm quark in the final state but neglects the contributions
with three charm quarks. The latter is kinematically accessible only if m,. < m;/3 and
thus missing in the equal mass limit m. = myp. The contribution of the rare decay is very
small, of the order of 107, and so negligible for the physical value of the charm mass
(p ~ 0.25), without impact on the extraction of V. However, in order to properly match
the expansion around p = 0 and p = 1 it is crucial to correctly take into account the
contribution of b — cccliy.

The main results presented in this paper are the following:

e We compute analytic results for the NNLO correction in terms of iterated integrals
for all contributions with one charm quark in the final state. We do not include
contributions with three charm quarks since they would involve elliptic integrals
originating, e.g., from four-loop sunrise diagrams with unequal masses.

e We construct a piece-wise defined function where the individual pieces are either Taylor
or power-log expansions with (precise) numerical coefficients. This approximation
contains all contributions, also those with three charm quarks in the final state. It
reproduces the correct functional behaviour in the various kinematic limits at p — 0
and p — 1 but also at p — 1/3.

The outline of this paper is as follows: in the next section we introduce the notation
and describe our analytic and numeric methods. Afterwards we discuss in section 3 our
results for the total decay rate of b — ¢l at NNLO. In particular, we present analytic
results for the contributions with one and three charm quarks in the final state. We also



discuss our approximation formulas and in particular their numerical accuracy. In section 4
we present the calculation of the charm dependent contribution to the decay b — ufuy,
i.e. the two-loop diagrams with a closed charm loop insertion into the gluon propagator.
Finally we summarize our findings in section 5.

2 Methods

2.1 Notation

Let us now discuss the details of the calculation. We consider the decay of an on-shell
bottom quark into a charged lepton (e, ) assumed to be massless, a neutrino and any
hadronic state X. containing a charm quark:

b — X L. (2.1)

To compute the decay rate we apply the optical theorem and compute the imaginary
part of the bottom quark two-point function. In the following we do not restrict ourselves
to physical masses of m, ~ my,/3, rather we keep m, generic. As we will see, for technical
reasons the limit m. — my is of high relevance. With m. — 0 we cover the case b — ulr,.
After specifying the QCD colour factors to QED, our results can also be applied to the
muon and tau decays.

It is convenient to define the following variables:
_me Me

p=—, S=1-—".
my my

We write the decay rate in the form

n A2
T(B = Xol) =To | Xo+Cr Y (2) X,| +0 (22, (2.2)
T m?
n>1 b
where my, and m, are renormalized in the on-shell scheme,
ry = AenGilVal*my (2.3)

19273 ’

Cr =4/3, Aew = 1.014 is the leading electroweak correction [14], and as = al? (us) with
1s being the renormalization scale. The tree-level contribution is given by

Xo=1-8p? —12plog(p?) + 8p° — p8. (2.4)

The one- and two-loop results are available from refs. [4-6, 15-19] and the three-loop
correction X3 has been computed in ref. [7] (see also [9] for partial results). In the following
we reconsider Xy which is a function of the mass ratio m./mg.

At leading order and NLO, the functions Xy and X; come from Feynman diagrams
with cuts only through one charm quark line. These diagrams develop an imaginary part
for 0 < p < 1. Starting at NNLO, there are also diagrams where three charm lines can be
cut (see, e.g., figure 1(a) and (e)). They develop an additional discontinuity for 0 < p < 1/3
which corresponds to the contribution of the rare decay b — ccclv.
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Figure 1. Sample diagrams contributing to the semileptonic B meson decays at NNLO. The
dashed lines represent the charged lepton neutrino pair. Double lines denote bottom quarks, thick
and thin lines denote charm and massless quarks, respectively. The red dashed lines shown for
diagrams (a) and (e) indicate possible three-charm cuts.

In the following we present our calculation of X5 which is divided in two steps. In
a first step, we compute analytic results valid for arbitrary charm quark masses for the
contribution to X9 which does not contain three charm quarks in the final state. Later on,
we present an approximation function for the complete contribution to X5, which consists
of power-log expansions valid in certain m, ranges.

2.2 General setup

We generate the amplitude with ggraf [20] and process the output with tapir [21]. Next
we apply exp [22, 23] to map the individual diagrams to integral families. The actual
computation is done with FORM [24]. At this step the auxiliary files generated by tapir
are quite useful to express the amplitude for each diagram as a linear combination of
scalar integrals.

They are reduced to master integrals with the use of Kira [25] in combination with
FireFly [26] within each integral family. Furthermore, we apply ImproveMasters [27]
in order to obtain for each integral family a basis such that the ¢ and p dependence in
the denominators of each reduction table entry factorizes. Once all master integrals are
identified we use again Kira to identify the symmetries across families and reduce the
master integrals to a minimal set. In total we arrive at 129 four-loop master integrals.
Samples of master integrals are shown in figure 2
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Figure 2. Samples of four-loop master integrals. Black and red solid lines represents massive
propagator with mass m; and m., respectively, while dashed lines are massless propagators.

Note that we do not exploit that it is in principle possible to integrate over the charged-
lepton-neutrino loop in a first step since this cannot be done for the calculation of the
non-leptonic B meson decays.

We perform the calculation for general QCD gauge parameter &. For most of the colour
structures £ drops out at the level of the bare amplitude. The remaining ¢ dependence
cancels after the inclusion of the bottom mass counterterms.

A crucial input for the methods discussed in the next two subsections are the differential
equations for the master integrals. They can easily be established using the reduction tables.

2.3 Analytic calculation

In this subsection we present our analytic calculation of the master integrals, in case we
consider the contribution of cuts only through one charm quark. For the decay rate, we
need in principle only the imaginary parts of the master integrals. As a consequence we
can restrict ourself only to the masters which have a physical cut, i.e. where the propagator
of neutrino, charged lepton and at least one charm propagator can be cut simultaneously.
In figure 2, the master integrals in the first row do not have a physical cut, while those in
the second and third row have an imaginary part.

The requirement of physical cuts reduces the number of master integrals from 129 to
108. We construct analytic solutions for the imaginary part of the master integrals with
the help of the differential equations. We use boundary conditions from the limit m. — my
(p — 1) where it is quite straightforward to compute the imaginary parts of the master
integrals via an asymptotic expansion.

The crucial observation is that by fixing the boundary conditions at m. = my one
calculates the contribution where only one charm line is cut. In fact, in this limit there is no
possible discontinuity corresponding to a cut through three charm quarks, which appears in
Feynman integrals only for 0 < p < 1/3 (i.e. § > 2/3). For example, the master integrals



shown in the second row of figure 2 have a cut only through three charm lines (additionaly
to the lepton and neutrino), while those in the third row have a cut through one charm
line. Note that for some of the masters, like the one on the right in the third row, both
one-charm and three-charm cuts appear.

In order to incorporate the three-charm cut contribution, it would be necessary to
compute a complicated asymptotic expansion around p = 1/3. Alternatively one can
compute boundary conditions for both real and imaginary parts for p > 1/3 and solve the
differential equations for the complete set of 129 master integrals. This would require the
computation of four-loop on-shell integrals, which are to date not available in analytic form.
The semi-analytic approach discussed in section 2.4 covers this case. In the limit m. — my
only 95 out of the 129 master integrals have a cut through one charm line. Note that 13
master integrals have cuts only through 3 charm lines while the remaining 21 do not have
an imaginary part.

Let us now discuss our analytic solution for the 95 masters with one charm cut. In
a first step we transform the differential equation matrix in e form [28, 29]. This is done
using both Libra [30] and Canonica [31].

Libra is used to bring the matrix in block-diagonal form and afterwards we use
Canonica to transform the whole system to e form. This is done by first transforming the
diagonal blocks and then the corresponding off-diagonal elements block by block, using
the build-in functions of Canonica. This approach is successful for a subset of 91 master
integrals. The remaining four integrals are at the top-level and can be decomposed into a
3 x 3 system and an uncoupled integral. We solve these integrals following the algorithm
outlined in ref. [32]. In practice this means that we decouple the coupled system with the
package OreSys [33], which internally depends on Sigma [34, 35], and solve the resulting
higher order differential equation via factorization of the differential operator with the help
of HarmonicSums [36-48]. In an independent calculation we have used this approach of
solving the differential equation on the whole system and did not make use of the e form of
the first 91 master integrals. The results of both approaches are in complete agreement.

The € form is conveniently obtained in the variables ¢ which is defined via

1—¢2

N (2.5)

Then the solution can be expressed in terms of iterated integrals with the alphabet

1 1 1 t t3 (2.6)
14+ttt 1—¢t"1+2714+¢4 (" '

For the computation of the boundary conditions we follow refs. [7, 8, 49], where similar

integrals have been considered. In [49, 50] the three-loop relation between the heavy quark
masses defined in the pole and kinetic scheme has been computed. The starting point in
refs. [7, 8] were five-loop integrals. A convenient choice of momentum routing and integration
order led to a factorization, where at most three-loop integrals have to be solved. In the
present calculation we deal with four-loop integrals and observe a similar factorization.



We apply the so-called “method of regions” [51] which in our case leads to a scaling
of the loop momenta as either hard (h) or ultra-soft (us).! This leads to at most 24 = 16
different regions for a given integral, however, not all of them contribute. For example,
the region where all loop momenta are hard does not develop an imaginary part and can
be discarded.

For the identification of the regions we use the package asy.m [52], which we apply to
each master integral separately. As input it requires the list of propagators and the scalings
of the masses and the external momenta. asy.m provides as output the scalings of the
propagators for all non-vanishing regions. The comparison to the scalings which we obtain
after identifying a unique routing of the loop momenta allows us to discard regions, which
give no contribution. For the non-vanishing regions we can perform the expansions in the
small parameter §.

Note that in refs. [7, 49], the program asy.m was only used as a cross check to make
sure that all contributing regions were found. It was furthermore applied at the level of
the amplitudes and not to master integrals. In the present calculation asy.m is used to
discard regions which are zero before the expansion is done. Since we use it at the level
of the master integrals, it is suitable to apply this procedure to each of the 95 master
integrals separately.

Two of the four loop momenta have to be ultra-soft, namely the loop momentum of the
charged-lepton-neutrino loop and the one which flows into the lepton loop. The remaining
two loop momenta are either ultra-soft or hard.

The calculation of the Feynman integrals appearing from the asymptotic expansion
closely follows ref. [8] and can be summarized by the following steps. We consider sepa-
rately the regions corresponding to the momentum scaling (h, h, us, us), (h,us, us, us) and
(us,us,us,us). For each region we define new integral families that contain all propagators
and numerators which arise after the expansion. We find symmetries across the new integral
families with the program LIMIT [53], which is based on LiteRed [54]. In case there are
linearly dependent propagators, we perform a partial fraction decomposition with LIMIT
and minimize again the number of families. For each family, we perform a reduction to
master integrals with Kira [25]. The master integral in the asymptotic expansion can be
written in terms of I' functions and, in one case, as a one-fold Mellin-Barnes integral. In
particular, the master integrals with three or four ultra-soft loop momenta can be solved
via recursive one-loop integration. In case we have two hard loop momenta, we observe a
factorization into one- and two-loop integrals.

For convenience we provide the formulas for one-loop integrals used in the recursive
integration (with ¢? = 1):

d%k,
(k)™ (= (k1 +p)°)

B md/ZF(nl +n2—24+€6I'2—na—€e)T'(2—n1 —¢) (7 2)2—e+n1+n2
- T ()T (n2) T (4 — nq — na — 2e) P

n2

Li(p; ) = /

)

'Following ref. [51] we use the term ultra-soft instead of soft.
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In the hard regions, we used also the expression for the two-loop sunrise diagram with three

equal masses:
B d%k; %%
nn= [ (1= o+ k2)?) (1= (k)°) (1= (k2 + )°)
- (iwd/2)2 1/100 dz
2m

F(_Z)F2(1—e_ZjOZ)F(—l-l-QG-l—Z)P(l—E)F(Q—QE—Z)
['2—-2—22)I'(3—3e—2) (—4)_1+2€+z .

We compute for each master integral the first two expansion coefficients for 6 — 0. Note

(2.7)

that not all § coefficients are needed to fix the integration constants. There are diagonal
blocks in the differential equation where several integrals are coupled. It is usually sufficient
to choose one of the integrals and match it to its boundary condition including subleading
0 terms. This allows us to fix all boundary conditions also for the remaining integrals in
the block. Once all integration constants are fixed, we calculate from the analytic solution
the § expansion of all integrals. We use the coefficients which were not used as cross check.
Altogether we have computed 192 coefficients in the ¢ expansion (two for each of the 95
master integrals) but we have used only 72 of them to fix the boundary constants.

Once all boundary conditions are fixed it is straightforward to integrate the differential
equations up to the required order in e. After inserting the master integrals into the
amplitude, we expand in € up to the constant term. The bare NNLO amplitude develops
1/€? and 1/e poles which cancel against the counterterm contribution. Their transcendental
weight is one and two, respectively. In the €® term we observe iterated integrals up to weight
five even after choosing a minimal set of functions. The occurrence of weight-two expressions
in the pole part is expected since this weight also appears in the analytic NLO result [55]. At
first sight the weight-five functions in the finite three-loop term might be surprising. Note,
however, that we start with four-loop integrals. Since the charged-lepton-neutrino loop
is finite one can expect weight-six expressions from the remaining three-loop calculation.
Since we compute the imaginary parts we finally end up with weight-five iterated integrals.

We refrain from presenting exact analytic results in the paper but refer to the sup-
plementary material [56] where also the expressions for the imaginary part of the master
integrals (one charm cut) can be found. In section 3.1 we will present the analytic expansions
of the decay rate in the limits p — 0 and p — 1.



2.4 Numeric calculation

As an alternative to the analytic approach described in the previous subsection, we discuss in
the following the “expand and match” method introduced in refs. [10, 12]. The starting point
is the system of differential equations for the 129 master integrals obtained in section 2.2.
The basic idea of this method is as follows: we choose several points py € [0, 1], make an
ansatz for the expansion of the master integrals around p = pg, insert the ansatz in the
differential equations and solve the resulting system of linear equations for the coefficients
in the ansatz in terms of a few initial values. The latter are determined by matching to
known results.

The choice of expansion points py should include all singular values of the differential
equations that in our case are p = 0,1/3 and 1, where p = 1/3 corresponds to the three-charm
threshold. Furthermore we add regular points to obtain higher precision approximation
formulas. As expansion points we choose

po €{0,1/12,1/6,1/4,1/3,1/2,1}, (2.8)

with pg = 1/2 as starting point. Note that the radius of convergence in general extends
only up to the next singular point in the complex plane. As a consequence it is sufficient to
choose only a few points above the threshold at p = 1/3. Below threshold more expansion
points are needed in order to reach a good convergence. Furthermore we employ Mobius
transformations (see ref. [57]) to extend the radius of convergence of the series expansions
into the direction of the farther singularity. Explicit ready-to-use formulas for our application
can be found in ref. [12].

The expansion around regular points is a simple Taylor expansion and thus we choose
the following ansatz for the master integrals

€max T'max

Li= Y > cigne (p—po)" (2.9)
J=€min n=0
where €, is determined by the highest pole and ey,,x depends on the spurious poles in the
amplitude in front of the respective master integral. For the expansion depth we typically
choose nmax = 50 which provides about ten or more significant digits in our final result.
For the singular points the ansatz has to be extended to allow for logarithmic terms.
At po = 0 we have

€max  J14 Nmax

I, = Z Z Z ciyjymynej p" log™ (p) . (2.10)

J=€min m=0 n=0

At pp =1/3 and py = 1 our ansatz is

€max J1T4 Nmax

Li= > > > cijmn€ (p—po)" log™ (p— po) - (2.11)

J=€min M=0 N=Nmin
We choose npmin < 0 to allow for potential negative powers. However, it turns out that
only the coefficients for n > 0 are different from zero. In case our ansatz is insufficient the
system of linear equations can either not be solved or only the trivial solution is possible.



The expansion around the three-particle threshold at p = 1/3 does not require the
introduction of half-integer powers of p — 1/3, at variance with what is observed for two-
and four-particle thresholds (e.g., see [11, 12]). In fact the production close to threshold of
n particles of mass m behaves as [58, 59]

3n—5

(s = (nm)*)77, (2.12)

where s is the squared energy available to the system. One observes that half-integer powers
are arising only when an even number of particles are produced, while for an odd number
the exponent is an integer.

As boundary condition for the “expand and match” procedure we choose py = 1/2. We
use AMFlow [60] to obtain numerical results for all master integrals (both real and imaginary
part) with a precision of 80 digits and fix undetermined constants for the Taylor expansion
around p = 1/2 (see eq. (2.9)). Next we evaluate the master integrals at pp = 0.4 which
serves as input for the expansion around py = 1/3. We could proceed in a similar way
towards p = 1. However, here we can use the analytic boundary conditions to produce a
deep expansion in 1 — p.

At po = 1/3 we perform the matching at a value p > 1/3. Thus the logarithms in
eq. (2.11) are real-valued whereas the coefficients ¢; j m n have both real and imaginary
parts. After crossing the threshold to values of p < 1/3 the logarithms develop additional
imaginary parts according to log(p—po) = log(|p— po|) —im which arise from the three-charm
threshold. For the expansion around pp = 1 it is convenient to use the ansatz in eq. (2.11)
with (p — po) replaced by (pp — p) since we always have p < pp and thus we do not have
to deal with spurious imaginary parts. In this way, we determine the coefficients of all
expansions around the singular and regular points given in eq. (2.8).

To check the precision of our results obtained with the “expand and match” approach,
we compare them with the analytic expressions from section 3.1 at p > 1/3. For the
numerical evaluation of the iterated integrals we use ginac [61, 62]. As an example, we
show in figure 3 the relative difference between the analytic and numerical result for the
€Y coefficient of the fourth master integral with nine propagators in figure 4. The red
dots in figure 3 show an agreement of more than 17 digits in the range 0.1 < p < 1, with
increasing precision when p approaches the value 1/2 where the expansion was matched
to the numerical evaluation with AMFlow. Also the expansion around p = 1 manifests a
good convergence when approaching p = 1 because this series expansion was matched to
the analytic boundary condition calculated in the previous section. The lower-order € terms
and the master integrals in lower sectors show in general an even better agreement.

We observe a loss of precision (only 8 digits) when we approach the massless limit at
p = 0 where several master integrals develop mass singularities. In principle the precision
can be improved by including more (regular) expansion points between p =0 and p = 1/3.
Alternatively, we can recalculate the boundary condition with AMFlow at some point close to
p = 0. For instance, the blue points shown in figure 4 correspond to the expansion around
p = 0 matched to a numerical evaluation at p = 1/100. In this case, the precision is of more
than 44 digits and thus shows that also in the massless case we can reach a good accuracy
in the evaluation of the master integrals.

~10 -



1078=

10—17_

10-26 EEEE

10735- " "
1044+ . .

10_53_ ™ ]

|(Mana — Mlnum)/Mana

10762~ g

10771+ o

o84
0.0 0.2 0.4 0.6 0.8 1.0

Jo)

Figure 3. Relative difference between the semi-analytic approximation formula and the analytic
result for the €® term of the (imaginary part) of the fourth non-planar master integral shown in
figure 4. The blue dots are obtained from the matching of the p = 0 expansion to boundary
conditions computed at p = 0.01.

Figure 4. Master integrals with nine propagators which appear in the top sector of the differential
equations. The dashed line denote massless propagators, black and red lines have mass my; and me,
respectively. Squared propagators are marked with a dot. The external lines are on-shell.

In principle it is possible to use AMFlow for the physical value of the charm quark mass.
However, in that case we would lose the flexibility to vary the charm quark mass and to
consider different mass schemes for the quarks. Furthermore, AMFlow cannot reproduce the
power-log behaviour around the singular points. In fact, the evaluation with AMFlow at the
threshold p = 1/3 or for p = 0,1 yields only the hard parts in the asymptotic expansion
around these two points. In our approach we obtain the same power-log expansions around
the singular points as from an analytic calculation, where the expansion coefficients have a
numerical accuracy of 10 and more.

- 11 -



3 Decay rates

We obtain the NNLO prediction to the decay rate after renormalizing the wave function of
the external bottom quark in the on-shell scheme, the strong coupling constant « in the
MS scheme with five active flavour, and m. and m; in the on-shell scheme. The on-shell
masses can be converted to other short-distance mass schemes. We divide the coefficient
X5 appearing in the decay rate at order o2 in two parts:

Xa(p) = X5°(p) + X3°(p), (3.1)

which correspond to the contributions with one and three charm quarks in the final state.

3.1 Analytic result of contribution without cut through three charm lines

We use the results for the master integrals obtained in section 2.3 to compute the decay rate
at NNLO omitting the contributions involving three massive charm quarks in the final state,
X3¢, For the physical values of the charm and bottom quark masses these contributions are
negligible. However, they become sizable in case we approach the limit m, — 0 (see next
subsection).

The exact expression for X21° is too long to be printed here but can be downloaded
from [56]. It contains in total 313 different iterated integrals constructed from the alphabet
in eq. (2.6) up to weight five. It can be numerically evaluated using ginac [61, 62].

With the help of HarmonicSums [36-48] we obtain analytic expansions around p = 0
and p = 1. For illustration we provide the first three expansion terms in both limits. Deeper
expansion can be obtained from [56]. For the renormalization scale we choose p = my,

and obtain
X0 = CF{255178745 B 13235399;2 N 10712C3 + %7%2 log2 + 11727T04 * (183 N 7212 * C?’)l”

52 o[ 45323 40372 599C; 20 , 99174

BRI [_ 62 " 54 T3 37 o82F 5

_ (220_47:> zg—%z;’;—gzh (—6§i’1+52;2+60<3>zp]}

PR SN 6 Ve c

- <5f(?§ + 26;2 + 30§3>lp + (E;l - 27;2)12”

+Tpm[— % 72717;2 87§3+ 2(1;8 -~ 47;+5321p—81§)]

[t (1)

+ Trne ﬁﬂ?j + 62117: + % %li + glf, <47125 - 7;2) o 135{)

+p2(—?£+1%3f—1§11p—?z§>]+..., (3.2)
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with [, = log(p) and las = log(20). The ellipses stand for higher order terms in p and .
For the expansion around p = 1, we obtain a power-log series starting with §°. This is in
agreement with the results from [6-8]. In the expansion around p = 0 we observe that for
the color factors CgTrn; and CgTEny the limit p — 0 exists whereas the other three colour
structures develop logarithmic divergences. The non-fermionic structures (C% and CrCjy)
contain linear logarithms in the leading expansion term. For the colour structure CrTrn,
we have a cubic logarithm. These logarithms originate from the mass singularities. They
cancel against the real radiation contribution contained in the three-charm contribution
X3¢, At higher order in p also quartic logarithms start to appear; see, e.g., the colour
factors C’% and CrC'4. We note that the coefficients of the odd expansion terms in p are
simpler than those of the even terms.

The divergent behaviour of X4¢ for p — 0 is due to the mass singularities for massless
charm quarks which are present since not all possible cuts are considered. In the complete
result as computed in refs. [4, 5] the limit p — 0 exists. We can subtract the expansion
in eq. (3.2) from the result computed in refs. [4, 5] to obtain analytic expressions for the
contribution from three-charm cuts. We obtain

409 34972 115g3 7t IR 572
X3¢ =Cpd — — - 21 g2 — — — (— )l =
20 F{ 576 288 52 6 i \g g Te)t3r
12083 10372  341¢3 4 2074 961 5272
2 2
— — — —712log2 — —— = _ —60¢3 )1
[ 648 36 3 3" %% T ( 54 9 <3) p

34, dn®\, 145 4” {409 34972 19 ,
(9+ 3>l st 3bl TN T e 1" 82

115¢; 7t 5r? 13 2 (3 o[ 12083 10372  341(3
48 o288 6 ' (16 3T 2)l’) {_ 1296 72 6
2 297t /961 2672 17 2n? 7. 1,
a7 36 <108_ 9 )”(g*g)lﬂ‘g%‘s%ﬂ
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A deeper expansion is again available from [56]. After specifying the QCD colour factors to
QED, the result in eq. (3.4) yields the LO branching ratio also for the rare muon decay
p — e(ete )y, in an analytic form. We find perfect agreement with the numerical results
for the branching ratio in refs. [63, 64].

3.2 Numeric results of complete contributions

The “expand and match” approach described in section 2.4 provides results for the whole
p range as (power-log) expansions around values p; with numerical coefficients. Each
expansion is used in the respective convergence region.

There are a number of checks of our results which we describe in the following. A
strong check of the individual master integrals is provided by the comparison to results
obtained with AMFlow at various values for p. The numerical results we obtain from AMFlow
are compared to the values we obtain from the power-log expansion of the masters. Looking
at the relative difference, we observe that in the region between p = 1 and the threshold at
p = 1/3 the accuracy for the Taylor expansions is of the order of 1073° to 107%°. When we
match to the expansion around threshold, we loose some precision (because of the more
complicated expansion) and observe for the Taylor expansions a relative difference of the
order of 10715 to 1072° in the region between the threshold and p = 0. After matching to
the power-log expansion around p = 0 we loose again some precision. Nevertheless we can
reproduce the coefficients of the analytic expansion from refs. [4, 5] to 8 or more digits, see
also below.

The bare NNLO expression contains spurious € poles which are introduced during the
integration-by-parts reduction. After inserting results for the master integrals we observe
poles up to sixth order. Since the counterterm contributions provide at most 1/e2 poles the
higher poles have to cancel in the bare NNLO result. In the worst case we observe a pole
cancellation of order 1071° for certain 1/€3 poles while for the higher poles the cancellation
is much better.

We obtain the renormalized decay rate by adding the counterterm in analytic form.
The cancellation of the poles in € provides a check on the numerical precision of our result.
To quantify the accuracy we introduce the quantity

et + XgT
XoT

5( X 2 (3.5)

ei) -

‘ bare

el
In figure 5 we show 6(Xz| _,) and §(Xa| _,) for 0 < p < 1. Close to the starting point
at p = 1/2 both the linear and quadratic poles cancel with more than 70 digits and then
accuracy deteriorates when the distance from p = 1/2 increases. Here the accuracy is
limited by the truncation of the expansion around p = 1/2.

When moving towards p = 0 the accuracy slightly deteriorates. Close to p = 0 we
observe still a precision of about 8 digits. The blue and green points in figure 5 shows the
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Figure 5. Relative precision for the cancellation of the 1/e poles according to eq. (3.5). All colour
factors have been set to their numerical values.

precision in the 1/¢? and 1/¢ poles in case we use the p = 0 expansion matched to the
AMFlow evaluation at p = 1/100.

To check the numerical accuracy of our approximation we compare for p > 1/3 against
analytic results presented in the previous subsection. In figure 6 we show for the decay rate
the relative difference between the analytic result and the semi-analytic approximation. For
the “expand and match” approach we have used boundary conditions obtained with AMFlow
for p = 1/2. Over the whole range of p we observe an agreement of at least 19 digits.

A further strong check of our result comes from the comparison of our expansion for
p — 0 to the results of refs. [4, 5]. Using boundary conditions from p = 1/2 and transporting
the solution of the master integrals at p = 0, we can reproduce the analytic coefficients of
the asymptotic expansion at p = 0 with 10 digits for n = 0 which decreases to 8 for n = 5.

Alternatively we can also use the p = 0 expansion matched at p = 1/100. In this case
we reproduce the analytic coefficients [4, 5] with more than 50 digits. Note that in our
approach it is possible to obtain without any effort 50 expansion terms for p — 0.

In figure 7 we show the NNLO contribution X5 to the decay rate. The complete result
is shown in red. For comparison we also show the contribution which only contains cuts
through one charm quark (black curve, see section 2.3). The strong log® p behaviour for
small values of p is clearly visible, however, only very close to p = 0. The blue curve
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Figure 6. Relative difference between the semi-analytic approximation and the analytic results for
the NNLO contribution X5 to the decay rate. For the comparison we have set all colour factors to
their numerical values. We consider the region 1/3 < p < 1 since for p < 1/3 there are three-charm
contributions which are not contained in the analytic result.

represents the contribution with three charm quarks in the final state. It has the same
logarithmic behaviour with an opposite sign such that after adding it to the black curve
one obtains the complete NNLO corrections with a smooth limit for p — 0.

Finally we note that the three charm contribution to the decay rate is extremely
suppressed at the physical value of the charm and bottom masses and therefore irrelevant
for the current accuracy in the extraction of |Vg|. At p = 0.2 we have X3¢ = 4 x 1075
which yields Br(b — cecliy) = 4 x 1078,

4 Charm quark contribution in b — u decay rate at NNLO

In this section we compute the charm quark mass dependence to b — ufv, at NNLO which
arises from diagrams as the one shown in figure 1(i). In analogy to eq. (2.2) we write

A2
+0<;$D>, (4.1)

Qg

2
I'(B = X, t0) =T, [1 + <> CrTrXS + ...
s

b

with Tr = 1/2. The ellipses stand for charm quark-independent contributions. In the
following we discuss the results for X'
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Figure 7. The complete result (dashed, red) is compared with the individual contributions which
only contain cuts through one (black) or three charm quark lines (blue), respectively. The right
panel shows the three-charm contribution is a double logarithmic plot.

In total, there are four Feynman diagrams. After integration-by-parts reduction, we
find 16 master integrals. For the computation of the master integrals we again apply the
“expand and match” approach and use AMFlow in order to obtain the boundary conditions.
In contrast to b — ¢fvy we have cuts through two charm quarks and thus the threshold
is located at p = 1/2 instead of p = 1/3. This means the singular points are p = 0 and
1/2. For the expansion around pyp = 0 we can use the ansatz given in egs. (2.10). For
po = 1/2 a new ansatz is necessary since we expect the occurrence of square roots according
to eq. (2.12). We therefore have

€max Jt4  Nmax

L= > > cigma€ (Vo—po)"log™ (Vo= po), (4.2)
J=€min M=0N=Nmin
where pg = 1/2. Again we allow for negative values of nyi,. However, the solution for
the differential equations requires n > 0. We note that the additional imaginary parts
induced by the two particle threshold are now generated by both the square roots and
the logarithms.

Finite results for the decay rate are obtained after renormalizing the bottom wave
function in the on-shell and a; in the MS scheme. Results for this contribution are given
in eq. (A6) of ref. [5] in an expansion for p — 0 up to p’. We use numerical boundary
conditions at &’ = 0.1 (p = 0.95) and apply repeatedly the “expand and match” approach
to go over the two-charm threshold and to obtain a semi-analytic expansion around p =0
(including 50 expansion terms). We can compare the individual coefficients of p™log"(p) to
the analytic results of ref. [5] and find agreement to at least 9 significant digits. For p =1 we
can compare to the ny term of the b — ¢ decay which is obtained from eq. (3.2) after setting
p = 0. We observe agreement at the level of 1073Y. Similarly, for p = 0 we compare to the
n; term of eq. (3.2) and find agreement within 9 digits. This shows again the power of our
approach. Let us again stress that our numerical precision can be systematically improved
by choosing more expansion points pg, deeper expansion depths or an appropriately chosen
value for p to compute the boundary terms. In figure 8 we show X§ as a function of p.
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Figure 8. X{ as a function of p.

5 Conclusions and outlook

In this work we reconsider the NNLO corrections to the semileptonic decay of a bottom
quark to a charm quark. In the literature expansions are available [4-6] which are sufficient
for phenomenological studies. The aim of this paper is to provide semi-analytic power-log
expansions which are valid for 0 < p = m./my < 1. Furthermore, we provide analytic
results for the subset of Feynman diagrams which have contributions with one charm quark
in the final state.

For the semi-analytic calculation we use the “expand and match” [10, 12] method to
transport information about the master integrals at a given starting point p = pg to any
value of p. It uses the differential equations in combination with an appropriate ansatz to
construct a semi-analytic approximation formula which is composed of power-log expansions
valid is certain sub-intervals of p € [0, 1]. To obtain the initial values of the master integrals
we use AMFlow [60]. Our approach is able to properly take into account singular behaviours
of the exact (unknown) function. In our case this concerns the expansions around p = 0,1/3
and 1. We also compute the charm dependent contributions to b — ufr, at NNLO. Here
the singular points are at p =0 and 1/2.

The method developed in this paper serves as preparation for the computation of
non-leptonic decay rates at NNLO. In these cases the techniques used for the semileptonic
decays to obtain expansions are either not applicable or technically quite challenging. On the
other hand it is straightforward to extend the semi-analytic approach of the present paper.
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We want to remark that the method described in this paper can be applied at N3LO if
the reduction to master integrals is possible and the system of differential equations can be
established. However, it seems that at the moment the latter is a serious bottleneck.
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